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Abstract. As the resolution of global Earth system models
increases, regional-scale evaluations are becoming ever more
important. This study presents a framework for quantifying
precipitation distributions at regional scales and applies it to
evaluate Coupled Model Intercomparison Project (CMIP) 5
and 6 models. We employ the Intergovernmental Panel on
Climate Change (IPCC) sixth assessment report (AR6) cli-
mate reference regions over land and propose refinements
to the oceanic regions based on the homogeneity of precipi-
tation distribution characteristics. The homogeneous regions
are identified as heavy-, moderate-, and light-precipitating ar-
eas by K-means clustering of Integrated Multi-satellitE Re-
trievals for Global Precipitation Measurement (GPM) ver-
sion 6 final run product (IMERG) precipitation frequency
and amount distributions. With the global domain partitioned
into 62 regions, including 46 land and 16 ocean regions, we
apply 10 established precipitation distribution metrics. The
collection includes metrics focused on the maximum peak,
lower 10th percentile, and upper 90th percentile in precipi-
tation amount and frequency distributions; the similarity be-
tween observed and modeled frequency distributions; an un-
evenness measure based on cumulative amount; average to-
tal intensity on all days with precipitation; and number of
precipitating days each year. We apply our framework to
25 CMIP5 and 41 CMIP6 models, as well as six observation-
based products of daily precipitation. Our results indicate
that many CMIP5 and 6 models substantially overestimate

the observed light-precipitation amount and frequency, as
well as the number of precipitating days, especially over mid-
latitude regions outside of some land regions in the Ameri-
cas and Eurasia. Improvement from CMIP5 to 6 is shown
in some regions, especially in midlatitude regions, but it is
not evident globally, and over the tropics most metrics point
toward degradation.

1 Introduction

Precipitation is a fundamental characteristic of the Earth’s
hydrological cycle and one that can have large impacts on
human activity. The impact of precipitation depends on its
intensity and frequency characteristics (e.g., Trenberth et al.,
2003; Sun et al., 2006; Trenberth and Zhang, 2018). Even
with the same amount of precipitation, more intense and less
frequent rainfall is more likely to lead to extreme precipi-
tation events such as floods and drought compared to less
intense and more frequent rainfall. While mean precipitation
has improved in Earth system models, the precipitation dis-
tributions continue to have biases (e.g., Dai, 2006; Fiedler
et al., 2020), which limits the utility of these simulations,
especially at the level of accuracy that is increasingly de-
manded in order to anticipate and adapt to changes in pre-
cipitation due to global warming.
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Multi-model intercomparison with a well-established di-
agnosis framework facilitates identifying common model bi-
ases and sometimes yields insights into how to improve mod-
els. The Coupled Model Intercomparison Project (CMIP;
Meehl et al., 2000, 2005, 2007; Taylor et al., 2012; Eyring
et al., 2016) is a well-established experimental protocol to
intercompare state-of-the-art Earth system models, and the
number of models and realizations participating in CMIP
has been growing through several phases from 1 (Meehl
et al., 2000) to 6 (Eyring et al., 2016). Given the increas-
ing number of models, developed at higher resolution and
with increased complexity, modelers and analysts could ben-
efit from capabilities that help synthesize the consistency be-
tween observed and simulated precipitation. As discussed
in previous studies (e.g., Abramowitz, 2012), our refer-
ence to model benchmarking implies model evaluation with
community-established reference datasets, performance tests
(metrics), variables, and spatial and temporal resolutions.
The U.S. Department of Energy (DOE) envisioned a frame-
work for both baseline and exploratory precipitation bench-
marks (U.S. DOE. 2020) as summarized by Pendergrass et al.
(2020). While the exploratory benchmarks focus on process-
oriented and phenomena-based metrics at a variety of spa-
tiotemporal scales (Leung et al., 2022), the baseline bench-
marks target well-established measures such as mean state,
the seasonal and diurnal cycles, variability across timescales,
intensity and frequency distributions, extremes, and drought
(e.g., Gleckler et al., 2008; Covey et al., 2016; Wehner et al.,
2020; Ahn et al., 2022). The current study builds on the base-
line benchmarks by proposing a framework for benchmark-
ing simulated precipitation distributions against multiple ob-
servations using well-established metrics and reference re-
gions. To ensure consistent application of this framework, the
metrics used herein are implemented and made available as
part of the widely used Program for Climate Model Diagno-
sis and Intercomparison (PCMDI) metrics package.

Diagnosing precipitation distributions and formulating
metrics that extract critical information from precipitation
distributions have been addressed in many previous studies.
Pendergrass and Deser (2017) proposed several precipitation
distribution metrics based on frequency and amount distri-
bution curves. The precipitation frequency distribution quan-
tifies how often rain occurs at different rain rates, whereas
the precipitation amount distribution quantifies how much
rain falls at different rain rates. Based on the distribution
curves, Pendergrass and Deser (2017) extracted rain fre-
quency peak and amount peak where the maximum non-
zero rain frequency and amount occur, respectively. Pender-
grass and Knutti (2018) introduced a metric that measures
the unevenness of daily precipitation based on the cumula-
tive amount curve. Their unevenness metric is defined as the
number of wettest days that constitute half of the annual pre-
cipitation. In the median of station observations equatorward
of 50◦ latitude, half of the annual precipitation falls in only
about the heaviest 12 d, and generally models underestimate

the observed unevenness (Pendergrass and Knutti, 2018). In
addition, several metrics have been developed to distill im-
portant precipitation characteristics, such as the fraction of
precipitating days and a simple daily intensity index (SDII;
Zhang et al., 2011). In this study we implement all these well-
established metrics and several other complementary metrics
into our framework.

Many studies have analyzed the precipitation distributions
over large domains (e.g., Dai, 2006; Pendergrass and Hart-
mann, 2014; Ma et al., 2022). Often, these domains com-
prise both heavily precipitating and dry regions. Given that
the emphasis on regional-scale analysis continues to grow as
models’ horizontal resolution increases, the interpretation of
domain-averaged distributions could be simplified by defin-
ing regions that are not overly complex or heterogeneous in
terms of their precipitation distribution characteristics. Itur-
bide et al. (2020) have identified climate reference regions
that have been adopted in the sixth assessment report (AR6)
of the Intergovernmental Panel on Climate Change (IPCC).
Our framework is based on these IPCC AR6 reference re-
gions for the objective examination of precipitation distri-
butions over land. Over the ocean we have revised some of
the regions of Iturbide et al. (2020) to better isolate homoge-
neous precipitation distribution characteristics.

In this study, we propose modified IPCC AR6 reference
regions and a framework for regional-scale quantification of
simulated precipitation distributions, which is implemented
into the PCMDI metrics package to enable researchers to
readily use the metric collection in a common framework.
The remainder of the paper is organized as follows: Sects. 2
and 3 describe the data and analysis methods. Section 4
presents results including the application and modification of
IPCC AR6 climate reference regions, evaluation of CMIP5
and 6 models with multiple observations, and their improve-
ment across generations. Sections 5 and 6 discuss and sum-
marize the main accomplishments and findings from this
study.

2 Data

2.1 Observational data

For reference data, we use six global daily precipitation
products first made available as part of the Frequent Rain-
fall Observations on GridS (FROGS) database (Roca et al.,
2019) and then further aligned with CMIP output via the
data specifications of the Observations for Model Intercom-
parison Project (Obs4MIPs; Waliser et al., 2020). These in-
clude five satellite-based products and a recent atmospheric
reanalysis product. The satellite-based precipitation products
include the Integrated Multi-satellitE Retrievals for Global
Precipitation Measurement (GPM) version 6 final run prod-
uct (Huffman et al., 2020; hereafter IMERG), the Tropi-
cal Rainfall Measuring Mission Multi-satellite Precipitation
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Table 1. Satellite-based and reanalysis precipitation products used in this study.

