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Abstract. This paper provides an overview of the United
States (US) Department of Energy’s (DOE’s) Energy Ex-
ascale Earth System Model version 2 (E3SMv2) fully cou-
pled regionally refined model (RRM) and documents the
overall atmosphere, land, and river results from the Coupled
Model Intercomparison Project 6 (CMIP6) DECK (Diagno-
sis, Evaluation, and Characterization of Klima) and histori-
cal simulations – a first-of-its-kind set of climate production
simulations using RRM. The North American (NA) RRM
(NARRM) is developed as the high-resolution configuration
of E3SMv2 with the primary goal of more explicitly address-
ing DOE’s mission needs regarding impacts to the US en-
ergy sector facing Earth system changes. The NARRM fea-
tures finer horizontal resolution grids centered over NA, con-
sisting of 25→100 km atmosphere and land, a 0.125◦ river-
routing model, and 14→60 km ocean and sea ice. By design,
the computational cost of NARRM is ∼ 3× of the uniform

low-resolution (LR) model at 100 km but only ∼ 10 %–20 %
of a globally uniform high-resolution model at 25 km.

A novel hybrid time step strategy for the atmosphere is key
for NARRM to achieve improved climate simulation fidelity
within the high-resolution patch without sacrificing the over-
all global performance. The global climate, including clima-
tology, time series, sensitivity, and feedback, is confirmed
to be largely identical between NARRM and LR as quan-
tified with typical climate metrics. Over the refined NA area,
NARRM is generally superior to LR, including for precip-
itation and clouds over the contiguous US (CONUS), sum-
mertime marine stratocumulus clouds off the coast of Cali-
fornia, liquid and ice phase clouds near the North Pole re-
gion, extratropical cyclones, and spatial variability in land
hydrological processes. The improvements over land are re-
lated to the better-resolved topography in NARRM, whereas
those over ocean are attributable to the improved air–sea in-
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teractions with finer grids for both atmosphere and ocean and
sea ice. Some features appear insensitive to the resolution
change analyzed here, for instance the diurnal propagation of
organized mesoscale convective systems over CONUS and
the warm-season land–atmosphere coupling at the southern
Great Plains. In summary, our study presents a realistically
efficient approach to leverage the fully coupled RRM frame-
work for a standard Earth system model release and high-
resolution climate production simulations.

1 Introduction

Global Earth system models (ESMs) are fundamental tools
for understanding the past evolution of the climate system
and projecting future climate changes under various anthro-
pogenic scenarios. High horizontal resolution simulations on
climate scales have been recognized as one of the increas-
ingly important directions of ESM development in recent
years (Demory et al., 2014; Haarsma et al., 2016). Compared
to low-resolution models, high-resolution models show su-
perior fidelity in representing both the large-scale circula-
tion (e.g., meridional ocean heat transport) (Griffies et al.,
2015) and small-scale processes (e.g., clouds and stream-
flow) (Haarsma et al., 2016, and references therein). More
importantly, simulations with enhanced horizontal resolu-
tion exhibit improved skills in capturing regional climate
change signals and facilitating process-level studies, which
provide a crucial basis for assessing the impacts of climate
extremes with augmented societal implications. However,
fine-resolution and multi-century simulations (with ensem-
bles) are competing requirements for climate experiments
due to limited computational and human resources. This con-
flict will likely continue to challenge the climate model-
ing community, as evidenced by the fact that more than 3
times (72 vs. 23) as many model sources (including differ-
ent versions of the same model) have published simulations
at 100 km than at 25 km nominal resolutions in the current
Coupled Model Intercomparison Project 6 (CMIP6) archive
(https://esgf-node.llnl.gov/search/cmip6/, last access: 18 Au-
gust 2022). This suggests that despite the commonly recog-
nized benefits, not many modeling centers can afford to pur-
sue routine high-resolution climate simulations.

The Energy Exascale Earth System Model (E3SM) project
(Leung et al., 2020) is supported by the US Department of
Energy (DOE) with a primary goal of improving action-
able predictions of Earth system variability and change by
leveraging advanced DOE computational resources. Scientif-
ically, E3SM development is motivated by modeling require-
ments in three overarching fields (i.e., water cycle, biogeo-
chemistry, and cryosphere) to address the most critical DOE
mission-related questions, such as water availability, wild-
fires, heat waves, and sea level rise, which all pose challenges
to the energy sector with climate change. High-resolution

simulations are clearly more desirable to achieve these E3SM
objectives since these processes have high spatiotemporal
variability. However, uniformly increasing the grid size for
climate production simulations is not an easy task even with
DOE’s world class high-performance computing power. For
example, the 25 km simulation is at least 32 times (16×more
grid cells, 2× smaller physics time step, and 4× smaller
dynamical core time step) more expensive than the 100 km
version with the E3SM version 1 (E3SMv1) model (Cald-
well et al., 2019), making high-resolution models much more
computationally expensive not only to run but also to tune for
skillful simulations. With these demands and limitations, a
multiscale approach is an attractive avenue for global ESMs
to deliver high-resolution production simulations over target
areas at a more economical cost.

The multiresolution method (Ringler et al., 2008; Leung
et al., 2013), also known as regionally refined model (RRM)
or variable-resolution (VR) model, was proposed to allevi-
ate the computational burden of global ESMs by refining a
fraction of the globe with higher resolution while keeping
(without coarsening) the remaining area at lower resolution.
The RRM method is a general tool for all major ESM com-
ponents, such as atmosphere, land, ocean, and sea ice. With
a careful design of the RRM mesh, the high-resolution grids
can better represent fine-scale processes over an area of in-
terest at a typical cost of only ∼ 10 %–20 % of a comparable
globally uniform high-resolution configuration. Compared to
regional or nested climate models, global RRMs by design
minimize the impacts from the lack of a two-way dynamical
feedback between the refined area and the outside domain.

Recently, an increasing number of studies have success-
fully applied the RRM technique in global ESMs to tackle
a wide range of climate research themes from climatologi-
cal statistics of idealized aquaplanet (Zarzycki et al., 2014)
and mean climate state of more realistic simulations (Sak-
aguchi et al., 2015, 2016; Gettelman et al., 2018; Tang et al.,
2019) to complex terrain climate (Wu et al., 2017; Rhoades
et al., 2018c; Rahimi et al., 2019; Bambach et al., 2022)
and climate extremes (Huang and Ullrich, 2017; Rhoades
et al., 2020a, b; Zarzycki et al., 2021; Reed et al., 2022;
Xu et al., 2022). Others leveraged RRM to study specific
aspects of climate, such as tropical cyclones (Zarzycki and
Jablonowski, 2014, 2015; Hazelton et al., 2018), marine stra-
tocumulus (Bogenschutz et al., 2023), snowpack (Rhoades
et al., 2016, 2017), surface energy flux (Burakowski et al.,
2019), Greenland surface mass balance (van Kampenhout
et al., 2019), irrigation impacts on regional climate (Huang
and Ullrich, 2016), and land use and land cover change in-
fluence on land–atmosphere coupling and precipitation (De-
vanand et al., 2020). Lately, the RRM resolution has been
pushed to a new limit for watershed-scale hydrology analysis
(Xu and Di Vittorio, 2021) and cloud-resolving scale climate
simulation (Liu et al., 2022).

The RRM high-resolution results are robust for most
places except the Intertropical Convergence Zone (Rauscher
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et al., 2013; Zarzycki et al., 2014), covering almost all typ-
ical climate regimes such as the contiguous US (CONUS)
(Gettelman et al., 2018; Tang et al., 2019), the western
(Rhoades et al., 2016; Huang et al., 2016; Huang and Ull-
rich, 2017; Rhoades et al., 2018c) and eastern US (Liu et al.,
2022), South America (Sakaguchi et al., 2015, 2016; Bam-
bach et al., 2022), Asia (Sakaguchi et al., 2016), East Asia
(Liang et al., 2021), eastern China (Xu et al., 2021), the
Tibetan Plateau (Rahimi et al., 2019), the Maritime Conti-
nent (Harris and Lin, 2014), Atlantic basin (Zarzycki et al.,
2015), the southeastern Pacific (Bogenschutz et al., 2023),
Greenland (van Kampenhout et al., 2019), and the Arc-
tic (Veneziani et al., 2022). Furthermore, the RRM capa-
bility in representing the general high-resolution climate
seems generally acceptable for different models, including
the Variable-Resolution Community Earth System Model
(VR-CESM) (e.g., Gettelman et al., 2018), the E3SMv1 at-
mospheric model (EAMv1) (Tang et al., 2019), the Model
for Prediction Across Scales-Atmosphere (MPAS-A) (Ha-
gos et al., 2013; Sakaguchi et al., 2015, 2016; Liang et al.,
2021), the Geophysical Fluid Dynamics Laboratory finite-
volume dynamical core on the cubed-sphere grid (Harris and
Lin, 2013, 2014), and the ICOsahedral Non-hydrostatic Earth
System Model (ICON-ESM) (Jungclaus et al., 2022).

All of the aforementioned studies utilize RRMs for Atmo-
spheric Model Intercomparison Project (AMIP-type) (Gates
et al., 1999) simulations. Although these studies provide
valuable experience and important knowledge about RRMs,
modeling centers still face the question of how to transform
such AMIP-type RRM achievements from individual scien-
tific studies emphasizing specific climate aspects to a stan-
dard global ESM release version aiming at a much broader
and general scope. At a minimum, the criteria of reasonable
global climate should be satisfied for the RRM to be widely
adopted for global ESM releases. Most previous AMIP-type
RRM studies focus on the regional results within the re-
fined grids without paying much attention to the outside
domain. While this might be acceptable for targeted stud-
ies, one cannot release a global model without reasonable
global results since such a model is expected to address the
challenge of a long (multi-century) spinup and demonstrate
top-of-atmosphere (TOA) radiative balance in pre-industrial
fully coupled simulations. In addition, some physics param-
eterizations (e.g., deep convection) suffer from poor scale
awareness and hence require retuning as the model resolu-
tion increases (e.g., Xie et al., 2018). This implies signifi-
cant model calibration efforts that modeling centers have to
seriously consider when planning on releasing the RRM be-
sides the low-resolution model. Furthermore, based on our
EAMv1 RRM experience, retuning does not guarantee im-
proved global climate performance. In the present study,
building upon the EAMv1 RRM (atmosphere and land area
of 25→100 km horizontal resolution with the 25 km mesh
over the CONUS) (Tang et al., 2019) plus the E3SMv2 lower
resolution configuration (Golaz et al., 2022), we extend the

RRM configuration to ocean and sea ice (see grids in Fig. A1)
as a fully coupled RRM with fine meshes centered over North
America (NA). We propose an innovative RRM strategy (see
details in Sect. 2.1) to meet the criteria above with a minimal
retuning effort and for the first time to deliver production cli-
mate simulations using a fully coupled RRM.

This paper focuses on the atmosphere, land, and river com-
ponents of the E3SMv2 North American RRM (NARRM),
while a companion paper (Luke P. Van Roekel, personal com-
munication, 2023) overviews the NARRM ocean and sea ice.
This paper is organized as follows. Section 2 describes the
NARRM model, our hybrid time step strategy for the atmo-
spheric component, and key tools and tests used to create its
atmospheric configuration. Section 3 summarizes the sim-
ulations performed in the present study and reports on the
computational cost of the NARRM historical simulation rel-
ative to its lower-resolution (LR) counterpart. Analyses of
model results start at the global scale in Sect. 4 and then shift
to the high-resolution NA region in Sect. 5 for atmosphere,
land and river, and land–atmosphere interactions. Conclu-
sions and discussions are presented in Sect. 6.

