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Abstract. Three-dimensional (3D) stratigraphic modeling is
capable of modeling the shape, topology, and other proper-
ties of strata in a digitalized manner. The implicit modeling
approach is becoming the mainstream approach for 3D strati-
graphic modeling, which incorporates both the off-contact
strike and dip directions and the on-contact occurrence in-
formation of stratigraphic interface to estimate the strati-
graphic potential field (SPF) to represent the 3D architectures
of strata. However, the magnitudes of the SPF gradient con-
trolling the variation trend of SPF values cannot be directly
derived from the known stratigraphic attribute or strike and
dip data. In this paper, we propose a Hermite–Birkhoff ra-
dial basis function (HRBF) formulation, AdaHRBF, with an
adaptive gradient magnitude for continuous 3D SPF mod-
eling of multiple stratigraphic interfaces. In the linear sys-
tem of HRBF interpolants constrained by the scattered on-
contact attribute points and off-contact strike and dip points
of a set of strata in 3D space, we add a novel optimizing
term to iteratively obtain the optimized gradient magnitude.
The case study shows that the HRBF interpolants can con-
sistently and accurately establish multiple stratigraphic in-
terfaces and fully express the internal stratigraphic attribute
and orientation. To ensure harmony of the variation in strati-
graphic thickness, we adopt the relative burial depth of the
stratigraphic interface to the Quaternary as the SPF attribute
value. In addition, the proposed stratigraphic-potential-field

modeling by HRBF interpolants can provide a suitable basic
model for subsequent geosciences’ numerical simulation.

1 Introduction

The three-dimensional (3D) stratigraphic modeling and vi-
sualization technology is of great importance for the intel-
ligent management of subsurface space (e.g., mineral re-
source assessment, reservoir characterization, groundwater
management, and urban subsurface space planning) (Hould-
ing, 1994; Mallet, 2002). The two main ways of represent-
ing 3D stratigraphic surface are so-called explicit and im-
plicit modeling (Lajaunie et al., 1997). Traditional explicit
modeling can be described as a way of representing 3D ge-
ological boundaries that relies heavily on a complicated and
time-consuming process of human–computer interaction for
connecting the geological boundary lines to form a 3D model
of geological surfaces, and it is difficult to update the model.
Implicit modeling defines a continuous 3D stratigraphic po-
tential field (SPF) that describes the stratigraphic distribu-
tion and represents geological boundaries using an implicit
mathematical function. The increasing importance of an im-
plicit method in stratigraphic modeling stems from not only
the advantages of efficiency, reproducibility, and topological
consistency over the traditional explicit modeling method but
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also the full representation of stratigraphic structure through
SPF. Although implicit modeling often requires a large solu-
tion system of linear equations to consume more computa-
tional time than explicit modeling, e.g., the Delaunay trian-
gulation (Mallet, 2002; De Berg et al., 2008), we can over-
come this difficulty with the help of increasing computa-
tional ability of computers. Three-dimensional stratigraphic-
potential-field modeling is to implicitly represent the nature,
shape, topology, and internal property of a given set of strata.
The stratigraphic interface is expressed by a specific equipo-
tential surface of the SPF. Therefore, using SPF to express a
set of conformable strata and their attribute distribution in 3D
space is convenient for spatial analysis, statistics, and simu-
lation.

The strike and dip information can be incorporated into
implicit modeling by setting up the gradients of implicit
function. To control the orientation of the modeled strata, the
dip and strike directions are encoded as the gradient direc-
tions. The difference between Hermite–Birkhoff radial basis
function (HRBF) and standard radial basis function (RBF)
is the presence of gradients; however, the existing HRBF
method constructs implicit field functions separately for each
geological interface and extracts the zero-value equipoten-
tial surfaces to locate the geological interface. Therefore, it
is difficult to maintain topological and semantic consistency
between geological bodies. For modeling multiple strata in
an integrated and unique framework, however, setting up the
gradient magnitudes to be adaptive to the orientation and
thickness variations in strata is rather challenging. Assigning
the adaptive gradient magnitudes to HRBF interpolant func-
tion is a “chicken-and-egg” problem: while the implicit func-
tion results from the gradients, the suitable gradient magni-
tudes are estimated from the reasonable implicit function.