Product Data source Coverage Resolution Reference

Domain Period Horizontal Frequency

IMERG NASA Integrated Multi-satellitE
Retrievals for GPM version 6 final
run product

Global, while
incomplete be-
yond 60◦ N and
S

Jun 2000–present 0.1◦ 30 min Huffman et al.
(2020)

TRMM NASA Tropical Rainfall Measuring
Mission Multi-satellite Precipitation
Analysis 3B42 version 7 product

50◦ S–50◦ N Jan 1998–Dec 2019 0.25◦ 3 h Huffman et al.
(2007)

CMORPH NOAA Bias-corrected Climate Pre-
diction Center Morphing technique
product

60◦ S–60◦ N Jan 1998–present 0.073◦ 30 min Xie et al.
(2017)

GPCP NASA Global Precipitation Clima-
tology Project 1DD version 1.3

Global, while
incomplete be-
yond 40◦ N and
S

Oct 1996–present 1◦ 1 d Huffman et al.
(2001)

PERSIANN UC-IRVINE/CHRS Precipitation
Estimation from Remotely Sensed
Information using Artificial Neural
Networks-Climate Data Record

60◦ S–60◦ N Jan 1983–present 0.25◦ 1 d Ashouri et al.
(2015)

ERA5 ECMWF Integrated Forecasting
System Cy41r2

Global Jan 1950–present 0.25◦ 1 h Hersbach et al.
(2020)

Analysis 3B42 version 7 product (Huffman et al., 2007; here-
after TRMM), the bias-corrected Climate Prediction Cen-
ter Morphing technique product (Xie et al., 2017; hereafter
CMORPH), the Global Precipitation Climatology Project
1DD version 1.3 (Huffman et al., 2001; hereafter GPCP), and
Precipitation Estimation from Remotely Sensed Informa-
tion using Artificial Neural Networks (Ashouri et al., 2015;
hereafter PERSIANN). The reanalysis product included for
context is the European Centre for Medium-Range Weather
Forecasts’s (ECMWF) fifth generation of atmospheric re-
analysis (Hersbach et al., 2020; hereafter ERA5). Table 1
summarizes the observational datasets with the data source,
coverage of domain and period, resolution of horizontal
space and time frequency, and references. We use the data
periods available via FROGS and Obs4MIPs as follows:
2001–2020 for IMERG, 1998–2018 for TRMM, 1998–2012
for CMORPH, 1997–2020 for GPCP, 1984–2018 for PER-
SIANN, and 1979–2018 for ERA5.

2.2 CMIP model simulations

We analyze daily precipitation from all realizations of At-
mospheric Model Intercomparison Project (AMIP) simula-
tions available from CMIP5 (Taylor et al., 2012) and CMIP6
(Eyring et al., 2016). We have chosen to concentrate our anal-
ysis on AMIP simulations rather than the coupled historical
simulations because the simulated precipitation in the latter
is strongly influenced by biases in the modeled sea surface

temperature, complicating any interpretation regarding the
underlying causes of the precipitation errors. Table 2 lists the
participating models, the number of realizations, and the hor-
izontal resolution in each modeling institute. We evaluate the
most recent 20 years (1985–2004) that both CMIP5 and 6
models have in common for a fair comparison with satellite-
based observations.

3 Methods

In our framework we apply 10 metrics that characterize dif-
ferent and complementary aspects of the intensity distribu-
tion of precipitation at regional scales. Table 3 summarizes
the metrics including their definition, purpose, and refer-
ences. The computation of the metrics has been implemented
and applied in the PCMDI metrics package (PMP; Gleckler
et al., 2008, 2016).

3.1 Frequency and amount distributions

Following Pendergrass and Hartmann (2014) and Pender-
grass and Deser (2017), we use logarithmically spaced bins
of daily precipitation to calculate both the precipitation fre-
quency and amount distributions. Each bin is 7 % wider
than the previous one, and the smallest non-zero bin is
centered at 0.03 mmd−1. The frequency distribution is the
number of days in each bin normalized by the total num-
ber of days, and the amount distribution is the sum of ac-
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Table 2. CMIP5 and CMIP6 models used in this study and their horizontal resolution. The number in parentheses indicates the number
of realizations used for each model. Note that the horizontal resolution information is obtained from the number of grids, and it may vary
slightly if the grid interval is not linear.

Institute CMIP5 CMIP6

Name Horizontal resolution Name Horizontal resolution
(long◦× lat◦) (long◦× lat◦)

CSIRO/BOM, Australia ACCESS1-0 (1) 1.875× 1.241 ACCESS-CM2 (7) 1.875× 1.25
ACCESS1-3 (2) 1.875× 1.241 ACCESS-ESM1-5 (10) 1.875× 1.241

BCC, China BCC-CSM1-1 (3) 1.875× 1.241 BCC-CSM2-MR (3) 1.125× 1.125
BCC-CSM1-1-M (3) 1.125× 1.125 BCC-ESM1 (3) 2.812× 2.812

BNU, China BNU-ESM (1) 2.812× 2.812 NA

CAMS, China NA CAMS-CSM1-0 (3)

CCCma, Canada NA CanESM5 (7) 2.812× 2.812

NCAR, USA CCSM4 (6) 1.25× 0.938 CESM2 (10) 1.25× 0.938
CESM2-FV2 (3) 2.5× 1.875
CESM2-WACCM (3) 1.25× 0.938
CESM2-WACCM-FV2 (3) 2.5× 1.875

CMCC, Italy CMCC-CM (3) 0.75× 0.75 CMCC-CM2-HR4 (1) 1.25× 0.938
CMCC-CM2-SR5 (1) 1.25× 0.938

CNRM-CERFACS, France NA CNRM-CM6-1 (1) 1.406× 1.406
CNRM-CM6-1-HR (1) 0.5× 0.5
CNRM-ESM2-1 (1) 1.406× 1.406

CSIRO-QCCCE, Australia CSIRO-Mk3-6-0 (10) 1.875× 1.875 NA

DOE, USA NA E3SM-1-0 (3) 1.0× 1.0

EC-Earth-Consortium,
European Community

EC-Earth (1) 1.125× 1.125 EC-Earth3 (6) 0.703× 0.703
EC-Earth3-AerChem (1) 0.703× 0.703
EC-Earth3-CC (5)
EC-Earth3-Veg (3) 0.703× 0.703

IAP-CAS/THU, China FGOALS-g2 (1) 2.812× 3.0 FGOALS-f3-L (3) 1.0× 1.0
FGOALS-s2 (3) 2.812× 1.667

NOAA GFDL, USA GFDL-CM3 (5) 2.5× 2.0 GFDL-CM4 (1) 1.0× 1.0
GFDL-HIRAM-C180 (2) 0.625× 0.5 GFDL-ESM4 (1) 1.0× 1.0
GFDL-HIRAM-C360 (1) 0.312× 0.25

NASA GISS, USA GISS-E2-R (2) 2.5× 2.0 NA

MOHC, UK HadGEM2-A (1) 1.875× 1.241 HadGEM3-GC31-LL (5) 1.875× 1.25
HadGEM3-GC31-MM (4) 0.833× 0.556
UKESM1-0-LL (1) 1.875× 1.25

IITM, India NA IITM-ESM (1) 1.875× 1.915

INM, Russia INMCM4 (1) 2.0× 1.5 INM-CM4-8 (1) 2.0× 1.5
INM-CM5-0 (1) 2.0× 1.5

IPSL, France IPSL-CM5A-LR (6) 3.75× 1.875 IPSL-CM6A-LR (22) 2.5× 1.259
IPSL-CM5A-MR (3) 2.5× 1.259
IPSL-CM5B-LR (1) 3.75× 1.875

NIMS/KMA, Korea NA KACE-1-0-G (1) 1.875× 1.25

MIROC, Japan MIROC5 (2) 1.406× 1.406 MIROC6 (10) 1.406× 1.406
MIROC-ES2L (3) 2.812× 2.812

MPI-M, Germany MPI-ESM-MR (3) 1.875× 1.875 MPI-ESM-1-2-HAM (3) 1.875× 1.875
MPI-ESM1-2-HR (3) 0.938× 0.938
MPI-ESM1-2-LR (3) 1.875× 1.875

MRI, Japan MRI-AGCM3-2H (1) 0.562× 0.562 MRI-ESM2-0 (3) 1.125× 1.125
MRI-AGCM3-2S (1) 0.188× 0.188
MRI-CGCM3 (3) 1.125× 1.125

NCC, Norway NA NorCPM1 (10) 2.5× 1.875
NorESM2-LM (2) 2.5× 1.875

SNU, Korea NA SAM0-UNICON (1) 1.25× 0.938

AS-RCEC, Taiwan NA TaiESM1 (1) 1.25× 0.938

NA: not available
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Table 3. Precipitation distribution metrics implemented in this study. OBS signifies observations.