2 Model description

Except for the mesh and mesh-related settings, E3SMv2 LR
and NARRM essentially have the same atmosphere, land,
and river components. They are upgraded from E3SMv1 and
briefly described here. In the E3SMv2 atmosphere model
(EAMv2), the dynamical core uses the High-Order Method
Modeling Environment (HOMME) package (Dennis et al.,
2005, 2011; Evans et al., 2013) on the spectral element grid
(Taylor and Fournier, 2010). HOMME has been updated to
use a potential temperature formulation of the equations with
a more accurate pressure gradient (Taylor et al., 2020; Her-
rington et al., 2022) and a new interpolation semi-Lagrangian
scheme (Islet) for passive tracer transport (Bradley et al.,
2022). The physics operates on a separate finite-volume
grid (Hannah et al., 2021), which has four-ninths as many
columns as the corresponding spectral element grid (see Ta-
ble 1) and hence runs about 2× faster than it would on the
spectral element grid. The physics parameterization updates
include the Cloud Layers Unified By Binormals scheme (Go-
laz et al., 2002; Larson, 2017) for subgrid turbulent transport
and cloud macrophysics, the Zhang–McFarlane (ZM) deep
convection scheme (Zhang and McFarlane, 1995) with a new
trigger method (Xie et al., 2019), gravity wave parameteriza-
tions following Richter et al. (2010) with additional modifi-
cations (Beres et al., 2004; Richter et al., 2019), the O3v2
package (Tang et al., 2021) for the prognostic stratospheric
ozone, and the four-mode version of Modal Aerosol Mod-
ule (MAM4) (Liu et al., 2016; Wang et al., 2020) with an
updated treatment of dust aerosol (Feng et al., 2022). The
same set of EAM physics parameters is used in the LR and
NARRM simulations analyzed here. The LR grid is a quasi-
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uniform 1◦ cubed sphere grid with an average grid spacing
of ∼100 km. The NARRM grid has an average grid spac-
ing of ∼ 25 km over North America, transitioning to match
the ∼ 100 km cubed-sphere grid over the rest of the globe.
All simulations, except the idealized baroclinic wave simu-
lations described later, utilize E3SM’s standard 72 vertical
levels (L72).

The E3SMv2 land model (ELMv2) runs on the same grid
as the atmospheric physics. ELMv2 upgrades the prescribed
vegetation distribution for better consistency between land
use and changes in plant functional types across platforms
and adopts the new shortwave radiation model SNICAR-AD
(Dang et al., 2019) for snow and ice. The land use harmoniza-
tion version 2f data (LUH2; https://luh.umd.edu/data.shtml,
last access: 3 July 2023) (Hurtt et al., 2020) are converted
into E3SMv2 plant functional types with an updated version
of the land use translator (Di Vittorio et al., 2014). The tra-
jectory of land cover change has also been improved through
better tracking of previous land use change. The E3SMv2
river-routing model (Model for Scale Adaptive River Trans-
port, MOSARTv2) utilizes the regular lat–long grid (0.5◦ for
LR and 0.125◦ for NARRM). MOSARTv2 uses the kine-
matic wave method to route the runoff from ELM into the
ocean model via an eight-direction-based river network (Li
et al., 2013). More details about the E3SMv2 model are doc-
umented by Golaz et al. (2022).

2.1 EAM hybrid time step strategy for RRM
production simulations

In previous RRM studies, including the EAMv1 CONUS
RRM (Tang et al., 2019), the atmospheric physics time step is
often chosen to be shorter than that of the globally uniform
low-resolution model to match the highest-resolution grids
in the RRM. However, such treatment faces the challenge
of satisfying the criteria above for the purpose of global cli-
mate production simulations. Mainly because the ZM deep
convection scheme and other cloud parameterizations used
by EAM are by design not scale-aware (Xie et al., 2018),
if the EAM in NARRM used a shorter physics time step
than LR while keeping other physics parameters unchanged,
the NARRM results on the unrefined portion of the mesh
(covering a larger area than the refined portion) would not
match the quality of the LR results and thus undermine the
NARRM global performance. Furthermore, even if NARRM
used the retuned high-resolution physics parameters along
with the shorter physics time step, we would still have de-
graded global simulation quality over the LR model (see
Fig. A2 for the EAMv1 results). With all these considera-
tions, in the present study when employing RRM for climate
production campaigns, we opt for a hybrid time step strategy
in EAM, which is a combination of an LR physics time step
and the high-resolution dynamics time steps (see Table 1).
In this way, NARRM retains much of the LR global climate
characteristics with possible improvements at the refined area

benefiting from the high-resolution dynamics. Moreover, this
approach simplifies the RRM development as it naturally
avoids further tuning the RRM beyond what was done for
LR. This choice also ensures that the physics behaves as sim-
ilarly as possible between the LR and RRM simulations to
facilitate direct comparisons of their climates.

It is worthwhile noting that the hybrid time step strategy
is a practical choice before the scale-aware cloud param-
eterization becomes available. With the coarsened physics
time step, NARRM cannot take full advantage of resolved
processes (e.g., updrafts) at 25 km because the dynamics
at 25 km explicitly resolve greater vertical velocities rel-
ative to those at 100 km and hence have faster dynami-
cal timescales, which require the correspondingly shortened
physics time step to match the faster-evolving instability. The
time-truncation errors of the hybrid time step method are
large at 25 km as quantified by a moist bubble test (Herring-
ton et al., 2019).

2.2 EAM running on unstructured meshes

In EAM, the underlying grid is always treated as fully un-
structured. EAM can run on any grid that represents a tiling
of the sphere with quadrilateral elements. For quasi-uniform
grids, EAM relies on cubed-sphere grids since these grids
are simple to construct. RRM grids are constructed by ex-
ternal tools as described below. Internally, the code treats all
these grids identically, the only difference being the various
resolution-dependent parameters. For the dynamical core,
these parameters consist of the many time steps in the model
(given in Table 1) and the hyperviscosity coefficient. The dy-
namical core time steps are chosen to ensure stability of the
model. For RRM grids, these time steps are chosen to match
those that would be used in a global model with the same res-
olution as the highest resolution contained within the RRM.
For the NARRM grid used here, which includes refinement
down to 25 km, we use the same time steps as would be used
by a global 25 km configuration of EAM.

For hyperviscosity, EAM relies on a resolution-aware ten-
sor hyperviscosity formulation (Guba et al., 2014) applied
on each model surface. The tensor coefficients vary spatially
based on the two length scales of each spectral element (de-
rived from the eigenvalues of the reference element map).
This operator has a built in scaling of1x3 with strength con-
trolled by a coefficient ν with units of per second. The ten-
sor is designed to have the proper directional resolution de-
pendence for highly distorted elements, while matching the
traditional constant-coefficient hyperviscosity on square ele-
ments. In EAMv2, we use the tensor hyperviscosity opera-
tor with ν = 3.4× 10−8 s−1 for all grids (cubed-sphere and
RRM) and at all resolutions. The only exception is the LR 1◦

cubed-sphere grid, where for continuity with older simula-
tions we continue to use the constant-coefficient hyperviscos-
ity operator with µ= 1× 1015 m4 s−1. For a uniform degree
p spectral element grid with square elements, the tensor op-
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Table 1. Column numbers and time steps of the atmosphere component used in LR and NARRM simulations.

Model Column no. Time steps (s)

Dynamics Physics Dynamics Physics

Hyperviscosity Dycore Dycore remap Tracer

LR 48 602 21 600 300 300 600 1800 1800
NARRM 130 088 57 816 75 75 150 450 1800

erator with coefficient ν is identical to a constant coefficient
hyperviscosity operator with coefficient µ=

(p
2

)3
R1x3ν,

where 1x is the element edge length divided by p and R
is the radius of the sphere. In EAM, we always use p = 3.

2.3 Key tools for the RRM configuration

A number of tools have been developed to streamline the
workflow for EAM and ELM simulations on RRM grids.
These are described as follows, in the approximate order they
are employed.

– The Spherical Quadrilateral Grid Generator (SQuad-
Gen). Generation of the atmosphere–land mesh is per-
formed using SQuadGen (Ullrich, 2022; Guba et al.,
2014). This tool translates a monochrome PNG image,
which denotes the desired level of grid refinement on an
equirectangular projection, to a mesh of refined quadri-
laterals based on a cubed sphere. The use of quadrilater-
als is by necessity for compatibility with the spectral el-
ement dynamical core. Transition regions are managed
using “paving”, that is, using predefined patterns of
quadrilaterals which enable transition between coarse-
resolution and fine-resolution regions. Smoothing of the
grid is performed via spring dynamics. The spectral el-
ements of the NARRM grid produced with this proce-
dure are shown in Fig. 1. In the spectral element method,
each field is represented by polynomials up to degree 3
within each element. The resolution represented by each
element (its average length divided by 3) is shown in
Fig. 2.

– TempestRemap. The TempestRemap package (Ullrich
and Taylor, 2015; Ullrich et al., 2016) is used to gener-
ate conservative, consistent, and monotone linear maps
between fields stored as volume averages (i.e., updated
using the finite-volume methods) and fields stored as
spectral elements (i.e., as coefficients of a set of basis
functions). The generated maps require the construction
of an “overlap mesh”, which is the union of the source
and target face; the generation of an approximate map;
and subsequent projection of the approximate map onto
the linear space of conservative, consistent, and (option-
ally) monotone maps.

– Topography generation. To generate topography and as-
sociated surface roughness fields on the NARRM grid,
we rely on the tool chain described in Lauritzen et al.
(2015) combined with a topography smoothing tool in-
cluded with HOMME. The use of HOMME’s topogra-
phy smoothing tool ensures that the smoothing is done
with the same discrete Laplace operator used internally
in the dynamical core.

– NetCDF Operators (NCOs). NCOs consist of a num-
ber of command-line tools that enable manipulation of
netCDF files (Zender, 2008). The tools include variable
extraction, remapping, and spatial and temporal aver-
aging. Provenance information is preserved within the
netCDF files to enable scientific reproducibility.

2.4 Idealized test

Before running long coupled NARRM simulations, we first
evaluate the dynamical core settings for the NARRM grid
using a baroclinic instability test case. This test case estab-
lishes that the dynamical core behaves as expected in an ide-
alized setting: the time steps are stable, the model can capture
high-resolution features in the high-resolution region, and the
presence of the high-resolution and mesh transition regions
does not negatively impact the large-scale behavior. For this
evaluation, we use an extension of the dry baroclinic wave
test case by Ullrich et al. (2014) with two idealized, analyti-
cally prescribed mountains (Hughes and Jablonowski, 2023).
The latter now serve as the trigger for baroclinic instabil-
ity. The addition of the two mountains generates a flow with
more energy at smaller scales as compared to the original test
case, especially downstream of the mountains, making this
an attractive test case for studying the impacts of resolution.

For this test case, we run simulations with three different
horizontal grids, LR, NARRM, and high-resolution (HR),
and 30 hybrid vertical levels (L30), which are specified in
Appendix B of Reed and Jablonowski (2012). The LR and
NARRM grids are as described above, and we add an HR
grid. The HR grid is a global 0.25◦ grid which matches the
high-resolution region of the NARRM grid. All idealized
runs use the same settings as in the full model (except L30
instead of L72), with HR and NARRM using identical time
steps since they both contain regions of 0.25◦ resolution. All
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Figure 1. North American RRM (NARRM) grids for the atmosphere dynamical core shown in (a) a cylindrical equidistant projection and
(b) an orthographic projection.

simulations utilize the EAMv2 tensor hyperviscosity tuning
with ν = 3.4× 10−8 and 1x3 resolution scaling.

The test case is fully described in Hughes and Jablonowski
(2023). We use the dry configuration and make one modifica-
tion to the locations of the mountains. In particular, the cen-
ter locations of the mountains are shifted longitudinally by
144◦ to the east in order to place the two mountains within
the NARRM’s high-resolution region. The new center loca-
tions are therefore 144 and 76◦W. The peak height of the
mountain ranges is 2000 m. Figure 2 illustrates the size and
location of the mountains and the NARRM mesh resolution,
while Fig. 3 shows the surface pressure at day 6 computed
on the same mesh. The latter highlights the topographically
generated baroclinic instability in the Northern Hemisphere.

Figure 4 shows contour lines of the 750 hPa temperature
field after 6 d on all three grids. The plots are zoomed in
over the region with the most activity shown in Fig. 3. We
first compare the field in the NARRM’s high-resolution re-
gion with the HR result and note the remarkable agreement
between the two solutions (black contour lines) in the high-
resolution region (yellow color). The presence of high reso-
lution in the NARRM simulation allows the model to cap-
ture features in that region with finer scales than can be
captured by the LR simulation (as expected). Further down-
stream from the mountains at the right edge of the Fig. 4b,
the NARRM resolution has transitioned to match the LR res-
olution (blue color), and the scales captured by the NARRM
solution are no longer as fine as they are in the HR solution.
They are somewhat dissipated and fall between the LR and
HR results. Thus, the presence of the high-resolution region
in the NARRM grid improves some aspects of the solution in
the low-resolution region. Finally, we note that there are no
visible artifacts from the distorted elements in the mesh tran-
sition region. Examination of other fields, such as vorticity
(not shown), demonstrate similar results.

