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Abstract. Validation is one of the most important stages of
a model’s development. By comparing outputs to observa-
tions, we can estimate how well the model is able to simulate
reality, which is the ultimate aim of many models. During
development, validation may be iterated upon to improve the
model simulation and compare it to similar existing models
or perhaps previous versions of the same configuration. As
models become more complex, data storage requirements in-
crease and analyses improve, scientific communities must be
able to develop standardised validation workflows for effi-
cient and accurate analyses with an ultimate goal of a com-
plete, automated validation.

We describe how the Coastal Ocean Assessment Toolbox
(COAST) Python package has been used to develop a stan-
dardised and partially automated validation system. This is
discussed alongside five principles which are fundamental
for our system: system scaleability, independence from data
source, reproducible workflows, expandable code base and
objective scoring. We also describe the current version of
our own validation workflow and discuss how it adheres to
the above principles. COAST provides a set of standardised
oceanographic data objects ideal for representing both mod-
elled and observed data. We use the package to compare two
model configurations of the Northwest European Shelf to ob-
servations from tide gauge and profiles.

1 Introduction

Numerical modelling plays a vital part in both the prediction
and understanding of ocean processes. Models must be vali-
dated in order to determine their accuracy. Generally, this is

done by comparing their output to analogous observed data
or datasets derived from observations with the aim of quan-
tifying how close model simulations are to the reality they
attempt to replicate. The reason for this is clear: operational
forecasting models must be accurate for the communities re-
ceiving predictions, and scientific simulations must be able
to adequately represent the processes we seek to study.

New and existing model configurations must go through
a development process during which input datasets are de-
fined and refined, physical parameterisations are chosen, and
their parameter values are tuned. The repeated validation re-
quired during this iterative process is one of the most impor-
tant stages of model development. However, it can often be
time and resource consuming, lack consistency, and be per-
formed in a new and arbitrary fashion for subsequent model
configurations.

The modelling community benefits from a multitude
of pre-existing packages across various programming lan-
guages, which serve to assist in model validation. The Python
ecosystem, in particular, offers data manipulation packages,
such as numpy, pandas, Xarray and Dask (McKinney, 2010;
Hoyer and Hamman, 2017; Rocklin, 2015), which commonly
serve as the building blocks to a wide variety of data analysis
frameworks, although they are not specific to oceanographic
modelling. More specialised Python packages are available
which offer a variety of metrics and diagnostics, includ-
ing UTide (Codiga, 2011), RapidMOC (Roberts, 2017), Py-
Wavelets (Lee et al., 2019), python-gsw (Firing et al., 2021)
and python-seawater. Additionally, there are packages such
as PyFVCOM that are geared towards analysing the output
of specific numerical models. While many of these packages
belong to broader suites or collections, such as SEAPY or
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METRIC (Castruccio, 2021), there is currently no universal
Python framework to standardise oceanographic data struc-
tures across varying model configurations and packages.

In this paper, we introduce and demonstrate the Coastal
Ocean Assessment Toolbox (COAsT) Python package,
which offers a framework for standardising oceanographic
data structures into which the validation and analysis of nu-
merical models can be integrated. We describe the relevant
components of COAsT alongside our philosophy and key
principles behind the development of the package, as well
as our validation workflows. Some of these ideas are demon-
strated as we set out our workflow for validation of tempera-
ture and salinity against ocean profiles and sea surface height
against tide gauge data.

In the following sections we describe some of the deci-
sions made in the initialisation of our validation workflow.
In the remainder of this section we provide more informa-
tion on the COAST package alongside details on the model
and observed data used in this paper. In Sects. 2—4, we show-
case some of the analyses available within the package and
present results for tidal data, non-tidal residuals and tracers
(temperature and salinity), respectively. Finally, in Sect. 5,
we discuss the future of this workflow and opportunities for
its expansion.

1.1 The COAST framework

COAST is a Python package and framework that aims to
standardise many of the aspects of the analysis of modelled
and observed oceanographic datasets. At its core, the pack-
age provides the user with a set of standardised data classes
which are designed for oceanographic analyses. By using
these standardised structures, a user can be sure that anal-
ysis code will work for their data, regardless of source, so
long as it adheres to the appropriate structure. The package
builds upon key libraries including Xarray (Hoyer and Ham-
man, 2017) and Dask (Rocklin, 2015). The dataset contained
within each instance of a COAsT data class is an Xarray
dataset, which is a structured and labelled multidimensional
array. Depending on the class in question, the names, struc-
ture and layout of dimensions and variables are enforced and
controlled by a .json file, which can optionally be modified.
As an example, the Gridded class is designed to be used
with model data on a regular grid and must contain an Xar-
ray dataset that has dimensions t_dim (time), z_dim (vertical
dimension), y_dim and x_dim (horizontal dimensions). Typ-
ically, this kind of data would come from the output of a nu-
merical model. At the time of writing, the package has been
tested and used with output from the NEMO model, although
this could be extended to other models in the future. The data
should be stored in any Xarray compatible file (e.g. netCDEF,
zarr). Once data have been ingested into the COAST frame-
work, the same validation script can be more easily applied
repeatedly as dimension names and variable names will be
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known and any necessary preprocessing steps will have been
taken.

Now that we have loaded our model data into the frame-
work, suppose we wish to apply an analysis to temperature
data taken from vertical profiles of the ocean, e.g. observa-
tions from conductivity, temperature and depth (CTD) casts.
As discussed later in the paper, COAsT provides a Profile
data class for this purpose. Each instance of a Profile ob-
ject can contain a dataset representing multiple profiles. This
dataset must adhere to a predefined structure and naming
conventions, specifically an index dimension called id_dim
and a vertical dimension called z_dim. If a user has profile
data from different sources, then they can be easily com-
bined within the COAST system. The Gridded class is used
to read, represent and manipulate output from two NEMO
model runs, and its use interactively with the Profile and
Tidegauge classes allows a comparison between the model
and observed data.

The COAST package uses an object-oriented approach,
and classes can be broadly separated into two types: data
and analysis classes. Data classes are those discussed above,
wherein the structured datasets are read, stored and manip-
ulated. Data classes are an ideal place to keep manipula-
tion or visualisation routines, e.g. subsetting data based on
some criteria or plotting some known variable, as the class
is aware of the structure of the dataset it contains. Analy-
sis classes are more flexible and general, with no real con-
straints. They contain code for analysis of one or multiple
data objects. (For example, analysis classes include Grid-
dedStratification, ProfileAnalysis, TidegaugeAnalysis, Tran-
sect and Contour). Alternatively, analyses can be contained
within external scripts or libraries, which make use of the
fundamental COAST structures.