Metric [unit] Definition Objectives Reference

Amount peak
[mmd−1]

Rain rate where the maximum rain amount oc-
curs

Characterize typical daily precip-
itation amount

Pendergrass and
Deser (2017)

Amount P10
[fraction]

Fraction of rain amount in lower 10th percentile
of OBS amount

Measure the rain amount from
light rainfall

Amount P90
[fraction]

Fraction of rain amount in upper 90th percentile
of OBS amount

Measure the rain amount from
heavy rainfall

Frequency peak
[mmd−1]

Rain rate where the maximum non-zero rain
frequency occurs

Characterize typical daily precip-
itation frequency

Pendergrass and
Deser (2017)

Frequency P10
[fraction]

Fraction of rain frequency in lower 10th per-
centile of OBS amount

Measure the frequency of light
rainfall

Frequency P90
[fraction]

Fraction of rain frequency in upper 90th per-
centile of OBS amount

Measure the frequency of heavy
rainfall

Unevenness
[d]

Number of wettest days that constitute half of
the annual precipitation

Measure uneven characteristic of
daily precipitation

Pendergrass and
Knutti (2018)

FracPRdays
[fraction]

Number of precipitating days (≥ 1 mmd−1) di-
vided by total days per year

Measure fraction of precipitating
days per year

Updated from Zhang
et al. (2011)

SDII
[mmd−1]

Annual total precipitation divided by the num-
ber of precipitating days (≥ 1 mmd−1)

Measure daily precipitation in-
tensity

Zhang et al. (2011)

Perkins score
[unitless between 0–1]

Sum of minimum values between two PDFs
(probability density functions) across all bins

Measure similarity between two
PDFs

Perkins et al. (2007)

Figure 1. Schematics for precipitation distribution metrics. (a) Amount or Frequency distribution as a function of rain rate. Peak metric
gauges the rain rate where the maximum distribution occurs. P10 and P90 metrics, respectively, measure the fraction of the distribution
lower 10th percentile and upper 90th percentile. Perkins score is another metric based on the frequency distribution to quantify the similarity
between observed and modeled distribution. (b) Fraction of cumulative distribution as a function of the number of wettest days. Unevenness
gauges the number of wettest days for half of the annual precipitation. FracPRdays measures the fraction of the number of precipitating
(≥ 1 mmd−1) days per year. SDII is designed to measure daily precipitation intensity by annual total precipitation divided by FracPRdays.

cumulated precipitation in each bin normalized by the to-
tal number of days. Based on these distributions (Fig. 1a),
we identify the rain rate where the maximum peak of the
distribution appears (Amount and Frequency peak; Pender-
grass and Deser, 2017, also called mode; Kooperman et al.,
2016) and formulate several complementary metrics that
measure the fraction of the distribution’s lower 10th per-
centile (P10) and upper 90th percentile (P90). The precipi-
tation bins less than 0.1 mmd−1 are considered dry for the
purpose of these calculations. The threshold rain rates for

the 10th and 90th percentiles are defined from the amount
distribution as determined from observations. Here we use
IMERG as the default reference observational dataset. The fi-
nal frequency-related metric we employ is the Perkins score,
which measures the similarity between observed and mod-
eled frequency distributions (Perkins et al., 2007). With the
sum of a frequency distribution across all bins being unity,
the Perkins score is defined as the sum of minimum values
between observed and modeled frequency across all bins:
Perkins score=

∑n
1minimum (Zo,Zm), where n is the num-
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ber of bins, and Zo and Zm are the frequency in a given bin
for observation and model, respectively. The Perkins score is
a unitless scalar varying from 0 (low similarity) to 1 (high
similarity).

3.2 Cumulative fraction of annual precipitation
amount

Following Pendergrass and Knutti (2018), we calculate the
cumulative sum of daily precipitation each year sorted in de-
scending order (i.e., wettest to driest) and normalized by the
total precipitation for that year. From the distribution for each
individual year (see Fig. 1b), we obtain the metrics gaug-
ing the number of wettest days for half of the annual pre-
cipitation (Unevenness; Pendergrass and Knutti, 2018) and
the fraction of the number of precipitating (≥ 1 mmd−1)
days (FracPRdays). To facilitate comparison against longer-
established analyses (e.g., ETCCDI; Zhang et al., 2011), we
include the daily precipitation intensity, calculated by divid-
ing the annual total precipitation by the number of precipitat-
ing days (SDII; Zhang et al., 2011). To obtain values of these
metrics over multiple years, we take the median across years
following Pendergrass and Knutti (2018; for unevenness).

3.3 Reference regions

We use the spatial homogeneity of precipitation character-
istics as a basis for defining regions, as in previous studies
(e.g., Swenson and Grotjahn, 2019). In addition to providing
more physically based results, this also simplifies interpre-
tation with robust diagnostics when we average a distribu-
tion characteristic across the region. We use K-means clus-
tering (MacQueen, 1967) with the concatenated frequency
and amount distributions of IMERG over the global domain
to identify homogeneous regions for precipitation distribu-
tions. K-means clustering is an unsupervised machine learn-
ing algorithm that separates characteristics of a dataset into
a given number of clusters without explicitly provided crite-
ria. This method has been widely used because it is faster
and simpler than other methods. Here, we use three clus-
ters to define heavy-, moderate-, and light-precipitating re-
gions. Figure 2 shows the spatial pattern of IMERG pre-
cipitation mean state and clustering results defining heavy-
(blue), moderate- (green), and light-precipitating (orange) re-
gions. The spatial pattern of these clustering regions resem-
bles the pattern of the mean state of precipitation, providing
a sanity check indicating that the cluster-based regions are
physically reasonable. Note that the clustering result with
frequency and amount distributions is not significantly al-
tered if we incorporate the cumulative amount fraction. How-
ever, the inclusion of the cumulative amount fraction to the
clustering yields a slightly noisier pattern, and thus we have
chosen to use the clustering result only with frequency and
amount distributions.

In support of the AR6, the IPCC proposed a set of climate
reference regions (Iturbide et al., 2020). These regions were
defined based on geographical and political boundaries and
the climatic consistency of temperature and precipitation in
current climate and climate change projections. When defin-
ing regions, the land regions use information from both cur-
rent climate and climate change projections, while the ocean
regions use only the information from climate change projec-
tions. In other words, the climatic consistency of precipita-
tion in the current climate is not explicitly represented in the
definition of the oceanic regions. Figure 3a shows the IPCC
AR6 climate reference regions superimposed on our precip-
itation clustering regions shown in Fig. 2b. The land regions
correspond reasonably well to the clustering regions, but
some ocean regions are too broad, including both heavy- and
light-precipitating regions (Fig. 3a). In this study, the ocean
regions are modified based on the clustering regions, while
the land regions remain the same as in the AR6 (Fig. 3b).