Figure 2. Contour lines of the topographic height with a peak am-
plitude of 2000 m overlaid on a map of the NARRM grid resolution
(square root of element area). The resolution is ∼ 25 km over North
America (shown in yellow), transitioning to ∼ 100 km over the rest
of the globe (dark blue). The two mountains are mostly contained
within the high-resolution region. In the low-resolution region, the
faint outline of an inscribed cube shows the slight non-uniformness
of the 1◦ cubed-sphere grid used in that region.

3 Simulations and computational cost

We perform a set of NARRM production simulations par-
allel to the LR version documented by Golaz et al. (2022)
and following the same CMIP6 specifications. The LR and
NARRM production simulations analyzed in the present
study are summarized in Table 2. These simulations consist
of the CMIP6 Diagnosis, Evaluation, and Characterization
of Klima (DECK) and historical simulations (Eyring et al.,
2016), i.e., one pre-industrial control (piControl, 500 years),
two idealized CO2 runs (1pctCO2 and abrupt-4xCO2, each
150 years), a five-member historical ensemble (historical_N,
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Figure 3. Contours of the surface pressure at day 6 showing the to-
pographically triggered baroclinic instability in the Northern Hemi-
sphere as computed on the NARRM grid. The instability has yet to
be triggered in the Southern Hemisphere. The mountain height con-
tours are overlaid. The colors saturate over the mountain ranges with
minimum surface pressure values around 750–780 hPa (not shown).

1850–2014), and a three-member Atmospheric Model Inter-
comparison Project (amip) type ensemble (amip_N, 1870–
2014). Initial conditions are taken from 1 January of differ-
ent years of piControl, as indicated in Table 2 for 1pctCO2,
abrupt-4xCO2, and historical_N simulations. The amip_N
simulations are initialized from the 1870 condition of cor-
responding historical_N simulations.

In order to estimate the effective radiative forcing of an-
thropogenic aerosols in LR and NARRM configurations, we
perform pairs of nudged simulations with prescribed emis-
sions of aerosols and their precursors for the present-day
(PD, year 2010) and pre-industrial (PI, year 1850) values,
which are taken from the CMIP6 emission data. Table 3 lists
the nudged simulations used to assess the effective radia-
tive forcing of anthropogenic aerosols. Horizontal winds in
LR and NARRM are nudged towards wind fields from their
respective baseline simulations, with a relaxation timescale
of 6 h. These nudged simulations are 15 months long, with
the first 3 months discarded as spinup. Previous studies have
shown that nudging the horizontal winds can help constrain
the large-scale circulation in the model (Zhang et al., 2014;
Sun et al., 2019; Tang et al., 2019), meaning that the an-
thropogenic aerosol effects can be determined with relatively
short simulations (K. Zhang et al., 2022; S. Zhang et al.,
2022).

3.1 Computational performance

A sequence of performance benchmark simulations were
run on the Argonne National Laboratory Chrysalis cluster.
Chrysalis has 512 compute nodes. Each node has two AMD
Epyc 7532 “Rome” 2.4 GHz processors. Each processor has
32 cores, for a total of 64 cores per node. Each node has

Figure 4. Contour lines of the 750 hPa temperature field on day 6
with contour intervals of 5 ◦C. The temperature contours are over-
laid on a map colorized by grid resolution. The data is plotted over
a subset of the globe containing the mountains and most of the
downstream region affected by the baroclinic instability. Results
are shown from the LR grid (a), NARRM (b), and HR grid (c).
The NARRM grid shows the transition from high resolution (yel-
low, ∼ 25 km) to low resolution (blue, ∼ 100 km).

256 GB 16-channel DDR4 3200 MHz memory. The intercon-
nect hardware is Mellanox HDR200 InfiniBand and uses the
fat tree topology. The model code was compiled using Intel
release 20200925 with GCC version 8.5.0 compatibility and
run using OpenMPI 4.1.3 provided in the Mellanox HPC-X
Software Toolkit.

The simulations are run with one MPI process per core
and no OpenMP threading. Throughput values are computed
using the maximum wall-clock time (minimum throughput)
over all message passing interface (MPI) processes; model
initialization time is excluded. A throughput data point corre-
sponds to one simulation run for 90 d. The input/output (I/O)
configuration is identical to production simulations. At the
end of 90 d, a restart file is written.

Figure 5 summarizes the performance of the LR and
NARRM historical_N simulations for several node counts
and corresponding process layouts with names T (NARRM
only), XS, S, M, and L. Note that while the layout names
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Table 2. Summary of E3SMv2 LR (Golaz et al., 2022) and NARRM production simulations analyzed in this study. Numbers in parentheses
indicate the simulation year numbers.

Label Description Period Ens. Initialization

Fully coupled
(atmosphere, ocean, sea ice, land, and river)

piControl Pre-industrial control 500 years – Pre-industrial spinup
1pctCO2 Prescribed 1 % yr−1 CO2 increase 150 years 1 piControl (101)
abrupt-4xCO2 Abrupt CO2 quadrupling 150 years 1 piControl (101)
historical_N Historical 1850–2014 5 piControl (101, 151, 201, 251, 301)

Prescribed SST and sea ice extent
(atmosphere, thermodynamic sea ice, land, and river)

amip_N Atmosphere with prescribed SSTs and sea ice
concentration

1870–2014 3 historical_N (1870)

Figure 5. Performance of the LR and NARRM historical simulations. (a) Throughput vs. number of computer nodes. Each data point is
annotated with its throughput in simulated years per day (SYPD) and computer resource configuration name. The dashed gray line shows
the perfect-scaling slope. (b) Computational resource plots for the L process layouts. Each component has one rectangle. A rectangle has the
area given by the product of normalized wall-clock time and number of cores, with the NARRM total time normalized to 1.0.

are shared among models, the specific layout associated with
a name differs among models. Each simulation’s data point
is annotated with its throughput in simulated years per day
(SYPD) and process layout name. The highest throughput of
the LR simulations is 39.81 SYPD. In Golaz et al. (2022,
Fig. 2), the highest throughput is 41.89 for the same node
count; historical_N simulations have additional forcings to
compute relative to the piControl simulation used in Go-
laz et al. (2022, Fig. 2). The LR throughput falls off from
the perfect scaling slope faster than the NARRM through-
put because the LR simulation has less work per node. For
the L process layouts, accounting for 105 vs. 100 nodes, the
throughput factor difference is 3.14.

Figure 5b shows the wall-clock-time–resource product for
each component for the L layouts. A rectangle’s width is
proportional to the number of cores the component uses; its
height is proportional to the wall-clock time to simulate a
fixed simulation period, with the time normalized so that the

NARRM simulation has a total time of 1.0. The atmosphere
(ATM), sea ice (ICE), coupler (CPL), land (LND), and river
runoff (ROF; LND and ROF are too small to label) compo-
nents run on one set of nodes, while the ocean (OCN) compo-
nent runs on another set. An unfilled rectangle having “LR”
or “NARRM” at the top-right corner shows the total product.
Because there is no global communication barrier between
components run in sequence, the time value of each compo-
nent is approximate, and thus the filled rectangles do not sum
to the total time.

We can understand the NARRM component-level perfor-
mance as a function of spatial and temporal discretization pa-
rameters and one LR simulation to calibrate throughput. The
LR calibration simulation should reflect that RRM simula-
tions have a large amount of work per node; thus, we use the
LR simulation run with the XS process layout, the left-most
LR point in Fig. 5a. We focus on the two most expensive
components, the atmosphere and ocean. We start with the
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Table 3. Nudged LR and NARRM atmospheric model simulations
used in this study. All simulations are performed with prescribed
sea surface temperature (SST) and sea ice concentration for year
2010. Nudging data are 6-hourly model output saved from the LR
and NARRM free-running simulations (middle column). Due to the
model instability problem with nudging application in RRM (with
a relatively long time step), we use an alternative physics–dynamics
coupling approach (see option “se_ftype = 1” in Sect. 3.1 of Zhang
et al., 2018) for the NARRM nudged simulations. We find the im-
pact of using different physics–dynamics coupling approaches on
the global mean effective aerosol forcing estimate in LR to be small
(difference< 0.05 W m−2).

Label Baseline simulation Emission

Nudge_LR_PD LR 2010
Nudge_LR_PI LR 1850
Nudge_NARRM_PD NARRM 2010
Nudge_NARRM_PI NARRM 1850

Figure 6. Performance of the atmosphere (Atm.) and ocean compo-
nents of the NARRM historical simulation. Solid lines show mea-
sured performance. Dashed lines show the performance predicted
by a simple model that uses the LR simulation with the XS process
layout for input data; see the text for a description of the perfor-
mance model.

ocean, whose performance is simpler to model. For simplic-
ity, we write the formulas in terms of wall-clock time (w.c.t.)
for a fixed simulation length, e.g., 90 d. The input measured
datum is the top-level ocean component (ocn) wall-clock
time in the LR simulation run with the XS process layout,
w.c.t.ocn

LR . The input parameters are the number of computer
cores (ncore) used in the LR (XS) and RRM (variable) simu-
lations, the number of cells (ncell) in each grid, and the time

steps (1t) in each simulation. For a fixed simulation length,
the predicted ocean component RRM performance is then

w.c.t.ocn
RRM =

(ncore)
ocn
LR

(ncore)
ocn
RRM
·
(ncell)

ocn
RRM

(ncell)
ocn
LR
·
(1t)ocn

LR
(1t)ocn

RRM

·w.c.t.ocn
LR . (1)

The performance model for the atmosphere is more compli-
cated because it has two important time steps, one each for
the dynamical core (dynamics) and the column parameteri-
zations (physics). Thus, the factor accounting for model time
steps is broken into two terms, one each for the physics and
dynamics. The predicted atmosphere component RRM per-
formance is then

w.c.t.atm
RRM =

(ncore)
atm
LR

(ncore)
atm
RRM
·
(ncell)

atm
RRM

(ncell)
atm
LR

·

(
(1tphysics)

atm
LR

(1tphysics)
atm
RRM
·w.c.t.atmphysics

LR

+
(1tdynamics)

atm
LR

(1tdynamics)
atm
RRM
·w.c.t.atmdynamics

LR

)
. (2)

Figure 6 shows the results of these models, where wall-clock
time and simulation length have been converted to through-
put (SYPD). The solid lines show the measured throughput
of each component as a function of number of computer
cores. The dashed lines show the corresponding throughput
values predicted by Eqs. (1) and (2). The single LR XS lay-
out ocean throughput value is used as the reference for the
ocean, and the single LR XS layout atmosphere through-
put value is similarly used as the reference for the atmo-
sphere; these are the only measured data inputs to the per-
formance models. The primary error in the performance
model is not accounting for a fall-off in scaling at large core
counts. Because this fall-off is small for the atmosphere and
ocean components, these simple performance models are ac-
curate and can be used to predict the cost of other model
configurations. For example, a uniform high-resolution at-
mosphere model would use the ne120pg2 grid, which has
6 · 1202 elements. Using the same time steps and number of
vertical levels as in the NARRM configuration, which has
14 454 elements, for fixed computational resources, the high-
resolution atmosphere configuration’s throughput would be
6 · 1202/14454= 5.98 times smaller than the NARRM con-
figuration’s throughput, where this factor is the quotient of
the numbers of elements in each of the two grids.

4 Global climate

As described above, the RRM model is expected to simulate
a global climate similar to the LR model for production sim-
ulation campaigns since most areas are still covered by the
same LR grids. In this section, we will examine whether this
is the case for the global mean climate, climate sensitivity,
and climate feedback.
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Figure 7. Comparison of the global spatial RMSE of model climatology (annual and seasonal averages of years 1985–2014) vs. observations
with the E3SM Diags package (C. Zhang et al., 2022). The model results are from the first historical member of E3SMv2 (0101), LR
(blue triangles), and NARRM (red triangles) and 52 CMIP6 models (r1i1p1f1). The boxes and whiskers show the 25th percentile, 75th
percentile, and minimum and maximum RMSE of the CMIP6 ensemble. Quantities include (a) TOA net radiation flux, (b, c) TOA SW and
LW cloud radiative effects, (d) precipitation, (e) surface air temperature over land, (f) sea level pressure, (g, h) 200 and 850 hPa zonal wind,
and (i) 500 hPa geopotential height. TOA is the top of the atmosphere, SW is shortwave, CRE is cloud radiative effects, LW is longwave,
ANN is annual, DJF is December–February, MAM is March–April, JJA is June–August, SON is September–November, and RMSE is root-
mean-square error. The climatology of the observations and reanalysis data are calculated from CERES-EBAF Ed4.1 (Loeb et al., 2018)
(2001–2014) for (a), (b), and (c); GPCP2.3 (Adler et al., 2018) (1985–2014) for (d); and ERA5 (Hersbach et al., 2020) (1985–2014) for (e),
(f), (g), and (h).