At the time of writing, the data classes have two main
parent classes, from which all others are derived: the Grid-
ded class and Indexed class. These are summarised in Ta-
ble 1. The Gridded class enforces a data structure ideal
for output from structured models such as NEMO (https:
/l[www.nemo-ocean.eu, last access: 28 June 2022). The In-
dexed class is a general class for data that can lie along a
single index, such as the Profile data discussed earlier. It has
a generalised dimension structure with an index dimension
id_dim, a time dimension t_dim and a vertical dimension
z_dim. The children of this class have different permutations
of these dimensions, and they are summarised in Table 2.

1.2  Five principles for validation

There are five key principles that any validation workflow
should adhere to, and integrating COASsT into a workflow
can help satisfy them:

1. Scales with size of data.

As the power of computing resources increases, model
configurations are being developed with higher resolu-
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Table 1. The two main data classes in the COAsT package and their function. The Gridded class is used in this paper to represent output data
from the NEMO model. Child classes of the Indexed class are used to represent observed data (see Table 2).

Class Data structure Function
Gridded - Dimensions: (t_dim, z_dim, y_dim, x_dim) For representing gridded data such as from a structured model or re-
— Coordinates: time, depth, longitude, latitude analysis dataset. -Contz_lins addi'tional routine.s for reading some file
formats and manipulating data in space and time.
Indexed — Dimensions: (id_dim, z_dim, t_dim) For representing data that can lie along a single index. Can be used for

Coordinates: time, longitude, latitude, depth

many observation types and has many subclasses for different instru-
ments such as Profile, Tidegauge and Glider. These additionally con-
tain routines for reading from some common observation databases,
as well as manipulation of datasets in time and space.

Table 2. Four examples of COAST class which are children of the Indexed class. These are the classes used to represent observed data. Other
classes are available within the COAsT package.

Class Data structure Function
Profile — Dimensions: (id_dim, z_dim) For representing one or more vertical oceanographic profiles. Each
— Coordinates: id, latitude, longitude, depth, 1pdex is a different set (,)f vertical mejasurements alvong a single ver-
time tical profile and has a time and location of collection.
Tidegauge — Dimensions: (id_dim, t_dim) Contains time series data collected at a tide gauge location, e.g. sea
. . . . level data. This is a child of the Timeseries class, which is in turn a
— Coordinates: time, longitude, latitude .
child of the Indexed class.
Track — Dimensions: (t_dim) Contains along-track data such as from an altimeter. Data are or-
. . . . 1 singl k, which lies al h im di ion.
— Coordinates: time, longitude, latitude dered along a single track, which lies along the t_dim dimension
Glider — Dimensions: (id_dim, t_dim) Contains data along a glider path. Similar to Track, however there

— Coordinates: time, depth, longitude, latitude

is an additional depth coordinate and index dimension.

tions and smaller time steps, amplifying the technical
challenges associated with analysis and validation. A
long-term problem is the storage of data, which must
be tackled through careful choices of output and file
compression. However, a more immediate issue is how
to analyse these data when there is no hope of being
able to fit it all in a processor’s memory. For a val-
idation system to be truly flexible, it should be able
to scale easily alongside these increasing data sizes.
COAST is able to deal with this problem by building
upon Python packages such as Xarray (Hoyer and Ham-
man, 2017) and Dask (Rocklin, 2015), giving the user
access to lazy loading (https://en.wikipedia.org/wiki/
Lazy_loading, last access: 5 April 2023), data chunk-
ing! and parallel programming.

By integrating Dask and Xarray into COAST, the user
has access to a powerful system that provides lazy load-
ing, chunking and parallel code. As COAsT makes use
of Xarray and Dask, the user also has access to impor-

IFor an overview on Chunks, see https://docs.dask.org/en/

stable/array-chunks.html (last access: 5 April 2023).

https://doi.org/10.5194/gmd-16-3749-2023

tant data analysis tools such as lazy loading (or asyn-
chronous loading), chunking and parallel computation.
Lazy loading means that data are not brought to memory
until needed, which works well with chunking, where an
analysis is performed on smaller blocks of data rather
than the whole dataset at once. Chunks of the data can
be analysed either in series or in parallel by utilising
multiple CPUs.

2. Data source independence.

Validation code should work quickly and easily with
modelled or observed data from various input sources,
for example, performing an analysis of output from dif-
ferent numerical models or making a comparison be-
tween model data and observation datasets from differ-
ent sources and in different input formats. COAsT al-
lows the user to abstract out the data source by standard-
ising array structures, dimension names, variable names
and basic manipulation routines. Once data have been
ingested into COASsT, the source of the data no longer
matters and analysis scripts can be applied quickly to
any data with compatible structure.
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3. Reproducible and citable.

Ensuring that validation analyses are easily repro-
ducible means that the same workflow can be applied
quickly (or automatically) to an ensemble of model runs
or different configurations. This can save time and re-
sources during the phase of model development where
physical parameterisations are being chosen and tuned.
In addition, this aids in knowledge and code sharing
with other researchers who wish to perform an equiv-
alent analysis on their own data. Having reproducible
code is not only important for the current state of a code
base but also for all of its history. In other words, it
may be important to rerun a historical analysis using
the validation workflow; however, the code may have
since been modified. COAsT uses git for version control
alongside a DOI for each release version of the pack-
age. This means the exact version of COAsT used for
a validation script can be tracked and re-used if neces-
sary. Broader application of the reproducibility princi-
ple as applied to regional ocean modelling is discussed
in more detail in Polton et al. (2023a).

4. Expandable code base.

No analysis is static, and it will change over time, with
modifications to existing analyses and the addition of
new metrics and methods. Indeed the validation pre-
sented in this paper is only a foundation and has many
avenues for expansion. It is therefore vital that code is
written in such as way as to make changes and expan-
sions by a community of contributors as easy as pos-
sible: COAST uses a public and open-source license, it
has well-written documentation and user tutorials, and
the documentation contains guidelines for programming
practices for contributors. Having a mechanism for unit-
testing old and new contributions (with good coverage)
is fundamental to maintaining a working code base. A
system of testing is an essential tool for rapid error trap-
ping, when creating a robust code base by multiple au-
thors, against a backdrop of evolving module dependen-
cies. For COAST, unit tests covered approximately 67 %
of the package at the time of writing. Suitable coding
structures can also assist; for example, COAsT makes
use of object-orientated coding structures, which facili-
tates independent contributions.