In the Pacific Ocean region, the original IPCC AR6 re-
gions consist of equatorial Pacific Ocean (EPO), northern
Pacific Ocean (NPO), and southern Pacific Ocean (SPO).
Each of these regions includes areas of both heavy and
light precipitation. EPO includes the Intertropical Conver-
gence Zone (ITCZ), the South Pacific Convergence Zone
(SPCZ), and also the dry southeast Pacific region. The NPO
region includes the north Pacific storm track and the dry
northeast Pacific. The SPO region includes the southern
part of the SPCZ and the dry southeast area of the Pacific.
In our modified IPCC AR6 regions, the Pacific Ocean re-
gion is divided into four heavy-precipitating regions (NPO,
NWPO, PITCZ, and SWPO) and two light- and moderate-
precipitating regions (NEPO and SEPO). Similarly, in the At-
lantic Ocean region, the original IPCC AR6 regions consist
of the equatorial Atlantic Ocean (EAO), northern Atlantic
Ocean (NAO), and southern Atlantic Ocean (SAO), with
each including both heavy- and light-precipitating regions.
Our modified Atlantic Ocean region consists of two heavy-
precipitating regions (NAO and AITCZ) and two light- and
moderate-precipitating regions (NEAO and SAO). The In-
dian Ocean (IO) region is not modified as the original IPCC
AR6 climate reference region separates well the heavy-
precipitating equatorial IO (EIO) region from the moderate-
and light-precipitating southern IO (SIO) region. The South-
ern Ocean (SOO) is modified to mainly include the heavy-
precipitating region around the Antarctic. The original IPCC
AR6 climate reference regions consist of 58 regions includ-
ing 12 oceanic regions and 46 land regions, while our mod-
ification consists of 62 regions including 16 oceanic regions
and the same land regions as the original (see Table 4). Note
that the Caribbean (CAR), the Mediterranean (MED), and
Southeast Asia (SEA) are not counted for the oceanic re-
gions.
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Figure 2. Spatial patterns of IMERG precipitation (a) mean state and (b) clustering for heavy-, moderate-, and light-precipitating regions by
K-means clustering with amount and frequency distributions. Precipitation (c) amount and (d) frequency distributions as a function of rain
rate. Different colors indicate different clustering regions and are the same as in (b). Thin and thick curves, respectively, indicate distributions
at each grid and the cluster average.

Table 4. List of climate reference regions used in this study. The new ocean regions defined in this study are highlighted in bold.

1 GIC Greenland/Iceland 22 WAF Western-Africa 43 SAU S.Australia
2 NWN N.W.North-America 23 CAF Central-Africa 44 NZ New-Zealand
3 NEN N.E.North-America 24 NEAF N.Eastern-Africa 45 EAN E.Antarctica
4 WNA W.North-America 25 SEAF S.Eastern-Africa 46 WAN W.Antarctica
5 CNA C.North-America 26 WSAF W.Southern-Africa 47 ARO Arctic-Ocean
6 ENA E.North-America 27 ESAF E.Southern-Africa 48 ARS Arabian-Sea
7 NCA N.Central-America 28 MDG Madagascar 49 BOB Bay-of-Bengal
8 SCA S.Central-America 29 RAR Russian-Arctic 50 EIO Equatorial-Indian-Ocean
9 CAR Caribbean 30 WSB W.Siberia 51 SIO S.Indian-Ocean
10 NWS N.W.South-America 31 ESB E.Siberia 52 NPO N.Pacific-Ocean
11 NSA N.South-America 32 RFE Russian-Far-East 53 NWPO N.W.Pacific-Ocean
12 NES N.E.South-America 33 WCA W.C.Asia 54 NEPO N.E.Pacific-Ocean
13 SAM South-American-Monsoon 34 ECA E.C.Asia 55 PITCZ Pacific-ITCZ
14 SWS S.W.South-America 35 TIB Tibetan-Plateau 56 SWPO S.W.Pacific-Ocean
15 SES S.E.South-America 36 EAS E.Asia 57 SEPO S.E.Pacific-Ocean
16 SSA S.South-America 37 ARP Arabian-Peninsula 58 NAO N.Atlantic-Ocean
17 NEU N.Europe 38 SAS S.Asia 59 NEAO N.E.Atlantic-Ocean
18 WCE West&Central-Europe 39 SEA S.E.Asia 60 AITCZ Atlantic-ITCZ
19 EEU E.Europe 40 NAU N.Australia 61 SAO S.Atlantic-Ocean
20 MED Mediterranean 41 CAU C.Australia 62 SOO Southern-Ocean
21 SAH Sahara 42 EAU E.Australia
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Figure 3. (a) IPCC AR6 climate reference regions and (b) modified IPCC AR6 climate reference regions superimposed on the precipitation
distribution clustering map shown in Fig. 2b. Land regions are the same between (a) and (b), while some ocean regions are modified.

3.4 Evaluating model performance

We use two simple measures to compare the collection of
CMIP5 and 6 model simulations with the five satellite-based
observational products (IMERG, TRMM, CMORPH, GPCP,
and PERSIANN). One gauges how many models within the
multi-model ensemble fall within the observational range be-
tween the minimum and maximum observed values for each
metric and each region. Another is how many models un-
derestimate or overestimate all observations, i.e., are outside
the bounds spanned by the minimum and maximum values
across the five satellite-based products. To quantify the dom-
inance of underestimation versus overestimation of the multi-

model ensemble with a single number, we use the following
measure formulation: (nO− nU)/nT, where nO is the num-
ber of overestimating models, nU is the number of underesti-
mating models, and nT is the total number of models. Thus,
positive values represent overestimation, and negative val-
ues represent underestimation. If models are mostly within
the observational range or widely distributed from underesti-
mation to overestimation, the quantification value would ap-
proach zero.

Many metrics that can be used to characterize precipita-
tion, including those used here, are sensitive to the spatial
and temporal resolutions at which the model and observa-
tional data are analyzed (e.g., Pendergrass and Knutti, 2018;
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Chen and Dai, 2019). As in many previous studies on the di-
agnosis of precipitation in CMIP5 and 6 models (e.g., Fiedler
et al., 2020; Tang et al., 2021; Ahn et al., 2022), to ensure
appropriate comparisons, we conduct all analyses at a com-
mon horizontal grid of 2◦× 2◦ with a conservative regrid-
ding method. For models with multiple ensemble members,
we first compute the metrics for all available realizations and
then average the results across the realizations.

4 Results

4.1 Homogeneity within reference regions

For the regional-scale analysis, we employ the IPCC AR6
climate reference regions (Iturbide et al., 2020), while we
revise the regional divisions over the oceans based on clus-
tered precipitation characteristics as described in Sect. 3.3.
To quantitatively evaluate the homogeneity of precipitation
distributions in the reference regions, we use three homo-
geneity metrics: the Perkins score (Perkins et al., 2007),
Kolmogorov–Smirnov test (K-S test; Chakravart et al.,
1967), and Anderson–Darling test (A-D test; Stephens,
1974). The three metrics measure the similarity between
the regionally averaged and individual grid cell frequency
distributions within the region. The Perkins score measures
the overall similarity between two frequency distributions,
which is one of our distribution performance metrics de-
scribed in Sect. 3.1. The K-S and A-D tests focus more on
the similarity in the center and the side of the frequency dis-
tribution, respectively. The three homogeneity metrics could
complement each other as their main focuses are on different
aspects of frequency distributions.

In the original IPCC AR6 reference regions, the oceanic
regions show relatively low homogeneity of precipitating
characteristics compared to land regions (Fig. 4). The Pa-
cific and Atlantic Ocean regions show much lower homo-
geneity than the Indian Ocean, especially in EPO and EAO
regions. In the modified oceanic regions, the homogeneities
show an overall improvement with the three homogene-
ity metrics. In particular, the homogeneity over the heavy-
precipitating regions where the homogeneity was lower (e.g.,
Pacific and Atlantic ITCZ and midlatitude storm track re-
gions) are largely improved. The clustering regions shown
here are obtained based on IMERG precipitation. However,
since different satellite-based products show substantial dis-
crepancies in precipitation distributions, it is important to as-
sess whether the improved homogeneity in the modified re-
gions is similarly improved across other different datasets.
Figure 5 shows the homogeneity of precipitation distribution
characteristics for different observational datasets using the
Perkins score. Although the region modifications we have
made are based on the clustering regions of IMERG precip-
itation, Fig. 5 suggests that the improvement of the homo-
geneity over the modified regions is consistent across differ-

ent observational datasets. We further tested the homogeneity
for different seasons (see Fig. S1 in the Supplement). The ho-
mogeneity is overall improved in the modified regions across
the seasons even though we defined the reference regions
based on annual data.