For the global climatology, we focus on the last 3 decades
(years 1985–2014) of historical simulations when more ob-
servational datasets are available. Figure 7 provides an over-
all comparison of the global mean climate among LR (blue
triangles), NARRM (red triangles), and CMIP6 (boxes and
whiskers) models as quantified by the uncentered spatial
root-mean-square error (RMSE) relative to the observations
or reanalysis data. The RMSE numbers are calculated with
the E3SM Diags package (C. Zhang et al., 2022) for the
first historical member (0101 for LR and NARRM, r1i1p1f1
for CMIP6 models). Figure 7 clearly shows that NARRM
and LR simulate very similar annual and seasonal averages.
NARRM outperforms LR in the June–July–August (JJA)
shortwave (SW) cloud radiative effect (CRE) partly because
it better represents low clouds in NA (see Fig. 13 for the ex-
ample in California). NARRM also simulates slightly better
December–January–February (DJF) precipitation compared
to LR, partly due to its improved topography (Fig. 8) and

orographic precipitation in NA (see Fig. 12b, d, f). For other
times (e.g., annual mean, Fig. A3) NARRM and LR precip-
itation results are very similar. On the other hand, NARRM
does not perform as well as LR for some other fields, such
as the 200 hPa zonal wind in JJA and September–October–
November (SON), which are associated with the increased
positive biases in the tropical western Pacific and Amazon
(not shown).

Figure 9 compares the long time series (years 1850–2014)
of global annual average anomalies in the surface air tem-
perature from the ensemble means of LR and NARRM
historical simulations and observational datasets (National
Oceanic and Atmospheric Administration National Climatic
Data Center (Smith et al., 2008; Zhang et al., 2015), National
Aeronautics and Space Administration GISTEMP (GIS-
TEMP Team, 2018; Hansen et al., 2010), and HadCRUT4
(Morice et al., 2012)). Over the whole period, NARRM
tracks LR closely, including good agreement with observa-
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Figure 8. Surface geopotential height of (a) LR and (b) NARRM over North America.

Figure 9. Time series of global annual mean surface air tempera-
ture anomalies from the ensemble mean of LR (blue) and NARRM
(red) historical runs and observational datasets (gray) (National
Oceanic and Atmospheric Administration (NOAA) National Cli-
matic Data Center (NCDC), National Aeronautics and Space Ad-
ministration (NASA) GISTEMP, and HadCRUT4). The model en-
semble minimum–maximum ranges are shaded, while the observa-
tional minimum and maximum numbers are labeled in the paren-
theses of legend.

tions until the 1930s and low biases afterwards, which are
mainly attributed to too strong aerosol-related forcing and
feedback (see Golaz et al., 2022, for details). This is further
confirmed by the fact that the global mean effective radiative
forcing of anthropogenic aerosols in NARRM and LR are
very similar (−1.415 W m−2 vs. −1.421 W m−2), as quanti-
fied by a pair of nudged simulations (see Sect. 5.1.2).

Following the CMIP6 DECK protocol (Eyring et al.,
2016), we quantify the climate sensitivity and feedback with
the abrupt quadrupling of CO2 (abrupt-4xCO2) and the
transient climate response (TCR) with a simulation forced
by a 1 % yr−1 CO2 increase (1pctCO2) relative to the pre-
industrial control simulation (piControl). The equilibrium
climate sensitivity (ECS) is estimated with the linear regres-
sion of TOA radiation change against surface temperature
change in a 150-year abrupt-4xCO2 simulation (Gregory
et al., 2004). The 2xCO2 effective radiative forcing (ERF)
is computed as the y intercept of the Gregory plot divided by
two, which measures the energy imbalance caused by dou-
bling the atmospheric CO2 concentration while keeping the
surface temperature unchanged. TCR, which measures the
response on shorter timescales, is derived based on its defini-
tion – the average surface temperature change in the 20-year
period when the CO2 concentration doubles from a 1pctCO2
experiment.

Figure 10 depicts the annual mean surface temperature
change as a function of time and the Gregory plots from the
idealized CO2 experiments with LR and NARRM. The dif-
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Figure 10. Comparison of climate sensitivities between LR (a, c) and NARRM (b, c) derived from idealized CO2 forcing simulations. (a,
b) time series of global annual mean surface air temperature anomaly from the following simulations, abrupt-4xCO2 (red), 1pctCO2 (blue),
and the control (piControl; green). The transient climate response (TCR) is computed as a 20-year average around the time of CO2 doubling
(year 70). (c, d) Gregory regression plots. The estimated effective climate sensitivity (ECS) and effective 2× CO2 radiative forcing (F ) are
as labeled.

ferences in climate sensitivity between LR and NARRM are
very subtle as quantified by both ECS (4.00 K vs. 3.94 K) and
TCR (2.41 K vs. 2.44 K).

The regression slope in the Gregory plot (Fig. 10c, d)
denotes the total radiative feedback caused by the quadru-
pled CO2 concentration. We further apply the radiative kernel
method (Soden et al., 2008; Held and Shell, 2012) to decom-
pose the total radiative feedback into non-cloud and cloud
feedbacks. The cloud feedback is estimated by adjusting the
cloud radiative effect anomalies for non-cloud influences.
Overall, NARRM shows a slightly larger ERF (3.22 W m−2

vs. 2.98 W m−2), which accompanied with the similar ECS
produces a stronger negative total climate feedback in
NARRM. The total climate feedback is −0.74 W m−2 K−1

for LR and −0.82 W m−2 K−1 for NARRM, which mainly
relates to the slightly weaker positive SW cloud feedback in
NARRM than in LR (see Fig. 22).

In summary, the results in this section confirm that
NARRM with the hybrid time step methodology simulates
largely identical global climate as its corresponding LR con-
figuration and hence satisfies the necessary requirement (i.e.,
good global climate) of global RRM production simulations
we proposed in the introduction.

5 North American results

In this section, we will zoom in over the refined region over
North America (NA) and emphasize climate aspects most
relevant to the E3SM water cycle scientific goals (Leung
et al., 2020) as well as some weaknesses in LR revealed
by Golaz et al. (2022). The results will be described for the
atmosphere, land, and river models, respectively. Moreover,
we will analyze interactions between different components
(i.e., land–atmosphere coupling) because these interactions
are also expected to change with the resolution increase.

5.1 Atmosphere

5.1.1 Hydrology over the CONUS

First, we look at the overall atmospheric results over the
CONUS (20–50◦ N, 65–125◦W) by comparing the spatial
RMSEs of the historical ensemble means between LR (blue
triangles) and NARRM (red triangles) in Fig. 11. The same
metric is used in Fig. 7 for the global results, but we adjust the
variables to be more relevant to the CONUS. NARRM gen-
erally produces better (as quantified by smaller RMSE num-
bers) results than LR for these annual and seasonal climatolo-
gies, such as SW CRE (Fig. 11a), precipitation (Fig. 11c),
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and 200 hPa zonal wind (Fig. 11f). Because we have not re-
tuned the physics of NARRM, some deteriorations are ex-
pected, for example longwave (LW) CRE in DJF and March–
April–May (MAM) (Fig. 11b).

Precipitation and clouds, which are obviously impor-
tant quantities for the water cycle, are largely improved in
NARRM compared to LR. The precipitation patterns are bet-
ter captured by NARRM as observed at the Sierra Madre Oc-
cidental in JJA (Fig. 12 left column) and in the western US
in DJF (Fig. 12 right column) due to the better-resolved to-
pography in NARRM (see Fig. 8). The poor representation of
marine stratocumulus clouds is a long-standing problem that
plagues many ESMs (e.g., Bogenschutz et al., 2023). The
underestimation of summertime low clouds (manifested as
the excessive TOA shortwave CRE) in the California stra-
tocumulus region is substantially improved with NARRM
(Fig. 13). The improvement in this bias is likely due to a re-
duced bias in the simulated sea surface temperature (SST) in
the coupled RRM. To constrain the impact of the RRM on the
SST bias, we conduct two additional experiments: one where
the LR ocean is coupled to the RRM atmosphere, and another
where the RRM ocean is coupled to the LR atmosphere. The
simulated SST bias averaged over years 51–100 of the pi-
Control is shown in Fig. 14. Comparison of Fig. 14a and b
shows a clear reduction in bias for the NARRM simulation.
Figure 14c and d illustrate that the regional refinement in the
atmosphere (c) is primarily responsible for the reduction in
SST bias; however, comparing to the NARRM result, we see
that the bias is further reduced when regional refinement is
included in both components, highlighting the advantage of
coupled RRM over a single-component RRM. Further details
will be described in a future paper by Van Roekel et al. (Luke
P. Van Roekel, personal communication, 2023).

Another well-known issue of global ESMs is the poorly
captured diurnal propagation of organized mesoscale con-
vective systems (MCSs). Over CONUS, such MCSs origi-
nate from the front range of the Rockies in the afternoon
and propagate eastward, manifesting as a nocturnal precip-
itation peak in the central US and contributing as much as
half of the summertime rainfall in that region (Riley et al.,
1987; Jiang et al., 2006). Both LR and NARRM simulate the
summertime nocturnal rain peak in the central US (Fig. 15)
because of the new convective trigger method for deep con-
vection (Xie et al., 2019). However, the magnitude is weaker
and the area of nocturnal peak extends much larger (almost
the whole eastern half of the US) than the observation, which
could be caused by remaining propagation or convective trig-
ger deficiencies. Nevertheless, NARRM reduces the underes-
timation of maximum diurnal cycle magnitude with an 80 %
greater value (5.61 mm d−1 vs. 3.10 mm d−1) than LR on the
same 100 km grids. The NARRM maximum can be as high
as 6.71 mm d−1 on the 25 km grids but still biases low com-
pared to the observation (10.89 mm d−1). This result suggests
that a resolution of ∼ 25 km is not adequate to capture the
physics driving propagating MCSs, which probably require

convection-permitting atmospheric simulations to achieve a
good agreement with observations (Caldwell et al., 2021).

5.1.2 Aerosols

The E3SMv2 LR model (Golaz et al., 2022) simulates too
strong aerosol-related forcing, which has been identified as
the primary cause of the underestimated warming in the later
portion of historical period in Fig. 9. We will examine here
if the NARRM configuration helps bring down the biases in
aerosols and anthropogenic forcing by better resolving the
meteorological and climate fields. In addition, since NARRM
employs the hybrid time step approach that eliminates re-
tuning the scale-dependent aerosol parameters used in LR,
e.g., the global scaling factor used to constrain the total emis-
sion fluxes of natural aerosols (dust and sea salt), which de-
pend non-linearly on the model-resolved small-scale surface
winds, we will also discuss the impact of increasing model
horizontal resolution on the natural aerosols and total aerosol
optical depth (AOD) in NARRM.

1. Impact on anthropogenic aerosols.

Aerosols in the NARRM configuration are represented
in the same manner as in the LR with the enhanced
MAM4 (Wang et al., 2020) and improved dust aerosol
properties (Feng et al., 2022). Anthropogenic and wild-
fire emissions used in the LR and NARRM experiments
are also from the same input datasets. However, cloud
microphysical processes, horizontal advection, and con-
vection can affect aerosol loading within the NARRM
high-resolution domain if wet deposition and/or trans-
port are substantially different from the LR configura-
tion (Caldwell et al., 2019). We first compare modeled
surface mass concentrations of SO2, sulfate, black car-
bon, and organic carbon between the ensemble means
of LR and NARRM historical simulations, and evaluate
them against ground-based observations from the Clean
Air Status and Trends Network (CASTNET) and the In-
teragency Monitoring of Protected Visual Environments
(IMPROVE). The results are shown in Fig. 16. In gen-
eral, both sets of simulations show a strong correlation
with measurements, and biases are very similar between
the two for the anthropogenic aerosol species. NARRM
simulations slightly increase (less than 7 %) the concen-
trations of the four species shown here, compared to LR
simulations, which may result from less wet removal or
vertical transport in the refined mesh.