5. Objective scoring.

Deriving metrics which minimise room for interpre-
tation is essential when comparing large numbers of
model configurations. Where possible, a validation
should not be done subjectively, for example, visual
comparisons of time series. Instead, well-defined scor-
ing metrics should be used. This might include com-
monly used integrated metrics such as the mean abso-
lute error (MAE), root mean square error (RMSE) and
correlation or more complicated probabilistic metrics
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such as the continuous ranked probability score (CRPS)
(Matheson and Winkler, 1976). Some types of analyses
also require different approaches such as extreme value
analyses (e.g. event-based hazard validation).

2 Workflow demonstration: data
2.1 Model data

We showcase our validation workflow using two different
model configurations. Both are built using the NEMO model
framework (Nucleus for European Modelling of the Ocean)
but with versions 3.6 and 4.0.4 (Madec and Team, 2016, and
Madec and Team, 2019, respectively). They belong to the
Coastal Ocean (CO) model series, which are used opera-
tionally by the UK Met Office for the Northwest European
Shelf. At the time of writing, CO7 is the most up-to-date
published version of the configuration (Graham et al., 2017),
with CO9 being under development?. In this paper, we pro-
vide a validation and intercomparison of the CO7 configura-
tion and what we will call CO9p0 configuration. CO9p0 is
the first configuration iteration during the development of
what will be called COO. It is intended to perform very sim-
ilarly to COT7; capturing the change from NEMO v3.6 to
NEMO v4.0 with as few other changes as possible. How-
ever, differences do arise from structural changes introduced
into the model. Known differences include (1) bulk forcing
implementation: we used the “NCAR” algorithm in CO9p0
in an attempt to closely match the CORE bulk forcing al-
gorithm in CO7 (Large and Yeager, 2009); (2) lateral dif-
fusion of tracers: we attempt to replicate the constant value
used in CO7; (3) lateral diffusion of momentum: this is dif-
ferent between model runs, and for stability purposes we de-
viate from a constant value (as used in CO7) and use the
NEMO#4 option that varies diffusion according to grid scaling
and local velocity; (4) tracer advection: in CO7 the total vari-
ance dissipation (TVD) was used, and in NEMO#4 the clos-
est equivalent is the flux-corrected transport scheme (FCT),
which is set to second order in horizontal and vertical direc-
tions; and (5) initial conditions differ. The grid and external
forcings, as summarised in Table 3, are the same.

2.2 Observation data

The validation workflow presented below uses in situ obser-
vations of sea surface height, temperature and salinity. For
validation of tides and non-tidal sea surface height, we use
time series and harmonic analyses from tide gauges around
the model domain. For validation of tides specifically, tidal
amplitudes and phases are derived from time series taken
from multiple sources, and some of the raw time series data
are no longer available. These eclectic sources include tide

2CO8 was skipped for reasons of consistency.
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Table 3. Summary of model configuration and forcing data for CO7 and CO9p0.

Bathymetry

EMODnet, September 2015 release

Lateral boundary conditions
Atmospheric forcing

Atlantic boundary data
Baltic boundary data at 12° E
Tidal forcing

Grid

Initial condition CO7

Initial condition CO9p0
Vertical coordinates

Riverine forcing

ERA-Interim (Dee et al., 2011)

3D T and S, barotropic velocities and external SSH plus tidal forcing

1/4° Global Seasonal Forecast System (GLOSEA) version 5 (MacLachlan et al., 2015)

From 1/60° GETM model of North Sea and Baltic (Griwe et al., 2015)

TPXO07.2 (Egbert and Erofeeva, 2002)

AMMI5 (1.5 km) C-grid with rotated pole as described in Graham et al. (2017)

Initialised at rest on 1 Jan 1985, using 7 and S from ORCAO025 configuration (Megann et al., 2014)
Started from CO7 restart file from January 1990. Analysis period starts 2004

51 vanishing quasi-sigma levels as in Siddorn and Furner (2013)

Daily climatology of gauge data averaged for 1980-2014 UK data

Output frequency Daily mean 3D temperature and salinity fields. Hourly 2D sea surface height
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Figure 1. Estimation of uncertainty in M2 amplitude and phase resulting from different analysis lengths and constituent sets. (a) Analysis
lengths (days) used for each observation location. (b) Ensemble standard deviation in M2 amplitude as a proportion of amplitude (%).

(c) Ensemble standard deviation in M2 phase (degrees).

gauges, moorings and bottom pressure sensors with a very
large range in analysis length. Using such a variable dataset
allows us to test the harmonic matching and uncertainty dis-
cussed in Sect. 3. To validate high-frequency sea surface
height time series, we use quality-controlled tide gauge data
from the GESLA database (Woodworth et al., 2016). The lo-
cations for these quality-controlled locations are shown in
Fig. 1. For validation of temperature and salinity, vertical
profiles from the EN4 database (Good et al., 2013) are used.

3 Workflow demonstration: validation against tide
gauge data

The high-frequency measurements made by tide gauges are
useful for validating modelled sea level processes such as
tides and non-tidal residuals. In shorter-term model simula-
tions, simulating these phenomena accurately can have sig-

https://doi.org/10.5194/gmd-16-3749-2023

nificance for forecasting (e.g. coastal sea levels) and oceano-
graphic processes (e.g. internal waves, enhanced mixing). On
longer timescales the data can be filtered to obtain longer pe-
riod signals such as trends due to sea level rise. In this sec-
tion, we use the Tidegauge class within the COAsT frame-
work to demonstrate the validation of tides and non-tidal
residuals. We can use this class to represent and quickly ma-
nipulate time series data across multiple locations which lie
along the same time coordinate. COAsT also contains pro-
vision for extracting the nearest time series from 2D model
sea surface height (SSH) data for each tide gauge location.
Using this method provides two instances of the Tidegauge
class: one for the observed time series and one for the ex-
tracted modelled time series. These can be easily compared
and analysed.

For high-frequency data, the estimation of the tides is a
vital step for validation of SSH in our regional models. In
both the observations and the model, these periodic oscil-

Geosci. Model Dev., 16, 3749-3764, 2023
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lations can both be validated and removed to allow for an
analysis of residual signals (non-tidal residuals). Tidal sig-
nals exist across a large spectrum of frequencies. Though
the most dominant periods are diurnal or semi-diurnal, many
shorter or longer periods also exist. These signals of differ-
ing periods are known as tidal constituents and are the re-
sult of different tidal forcing and periodic interactions. Non-
tidal residual signals can be generated by many processes,
but in coastal regions the most significant are generated by
atmospheric processes such as atmospheric pressure gradi-
ents, wind generated currents and waves (Vogel, 2015).