4.2 Regional evaluation of model simulations against
multiple observations

The precipitation distribution metrics used in this study
are mainly calculated from three curves: amount distribu-
tion, frequency distribution, and cumulative amount frac-
tion curves. Figure 6 shows these curves for three selected
regions based on the clustered precipitating characteristics
(NWPO, which is a heavy-precipitation-dominated ocean re-
gion; SEPO, a light-precipitation-dominated ocean region;
and ENA, a heavy-precipitation-dominated land region). The
heavy- and light-precipitating regions are well distinguished
by their overlaid distribution curves. The amount distribu-
tion has a distinctive peak in the heavy-precipitating region
(Fig. 6a and g), while it is flatter in the light-precipitating re-
gion (Fig. 6d). The frequency distribution is more centered
on the heavier precipitation side in the heavy-precipitating
region (Fig. 6b and h) than in the light-precipitating region
(Fig. 6e). The cumulative fraction increases more steeply
in the light-precipitating region (Fig. 6f) than in the heavy-
precipitating region (Fig. 6c and i), indicating there are fewer
precipitating days in the light-precipitating region. NWPO
and SEPO were commonly averaged for representing the
tropical ocean region in many studies, but these different
characteristics in the precipitation distributions demonstrate
the additional information available via a regional-scale anal-
ysis. Although satellite-based observations are less reliable
over the light-precipitating ocean regions (e.g., SEPO), the
differences between heavy- and light-precipitating regions
are well distinguishable.

In the precipitation frequency distribution, many models
show a bimodal distribution in the heavy-precipitating trop-
ical ocean region (Fig. 6b) but not in the light-precipitating
subtropical ocean region (Fig. 6e) or the heavy-precipitating
midlatitude land region (Fig. 6h). The bimodal frequency dis-
tribution is commonly found in models and is seemingly in-
dependent of resolution (e.g., Lin et al., 2013; Kooperman
et al., 2018; Chen et al., 2021; Ma et al., 2022; Martinez-
Villalobos et al., 2022; Ahn et al., 2023). Ma et al. (2022)
compared the frequency distributions in AMIP and High-
ResMIP (High Resolution Model Intercomparison Project;
Haarsma et al., 2016) from CMIP6 and DYAMOND (DY-
namics of the Atmospheric general circulation Modeled
On Non-hydrostatic Domains; Satoh et al., 2019; Stevens
et al., 2019) models, where they showed that the bimodal
frequency distribution appears in many AMIP (∼ 100 km),
HighResMIP (∼ 50 km), and even DYAMOND (∼ 4 km)
models. Ahn et al. (2023) further compared DYAMOND
model simulations with and without a convective parameteri-
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Figure 4. Homogeneity estimated by (a) Perkins score, (b) K-S test, and (c) A-D test between the region-averaged and each grid’s frequency
distributions of IMERG precipitation for the IPCC AR6 climate reference regions (upper) and the modified ocean regions (bottom). The
darker color indicates higher homogeneity across all panels.

zation and showed that most DYAMOND model simulations
exhibiting the bimodal distribution use a convective parame-
terization. ERA5 reanalysis also shows a bimodal frequency
distribution (Fig. 6b), which is not surprising considering that
the reproduced precipitation in ERA5 heavily depends on the
model, and thus exhibits this common model behavior. Be-
cause of the heavy reliance on model physics to generate its
precipitation (as opposed to fields like wind, for which ob-
servations are directly assimilated), in this study we do not
include ERA5 precipitation among the observational prod-
ucts used for model evaluation.

Based on the precipitation amount, frequency, and cu-
mulative amount fraction curves, we calculate 10 metrics
(Amount peak, Amount P10, Amount P90, Frequency peak,
Frequency P10, Frequency P90, Unevenness, FracPRdays,
SDII, and Perkins score) as described in Sect. 3. Figure 7
shows the metrics with the modified IPCC AR6 climate refer-
ence regions for satellite-based observations (black), ERA5
reanalysis (gray), CMIP5 models (blue), and CMIP6 mod-
els (red). The metric values vary widely across regions,
especially in Amount peak, Frequency peak, Unevenness,
FracPRdays, and SDII, demonstrating the additional detail
provided by regional-scale precipitation distribution metrics.
In terms of the metrics based on the amount distribution
(Fig. 7a–c), many models tend to simulate an Amount peak
that is too light, an Amount P10 that is too high, and an
Amount P90 that is too low compared to the observations,
more so in oceanic regions (regions 47–62) than in land re-
gions. Similarly for the metrics based on the frequency dis-
tribution (Fig. 7d–f), many models show light Frequency
peaks, overestimated Frequency P10, and underestimated

Frequency P90 compared to observations. The similarity be-
tween frequency distribution curves (i.e., Perkins score) is
higher in land regions than in ocean regions. Also, many
models overestimate Unevenness and FracPRdays and un-
derestimate SDII. These results indicate that, overall, mod-
els simulate more frequent weak precipitation and less heavy
precipitation compared to the observations, consistent with
many previous studies (e.g., Dai, 2006; Pendergrass and
Hartmann, 2014; Trenberth et al., 2017; Chen et al., 2021;
Ma et al., 2022).

As expected from previous work, observations disagree
substantially in some regions (e.g., polar and high-latitude
regions) and/or for some metrics (e.g., Amount P90, Fre-
quency P90). In some cases the observational spread is much
larger than that of the models. We examine the observational
discrepancy or spread by the ratio between the standard
deviation of the five satellite-based observations (IMERG,
TRMM, CMORPH, GPCP, PERSIANN) and the standard
deviation of all CMIP5 and 6 models (Fig. 8). The stan-
dard deviation of observations is much larger near polar
regions and high-latitude regions compared to the models’
standard deviation for most metrics, as expected from the
orbital configurations of the most relevant satellite constel-
lations for precipitation (which exclude high latitudes). The
Amount P90 and Frequency P90 metrics show the largest
observational discrepancy among the metrics, with standard
deviations 1.5 to 3 times larger over some high-latitude re-
gions and about 3–8 times larger over polar regions in ob-
servations compared to the models. On the other hand, Un-
evenness, FracPRdays, and Amount P10 show the least ob-
servational discrepancy – the models’ standard deviation is
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Figure 5. As in Fig. 4 but for different observational datasets with Perkins score.

about 2–8 times larger than for observations over some trop-
ical and subtropical regions; nonetheless, the standard devi-
ation among observations is larger over most of the high-
latitude and polar regions. Model evaluation in the regions
with large disagreement among observational products re-
mains a challenge. Note that the standard deviation of five
observations would be sensitive as there are outlier observa-
tions for some regions and metrics (e.g., many ocean regions
in Amount P90). Moreover, observational uncertainties are
rarely well quantified or understood, so agreements among
observational datasets may not always allow us to rule out
common errors among observations (e.g., for warm light pre-
cipitation over the subtropical ocean).

To attempt to account for discrepancies among observa-
tional datasets in the model evaluation framework, we use
two different approaches to evaluate model performance with
multiple observations, as described in Sect. 3.4. The first ap-
proach is to assess the number of models that are within the
observational range. Figure 9 shows the CMIP6 model eval-
uation with each metric, and the regions where the standard
deviation among observations is larger than among models
are stippled gray to avoid them in the model performance
evaluation. In Amount peak, some subtropical regions (e.g.,
ARP, EAS, NEPO, CAU, and WSAF) show relatively good
model performance (more than 70 % of models fall in the ob-
servational range), while some tropical and subtropical (e.g.,
PITCZ, AITCZ, and SEPO) and polar (e.g., RAR, EAN, and
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Figure 6. Precipitation amount (a, d, and g), frequency (b, e, and h), and cumulative (c, f, and i) distributions for (a–c) NWPO, (b–f) SEPO,
and (g–j) ENA. Black, gray, blue, and red curves indicate the satellite-based observations, reanalysis, CMIP5 models, and CMIP6 models,
respectively. Thin and thick curves for CMIP models, respectively, indicate distributions for each model and multi-model average. Gray
dotted lines in the cumulative distributions indicate a fraction of 0.5. Note: all model output and observations were conservatively regridded
to 2◦ in the first step of analysis.