2. Impact on natural aerosols.

In addition to aerosol removal, emissions of natural
aerosols such as dust and sea salt are highly sensitive
to resolution changes due to their strong dependence
on the resolved surface wind speeds in the model. In-
creasing model horizontal resolution normally requires
retuning the dust and sea salt aerosol emission factors.
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Figure 11. The same as Fig. 7 but contrasting LR and NARRM historical ensemble means at the refined CONUS area (20–50◦ N, 65–
125◦W). Note that variables shown are adjusted to be more appropriate for the CONUS. (a, b) TOA SW and LW cloud radiative effects,
(c) precipitation, (d) total precipitable water, (e) surface air temperature, (f, g) 200 and 850 hPa zonal wind, and (h, i) 500 hPa geopotential
height and vertical velocity (pressure). The same reference climatology data are used for the variables also shown in Fig. 7, whereas ERA5
(Hersbach et al., 2020) (1985–2014) is used for (d), (e), and (i).

For E3SMv1, Feng et al. (2022) showed that without re-
tuning, an increase in the horizontal resolution by a fac-
tor of 4 (i.e., from ∼ 100 km in LR to ∼ 25 km in HR)
results in about 29 % increase in global dust emissions
and an even larger increase in dust AOD of 42 % due
to the combined effects from the weakened removal. In
contrast, as shown in Table 4, NARRM historical runs
simulate nearly the same global mean AODs as LR for
all the aerosol species including dust and sea salt, with-
out changing their emission factors. Over the regionally
refined CONUS, the mean dust and sea salt AODs are
slightly increased (< 5 %). This suggests that NARRM
largely retains the performance of LR for the aerosol
simulations on the global and regional mean basis with-
out requiring additional retuning of the scale-dependent
emission factors.

3. Aerosol spatial variability and extremes.

On the other hand, NARRM shows improvement over
LR in representing aerosol spatial variability and ex-
treme values over the refined mesh region. Figure 17
compares the simulated AOD (550 nm) distributions be-

tween LR (0101) and NARRM (0101) historical simu-
lations for the present-day time period of 2000–2014.
While both depict a similar general geographical pat-
tern, e.g., higher AODs over the more polluted eastern
US than the western part of the country, NARRM cap-
tures greater and finer detail in spatial variability than
LR, e.g., over the mountainous areas along the Rockies,
Sierra Nevada, and Appalachians. The better-resolved
AOD variability in NARRM results from the spatial
refinement of the resolution-dependent aerosol emis-
sion fluxes (natural species), transport, and removal, as
discussed above. Compared to the ground-based AOD
measurements at the 37 AERONET (Holben et al.,
1998) sites (2006–2015), NARRM shows stronger spa-
tial correlation with the observations than LR (Fig. 17c).
Both configurations overestimate the mean AOD aver-
aged over the AERONET sites, possibly linked to the
weak wet removal in E3SMv2 (Golaz et al., 2022).

In addition to the improved spatial variability, higher
resolution in NARRM also leads to more frequent oc-
currences of large AOD predictions over CONUS than
the LR model, especially over the regions dominated by
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Figure 12. Comparison of CONUS JJA (a, c, e) and DJF (b, d, f) precipitation geographic patterns from ERA5 reanalysis (a, b), LR (c, d),
and NARRM (e, f) historical ensemble means.

wind-driven dust or sea salt aerosols. Figure 18 shows
an example of the calculated probability density func-
tion (PDF) for dust AOD over the major dust source re-
gion in the US (32–42◦ N, 118–108◦W; indicated by the
10◦×10◦ box in Fig. 17b), from both the LR (0101) and
NARRM (0101) simulations in 2000–2014, which are
remapped to the same 0.25◦ grid resolution. It is worth
noting that the remapping of the LR results to the finer
resolution leads to little improvement in the resolved
spatial variability in dust AOD. Clearly, NARRM pre-
dicts more occurrences of high dust AOD over this re-
gion than LR, e.g., 22 % of the dust AODs predicted by
NARRM exceed 0.015, which is the top 98th percentile
of the LR model predictions remapped to the same res-
olution. This suggests that LR may significantly under-
estimate the occurrences of large dust outbreaks in the
southwestern US region relative to NARRM due to the
unresolved surface winds for dust mobilization in the
model. Similarly, NARRM would be more suitable for
urban climate or air quality studies for capturing the ex-

tremely polluted cases occurring at finer spatial or tem-
poral scales.

4. Effective radiative forcing of anthropogenic aerosols.

Figure 19 shows the effective radiative forcing of an-
thropogenic aerosols (1F ) over CONUS and adjacent
ocean areas estimated using nudged LR and NARRM
simulations. 1F is overall negative in both LR and
NARRM and dominated by the shortwave component
(1FSW in Figure 19b, e). The regional mean 1FSW
and 1FLW are both slightly stronger (more negative for
1FSW and more positive for 1FLW) in NARRM com-
pared to LR. Over the Pacific Ocean near 20◦ N and
120◦W, 1FSW and 1F in NARRM are much stronger
than in LR. This is mainly caused by larger low cloud
fraction simulated in NARRM (see Appendix Fig. A4),
which causes a larger contrast in droplet number con-
centration and liquid water path between the PD and PI
simulations compared to LR (Fig. A5).
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Table 4. Comparison of simulated annual mean AOD (550 nm) between LR (H1-5) and NARRM (H1-5) for the time period of 1985–2014.
POM stands for particulate organic matter, BC stands for black carbon, and SOA stands for secondary organic aerosol.

AOD Total Dust Sea salt Sulfate POM BC SOA

Global means

LR 0.164 0.028 0.049 0.033 0.009 0.006 0.039
NARRM 0.163 0.028 0.049 0.033 0.009 0.006 0.038

CONUS means

LR 0.129 0.0098 0.0205 0.0507 0.0074 0.0057 0.034
NARRM 0.129 0.0101 0.0214 0.0502 0.0075 0.0057 0.034

Figure 13. Mean TOA shortwave cloud radiative effects at Califor-
nia in JJA of (a) observations (CERES-EBAF Ed4.1), (b) LR (H1-5)
minus observation, and (c) NARRM (H1-5) minus observation.

5.1.3 Cloud and cloud feedback

Here we examine the impact of increased horizontal reso-
lution over NA on the simulated clouds and their radiative
effects with the LR and NARRM historical simulations and
on cloud feedback changes with the quadrupling 4xCO2 sim-
ulations.

Figure 20 compares the cloud cover between the E3SM
CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder
Satellite Observation) simulator output and the GCM-
Oriented CALIPSO Cloud Product (CALIPSO-GOCCP)
(Zhang et al., 2023). Cloud cover and cloud thermody-
namic phase are diagnosed with the same algorithm in the
CALIPSO simulator and CALIPSO-GOCCP data, facili-
tating consistent model–observation comparisons (Chepfer
et al., 2008, 2010; Cesana and Chepfer, 2013). Observed to-
tal cloud cover is larger over the NA polar region than the
CONUS in the CALIPSO-GOCCP data. Total cloud cover is
larger than 60 % over the eastern Pacific Ocean, northern At-
lantic Ocean, and Arctic Ocean. Strong land–ocean contrast
is observed – liquid phase clouds dominate over the ocean,
while ice phase clouds prevail over the land in areas such
as Greenland and CONUS. Compared to CALIPSO-GOCCP,
LR overestimates total cloud cover at NA high latitudes and
the western CONUS and underestimates it in Greenland, par-
ticularly over Baffin Bay and near the Greenland coast. The
underestimated cloud cover over the western coast of the
CONUS is also notable, which is consistent with the previ-
ous discussion on Fig. 13. The excessive modeled total cloud
cover is primarily attributed to the positive biases in the liq-
uid cloud over the polar region. The positive biases of ice
cloud cover contributes to the biases over the mountainous
regions in the western NA. On the other hand, ice clouds are
underestimated over Greenland and northern Canada.

Over land, NARRM displays improvements relative to LR
in western NA and the Arctic for both cloud phases. For in-
stance, the ice cloud biases are significantly reduced from
Alaska to the western CONUS (Fig. 20f, i), and the liquid
cloud deficiencies over Alaska and Greenland are generally
decreased (Fig. 20e, h). The better represented topography in
NARRM (Fig. 8) is probably the key factor of these NARRM
improvements. The impact of increased horizontal resolu-
tion on simulated cloud phase is also noted in the E3SMv1
model with the CALIPSO simulator (Zhang et al., 2019),
where increased horizontal resolution also slightly decreases
simulated liquid and ice clouds at temperatures warmer than
−40 ◦C in the Arctic region.
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Figure 14. Sea surface temperature (SST) bias (model–observations) simulated by four configurations of E3SMv2 (a) NARRM, (b) LR, and
(c) RRM atmosphere coupled to LR ocean and (d) LR atmosphere coupled to RRM ocean. The data are averaged over years 51–100 of the
respective piControl simulations.

Over ocean, NARRM substantially improves the stratocu-
mulus clouds to the west of coastal regions. NARRM also
moderately outperforms LR in representing liquid clouds
over the North Atlantic to the west of Greenland. This is re-
lated to the warmer (∼ 1.5 ◦C) NARRM surface air temper-
ature over the Labrador Sea. This warmer NARRM surface
air temperature is consistent with the decreased sea ice con-
centration in that region (not shown), which is somewhat ex-
pected as an advantage of refining grids for both atmosphere
and ocean and sea ice (see Fig. A1). Further process-level
analysis is necessary to fully understand this LR-NARRM
model behavior change and will be reported in separate pa-
pers.

Figure 21 compares the simulated SW and LW CRE with
the CERES-EBAF Ed4.1 observations. Large negative SW
CRE biases and positive LW CRE biases are shown over
the Arctic land area and western coast of NA (i.e., Alaska
to Oregon) in LR, which mainly result from the overesti-
mated cloud cover. These biases are substantially reduced
in NARRM, primarily owing to the improved cloud cover
(Fig. 20). Given the reduced negative bias of marine stra-
tocumulus clouds in NARRM near the western coasts of the
CONUS, simulated SW CRE is also largely improved. As
discussed by Golaz et al. (2022), sea ice concentration is
largely overestimated over the North Atlantic Ocean in LR.
The too large sea ice extent leads to weaker SW and LW CRE
than observed in the Labrador Sea. This is primarily because
of the brighter and colder sea ice surface in LR that reflects
more SW radiative fluxes and emits less LW radiative fluxes
than the observations under clear-sky conditions (not shown).
Compared to LR, the maximum positive bias in NARRM sea

ice extent in Labrador Sea is greatly alleviated. The better
simulated sea ice extent reduces the biases of overly reflec-
tive clear-sky SW radiation and the insufficient clear-sky out-
going LW radiation. With generally comparable all-sky SW
and LW radiative fluxes between LR and NARRM, those re-
duced clear-sky biases thus lead to a better CRE in NARRM
over Labrador Sea.

Given the improved historical cloud cover and cloud radia-
tive effects over NA, we further examine the regional climate
feedbacks over this region in Fig. 22. Relative to the global
mean value, the total climate feedback over NA is more neg-
ative from NARRM than from LR. This mainly results from
the more negative Planck feedback and less positive SW
cloud feedbacks. The more negative Planck feedback is re-
lated to the stronger surface warming over the northeastern
Pacific (not shown).

Figure 23 shows the spatial distribution of cloud feedback
of LR and NARRM in the NA region. Due to the different
cloud types over land and ocean, we report their regional av-
erages separately. Notably, the total land cloud feedback is
0.41 W m−2 K−1 smaller in NARRM (0.26 W m−2 K−1) than
in LR (0.67 W m−2 K−1), which is dominated by the reduced
SW cloud feedback over the northeastern US (Fig. 23e). Fur-
ther examination indicates this reduction is mainly related
to the weaker reduction in low cloud cover under warm-
ing in NARRM. Figure 20g shows that the overestimated
cloud cover is slightly alleviated over the Arctic land re-
gion in NARRM, implying that the lower mean state cloud
cover might contribute to a weaker cloud reduction under
warming there. Over ocean, NARRM presents a stronger SW
cloud feedback and a weaker LW cloud feedback over the
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Figure 15. Mean diurnal phase (local time, colors) and magnitude (color density) of the maximum precipitation in JJA calculated from the
first harmonic of 3-hourly total precipitation (mm d−1) for (a) Tropical Rainfall Measuring Mission (TRMM) observations (Huffman et al.,
2007), (b) LR (H1-5), (c) NARRM (H1-5) regridded to the same 100 km grids as (b), and (d) NARRM (H1-5) on 25 km grids.

marine low cloud regime, leading to a small change in to-
tal cloud feedback. Across the CSS/WGNE Pacific Cross-
Section Intercomparison (GPCI) transect (Teixeira et al.,
2011), NARRM tends to show a weaker positive cloud feed-
back near the coast and more positive cloud feedback off the
coast. These factors suggest that the regional refinement can

significantly affect the regional cloud responses under warm-
ing and the predictability of regional climate.