To validate and remove the tides, we use a harmonic anal-
ysis to estimate tidal amplitudes and phases. This method
aims to decompose the sea level signal into a sum of si-
nusoidal harmonic constituents, with differing frequencies,
amplitudes and phases (Vogel, 2015). By determining con-
stituents with predefined frequencies, amplitudes and phases
can be estimated using a harmonic analysis of SSH time se-
ries. A least-squares optimisation is commonly used to do
this (see also Fourier methods), where a set of amplitudes
and phases are obtained which together form a best fit to
the data. This methods also allows for each constituent to
be multiplied by a time-varying nodal correction, which is
important for extrapolating tidal predictions.

3.1 Harmonic analysis
3.1.1 Matched harmonic analysis (MHA)

When both validating the tidal signal and removing it from
the total signal, it is important that the harmonic analysis
of modelled and observed data is equivalent. Each set of
harmonics may be calculated from time series of different
lengths and time periods and using different constituent sets.
Furthermore, differences in software methods can add more
variance in the output, creating some uncertainty in any com-
parisons between the model and observations. These varia-
tions can cause differences in the amplitudes and phases of
estimated harmonics, leading to difficulties comparing har-
monic information from model and observations. Similarly,
these harmonic differences may propagate into time series
obtained through the subtraction of tides (e.g. non-tidal resid-
uals for storm surge validation).

Below, we outline the steps used in our validation work-
flow to ensure that analyses are equivalent. When these are
true, we call this a matched harmonic analysis (MHA).

1. Obtain observed time series and extract model SSH time
series at the nearest model grid cell.

2. Subsample or interpolate both time series to be on the
same frequency — for example hourly.

3. Where there are missing or flagged data in the observa-
tions, also remove these data from the model time series.

4. Ensure both time series start and end at the same time.

Geosci. Model Dev., 16, 3749-3764, 2023
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5. Perform a harmonic analysis of each time series using
the same constituent set. The constituent set should be
determined using the Rayleigh criterion (Vogel, 2015).

6. For each time series, reconstruct a tidal signal from the
estimated tidal harmonics. Subtract these signals from
each time series to obtain non-tidal residuals.

By not following these steps, significant uncertainty may
be introduced into any comparisons between modelled and
observed harmonics. This uncertainty will also be propagated
into comparisons of non-tidal residuals. At the time of writ-
ing, COAST contains a number of routines which make ap-
plying the MHA to modelled and observed data quick and
easy. By representing both observed and modelled time se-
ries in an instance of the Tidegauge class, we can quickly
slice out equivalent time periods, interpolate to the same fre-
quency and match missing values across each dataset.

3.1.2 Harmonic uncertainty estimation where MHA is
not possible

In some cases, it may not be possible to follow all of the steps
above, e.g. when time series are short or time periods do not
coincide. For these cases, we instead attempt to quantify and
apply this uncertainty. This is true for the large dataset of har-
monics we use for tidal validation (described in Sect. 2.2). To
estimate uncertainty in observed harmonics, we use modelled
SSH time series on an hourly frequency. We have extracted
these time series at the nearest model points to each location
in the observed dataset described in Sect. 2.2. For each obser-
vation location the analysis lengths have been identified from
observations, and these are shown in Fig. 1a. For each model
SSH time series, an ensemble of harmonic analyses is per-
formed. Each member of the ensemble contains a harmonic
analysis with a length defined by the analysis length of the
corresponding observation and an appropriate constituent set
according to the Rayleigh criterion. The ensemble standard
deviation is then calculated at each location for each con-
stituent and used to define the observation uncertainty. From
an initial set of analyses, analysis length and the time period
of analysis were found to be two of the most influential gen-
erators of uncertainty. When isolated, the chosen constituent
set was also found to have an effect, although not as large.
Results from this analysis are shown for M2 in Fig. 1b
and c. For amplitude, they are expressed as a percentage
of the amplitude obtained from a 10-year harmonic analy-
sis. The standard deviations in amplitude can reach over 3 %
at some ports, which can be large at locations where M2 is
also large (e.g. the Severn Estuary). Differences in phase ap-
pear less consequential, reaching a few degrees. This anal-
ysis shows that there is a significant degree of variability in
harmonic analyses when time series of differing length and
period are used. In turn, this variability can become uncer-
tainty when comparing harmonics from model and observed
data. Using an MHA can reduce this uncertainty, but where
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Figure 2. Errors in amplitude (m) for (left) the CO7 model run and (middle) the CO9p0 model run. Errors are calculated as model minus
observations, meaning positive values indicate overestimation by the model. The rightmost column shows the difference in absolute error
between the two model runs, calculated as CO7 — CO9p0. Constituents are obtained using a normal harmonic analysis, and then differences
are masked according to harmonic uncertainties. Grey values show locations where differences were smaller than the estimated uncertainty
in the model-observation comparison.
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this is not possible, the uncertainty must be considered in-
stead. In the next section we show an analysis using both the
MHA approach and an application of the harmonic variabil-
ity estimated here.

3.2 Validation of tides

As discussed above, we validate tides using a comparison of
tidal amplitudes and phases obtained using a harmonic anal-
ysis. The harmonic analysis is obtained using hourly SSH
data for the full duration of the model run. SSH time series
are extracted from the model at the nearest wet grid point for
this purpose. Observations used are described in Sect. 2.2.

Maps of errors in amplitude and phase for six of the
largest semidiurnal and diurnal constituents are shown in
Figs. 2 and 3. The raw errors are shown in the left and
middle columns. The rightmost columns show the differ-
ence between absolute errors for each of the model config-
urations. As discussed in Sect. 3.1, we would ideally apply
a matched harmonic analysis between the model and obser-
vations. However, some historical data are only available as
pre-computed harmonics, or the observations fall outside of
the simulation window. In these circumstances we can com-
pute an estimated harmonic uncertainty for any comparison
between modelled and observationally derived harmonics (as
discussed in Sect. 3.1.2). Here we perform a normal har-
monic analysis at each point using all available model data.
Then, where differences between the model and the obser-
vations are smaller than the uncertainty, they are deemed in-
significant and coloured grey in the figures. This is done in-
dependently for each harmonic constituent. By doing this,
we mask out points where the model is imperceptibly close
to the observations and, most importantly, make no judge-
ments on or comparisons of the two models’ performance at
these points.

In the figures, we see that across all constituents and for
both amplitude and phase, the spatial distribution of errors
between the two models is structurally similar. Visually, the
two models look very close, and this is reinforced somewhat
by the improvement panels. The errors at many points, es-
pecially those away from the coast, are similar enough that
they lie within the observational uncertainty. Where there are
significant differences, they are small — being on the order
of a few centimetres or degrees. The models are closest for
K1 amplitude and phase, where there are very few significant
differences. Notably, P1 shows more significant differences
than the other constituents, especially for phase.