WAN) regions show poor model performance (less than 30 %
of models fall in observational range). For Amount P10,
many regions are poorly captured by the simulations, ex-
cept for some subtropical land regions (e.g., EAS, NCA,
CAU, and WSAF). In Amount P90, most regions are un-
certain (i.e., the standard deviation among observations is
larger than among models) making it difficult to evaluate
model performance, while some tropical regions near the
Indo-Pacific warm pool (EIO, SEA, NWPO, and NAU) ex-
hibit very good model performance (more than 90 % of mod-
els fall in observational range). In the Frequency metrics
(peak, P10, and P90), it is difficult in more regions to eval-
uate model performance than in Amount metrics, while in
some tropical and subtropical regions (e.g., PITCZ, SWPO,
NWPO, SEA, SAO, and NES) model performance is good.
However, good model performance could alternatively arise
from a large observational range (see Fig. 7). Unevenness,
FracPRdays, SDII, and Perkins score have a smaller fraction
of models within the observational range in tropical regions
than the Amount and Frequency metrics. In particular, fewer

than 10 % of CMIP6 models fall within the observational
range for Unevenness and FracPRdays over some tropical
oceanic regions (e.g., PITCZ, NEPO, SEPO, AITCZ, NEAO,
SAO, and SIO).

Examining the fraction of CMIP5 models falling within
the range of observations, CMIP5 models have a spatial pat-
tern of model performance similar to that of CMIP6 models
(see Fig. S2), and the improvement from CMIP5 to CMIP6
seems subtle. We quantitatively assess the improvement from
CMIP5 to CMIP6 by subtracting the percentage of CMIP5
from CMIP6 models falling within the range of observations
(Fig. 10). For some metrics (e.g., Amount peak, Amount and
Frequency P10, and Amount and Frequency P90) and for
some tropical and subtropical regions (e.g., SEA, EAS, SAS,
ARP, and SAH), the improvement is apparent. Compared to
CMIP5, 5 %–25 % more CMIP6 models fall in the observa-
tional range in these regions. However, for the other met-
rics (e.g., Frequency peak, FracPRdays, SDII, Perkins score),
CMIP6 models perform somewhat worse. Over some trop-
ical and subtropical oceanic regions (e.g., PITCZ, NEPO,
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Figure 7.

AITCZ, and NEAO), 5 %–25 % more CMIP6 than CMIP5
models are out of the observational range. This result is from
all available CMIP5 and CMIP6 models, so it may reflect the
fact that some models are in only CMIP5 or CMIP6 but not
both (see Table 2). To isolate improvements that may have
occurred between successive generations of the same mod-

els, we also compared only the models that participated in
both CMIP5 and CMIP6 (see Fig. S3). Overall, the spatial
characteristics of the improvement/degradation in CMIP6
from CMIP5 are consistent, while more degradation is appar-
ent when we compare this subset of models, especially over
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Figure 7. Precipitation distribution metrics for (a) Amount peak, (b) Amount P10, (c) Amount P90, (d) Frequency peak, (e) Frequency
P10, (f) Frequency P90, (g) Unevenness, (h) FracPRdays, (i) SDII, and (j) Perkins score over the modified IPCC AR6 regions. Black, gray,
blue, and red markers indicate the satellite-based observations, reanalysis, CMIP5 models, and CMIP6 models, respectively. Thin and thick
vertical marks for CMIP models, respectively, indicate distributions for each model and multi-model average. The open circle mark for CMIP
models indicates the multi-model median. The green shade represents the range between the minimum and maximum values of satellite-
based observations. Blue and red shades, respectively, represent the range between the 25th and 75th model values for CMIP5 and 6 models.
The y axis labels are shaded with the same three colors as in Fig. 2b, indicating dominant precipitating characteristics. Note that regions 1–46
are land and land–ocean mixed regions and 47–62 are ocean regions.
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Figure 8. Observational discrepancies relative to spread in the multi-model ensemble for (a) Amount peak, (b) Amount P10, (c) Amount
P90, (d) Frequency peak, (e) Frequency P10, (f) Frequency P90, (g) Unevenness, (h) FracPRdays, (i) SDII, and (j) Perkins score over the
modified IPCC AR6 regions. The observational discrepancy is calculated by the standard deviation of satellite-based observations divided
by the standard deviation of CMIP5 and 6 models for each metric and region.

the tropical oceanic regions (e.g., PITCZ, AITCZ, NWPO,
and SEPO).

The second approach to account for discrepancies among
observations in model performance evaluation is to count the
number of models that are lower or higher than all satellite-
based observations for each metric and each region. Fig-
ure 11 shows the spatial patterns of the model performance
evaluation with each metric for CMIP6 models. Underesti-
mation is indicated by a negative sign, while overestima-
tion is indicated by a positive sign via the formulation de-
scribed in Sect. 3.4. Amount peak is overall underestimated
in most regions, indicating the amount distributions in most
CMIP6 models are shifted to lighter precipitation compared
to observations. In many regions, more than 50 % of the
CMIP6 models underestimate Amount peak. In particular,
over many tropical and Southern Hemisphere ocean regions

(e.g., PITCZ, AITCZ, EIO, SEPO, SAO, and SOO), more
than 70 % of the models underestimate the Amount peak. The
underestimation of Amount peak is accompanied by overesti-
mation of Amount P10 and underestimation of Amount P90.
More than 70 % of CMIP6 models overestimate Amount
P10 in many oceanic regions; especially in the southern and
northern Pacific and Atlantic, the southern Indian Ocean,
and Southern Ocean more than 90 % of the models overesti-
mate the observed Amount P10. For Amount P90, it appears
that many models fall within the observational range; how-
ever, the observational range in Amount P90 (green boxes in
Fig. 7c) is large and driven primarily by just one observa-
tional dataset (IMERG), especially in ocean regions.

For the frequency-based metrics (i.e., peak, P10, and P90;
Fig. 11d–f), CMIP6 models show similar bias characteris-
tics to Amount metrics (Fig. 11a–c), although performance
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Figure 9. Percentage of CMIP6 models within range of the observational products for (a) Amount peak, (b) Amount P10, (c) Amount P90,
(d) Frequency peak, (e) Frequency P10, (f) Frequency P90, (g) Unevenness, (h) FracPRdays, (i) SDII, and (j) Perkins score over the modified
IPCC AR6 regions. The observational range is between the minimum and maximum values of five satellite-based products. Regions where
the observational spread is larger than model spread shown in Fig. 8 are stippled gray.

is better than for Amount metrics. Over some tropical (e.g.,
NWPO, PITCZ, and SWPO ) and Eurasian (e.g., EEU, WSB,
and ESB) regions, less than 10 % of models fall outside of the
observed range. Unevenness and FracPRdays are severely
overestimated in models. More than 90 % of models overes-
timate the observed Unevenness (Fig. 11g) and FracPRdays
(Fig. 11h) globally, especially over oceanic regions, consis-
tent with Pendergrass and Knutti (2018). SDII is underesti-
mated in many regions globally, especially in some heavy-
precipitating regions (e.g., PITCZ, AITCZ, EIO, SEA, NPO,
NAO, SWPO, and SOO). For the Perkins score, model sim-
ulations have poorer performance in the tropics than in the
midlatitudes and polar regions. The performance of these
various metrics is generally consistent with the often-blamed
light precipitation that is too frequent and heavy precipitation
that is too rare in simulations.