5.1.4 Extratropical cyclone

One of the primary motivations for pushing climate sim-
ulation resolution is to potentially better capture extremes.
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Figure 16. Scatter plots of modeled annual mean surface concentrations of (a) SO2, (b) sulfate, (c) black carbon, and (d) organic carbon
(POM+SOA) from LR (H1-5) and NARRM (H1-5) compared to observations at CASTNET and IMPROVE network surface sites during
2005–2014. The numbers are mean concentration and correlation coefficient (R) for data at the individual sites.

Extratropical cyclones (ETCs) are a major weather extreme
phenomenon at middle and high latitudes, bringing with
them strong winds and precipitation that can exert substan-
tial societal impacts along their pathways over days and
over hundreds to thousands of kilometers. Climate changes
are likely to induce changes to the dynamical and physical
characteristics of ETCs as well as their geospatial distribu-
tion (e.g., Bengtsson et al., 2006; Ulbrich et al., 2009). Pro-
jections of such future changes rely heavily on numerical
climate and ESM models. Their skills in simulating major
weather systems like ETC have been carefully scrutinized
by modeling centers and by the climate science community
in conjunction with the major intercomparison campaigns
(Greeves et al., 2007; Chang, 2013). While the conventional
climate models with grid resolution around 100 km show rea-
sonable skill in producing ETC frequency and spatial track
density, it has also been found that higher-resolution models
are better capable of capturing more intense ETCs (e.g., Jung
et al., 2006), which is critical for using ESM to project fu-
ture climates, as growing evidence shows that global warm-

ing tends to shift the weather spectrum to the more extreme
end (Melillo et al., 2014). Here, we will demonstrate the ben-
efits of higher resolution in simulating ETCs in a regionally
refined setting by comparing the results from NARRM with
those from LR simulations against the ETC activities derived
from the ERA5 reanalysis.

The ETC tracks and statistics can be obtained using au-
tomated identification and tracking algorithms (e.g., Blender
and Schubert, 2000; Geng and Sugi, 2001; Bengtsson et al.,
2006; Jung et al., 2006; Ullrich and Zarzycki, 2017; Ullrich
et al., 2021). The objective identification and tracking also
make it suitable to compare ETC activities and statistics de-
rived from different data sources in particular for model eval-
uations. The algorithms usually identify and track the spa-
tial features of a meteorological variable, such as mean sea
level pressure (MSLP) or 850 hPa vorticity, that can charac-
terize the structure of cyclones and their movements. In this
work, we use a community feature detection and tracking
framework, TempestExtremes (Ullrich and Zarzycki, 2017;
Ullrich et al., 2021), to derive ETC activities from 6-hourly
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Figure 17. Aerosol optical depth (AOD) at 550 nm from (a) LR
(0101) and (b) NARRM (0101) historical simulations averaged over
2000–2014. Panel (c) shows the AOD comparison of the two model
simulations with the AERONET observations during 2006–2015.
The site locations of AERONET are denoted by the gray dots in
panel (a). The gray box in panel (b) denotes the dust region refer-
enced in Fig. 18.

MSLP data during the period of 1985–2014 from the E3SM
simulations and the ERA5 reanalysis. Considering higher-
resolution data can more accurately identify the storms and
their tracks (Blender and Schubert, 2000; Geng and Sugi,
2001), all the model and reanalysis data are placed on 1◦×1◦

grids to feed the tracking software. The algorithm takes two

Figure 18. Calculated probability density function (PDF) of the
dust AOD predictions from LR (0101) and NARRM (0101) be-
tween 2000–2014 remapped to the same 0.25◦ grid resolution, over
the major dust source region in the US (32–42◦ N, 118–108◦W;
indicated by the 10◦× 10◦ box in Fig. 17b).

steps. First, a candidate cyclone is detected when a mini-
mum MSLP feature is enclosed by a contour of 200 Pa in-
terval within 6◦ of the center. Candidates within 6◦ of one
another are merged, with the lower center pressure taking
precedence. The candidates are then stitched together to de-
fine the tracks if the features persist for at least 60 h with a
maximum gap of at most 18 h. From the start to the end, a
candidate cyclone must travel at least 12◦ great circle dis-
tance to qualify as an ETC.

Over the NARRM high-resolution domain, ETCs are most
active during winter. Figure 24 shows the mean DJF track
density for the models and the analysis derived by casting the
computed ETC track data onto 5◦× 5◦ grids. The tracks are
mostly concentrated over the northeastern Pacific and north-
western Atlantic that form the well-known storm tracks. Both
LR and NARRM simulations capture these main features to
a large extent. There are, however, notable differences be-
tween LR and NARRM over these oceanic storm tracks. The
track densities are clearly underestimated in the LR simula-
tions inside the refined region, except for the Atlantic storm
track in the coupled mode. NARRM clearly produces higher
ETC track density than LR does for both sections of the
oceanic storm tracks and mostly agrees better with the ERA5
data, although in the coupled mode the track density tends
to be overestimated. The shape and orientation of both the
Pacific and Atlantic storm tracks are much better produced
by NARRM in the coupled mode. Given the significant dif-
ferences from both coupled LR (Fig. 24d) and uncoupled
NARRM (Fig. 24c), it is reasonable to believe that the bet-
ter captured storm track shapes in the coupled NARRM are
due to interactions with the refined ocean (Fig. A1). Several
secondary centers of active ETCs in the ERA5 over land are
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Figure 19. Anthropogenic aerosol effects simulated by the nudged LR and NARRM simulations.

also reproduced by the models, including the active regions
over the Great Lakes and Hudson Bay, although the densities
are overestimated in the models (more so in the NARRM). It
is worthwhile mentioning that the NARRM simulations are
able to produce the chain of secondary centers to the east of
the Rocky Mountains that are also present in the ERA5 re-
analysis but are largely missing in the LR simulations. This
is presumably due to the NARRM’s better-resolved moun-
tainous terrain features, a benefit by design.

The benefit of grid refinement can be further seen in
Fig. 25, which shows the histograms of the ETC as a function
of the minimum center pressure and the maximum deepen-
ing rate during its lifetime. All events within the refined re-
gion bounded by the dashed black lines as shown in Fig. 24
are used to compute these statistics. The maximum deep-
ening rate is defined as the maximum 6-hourly center pres-
sure drop, normalized by sin(ϕref)/sin(ϕ), with ϕ being the
latitude and ϕref the reference latitude at 45◦ (see also in
Jung et al., 2006). Clearly the NARRM very closely re-
produces the number of intense cyclones (minimum center
MSLP< 960 hPa), while unsurprisingly the LR model un-
derproduces. This is true in coupled and uncoupled modes.
Both LR and NARRM simulations overestimate the number
of weaker ETCs. On a similar note, the observed number of
rapid-growth cyclones is closely reproduced by the NARRM
simulations but is clearly underestimated by a large margin
in the LR simulations.

5.2 Land and river

5.2.1 Snowpack

Natural storage provided by mountain snowpack is central to
water supply reliability in the western US (Siirila-Woodburn
et al., 2021). To evaluate model skill in representing this
critical hydroclimate benchmark variable, intra-annual snow-
pack dynamics are evaluated using the methodology known
as the snow water equivalent (SWE) triangle (Rhoades et al.,
2018a, b). The seven metrics that make up the SWE triangle
attempt to distill management-relevant aspects of the accu-
mulation and ablation of snowpack (e.g., peak water volume
and snowmelt rate) for any arbitrary gridded SWE dataset.
Five HUC2 basins of the mountainous western US are used
to derive five-member ensemble and basin average evalu-
ations of LR and NARRM fully coupled historical simu-
lations and are compared with ERA5. All datasets are bi-
linearly regridded using the Earth System Modeling Frame-
work (ESMF) to 0.25◦ resolution prior to masking and com-
puting the basin-average SWE triangle metrics.

NARRM provides enhanced winter (DJF) climatological
representation of the spatial variability of SWE across the
CONUS relative to LR (Fig. 26a, b). This is seen through
higher SWE magnitudes and more granular spatial structures
in NARRM compared with LR, particularly in coastal moun-
tain ranges such as the Cascades and Sierra Nevada, and
corroborates a long history of ESM studies that highlight
the critical importance of horizontal resolution (≤ 0.25◦) in
properly representing the mountainous hydrologic cycle (De-
mory et al., 2014; Rhoades et al., 2017; Kapnick et al., 2018;
Palazzi et al., 2019; Bambach et al., 2022; Rhoades et al.,
2022). As shown through the more granular intra-seasonal
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Figure 20. Spatial distribution of annual mean total cloud cover (a) and cloud cover in liquid phase (b) and ice phase (c) from the CALIPSO-
GOCCP data. The cloud cover biases in LR (H1-5) and NARRM (H1-5) historical simulations (1985–2014) are shown in (d)–(f) and (g)–(i),
respectively. Simulated cloud cover and cloud thermodynamic phase are derived by the CALIPSO simulator. Climatology data of CALIPSO-
GOCCP version 3.1.2 (Chepfer et al., 2010) from 2006–2018 are used in the model evaluation.

perspective of the SWE triangle metrics, certain aspects in
the snowpack dynamics are improved with NARRM (e.g.,
peak water volume), namely in the Pacific Northwest and
California (Fig. 26c). With that said, some E3SM SWE bi-
ases are not ameliorated with horizontal resolution and may
arise due to the combination of higher winter season precip-
itation (Fig. 12) and a general cool bias (Fig. 9) in both the
LR and NARRM fully coupled historical simulations.

5.2.2 Runoff and evapotranspiration

NARRM better captures spatial variability in land hydrologic
processes, as indicated by two most important land hydro-
logic variables, total runoff (Fig. 27) and evapotranspiration
(ET) (Fig. 28). For instance, in the coastal Pacific regions, the
Rocky Mountains block atmospheric moisture from ocean to
inland areas and lead to two distinct hydrologic regimes: a
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Figure 21. Spatial distribution of the observed shortwave cloud radiative effect (a), the longwave cloud radiative effect (b), and the simulated
cloud radiative effect biases in LR (H1-5) (c, d) and NARRM (H1-5) (e, f) historical simulations (1985–2014). The observed cloud radiative
effect is from the CERES-EBAF Ed4.1.

wet regime in the western mountains and a dry regime in
the eastern mountains. This abrupt spatial shift from a wet
to dry hydrologic regime can be clearly seen in the compos-
ite runoff map from the Global Runoff Data Center (GRDC)
(Fekete et al., 2011), Fig. 27a, and the observed evapotranspi-
ration map from the Moderate Resolution Imaging Spectro-

radiometer (MODIS) satellite observations (Running et al.,
2017), Fig. 28a. Note that the GRDC runoff map is not com-
pletely based on the observational data since runoff measure-
ments are not available at the regional or global scales due to
technical and economic limitations. It is nevertheless a more
realistic estimate than any model simulations because it was
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Figure 22. Mean global and NA climate feedbacks of LR and
NARRM decomposed using radiative kernels (e.g., Soden et al.,
2008; Held and Shell, 2012).

first generated with a monthly hydrologic model (hence pro-
ducing spatiotemporal variability) and then corrected for bias
against discharge measurements at thousands of river gauges
(Fekete et al., 2011). This abrupt shift of hydrologic regime
around the Rocky Mountains, along with the other spatial
variations, is much better resolved in the NARRM simula-
tion than LR, which is the case for both simulated runoff and
evapotranspiration, as shown in Figs. 27b, c and 28b, c. The
NARRM simulated spatial patterns are thus more realistic
than the LR ones over NA. Over the remaining regions of
the globe, the NARRM and LR simulated spatial patterns are
quite similar to each other in terms of both runoff and evap-
otranspiration (not shown).

The simulation biases in runoff and evapotranspiration are
further examined in terms of absolute biases, i.e., the abso-
lute difference between the simulated and “benchmark” val-
ues. Here the GRDC runoff and MODIS ET data are used as
the benchmark data. Figures 27d and 28d show the maps of
absolute bias difference, i.e., the difference between the ab-
solute biases in the LR simulation and those in the NARRM
simulation (former subtracting latter), for annual mean runoff
and evapotranspiration, respectively. For a specific grid cell
in these two maps, a positive difference means the absolute
bias in the LR simulation is larger than that in the NARRM
and vice versa. It appears that there are more absolute biases
in LR than NARRM over both the western and eastern US.
Using the longitude 100◦W as the divide, the average ab-
solute bias differences (positive indicates NARRM has less
overall absolute bias than LR) are 22.8 and 0.9 mm yr−1 over
the western and eastern US, respectively, for annual mean
runoff, and are 21.6 and 18.5 mm yr−1 over the western and
eastern US, respectively, for annual mean evapotranspiration.
When compared to LR, NARRM can thus help reduce simu-
lation biases in hydrologic variables.