3.3 Validation for non-tidal residuals

Whereas harmonics are useful for validating periodic sig-
nals due to tides, they do not capture other motions, such
as those caused by interactions with the atmosphere. Storm
surges are the most impactful of these in coastal regions and
can be measured with metrics such as the non-tidal residual
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and skew surge. Therefore, validation of the full SSH signal,
and its components in the time domain, is important. In this
section we consider the full SSH signal, as well as a valida-
tion of non-tidal residuals. Here, we again use the functional-
ity within the Gridded and Tidegauge classes of the COAsT
package. In particular, we are able to use these classes to ex-
tract the nearest time series from the Gridded object, subtract
tides from the signal, calculate some simple metrics and per-
form a basic extreme value analysis.

As discussed above, to derive non-tidal residuals (NTRs)
a tidal signal must be subtracted from the full SSH signal. In
operational scenarios, a separate tide-only run may be per-
formed to get a time series of tides at all model locations,
which can be used to estimate non-tidal residuals. However,
interactions between the tidal and non-tidal components (for
example see Prandle and Wolf, 1978) mean that this may
not be an accurate way of removing the tide and is likely
to leave a significant periodic signal in the resulting residual.
Therefore, it is recommended that a harmonic analysis of the
full signal is performed and the reconstructed water levels
subtracted. To avoid uncertainty in tidal harmonics propagat-
ing into the residual signal, we only use data for which the
matched harmonic analysis (described in Sect. 3.1) can be
applied.

Once non-tidal residuals have been derived, various statis-
tics can be estimated. Errors and absolute errors (or MAE
and RMSE) can be sensitive to residual tidal constituents
that may not have been completely removed by the harmonic
analysis process. This is especially true when non-tidal resid-
uals are small such as during calm atmospheric conditions
like a high-pressure system. In addition, it is often the largest
non-tidal residuals which we are most interested in modelling
accurately, as they have the largest impact. The COAsT pack-
age currently has a number of options available for extreme
value analysis of non-tidal residuals. As a part of the valida-
tion workflow, the package will

1. calculate daily and monthly maxima at all tide gauge
locations and count the number of each over specified
thresholds

2. identify independent peaks in the signal and count those
over specified thresholds

3. integrate the total time spent by a signal over specified
thresholds.

This is a simple extreme value analysis and can be expanded
upon in future, for example, the application of a generalised
extreme value distribution to signal peaks or the generalised
Pareto distribution to daily or monthly maxima.

Figure 4 shows the error in the standard deviation of total
water level for each of the two models along with the dif-
ference in error magnitudes between the two models. Where
positive, this difference indicates that CO9p0 performed bet-
ter (i.e. the absolute standard deviation errors were smaller).
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Figure 3. Errors in phase (degrees) for (left) CO7 model run and (middle) the CO9p0 model run. Errors are calculated as model minus
observations, meaning positive values indicate overestimation by the model. The rightmost column shows the difference in absolute error
between the two model runs, calculated as CO7 — CO9p0. Constituents are obtained using a normal harmonic analysis, and then differences
are masked according to harmonic uncertainties. Grey values show locations where differences were smaller than the estimated uncertainty
in the model—observation comparison.
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Figure 4. Errors in total water level standard deviations, calculated over the 10-year model run for the CO7 and CO9p0 configurations.
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Figure 5. Correlations between modelled and observed non-tidal residuals at tide gauge locations. Panels (a) and (b) show correlations
for the CO7 and CO9p0 model runs, respectively. Panel (¢) shows (where positive) where the CO9p0 run had higher correlations than the

CO7 run.

This metric can be used as a proxy for the atmospherically
influenced tidal range, averaged over time. It is a good way
to measure the error across all harmonic constituents. Both
models have similar spatial, overestimating standard devia-
tions at most locations. The most notable difference between
the two models is in the Severn Estuary, where tidal ranges
are large. Here, the CO9p0 configuration performs much bet-
ter. This is likely because of the parallel improvements seen
in the amplitude of the largest constituents (see Fig. 2).

Figure 5 shows the correlations between modelled and ob-
served NTR time series over the full duration of the run. This
gives us information about how well the modelled and ob-
served signals move together, as well as the timing of the
non-tidal residuals. In this case, the CO9p0 model performs
better at the majority of locations, especially those in estuar-
ine areas such as the Severn and Thames estuaries.

Figure 6 shows two examples of extreme value statistics
for the non-tidal residuals, expressed as a function of thresh-
olds. Here, non-tidal residual thresholds have been defined
between 0 and 1.5 m. Figure 6a shows the number of mod-

Geosci. Model Dev., 16, 3749-3764, 2023

elled independent peaks over each threshold divided by the
number of observed peaks. For example, a value of 0.5 indi-
cates that the model generated only a half of the number of
peaks over a given threshold as were observed. Peaks were
defined as independent maxima, separated by at least 12 h, to
avoid double counting the same events. Figure 6b shows the
total time spent over each threshold, again as a proportion
of that in the observations. Together, these two figures show
us how well the models are able to capture large events such
as storm surges over the period of the model run. However
the figures also show that both configurations are underesti-
mating large events, and the larger the observed event gets,
the more their number is underestimated. It also seems that
neither model is sufficiently sensitive to atmospheric forcing
and that coastal effects, such as resonance, are not being ad-
equately represented.
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Figure 6. Threshold statistics for non-tidal residuals in the CO7 and CO9p0 model configurations. (a) The number of independent peaks
over a given threshold, as a proportion of the number of peaks in the observations. (b) Total time spent over threshold, as a proportion of the
time spent by observations. Non-tidal residuals are derived by subtracting a tidal time series calculated form a matched harmonic analysis.

65

Irish Sea
60 Off shelf

S North Sea

(%]
v ]
I

Kattegat

latitude

(%)
o
I

Eng channel

a5 4 Outer shelf

N North Sea

—15 -10 -5 1] 5 10
longitude

Figure 7. Illustration of the different averaging regions used in this
study.

4 Workflow demonstration: validation against profile
data

To validate temperature and salinity in the model configu-
rations, we compare them to in situ profiles from the EN4
database (Good et al., 2013). As discussed, the Profile object
within the COAST framework is well suited to handle this
type of data. The routines within it allow us to read from
common profile databases such as EN4 and World Ocean
Database, represent multiple profiles in a single standardised
object, manipulate these data in time and space, and extract
comparable model profiles. Similarly to the analysis of tide
gauge data above, the extracted model data may also be rep-
resented using a Profile object for quick and easy compar-
isons.