The characteristics of CMIP5 compared to CMIP6 simu-
lations (Fig. S4) show little indication of improvement. Here
we quantitatively evaluate the improvement in CMIP6 from
CMIP5 for each metric and region. Figure 12 shows the dif-
ference between CMIP5 and CMIP6 in terms of the per-
centage of models that underestimate or overestimate each
metric. In midlatitudes, there appears to have been an im-
provement in performance, however in the tropics, there ap-
pears to be more degradation. Over some heavy-precipitating
tropical regions (e.g., PITCZ, AITCZ, EIO, and NWPO),
10 %–25 % more models in CMIP6 than in CMIP5 overesti-
mate Amount P10, Unevenness, and FracPRdays and under-
estimate/underperform on Amount peak, SDII, and Perkins
score. This indicates that CMIP6 models simulate more fre-
quent light precipitation and less frequent heavy precipita-
tion over the heavy-precipitating tropical regions. Over some
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Figure 10. Improvement from CMIP5 to 6 as identified by the percentage of models in each multi-model ensemble that are within the
observational min-to-max range. The improvement is calculated by the CMIP6 percentage minus the CMIP5 percentage so that positive and
negative values, respectively, indicate improvement and deterioration in CMIP6. Regions where the observational spread is larger than model
spread are stippled gray.

midlatitude land regions (e.g., EAS, ESB, RFE, and ENA),
on the other hand, 5 %–20 % more models in CMIP6 than
in CMIP5 simulate precipitation distributions close to obser-
vations (i.e., less light precipitation and more heavy precip-
itation). To evaluate the improvement between model gen-
eration, we also compare only the models that participated
in both CMIP5 and CMIP6 (Fig. S5) rather than all avail-
able CMIP5 and CMIP6 models. For the subset of models
participating in both generations, the improvement charac-
teristics are similar for all models, although more degrada-
tion is exhibited over some tropical oceanic regions (e.g.,
PITCZ, NWPO, and SWPO). This also indicates that some
models newly participating in CMIP6, and not in CMIP5,
have higher than average performance.

4.3 Correlation between metrics

Each precipitation distribution metric implemented in this
study is chosen to target different aspects of the distribu-
tion of precipitation. To the extent that precipitation proba-
bility distributions are governed by a small number of key
parameters (as argued by Martinez-Villalobos and Neelin,
2019), we should expect additional metrics to be highly cor-
related. Figure 13 shows the global weighted average of cor-
relation coefficients between the precipitation distribution
metrics across CMIP5 and CMIP6 models. Higher correla-
tion coefficients are found to be between Amount P90 and
Frequency P90 (0.98) and between Amount P10 and Fre-
quency P10 (0.67). This is expected because the amount and
frequency distributions differ only by a factor of the pre-
cipitation rate (e.g., Pendergrass and Hartmann, 2014). An-
other higher correlation coefficient is between Unevenness
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Figure 11. Percentage of CMIP6 models underestimating or overestimating observations for (a) Amount peak, (b) Amount P10, (c) Amount
P90, (d) Frequency peak, (e) Frequency P10, (f) Frequency P90, (g) Unevenness, (h) FracPRdays, (i) SDII, and (j) Perkins score over the
modified IPCC AR6 regions. The criteria for underestimation and overestimation are, respectively, defined by minimum and maximum values
of satellite-based observations shown in Fig. 7. Positive and negative values, respectively, represent overestimation and underestimation by
a formulation of (nO− nU)/nT where nO, nU, and nT are, respectively, the number of overestimated models, underestimated models, and
total models.

and FracPRdays (0.77), indicating that the number of the
heaviest-precipitating days for half of the annual precipita-
tion and the total number of annual precipitating days are
related. Amount and Frequency peak metrics are negatively
correlated to P10 metrics and positively correlated to P90
metrics, but the correlation coefficients are not very high
(lower than 0.62). This is because the peak metrics focus
on typical precipitation rather than the light and heavy ends
of the distribution that are the focus of P10 and P90 met-
rics. SDII is more negatively correlated with Amount P10
(−0.67) and positively correlated with Amount peak (0.61)
and less so with Amount P90 (0.48), implying that SDII is
mainly influenced by weak-precipitation amounts rather than
heavy-precipitation amounts. The Perkins score shows rel-
atively high negative correlation with Unevenness (−0.62),

FracPRdays (−0.59), and Amount P10 (−0.59). This indi-
cates that the discrepancy between the observed and modeled
frequency distributions is partly associated with the overes-
timated light precipitation in models. The correlation coeffi-
cients between the metrics other than those discussed above
are lower than 0.6. While there is some redundant informa-
tion within the collection of metrics included in our frame-
work, we retain all metrics so that others can select an appro-
priate subset for their own application. This also preserves
the ability to readily identify outlier behavior of an individ-
ual model across a wide range of regions and statistics.
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Figure 12. Improvement from CMIP5 to 6 in the percentage of underestimated or overestimated models. The improvement is calculated by
the absolute value of CMIP5 percentage minus the absolute value of CMIP6 percentage so that positive and negative values, respectively,
indicate improvement and deterioration in CMIP6.

4.4 Influence of spatial resolution on metrics

Many metrics for the precipitation distribution are sensitive
to the spatial resolution of the underlying data (e.g., Pen-
dergrass and Knutti, 2018; Chen and Dai, 2019). Figure 14
shows how our results (which are all based on data at 2◦ res-
olution) are impacted if we calculate the metrics from data
coarsened to a 4◦ grid instead. As expected, there is clearly
some sensitivity to the spatial scale at which our precipita-
tion distribution metrics are computed, but the correlation
among datasets (both models and observations) between the
two resolutions is very high, indicating that evaluations at
either resolution should be consistent. At the coarser resolu-
tion, Amount peak and SDII are consistently smaller (as ex-
pected); Amount P10 and Frequency P10 tend to be smaller
as well. Meanwhile, Unevenness and FracPRdays are con-
sistently large (as expected); Amount P90, Frequency P90,

and Perkins score are generally larger as well. Chen and
Dai (2019) discussed a grid aggregation effect that is asso-
ciated with the increased probability of precipitation as the
horizontal resolution becomes coarser. This effect is clearly
evident with increased Unevenness (Fig. 14g), FracPRdays
(Fig. 14h), and decreased SDII (Fig. 14i) in coarser resolu-
tion. However, despite these differences, the relative model
performance is not very sensitive to the spatial scale at which
we apply our analysis. The correlation coefficients between
results based on all data interpolated to 2 or 4◦ horizontal
resolution are above 0.9 for all of our distribution metrics.
Conclusions on model performance are relatively insensitive
to the target resolution.
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Figure 13. Correlation between precipitation distribution metrics
across CMIP5 and 6 model performances. The correlation coeffi-
cients are calculated for the modified IPCC AR6 regions and then
area-weight-averaged globally.

5 Discussion

Analyzing the distribution of precipitation intensity lags be-
hind temperature and even mean precipitation. Challenges
include choosing appropriate metrics and analysis resolution
to characterize this highly non-Gaussian variable and inter-
preting model skills in the face of substantial observational
uncertainty. Comparing results derived at 2 and 4◦ horizontal
resolution for CMIP class models, we find that the quantita-
tive changes in assessed performance are highly consistent
across models and consequently have little impact on our
conclusions. More work is needed to determine how suitable
this collection of metrics may be for evaluating models with
substantially higher resolutions (e.g., HighResMIP; Haarsma
et al., 2016). We note that more complex measures have been
designed to be scale independent (e.g., Martinez-Villalobos
and Neelin, 2019; Martinez-Villalobos et al., 2022), and
these may become increasingly important with continued in-
terest in models developed at substantially higher resolution.

Several recent studies suggest that the IMERG represents
a substantial advancement over TRMM and likely the oth-
ers (e.g., Wei et al., 2017; Khodadoust Siuki et al., 2017;
Zhang et al., 2018); thus we rely on IMERG as the default
in much of our analysis. However, we do not entirely dis-
count the other products because the discrepancy between
them provides a measure of uncertainty in the satellite-based
estimates of precipitation. Our use of the minimum to max-
imum range of multiple observational products is indicative
of their discrepancy, but not their uncertainty, and thus is a

limitation of the current work and challenge that we hope
will be addressed in the future.