5.2.3 Streamflow

Streamflow simulations are typically affected by multiple
sources of uncertainties, such as the biases in the simu-
lated runoff, the uncertainties in the river model parameters

(e.g., river network topology, channel geometry, Manning’s
roughness coefficients), and water demand data (Li et al.,
2013, 2015a, b; Zhou et al., 2020). For river network topol-
ogy, the 0.5◦ and 0.125◦ resolution river network data are
used for the LR and NARRM simulations, respectively, as
shown in Fig. 29a, b. It is expected that a higher-resolution
river network data can represent rivers more smoothly and
hence more realistically. Another benefit of higher resolu-
tion river network data is to enable more extensive stream-
flow validation. Terrestrial water fluxes, particularly surface
runoff and streamflow, are dominated by gravity and con-
trolled by topography and hence mostly follow irregular wa-
tershed boundaries. In most land surface and ESMs, includ-
ing E3SM, regular lat–long grids are used to resolve spa-
tial heterogeneity for both runoff and river processes to be
compatible with the other land and atmospheric components
(Lawrence et al., 2019; Golaz et al., 2022). Both the magni-
tude and timing of streamflow at each river gauge are domi-
nated by the corresponding upstream drainage area. Stream-
flow simulations are thus largely affected by the discrepan-
cies between the watershed boundaries and regular lat–long
grids. These discrepancies can be significantly reduced with
higher-resolution river network data. For example, in this
study a 10 % discrepancy threshold is used to select the river
gauges for validating streamflow simulations; i.e., the rela-
tive difference between the real upstream drainage area of
a river gauge and that estimated from a lat–long grid-based
river network should not exceed 10 %. Over the NA domain,
615 river gauges satisfy the requirement for the 0.5◦ resolu-
tion river network, whilst 2924 river gauges satisfy the re-
quirement for the 0.125◦ resolution river network. There are
563 river gauges that simultaneously satisfy the requirement
for both resolutions.

Figure 29c shows the comparison between the annual
mean observed and simulated streamflow over these 563 river
gauges. Overall, both simulations produce the long-term
average streamflow reasonably well across these gauges.
NARRM performs noticeably better (closer to the red 1 : 1
line) for the top four gauges with the largest discharges. An
additional analysis (figure not shown) indicates that LR pro-
duces greater absolute bias than NARRM in 330 out of 563
gauges (about 60 %) in the streamflow simulation. Interest-
ingly, it appears that the overestimation and underestimation
of JJA and DJF streamflow are concentrated in the western
and eastern US, respectively, for both LR and NARRM, as
shown in Fig. 30a–d. Figure 30e, f displays the difference in
absolute biases between LR and NARRM (the former sub-
tracted from the latter) at individual river gauges for the JJA
and DJF seasons. Positive differences (indicating greater bias
in LR than in NARRM, purple color) dominate over most
gauges in the eastern US during JJA and over the CONUS
during DJF. Taken together, Figs. 29 and 30 suggest an over-
all better performance of NARRM despite all the uncertain-
ties.
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Figure 23. Spatial distribution of total (a, d, g), SW (b, e, h), and LW (c, f, i) North American cloud feedbacks for LR (a–c), NARRM (d–f),
and the difference between NARRM and LR (g–i). The GPCI transect is denoted by the dashed black line. The average values over land and
ocean are labeled in the brackets.

5.3 Land–atmosphere coupling

Accurate representation of the interactive processes between
the land surface, planetary boundary layer (PBL), and clouds
and precipitation is an ongoing challenge for current state-
of-art climate models. Here we assess the land–atmosphere
(L-A) coupling in LR (H1-5), LR (A1-3), NARRM (H1-5),
and NARRM (A1-3) using the 9-year warm-season obser-
vations at the Atmospheric Radiation Measurement (ARM)

Southern Great Plains (SGP) site following Tao et al. (2021).
Before the detailed analysis of L-A coupling, we first ex-
amine the seasonal variations of daytime mean surface heat
fluxes from May to August during 2004–2012. As shown in
Fig. 31, the evaporative fraction (EF) is in general underesti-
mated in model simulations except for LR (H1-5). The much
lower simulated EF compared with the ARM observations
is mainly attributed to a large negative bias in surface la-
tent heat fluxes (LH). Different from the other simulations,
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Figure 24. Mean extratropical cyclone track density in the DJF sea-
son between 1985 and 2014 from (a) ERA5, (b, c) AMIP, and (d,
e) historical simulations of LR and NARRM. Dashed black lines
denote the western and eastern boundary of the refined region.

Figure 25. Histogram of extratropical cyclone minimum center sea
level pressure and maximum 6 h deepening rate in the DJF season
between 1985 and 2014 (a, b) AMIP and (c, d) historical simula-
tions. LR is shown in dotted, NARRM in dashed, and ERA5 in solid
black lines.

the surface sensible heat flux (SH) is significantly underes-
timated in LR (H1-5) from May to early July. As a result,
the simulated daytime mean EF is higher than that from the
observations. Overall, the surface state and fluxes are bet-
ter reproduced in the historical runs than in the AMIP runs,

where both LR (A1-3) and NARRM (A1-3) show a signifi-
cant negative bias in LH and EF persisting since July. This is
surprising and requires further analyses, which is beyond the
scope of this paper. In the following, we focus on two local
convective regimes and diagnose model behaviors using the
local coupling metrics (Santanello et al., 2018).

During the selected 9-year period, 165 and 154 clear-sky
days are classified from LR (A1-3) and NARRM (A1-3), re-
spectively (Table A1). This is double the 66 clear-sky days
identified from ARM observations. However, the occurrence
frequency of shallow cumulus (ShCu) days is much lower in
these AMIP runs compared with that observed. For ShCu,
only 6 and 5 d are identified in LR (A1-5) and NARRM
(A1-5), respectively (not shown). For the historical runs, the
number of selected clear-sky days from both LR (H1-5) and
NARRM (H1-5) are comparable to that observed, but the oc-
currence frequency of ShCu days is still low. As we are tar-
geting a statistical and climatological comparison between
the long-term ARM data and climate model simulations, we
extend the analysis period to 1980–2012 for model simula-
tions on ShCu days due to the limited sample size between
2004 and 2012.

Figure 32 shows the composite clear-sky day mixing di-
agrams (Santanello et al., 2009), which relates the conser-
vative variables, potential temperature (θ ), and total water-
specific humidity (q) to the water and energy budgets and
the growth of planetary boundary layer (PBL). The coevo-
lution of Lvq and Cpθ (07:30 to 17:30 LST) is decomposed
by vector components that represent the integrated fluxes of
heat and moisture from the land surface (Vsfc), the advec-
tion (Vadv), and the entrainment at the PBL top (Vent as a
residual). Six metrics are derived from these diagrams and
summarized in Table 5. In general, although the differences
among various model simulations are minor, several com-
mon model biases are noted when compared with the ARM
observations. For example, the model-simulated clear-sky
days are featured with too warm and too dry conditions in
the early morning (07:30 LST). The θsfc in the two AMIP
runs and historical runs, for both LR and NARRM, is about
3 and 2 times that which was observed, respectively. The high
θsfc indicates that more energy at the surface goes to heating
rather than moistening. Moreover, the ELH is significantly
overestimated in the model simulations, which is about 5 (3)
times that observed in the two AMIP runs (historical runs).
The much higher simulated ELH suggests that the entrain-
ment heating and drying dominates the surface fluxes on the
simulated clear-sky days, which supports rapid and deep PBL
growth in models. Different from the observations, the simu-
lated advection tends to cool and dry the mixed layer, but the
overall impact is much smaller compared to those from the
surface and entrainment.

Figure 33 shows the daytime evolution composites of
PBL, lifting condensation level (LCL), and LCL deficit (PBL
top height minus LCL) on clear-sky and ShCu days. Both
PBL and LCL on model-simulated clear-sky days are much
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Figure 26. Climatological DJF average snow water equivalent (SWE) as simulated by E3SMv2 with (a) LR and (b) NARRM over the 1985–
2014 period. (c) LR (blue) and NARRM (red) SWE triangle metrics for five HUC2 basins within the mountainous western US compared
with ERA5 (gray). Black bars at the end of each histogram represent the mean 95 % confidence intervals.

Figure 27. Annual mean runoff from (a) GRDC, (b) LR, and (c) NARRM simulations and (d) the differences in absolute biases between
LR and NARRM (LR−NARRM); a positive value suggests the absolute bias in the LR simulation is larger than that in the NARRM, while
a negative value indicates the opposite.
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Figure 28. Annual mean evapotranspiration from (a) MODIS, (b) LR, and (c) NARRM simulations and (d) the differences in absolute biases
between LR and NARRM (LR−NARRM); a positive value suggests the absolute bias in the LR simulation is larger than that in the NARRM,
while a negative value indicates the opposite.

Figure 29. Simulated annual mean streamflow at 563 river gauges in NA compared against The Global Streamflow Indices and Metadata
(GSIM) database. (a) River network used in LR, demonstrated by the mean annual discharge. (b) River network used in NARRM, demon-
strated by the mean annual discharge. (c) Simulated annual mean streamflow against observed for LR and NARRM.

higher than on the ARM-observed clear-sky days. The model
behaviors are in general consistent among different simula-
tions, except that the bias of LCL is significantly lower in LR
(H1-5) compared with the others. In models, the PBL grows
rapidly after sunrise on clear-sky days, corresponding to the
large warm and dry air entrainments that dominate the PBL

budget (Fig. 32). But the too warm and too dry early morn-
ing surface conditions lead to an even higher LCL on model-
simulated clear-sky days. The PBL never reaches the LCL,
with a negative LCL deficit throughout the day, which sup-
ports clear skies. The diurnal evolution of LCL on the ARM-
observed ShCu days is similar to that on clear-sky days, but
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the development of the PBL is much more vigorous. As a
result, the PBL is deep enough to touch the LCL for cloud
formation around noon. Different from the observed results,
the daytime evolution of PBL is much weaker on ShCu days
than on clear-sky days in all model simulations. However, the
decrease in LCL from clear-sky days to ShCu days is even
greater, where the growth of PBL is high enough to touch
the LCL for cloud formation. Note that the models simulate
a positive LCL deficit at around 09:00 LST, a few hours ear-
lier than that in the observations. To summarize, ShCu forms
as a result of strong surface SH fluxes that drives the rapid
development of PBL in observations, while in models ShCu
results from a relatively more humid lower troposphere that
leads to a lowered LCL. Differences among various model
simulations are pretty minor.

6 Conclusions and discussion

A primary Earth system model (ESM) advancement is to rep-
resent the spatially continuous world more realistically on
discretized grids, which often requires constantly increasing
the finest scale of explicitly resolved processes within the
computational limit. Before uniformly high-resolution global
models solve their severe computational challenge for cli-
mate simulation campaigns, the multiresolution ESM (e.g.,
regionally refined model (RRM)) is a natural alternative for
these campaigns. Nevertheless, it has been over a decade
since such a multiresolution method (e.g., Ringler et al.,
2008) was proposed.

To our knowledge, this is the first study with a global ESM
that has accomplished the CMIP6 climate simulation cam-
paign with a fully coupled RRM configuration – a potentially
significant step in the long journey of improving the explic-
itly resolved resolution of climate simulations. The key to
this success is the application of the hybrid time step strat-
egy (i.e., merging the high-resolution dynamics time step
with the low-resolution physics time step) in the atmosphere
model, which mitigates the negative impacts caused by the
persistent poor scale-aware problem of atmospheric physics
in a multi-scale framework (e.g., RRM). The powerful aspect
of RRM is that it typically only costs ∼ 10 %–20 % of the
globally uniform high-resolution model, substantially reduc-
ing the computational burden of production simulations. This
is particularly important for high-resolution ensemble simu-
lations, which are necessary to account for the internal vari-
ability of the climate system, but whose cost would otherwise
be prohibitive. On the global scale, we show that NARRM re-
produces the LR climate well. Within the high-resolution do-
main (i.e., North America), NARRM displays more improve-
ments than deteriorations relative to LR. Furthermore, some
of the NARRM improvements (e.g., marine shallow cumu-
lus clouds over California and mixed-phase clouds near the
Arctic) are attributable to the better-captured coupling pro-
cesses, highlighting the strength of refining multiple compo-

nents over a single component. The main detailed findings
are as follows.