Model profiles are extracted using multiple independent
interpolations, both in space and time. The horizontal and
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vertical interpolations are also treated independently. Hor-
izontal interpolations can be done quickly using either a
nearest-neighbour or bilinear approach. For the analyses be-
low, we have used a nearest-neighbour interpolation, taking
the nearest model wet point to each observation. However, in
some cases this may result in a model cell being chosen that
is too far from the observation location, such as near com-
plex coastlines. These points are few, but to avoid them hav-
ing an effect on the analysis, all interpolated points further
than 5 km from the nearest observation location are omitted.
This horizontal interpolation results in a time series of data
at every model depth. This is then interpolated onto the mea-
surement time of the nearest profile using a linear interpola-
tion.

At this point we have a model profile for each observed
profile; however, the data still lie on model depth levels, so a
vertical interpolation is still required. Since this is for com-
parison purposes, it is useful to interpolate both the model
and observations onto the same reference depths at each lo-
cation. This can be done in a single interpolation step, i.e. in-
terpolating directly onto a set of reference depths; however,
this can cause problems where the vertical coordinate density
varies drastically between the two. Errors in the interpola-
tion may be falsely interpreted as errors in the model. This is
likely to be most prominent in areas with high vertical gradi-
ents in variables like density, for example near a pycnocline.
We can reduce this problem by doing the vertical interpola-
tion in two steps:

1. Interpolate the model onto observation depths if the lat-
ter are sparser, or vice versa.

2. Interpolate both the observations and interpolated
model data onto the same reference depths.

The COAST package is able to interpolate sets of profiles
onto reference depths or onto the depths of another Profile

Geosci. Model Dev., 16, 3749-3764, 2023
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Figure 8. Absolute temperature errors with depth for regions in the Atlantic Margin Model (AMM) domain. Comparisons made between
the CO9p0 and CO7 model runs. The dashed black horizontal lines show the mean bathymetric depth across the profiles used in each region

(where displayed profile is deep enough).

object. This allows for flexibility with vertical interpolation
and applying the two step process discussed above.

Now that we have a set of modelled and observed profiles
on the same reference depths, we can do a comparison. At
higher resolutions, where smaller features may be resolved,
traditional metrics such as the mean absolute error and root
mean squared error may not be the best options for valida-
tion. These metrics can result in a double counting effect for
small-scale features such as eddies. For example, a higher-
resolution model may resolve a certain scale of eddy when
a lower-resolution model may not. However, if an eddy is
not at the right place at the right time, then MAE will count
both the error at the observed eddy location and at the mod-
elled eddy location. To counter this, a probabilistic metric
should be used instead. To do this, we have used the contin-
uous ranked probability score (CRPS) (Matheson and Win-
kler, 1976) at the ocean surface. This is generally used with
an ensemble of model states to compare the cumulative dis-
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tribution functions (across ensembles) of the model and a sin-
gle observation at a specific location. However, when a small
enough neighbourhood around a location is taken, it can also
be considered sufficiently random and used in place of the
ensemble. This is the formulation used here, and we apply it
to both surface temperature and salinity:

CRPS(F,x) = /(F(y)—l(y—X))zdy, )

—0o0

where F' is a cumulative distribution function (CDF), x is
a single observation, and 1 is a Heaviside function that is
equal to 1 where its argument is greater than or equal to O
and 0 otherwise. The CDF F is derived from all model values
within some predefined radius around the observation x, as
described above. F(y) is then the value of this CDF for a
single element of the model radial dataset. The difference is
integrated spatially over data from the radial neighbourhood.
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Figure 9. Absolute salinity errors with depth for regions in the AMM domain. Comparisons made between the CO9p0 and CO7 model runs.
The black horizontal lines shows the mean bathymetric depth across the profiles used in each region (where displayed profile is deep enough).

More intuitively, the CRPS can be thought of as the mean
square error between modelled and observed CDFs.

In order to identify regional differences in model errors,
we average estimated errors into regional and depth bins. The
regions used in this paper are shown in Fig. 7. The validation
workflow within COAST includes flexible routines within the
mask_maker class for averaging errors both into regional ar-
eas and into depth bins. This class contains predefined region
definitions that help standardise spatially aggregated metrics.
This is a useful method for obtaining averaged objective er-
ror metrics whilst still targeting specific areas of the domain.
Figures 8 and 9 show the mean absolute errors in depth levels
for levels less than 150 m. The absolute error metric allows us
to see how each model performs, for temperature and salin-
ity, at different depths and in each region. In addition, these
plots are split into summer (JJA) and winter (DJF) seasons.
We can see that both of the model configurations studied in
this paper are similar at all depths and in most regions. Fig-
ures 10 and 11 show CRPS values for sea surface temper-
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ature (SST) and sea surface salinity (SSS), respectively. In
this case, we see similar CRPS values across all radii. For
SST, the CO7 configuration performs best (i.e. smallest val-
ues) for most regions. The opposite is true for SSS. For both
variables, the Norwegian Trench and Kattegat generally have
the highest (worst) CRPS values.

5 Further discussion

In this paper, we have presented the underlying principles
used to develop a new standardised workflow for validat-
ing model data. The principles introduced aim to ensure that
assessments are scaleable with data size, are independent
of data source, are reproducible, have a code base that is
easily expandable and use metrics which provide objective
comparisons. They aim to ensure that any analysis of model
data can be easily applied, cited, reproduced and interpreted.
Alongside our discussion, we showcased an existing work-
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Figure 10. SST continuous ranked probability score (CRPS) for eight regions in the AMM domain. Comparisons made between the CO9p0

and CO7 model runs.
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Figure 11. SSS continuous ranked probability score (CRPS) for eight regions in the AMM domain. Comparisons made between the CO9p0

and CO7 model runs.

flow for validating modelled sea surface height, tempera-
ture and salinity against tide gauge and profile observations.
In the examples shown, we have adhered to the principles
set out in this paper. We used the COAsT Python package,
which offers a set of standardised oceanographic data struc-
tures which are ideal for comparing model data with obser-
vation. The package and its components (especially Xarray)
are important tools, allowing us to adhere to the assessment
principles with ease.

Geosci. Model Dev., 16, 3749-3764, 2023

This kind of validation framework can be used as an inte-
gral part of the model development process. Such a process
is often iterative, with the tuning of various processes and
parameters being necessary. This kind of workflow, again
with the added benefits of the standardised COAST frame-
work, can be run quickly and with minimal changes for each
new set of model output. In addition, it is recommended that
model configurations are evaluated and tested using the same
validation and the same sets of metrics for consistency. The
version control and DOI system used by COAsT also means
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that any validation code may be reverted to in the future if
necessary. For example, this may be needed if there are dif-
ferences or errors in output that need to be evaluated.

