

Supplement of

Sensitivity of tropospheric ozone to halogen chemistry in the chemistry–climate model LMDZ-INCA vNMHC

Cyril Caram et al.

Correspondence to: Sophie Szopa (sophie.szopa@lsce.ipsl.fr)

The copyright of individual parts of the supplement might differ from the article licence.

Compound	Henry's law constant (H)	Reference	d(lnH) /	I(InH) / Reference	
	at 298 K in M/atm		d(1/T) in K		
HOBr	1.9.10 ³	Frenzel et al., (1998)	6.0.10 ³	McGrath and Rowland (1994)	
HBr	7.1.10 ¹³	Frenzel et al., (1998)	$1.02.10^4$	Schweitzer et al. (2000)	
BrNO ₂	0.3	Frenzel et al., (1998)	-	-	
BrNO ₃	10^{20}	Sander (2015)	-	-	
Br_2	0.76	Dean (1992)	$3.72.10^3$	Dean (1992)	
HOC1	6.5.10 ³	Sander (2015)	5.9.10 ³	Sander (2015)	
HCl	7.1.10 ¹⁵	Sander (2015)	5.9.10 ³	Sander (2015)	
ClNO ₃	2.69.1015	Sander (2015)	-	-	
BrCl	0.97	Sander (2015)	-	-	
ICl	$1.11.10^{2}$	Sander (2015)	$2.11.10^3$	Sander et al. (2006)	
IBr	2.43.10	Sander (2015)	$4.92.10^3$	Sander et al. (2006)	
HOI	$1.53.10^{3}$	Sander (2015)	8.37.10 ³	Sander et al. (2006)	
HI	7.43.1013	Sander (2015)	3.19.10 ³	Sander et al. (2006)	
INO ₃	2.69.1015	Vogt et al. (1999)	$3.98.10^4$	Kaltsoyannis and Plane (2008)	
I_2O_2	2.69.1015	Analogie avec INO3	$1.89.10^4$	Kaltsoyannis and Plane (2008)	
I ₂	2.63	Sander (2015)	7.51.10 ³	Sander et al. (2006)	
INO ₂	0.3	Analogie avec BrNO3	$7.24.10^3$	Sander et al. (2006)	
I ₂ O ₃	2.69.1015	Analogie avec INO3	$7.7.10^{3}$	Kaltsoyannis and Plane (2008)	
I ₂ O ₄	2.69.1015	Analogie avec INO3	$1.34.10^4$	Kaltsoyannis and Plane (2008)	
Cl ₂	0.086		2.10^{3}	Kavanaugh and Trussell (1980)	
ClNO ₂	0.024	Sander (2015)	-	Behnke et al. (1997)	

Table S1. Henry's law coefficients and molar heats of formation of halogen species.

Table S2: Preindustrial and present-day surface emissions and methane concentrations considered in the LMDz-INCA simulations

Surface emissions (Tg/yr)

	Preindustrial	Present
alkan	1,2	55,1
alken	1,8	9,0
isop	526,7	526,7
mek	1,1	3,3
mvk	0,0	1,4
apin	121,5	121,5
arom	12,7	45,4
C ₂ H ₂	1,8	5,6
C ₂ H ₄	6,1	13,3

C ₂ H ₅ OH	1,1	8,7			
C ₂ H ₆	3,7	8,7			
C_3H_6	4,1	8,1			
C ₃ H ₈	0,9	6,3			
CH ₂ O	9,2	13,9			
CH ₃ CHO	19,0	22,1			
CH ₃ COCH ₃	60,7	62,9			
CH ₃ OH	106,9	110,4			
СО	432,4	971,7			
NO	13,2	103,8			
Tropospheric conenetations (in ppbv)					
CH ₄	792	1800			

Table S3. Comparison of reactive Chlorine Cl* (Cl₂, HOCl, ClNO₂, ClNO₃) between LMDZ-INCA, GEOS-Chem and observations in oceanic regions. Measurements are 24h means but each value represents a mean of several days of measurement. Model outputs represent respective monthly means (2010 for LMDZ-INCA and 2016 for GEOS-Chem) in the same location.

Location	Months	Cl* simulated with	Cl* simulated with	Measured Cl* (ppt)	Reference		
		GEOS-Chem (ppt)	LMDz-INCA (ppt)				
Eastern Atlantic	Oct - Nov	43	80 (72 being ClNO ₂)	27	Keene et al. (2009)		
Atlantic near	Oct – Nov	5	14.2	<24	Keene et al. (2009)		
Northern Africa							
Tropical Atlantic	Oct – Nov	2	1.4	<24	Keene et al. (2009)		
Southern Atlantic	Oct – Nov	4	3.4	<24	Keene et al. (2009)		
Appledore island	Juillet-Aout	17	1.4	<20	Keene et al. (2007)		
Hawaii	Septembre	4	3.4	6	Pszenny et al. (2004)		
Alert (Canada)	Mars – Avril	0.2	1.4	<14	Impey et al. (1999)		

A = (BrO + hv) + (BrO + NO) +B = (Br + CH₂O) + (BrO + CH₃CHO) + (BrO + OH/BrO/CIO/IO) $(BrO + HO_2)$

Figure S1 : Global budget and cycling of tropospheric bromine (Br_y) in LMDZ-INCA (this work, upper panel) and GEOS-Chem (from Schmidt et al. 2016, lower panel). Tropospheric global burden of inorganic bromines (Gg Br) and fluxes through reactions (Gg Br.yr-1) are indicated. Read 1.2 (4) as 1.2×10^4 .

Figure S2. Average surface HCl mixing ratios from LMDz-INCA and GEOS-Chem (Wang et al., 2019) simulations as well as observations in coastal sites and oceanic areas. Observations are from Keene et al. (2009); Sanhueza and Garaboto (2002); Crisp et al. (2014) as reported by Wang et al. (2019).

Additional References for the Supplementary Material:

Keene, W. C., Long, M. S., Pszenny, A. A. P., Sander, R., Maben, J. R., Wall, A. J., O'Halloran, T. L., Kerkweg, A., Fischer, E. V., and Schrems, O.: Latitudinal variation in the multiphase chemi- cal processing of inorganic halogens and related species over the eastern North and South Atlantic Oceans, Atmos. Chem. Phys., 9, 7361–7385, https://doi.org/10.5194/acp-9-7361-2009, 2009.

Sanhueza, E., and Garaboto, A.: Gaseous HCl at a re- mote tropical continental site, Tellus B, 54, 412–415, https://doi.org/10.3402/tellusb.v54i4.16675, 2002.

Crisp, T. A., Lerner, B. M., Williams, E. J., Quinn, P. K., Bates, T. S., and Bertram, T. H.: Observations of gas phase hydrochloric acid in the polluted marine bound- ary layer, J. Geophys. Res.-Atmos., 119, 6897–6915, https://doi.org/10.1002/2013JD020992, 2014.