– The new dry baroclinic idealized test (Hughes and
Jablonowski, 2023) allows us to test the NARRM grid
with the stand-alone atmospheric dynamical core and
confirms that the NARRM mesh is numerically stable
and that the results are reasonable compared to the LR
and HR grids (Fig. 4).

– By employing the EAM hybrid time step method,
NARRM successfully matches the global climate (in-
cluding climatology, time series, and climate sensitivity
and feedback) simulated by LR (Figs. 7, 9, 10, 22) with-
out retuning physics parameters.

– Within the high-resolution region over the CONUS, pre-
cipitation and clouds are largely improved in NARRM
compared to LR (Figs. 11a, c, 12, 13) due to the bet-
ter topography in NARRM (Fig. 8) and/or reduced sea
surface temperature biases.

– Refining the atmospheric grid spacing from 100 to
25 km is not adequate to improve the diurnal propaga-
tion of organized MCSs over the CONUS (Fig. 15).

– NARRM retains the LR performance of aerosol simu-
lations on a global scale and regional mean basis with-
out retuning of the scale-dependent aerosol emissions.
Over the refined mesh, NARRM improves the simu-
lated aerosol spatial variability and predictions of ex-
treme polluted cases (e.g., the upper tail of AOD dis-
tribution) (Fig. 18). On the other hand, the refined grid
resolution does not eliminate the high biases in aerosol
loadings and effective radiative forcing inherited from
the LR model.

– NARRM generally simulates better cloud cover than LR
for both liquid and ice phase clouds. Over land (e.g.,
western NA and Greenland), this improvement is likely
related to topography, whereas over ocean it is attributed
to air–sea interactions.

– NARRM produces a comparable global mean cloud
feedback to LR but a less positive cloud feedback over
the NA (Fig. 22). The reduction in cloud feedback there
mainly relates to the shortwave component. The total
cloud feedback over coastal California does not change
much due to the compensation between the shortwave
and longwave components (Fig. 23).

– While both the LR and NARRM simulations are to a
large extent able to capture the spatial and statistical dis-
tributions of the observed extratropical cyclone (ETC)
activities, NARRM shows a particularly improved skill
when simulating the ETC activities along the oceanic
storm tracks and over the mountain range to the east
of the Rocky Mountains (Fig. 24). NARRM in coupled
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Figure 30. Simulated JJA (a, c, e) and DJF (b, d, f) mean streamflow at CONUS river gauges compared against The Global Streamflow
Indices and Metadata (GSIM) database. (a, b) Relative bias of LR. (c, d) Relative bias of NARRM. (e) The difference in absolute relative
bias between LR (absolute value of a) and NARRM (absolute value of c) for the JJA season; a positive value (purple) indicates LR has greater
absolute bias than NARRM. (f) The same as (e) but for the DJF season

Table 5. The surface (βsfc) and entrainment (βent) Bowen ratios, the entrainment ratio of heat (ESH) and moisture (ELH), and the advective
flux ratio of heat (ASH) and moisture (ALH) from the ARM observations, LR (A1-3), LR (H1-5), NARRM (A1-3), and NARRM (H1-5) on
clear-sky days. The flux values (W m−2) are derived using the mixing diagram theory and surface, advection, and entrainment flux vectors
depicted in Fig. 32.

Metrics Obs. LR (A1-3) LR (H1-5) NARRM (A1-3) NARRM (H1-5)

βsfc = SHsfc/LHsfc 0.70 2.28 1.20 2.09 1.65
βent = SHent/LHent −1.13 −0.68 −0.60 −0.54 −0.61
ESH = SHent/SHsfc 1.79 1.57 1.72 1.35 1.37
ELH = LHent/LHsfc −1.11 −5.31 −3.44 −5.24 −3.72
ASH = SHadv/(SHsfc+SHent) 0.04 −0.18 −0.12 −0.09 −0.07
ALH = LHadv/(LHsfc+LHent) 3.97 −0.21 −0.25 −0.22 −0.22
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Figure 31. The seasonal variation of 2004–2012 daytime mean
(06:00–18:00 LST): (a) surface sensible heat flux (SH), (b) sur-
face latent heat flux (LH), and (c) surface evaporative fraction (EF,
defined as [LH/(LH+SH)]) from ARM observations (black), LR
(A1-3) (green), LR (H1-5) (blue), NARRM (A1-3) (orange), and
NARRM (H1-5). A moving average of 30 d is applied to smooth
out short-term fluctuations and highlight longer-term trends.

mode outperforms all other configurations (LR and un-
coupled NARRM) when simulating the shape and ori-
entation of the oceanic storm tracks within the NARRM
high-resolution domain due to the coupling with the re-
fined ocean surrounding North America. NARRM in
general produces more ETCs than LR and overestimates
the total number of cyclones compared to the ERA5 re-
analysis. More importantly, for intense or rapidly devel-
oping cyclones, the NARRM simulations are in close
agreement with the observations, whereas the LR simu-
lations are mismatched by a significant margin (Fig. 25).

– NARRM appears to better represent the spatial vari-
ability in land hydrologic processes by resolving the
land features more realistically over the western US
(Figs. 27, 28). With higher grid resolution, NARRM can
better capture surface topography that dominates sur-
face water flows across hillslopes and through rivers,
and hence not only improves the river model per-
formance but also provides more precise river gauge
geo-referencing information for streamflow validations
(Figs. 29, 30).

– NARRM provides enhanced winter (DJF) climatologi-
cal representation of the spatial variability of snow wa-
ter equivalent (SWE) across the CONUS relative to LR
(Fig. 26ab) as a result of higher SWE magnitudes and

Figure 32. Clear-sky-day mixing diagram of the PBL conservative
variables, Lvq vs. Cpθ , during the daytime evolution from ARM ob-
servations (black), LR (A1-3) (green), LR (H1-5) (blue), NARRM
(A1-3) (orange), and NARRM (H1-5) (red). Dots denote the com-
posite hourly means from 07:30 to 17:30 LT. The text annotations
depict the vector component contributions from surface (Vsfc), ad-
vection (Vadv), and entrainment fluxes (Vent) to the evolution.

more granular spatial structures in NARRM. Certain bi-
ases (e.g., peak water volume) in snowpack are reduced
in NARRM compared with LR (Fig. 26c).

– Over the ARM SGP site during warm seasons, the
surface conditions are warm and dry on the model-
simulated clear-sky days, with overestimation in both
the PBL height and the LCL (Figs. 32, 33), while
the ShCu days in models result from a much moister
environment compared with that in the observations
(Fig. 33). In general, the surface properties and fluxes
are better reproduced in the historical runs than in the
AMIP runs (Fig. 31), showing only limited impact due
to resolution.

Besides the NARRM configuration illustrated in the
present study, E3SMv2 has been successfully run with RRM
meshes with finer grids located in other regions (Antarctic,
Arctic, and southeastern Pacific). We expect that the hybrid
time step strategy is a general approach that can be applied
to these RRMs to simulate high-resolution climate in differ-
ent areas. With that in mind, we streamlined the process of
creating new RRM configurations to facilitate broader RRM
applications in the next phase of the E3SM project. Depend-
ing on the goal of RRM simulations, further improvements
over the refined domain can be achieved via additional pa-
rameter tuning. In that case, nudging the outside coarser do-
main may be necessary to avoid severe degradations of the
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Figure 33. Composite daytime evolution of (a) PBL, (b) LCL, and (c) LCL deficit (PBL minus LCL) from ARM observations (black), LR
(A1-3) (green), LR (H1-5) (blue), NARRM (A1-3) (orange), and NARRM (H1-5) (red) on clear-sky days. Panels (d)–(f) are the same as
panels (a)–(c) but on shallow cumulus days.

climate there. Such nudging capability is available in E3SM
(e.g., Tang et al., 2019), and one has the option to nudge to-
wards the data from the reanalysis product or low-resolution
E3SM simulation. Lastly, we highlight that this paper serves
as an overview of the NARRM atmosphere, land, and river
models. More in-depth analysis is planned to be reported in
follow-up papers.

Appendix A

Figure A1. North American RRM (NARRM) grids for ocean and
sea ice.
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Figure A2. The same as Fig. 11 but for the global spatial RMSE of model climatology from the EAMv1 LR (blue triangles) and the EAMv1
RRM (red triangles) with high-resolution grids over the CONUS and both physics parameters and time steps tuned for high resolution. The
details of these two EAMv1 simulations are documented in Tang et al. (2019).
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Figure A3. Comparison of global annual mean precipitation geographic patterns from (a) GPCP2.3, (b) LR, and (c) NARRM historical
ensemble means.
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Figure A4. Cloud fractions over North America simulated by the nudged LR (a, b, c) and NARRM (c, d, e) for low clouds (CLDLOW; a,
d), middle clouds (CLDMED; b, e), and high clouds (CLDHGH; c, f).

Figure A5. Present-day (PD) minus pre-industrial (PI) changes in cloud droplet number concentration (a, d), liquid water path (LWP), and
ice water path (IWP) in North America calculated from the nudged LR (a, b, c) and NARRM (d, e, f) simulations.
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Table A1. Definition criteria and sample size of the clear-sky regime (Clear) and shallow cumulus regime (ShCu) based on the ARM
observations and four different model simulations.

Regime Definition Obs. LR LR NARRM NARRM
criteria (A1-3) (H1-5) (A1-3) (H1-5)

Clear
Obs: analysis period (2004–2012)

66 165 86 154 66– Precipitation rate = 0 mm h−1 at all 24 h points
– Between 08:00 and 16:00 LST, total cloud fraction ≤ 15 %, low-level and
mid-level cloud fraction ≤ 5%, and high-level cloud fraction ≤ 10 %

Model: analysis period (2004–2012)
– Precipitation rate < 0.1 mm h−1 at all 24 h points
– Between 08:00 and 16:00 LST, total cloud fraction ≤ 15 %, low-level and
mid-level cloud fraction ≤ 5 %, and high-level cloud fraction ≤ 10 %

ShCu
Obs: analysis period (2004–2012)

48 34 66 23 48– Precipitation rate = 0 mm h−1 at all 24 h points
– Cloud tops < 4 km and cloud bases gradually rise with time over the day
– Above 4 km, there is usually no cloud or cloud fraction < 5 %, except on
a few days when there is some high cirrus above 10 km
– Satellite images of ShCu days identified based on Active Remote Sensing
of Clouds data and the Total Sky Imager are examined manually to ensure
that the cloud field develops homogeneously and is not affected by other
large-scale weather phenomena

Model: analysis period (1980–2012)
– Precipitation rate < 0.25 mm h−1 at all 24 h points
– Diurnal maximum hourly low-level cloud fraction between 5 % and 70 %
and between 10:00 and 18:00 LST
– Between 00:00 and 06:00 LST, low-level cloud fraction is < 5 %
– Diurnal maximum hourly mid-level cloud fraction ≤ 10 % and is lower
than that of low-level cloud fraction at all 24 h points

Code and data availability. The E3SM code used in this work
is available at https://doi.org/10.5281/zenodo.7343230 (E3SM
Project, 2022) and on GitHub at https://github.com/E3SM-Project/
E3SM (last access: 3 July 2023), including a maintenance
branch (maint-2.0; https://github.com/E3SM-Project/E3SM/
tree/maint-2.0, last access: 3 July 2023) that has been created to
reproduce these simulations.

The complete native model output and the nudging simulations’
climatology data are accessible directly at the National Energy Re-
search Scientific Computing Center (NERSC) (https://portal.nersc.
gov/archive/home/projects/e3sm/www/WaterCycle/E3SMv2/LR,
E3SM Project, 2023a and https://portal.nersc.gov/archive/home/
projects/e3sm/www/WaterCycle/E3SMv2/NARRM, E3SM
Project, 2023b) for low-resolution and NARRM simulations, which
are documented at https://e3sm-project.github.io/e3sm_data_docs
(E3SM Project, 2023c). A subset of the native output is also
available through the DOE Earth System Grid Federation (ESGF)
at https://esgf-node.llnl.gov/search/e3sm/?model_version=2_0
(E3SM Project, 2023d). Data reformatted following CMIP
conventions will also be available through ESGF at
https://esgf-node.llnl.gov/projects/e3sm (E3SM Project, 2023e).

Performance data and scripts are located at
https://github.com/E3SM-Project/perf-data/tree/archive/
v2-narrm-perf-study/v2-narrm (last access: 4 July 2023,
https://doi.org/10.5281/zenodo.8114977, Bradley, 2022).
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