The assessment metrics presented in this paper are by no
means exhaustive and serve as a demonstration and founda-
tion for future additions. As discussed throughout this pa-
per, a real advantage of our approach is that new assessments
may be added to the analysis in an easy, modular fashion
whilst preserving the reproducibility of past iterations of the
code. New validations may be designed to incorporate more
sources of observations, new metrics and diagnostics, new
variables, and comparisons to other models.

The philosophy introduced in this paper has been used for
our own development with great success. We present these
reflections in the hope that they are useful to the wider com-
munity.

Code availability. The scripts used in this paper are
made openly available as a GitHub repository: https:
//github.com/JMMP-Group/NEMO_validation (last access:
5 July 2023). The COASsT toolbox is also available from GitHub:
https://github.com/British-Oceanographic-Data-Centre/COAsT
(last access: 5 July 2023). At the time of writing, the
versions used are available as Zenodo DOIs: COAsT
(https://doi.org/10.5281/zenodo.7799863; Polton et al., 2023d)
and NEMO_validation (https://doi.org/10.5281/zenodo.7949115;
Polton et al., 2023b).
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CO9p0 are available at https://doi.org/10.5281/zenodo.8108965
(Polton et al., 2023c¢).

Author contributions. DB wrote the primary manuscript draft with
additional contributions from JP, EOD and JW. Experiment de-
sign was lead by DB, with additional contributions from JP, EOD
and JW. Development of model configurations was lead by EOD,
with contributions from DB and JP.

Competing interests. The contact author has declared that none of
the authors has any competing interests.

Disclaimer. Publisher’s note: Copernicus Publications remains
neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Acknowledgements. The work on COAsT was initiated through the
Weather and Climate Science for Service Partnership (WCSSP) In-
dia, a collaborative initiative between the Met Office, supported
by the UK Government’s Newton Fund, and the Indian Ministry
of Earth Sciences (MoES). Subsequent development was supported
by the UK Natural Environment Research Council project “Climate

https://doi.org/10.5194/gmd-16-3749-2023

3763

Linked Atlantic Sector Science” (CLASS) and the Copernicus Ma-
rine Environment Monitoring Service.

Financial support. This research has been supported by the New-
ton Fund (wcssp-india).

Review statement. This paper was edited by Vassilios Vervatis and
reviewed by two anonymous referees.

References

Castruccio, E.: NCAR/metric, Zenodo [data set],
https://doi.org/10.5281/zenodo.4708277, 2021.

Codiga, D. L.: Unified Tidal Analysis and Prediction Using the
UTide Matlab Functions, Technical Report 2011-01, Graduate
School of Oceanography, University of Rhode Island, Narra-
gansett, RI, 59 pp., 2011.

Dee, D. P, Uppala, S. M., Simmons, A. J., Berrisford, P., Poli,
P., Kobayashi, S., Andrae, U., Balmaseda, M. A., Balsamo, G.,
Bauer, P., Bechtold, P., Beljaars, A. C. M., van de Berg, L., Bid-
lot, J., Bormann, N., Delsol, C., Dragani, R., Fuentes, M., Geer,
A. J., Haimberger, L., Healy, S. B., Hersbach, H., Holm, E. V.,
Isaksen, L., Kallberg, P., Kohler, M., Matricardi, M., McNally,
A. P, Monge-Sanz, B. M., Morcrette, J.-J., Park, B.-K., Peubey,
C., de Rosnay, P., Tavolato, C., Thépaut, J.-N., and Vitart, F.: The
ERA-Interim reanalysis: configuration and performance of the
data assimilation system, Q. J. Roy. Meteorol. Soc., 137, 553-
597, https://doi.org/10.1002/qj.828, 2011.

Egbert, G. D. and Erofeeva, S. Y.: Efficient Inverse Mod-
eling of Barotropic Ocean Tides, J. Atmos. Ocean.
Tech., 19, 183-204, https://doi.org/10.1175/1520-
0426(2002)019<0183:EIMOB0>2.0.CO:;2, 2002.

Firing, E., Filipe, Barna, A., and Abernathey, R.:
TEOS-10/GSW-Python: v3.4.1, Zenodo [code],
https://doi.org/10.5281/zenodo.4631364, 2021.

Good, S. A., Martin, M. J, and Rayner, N. A.: EN4:
Quality controlled ocean temperature and salinity pro-
files and monthly objective analyses with uncertainty
estimates, J. Geophys. Res.-Oceans, 118, 6704-6716,
https://doi.org/10.1002/2013JC009067, 2013.

Graham, J. A., O’Dea, E., Holt, J., Polton, J., Hewitt, H. T., Furner,
R., Guihou, K., Brereton, A., Arnold, A., Wakelin, S., Castillo
Sanchez, J. M., and Mayorga Adame, C. G.: AMMI15: a new
high-resolution NEMO configuration for operational simulation
of the European north-west shelf, Geosci. Model Dev., 11, 681-
696, https://doi.org/10.5194/gmd-11-681-2018, 2018.

Griawe, U., Holtermann, P., Klingbeil, K., and Burchard, H.:
Advantages of vertically adaptive coordinates in numerical
models of stratified shelf seas, Ocean Model., 92, 56-68,
https://doi.org/10.1016/j.ocemod.2015.05.008, 2015.

Hoyer, S. and Hamman, J.: xarray: N-D labeled Arrays and
Datasets in Python, Journal of Open Research Software, 5, 10,
https://doi.org/10.5334/jors.148, 2017.

Large, W. G. and Yeager, S. G.: The Global Climatology of an In-
terannually Varying Air-Sea Flux Data Set, Clim. Dynam., 33,
341-364, https://doi.org/10.1007/s00382-008-0441-3, 2009.

Geosci. Model Dev., 16, 3749-3764, 2023


https://github.com/JMMP-Group/NEMO_validation
https://github.com/JMMP-Group/NEMO_validation
https://github.com/British-Oceanographic-Data-Centre/COAsT
https://doi.org/10.5281/zenodo.7799863
https://doi.org/10.5281/zenodo.7949115
https://doi.org/10.5281/zenodo.8108965
https://doi.org/10.5281/zenodo.4708277
https://doi.org/10.1002/qj.828
https://doi.org/10.1175/1520-0426(2002)019<0183:EIMOBO>2.0.CO;2
https://doi.org/10.1175/1520-0426(2002)019<0183:EIMOBO>2.0.CO;2
https://doi.org/10.5281/zenodo.4631364
https://doi.org/10.1002/2013JC009067
https://doi.org/10.5194/gmd-11-681-2018
https://doi.org/10.1016/j.ocemod.2015.05.008
https://doi.org/10.5334/jors.148
https://doi.org/10.1007/s00382-008-0441-3

3764

Lee, G. R., Gommers, R., Wasilewski, F., Wohlfahrt,
K., and O’Leary, A.: PyWavelets: A Python package
for wavelet analysis, J. Open Source Softw., 4, 1237,
https://doi.org/10.21105/joss.01237, 2019.