The common model biases identified in this study are
mainly associated with the overestimated light precipitation
and underestimated heavy precipitation. These biases per-
sist from deficiencies identified in earlier-generation models
(e.g., Dai, 2006), and as shown in this study there has been
little improvement. One reason may be that these key char-
acteristics of precipitation are not commonly considered in
the model development process. Enabling modelers to more
readily objectively evaluate simulated precipitation distribu-
tions could perhaps serve as a guide to improvement. The
current study aims to provide a framework for the objective
evaluation of simulated precipitation distributions at regional
scales.

Imperfect convective parameterizations are a possible
cause of the common model biases in precipitation distribu-
tions (e.g., Lin et al., 2013; Kooperman et al., 2018; Ahn
and Kang, 2018; Chen and Dai, 2019; Chen et al., 2021;
Martinez-Villalobos et al., 2022). Many convective param-
eterizations tend to produce precipitation that is too frequent
and light, the so-called “drizzling” bias (e.g., Dai, 2006;
Trenberth et al., 2017; Chen et al., 2021; Ma et al., 2022),
and it is likely due to the fact that the parameterized convec-
tion is more readily triggered than that in nature (e.g., Lin
et al., 2013; Chen et al., 2021). As model horizontal reso-
lution increases, grid-scale precipitation processes can lead
to resolving convective precipitation, as in so-called cloud-
resolving, storm-resolving, or convective-permitting models.
Ma et al. (2022) compare several storm-resolving models in
DYAMOND to recent CMIP6 models with a convective pa-
rameterization and observe that the simulated precipitation
distributions are more realistic in the storm-resolving mod-
els. However, some of the storm-resolving models still suf-
fer from precipitation distribution errors, including bimodal-
ity in the frequency distribution. Further studies are needed
to better understand the precipitation distribution biases in
models.

6 Conclusion

We introduce a framework for the regional-scale evaluation
of simulated precipitation distributions with 62 climate ref-
erence regions and 10 precipitation distribution metrics and
apply it to evaluate the two most recent generations of cli-
mate model intercomparison simulations (i.e., CMIP5 and
CMIP6).

To facilitate the regional scale for evaluation, regions
where precipitation characteristics are relatively homoge-
nous are identified. Our reference regions consist of existing
IPCC AR6 climate reference regions, with additional sub-
divisions based on homogeneity analysis performed on pre-
cipitation distributions within each region. Our precipitation
clustering analysis reveals that the IPCC AR6 land regions
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Figure 14. Scatterplot between 2◦ and 4◦ interpolated horizontal resolutions in evaluating precipitation distribution metrics for (a) Amount
peak, (b) Amount P10, (c) Amount P90, (d) Frequency peak, (e) Frequency P10, (f) Frequency P90, (g) Unevenness, (h) FracPRdays,
(i) SDII, and (j) Perkins score. The metric values are calculated for the modified IPCC AR6 regions and then weight-averaged globally.
Black, gray, blue, and red marks indicate the satellite-based observations, reanalysis, CMIP5 models, and CMIP6 models, respectively. The
number in the upper right of each panel is the correlation coefficient between the metric values in 2◦ and 4◦ resolutions across all observations
and models.
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are reasonably homogeneous in precipitation character, while
some ocean regions are relatively inhomogeneous, including
large portions of both heavy- and light-precipitating areas. To
define more homogeneous regions for the analysis of precip-
itation distributions, we have modified some ocean regions
to better fit the clustering results. Although the clustering
regions are obtained based on the IMERG annual precipi-
tation, the improved homogeneity is fairly consistent across
different datasets (TRMM, CMORPH, GPCP, PERSIANN,
and ERA5) and seasons (March–May, MAM; June–August,
JJA; September–November, SON; and December–February,
DJF). The use of these more homogeneous regions enables
us to extract more robust quantitative information from the
distributions in each region.

To form the basis for evaluation within each region, we
use a set of metrics that are well-established and easy to in-
terpret, aiming to extract key characteristics from the distri-
butions of precipitation frequency, amount, and cumulative
fraction of precipitation amount. We include the precipita-
tion rate at the peak of the amount and frequency distribu-
tions (Kooperman et al., 2016; Pendergrass and Deser, 2017)
and define several complementary metrics to measure the fre-
quency and amount of precipitation under the 10th percentile
(P10) and over the 90th percentile (P90). The distribution
peak metrics assess whether the center of each distribution is
shifted toward light or heavy precipitation, while the P10 and
P90 metrics quantify the fraction of light and heavy precip-
itation in the distributions. The Perkins score is included to
measure the similarity between the observed and modeled
frequency distributions. Also, based on the cumulative frac-
tion of precipitation amount, we implement the unevenness
metric counting the number of wettest days for half of the an-
nual precipitation (Pendergrass and Knutti, 2018), the frac-
tion of annual precipitating days above 1 mmd−1, and the
simple daily intensity index (Zhang et al., 2011).

We apply the framework of regional-scale precipitation
distribution benchmarking to all available realizations of
25 CMIP5 and 41 CMIP6 models and 5 satellite-based
precipitation products (IMERG, TRMM, CMORPH, GPCP,
PERSIANN). The observational discrepancy is substantially
larger compared to the models’ spread for some regions, es-
pecially for midlatitude and polar regions and for some met-
rics such as Amount P90 and Frequency P90. We use two
approaches to account for observational discrepancy in the
model evaluation. One is based on the number of models
within the observational range, and the other is the num-
ber of models below and above all observations. In this way,
we can draw some conclusions on the overall performance
in the CMIP ensemble even in the presence of observa-
tions that may substantially disagree in certain regions. Many
CMIP5 and CMIP6 models underestimate the Amount and
Frequency peaks and overestimate Amount and Frequency
P10 compared to observations, especially in many midlati-
tude regions where more than 50 % of the models are out
of the observational range. This indicates that models pro-

duce light precipitation that is too frequent, a bias that is also
revealed by the overestimated FracPRdays and the underes-
timated SDII. Unevenness is the metric that models simu-
late the worst – in many regions more than 70 %–90 % of the
models are out of the observational range. Clear changes in
performance between CMIP5 and CMIP6 are limited. Con-
sidering all metrics, the CMIP6 models show improvement
in some midlatitude regions, but in a few tropical regions the
CMIP6 models actually show performance degradation.

The framework presented in this study is intended to be
a useful resource for model evaluation analysts and devel-
opers working towards improved performance for a wide
range of precipitation characteristics. Basing the regions in
part on homogeneous precipitation characteristics can facil-
itate identification of the processes responsible for model
errors, as heavy-precipitating regions are generally domi-
nated by convective precipitation, while the moderate- and
light-precipitating regions are mainly governed by stratiform
precipitation processes. Although the framework presented
herein has been demonstrated with regional-scale evalua-
tion benchmarking, it can be applicable for benchmarking at
larger scales and homogeneous precipitation regions.

Code availability. The benchmarking framework for precipitation
distributions established in this study is available via the PCMDI
metrics package (PMP, https://github.com/PCMDI/pcmdi_metrics,
last access: 1 July 2023, https://doi.org/10.5281/zenodo.7231033;
Lee et al., 2022). This framework provides three tiers of area-
averaged outputs for (i) large-scale domain (tropics and extratrop-
ics with separated land and ocean) commonly used in the PMP,
(ii) large-scale domain with clustered precipitation characteris-
tics (tropics and extratropics with separated land and ocean and
separated heavy-, moderate-, and light-precipitating regions), and
(iii) modified IPCC AR6 regions shown in this paper.

Data availability. All of the data used in this study are publicly
available. The satellite-based precipitation products used in this
study (IMERG, TRMM, CMORPH, GPCP, and PERSIANN) and
ERA5 precipitation product are available from Obs4MIPs at https:
//esgf-node.llnl.gov/projects/obs4mips/ (ESGF, 2023a). The CMIP
data are available from the ESGF at https://esgf-node.llnl.gov/
projects/esgf-llnl (ESGF, 2023b). The statistics generated from this
benchmarking framework and the interactive plots with access to
the underlying diagnostics are available from the PCMDI Simu-
lation Summaries at https://pcmdi.llnl.gov/research/metrics/precip/
(PCMDI, 2023).
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