MacLachlan, C., Arribas, A., Peterson, K. A., Maidens, A. V., Fere-
day, D. R, Scaife, A. A., Gordon, M., Vellinga, M., Williams, A.
I. L., Comer, R. E., Camp, J., Xavier, P., and Madec, G.: Global
Seasonal forecast system version 5 (GloSea5): a high-resolution
seasonal forecast system, Q. J. Roy. Meteorol. Soc., 141, 1072—
1084, https://doi.org/10.1002/qj.2396, 2015.

Madec, G. and Team, N. S.: NEMO ocean engine, Zenodo,
https://doi.org/10.5281/zenodo.3248739, 2016.

Madec, G. and Team, N. S.: NEMO ocean engine, Zenodo,
https://doi.org/10.5281/zenodo.1464816, 2019.

Matheson, J. E. and Winkler, R. L.: Scoring rules for continuous
probability distributions, Manage Sci., 22, 1087-1095, 1976.
McKinney, W.: Data structures for statistical computing in
python, in: Proceedings of the 9th Python in Science Con-
ference, edited by: van der Walt, S. and Millman, J., 56-61,

https://doi.org/10.25080/Majora-92bf1922-00a, 2010

Megann, A., Storkey, D., Aksenov, Y., Alderson, S., Calvert, D.,
Graham, T., Hyder, P., Siddorn, J., and Sinha, B.: GO5.0: the
joint NERC-Met Office NEMO global ocean model for use in
coupled and forced applications, Geosci. Model Dev., 7, 1069—
1092, https://doi.org/10.5194/gmd-7-1069-2014, 2014.

Polton, J., Harle, J., Holt, J., Katavouta, A., Partridge, D., Jardine,
J., Wakelin, S., Rulent, J., Wise, A., Hutchinson, K., Byrne,
D., Bruciaferri, D., O’Dea, E., De Dominicis, M., Mathiot,
P, Coward, A., Yool, A., Palmiéri, J., Lessin, G., Mayorga-
Adame, C. G., Le Guennec, V., Arnold, A., and Rousset, C.:
Reproducible and relocatable regional ocean modelling: fun-
damentals and practices, Geosci. Model Dev., 16, 1481-1510,
https://doi.org/10.5194/gmd-16-1481-2023, 2023a.

Geosci. Model Dev., 16, 3749-3764, 2023

D. Byrne et al.: A standardised validation framework

Polton, J. A, Byme, D. and O’Dea, E.. JMMP-
Group/NEMO_validation: v1.0.1 (v1.0.1), Zenodo [code],
https://doi.org/10.5281/zenodo.7949115, 2023b.

Polton, J. A., Byrne, D., and O’Dea, E.: Analysis datasets for
NEMO_validation workflow Byrne et al 2023 GMD. “Using
the COAsT Python package to develop a standardised valida-
tion workflow for ocean physics models”, Zenodo [data set],
https://doi.org/10.5281/zenodo.8108965, 2023c.

Polton, J. A., Byrne, D., Wise, A., Holt, J., Katavouta, A., Ru-
lent, J., Gardner, T., Cazaly, M., Hearn, M., Jennings, R., Lu-
ong, Q., Loch, S., Gorman, L., and de Mora, L.: British-
Oceanographic-Data-Centre/COAsT: v3.2.1 (v3.2.1), Zenodo
[code], https://doi.org/10.5281/zenodo.7799863, 2023d.

Prandle, D. and Wolf, J.: The interaction of surge and tide in the
North Sea and River Thames, Geophys. J. Int., 55, 203-216,
https://doi.org/10.1111/j.1365-246X.1978.tb04758.x, 1978.

Roberts, C.: cdr30/RapidMoc: RapidMoc v1.0.1, Zenodo,
https://doi.org/10.5281/zenodo.1036387, 2017.

Rocklin, M.: Dask: Parallel computation with blocked algo-
rithms and task scheduling, in: Proceedings of the 14th Python
in Science Conference (SciPy 2015), Austin, Texas, 6-12
July 2015, edited by: Huff K. and Bergstra, J., 126-132,
https://doi.org/10.25080/Majora-7b98e3ed-013, 2015.

Siddorn, J. A. and Furner, R.: An analytical stretching function that
combines the best attributes of geopotential and terrain-following
vertical coordinates, Ocean Model., 66, 1-13, 2013.

Vogel, M.: Sea-level Science: Understanding Tides, Surges,
Tsunamis and Mean Sea-level Changes, by David Pugh
and Philip Woodworth, Contemp. Phys., 56, 394-394,
https://doi.org/10.1080/00107514.2015.1005682, 2015.

Woodworth, P. L., Hunter, J. R., Marcos, M., Caldwell, P,
Menéndez, M., and Haigh, I.: Towards a global higher-
frequency sea level dataset, Geosci. Data J., 3, 50-59,
https://doi.org/10.1002/gdj3.42, 2016.

https://doi.org/10.5194/gmd-16-3749-2023


https://doi.org/10.21105/joss.01237
https://doi.org/10.1002/qj.2396
https://doi.org/10.5281/zenodo.3248739
https://doi.org/10.5281/zenodo.1464816
https://doi.org/10.25080/Majora-92bf1922-00a
https://doi.org/10.5194/gmd-7-1069-2014
https://doi.org/10.5194/gmd-16-1481-2023
https://doi.org/10.5281/zenodo.7949115
https://doi.org/10.5281/zenodo.8108965
https://doi.org/10.5281/zenodo.7799863
https://doi.org/10.1111/j.1365-246X.1978.tb04758.x
https://doi.org/10.5281/zenodo.1036387
https://doi.org/10.25080/Majora-7b98e3ed-013
https://doi.org/10.1080/00107514.2015.1005682
https://doi.org/10.1002/gdj3.42

	Abstract
	Introduction
	The COAsT framework
	 Five principles for validation 

	Workflow demonstration: data
	Model data
	Observation data

	Workflow demonstration: validation against tide gauge data
	 Harmonic analysis
	 Matched harmonic analysis (MHA) 
	Harmonic uncertainty estimation where MHA is not possible

	Validation of tides
	Validation for non-tidal residuals

	Workflow demonstration: validation against profile data
	Further discussion
	Code availability
	Data availability
	Author contributions
	Competing interests
	Disclaimer
	Acknowledgements
	Financial support
	Review statement
	References