In this study, we propose a gradient-adaptive HRBF frame-
work for SPF modeling, AdaHRBF, which interpolates mul-
tiple interfaces among a set of conformable strata by a unified
one-step process. In this linear system of HRBF interpolants,
we iteratively obtain the optimized gradient magnitudes. The
particular case where the SPF was reconstructed from ge-
ological maps and cross-sections demonstrates the advan-
tages and general performance of stratigraphic-potential-
field modeling using the AdaHRBF method, comparing with
HRBF interpolants using constant unit normal gradients and
RBF interpolants only using contact locations without orien-
tations. The SPF attribute value is set to the relative burial
depth of strata, i.e., mean distance from a given stratigraphic
surface to the top surface of the Quaternary. The distributions
of burial depth, thickness, and strike and dip of strata in 3D
space can be fully expressed by the SPF and its gradient vec-
tor field.

2 Related works

The key of implicit modeling methods is to interpolate a 3D
scalar field function whose equipotential surfaces indicate
the boundaries of geological bodies. These surfaces can rep-
resent ore-grade boundaries or stratigraphic interfaces. This
scalar field is interpolated from stratigraphic interface points
and strike and dip data with either discrete-interpolation
schemes or continuous-interpolation schemes.

2.1 Discrete interpolants

For discrete-interpolation schemes of implicit modeling
with a special mesh, the GoCAD (https://app.pdgm.com/
product-category/skua-gocad/, last access: 30 June 2022)
software was developed based on the discrete smooth in-
terpolation (DSI) method to meet the needs of geological,
geophysical, and petroleum reservoir engineering modeling
(Mallet, 2004; Frank et al., 2007). Caumon et al. (2013) pro-
posed a discretizing finite-element method (FEM) to gen-
erate 3D models of horizons on a tetrahedral mesh, using
stratigraphic interface traces of unknown attribute values and
strike and dip measurements from 2D geological maps, re-
mote sensing images, and digital elevation models. Hillier
et al. (2013) presented a structural field interpolation (SFI)
algorithm using an anisotropic inverse distance-weighted
(IDW) interpolation scheme derived from eigen analysis of
strike and dip measurements. Renaudeau et al. (2019) pro-
posed an implicit structural modeling method using locally
defined moving-least-squares shape functions and solved a
sparse sampling problem without relying on a complex mesh.
Irakarama et al. (2020) introduced a new method for im-
plicit structural modeling by regularization operators on the
Cartesian grid using finite differences. Grose et al. (2021b)
presented LoopStructural, a new open-source 3D geologi-
cal modeling Python package, in which discrete interpola-
tors and polynomial trend interpolators can be mixed and
matched within a geological model.

2.2 Continuous interpolants

Since the continuous-interpolation scheme does not depend
on a mesh for its definition, the stratigraphic interfaces can
be extracted at any desired resolution in the specific vol-
ume of interest. There is already a dual kriging or cok-
riging formulation for continuous potential-field modeling
of multiple stratigraphic interfaces. Lajaunie et al. (1997)
proposed an implicit potential-field modeling method using
the dual formulation of kriging interpolation that considers
known points on a geological interface and plane strike and
dip data such as stratification or foliation planes. Calcagno
et al. (2008) cokriged the location of geological interfaces
and strike and dip data from a structural field to interpo-
late a continuous 3D potential-field scalar function describ-
ing the geometry of geological bodies. Geomodeller 3D
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Figure 1. Data commonly used in (a) 3D geological modeling extracted from (b) cross-sections and (c) geological maps. A stratum S1 is
between its bottom surface d1 and top surface d2 (Fig. 1a); a fault interface F divides the 3D space into two sub-domains, D1 and D2. We
can extract the on-contact boundary points and off-contact strike and dip points of the strata and fault from the cross-section AA′ (b) and
geological map (c).

(http://www.geomodeller.com, last access: 30 June 2022),
an implicit geological modeling application, utilizes the im-
plicit potential-field method by cokriging or the dual for-
mulation of kriging (Lindsay et al., 2012; Hassen et al.,
2016). Gonçalves et al. (2017) proposed a vector potential-
field solution from a machine learning perspective, recasting
the problem as multivariate classification in a compositional
data framework, which alleviates some of the assumptions
of the cokriging method. De la Varga et al. (2019) presented
GemPy (https://github.com/cgre-aachen/gempy, last access:
30 June 2022), an open-source implementation, to generate
3D geological models based on an implicit potential-field
cokriging interpolation approach and to enable stochastic ge-
ological modeling and inversions of gravity and topology in
machine learning and Bayesian inference frameworks. To re-
duce the impact of regularly occurring modeling artifacts that
result from data configuration and uncertainty, Von Harten
et al. (2021) proposed an approach that is a combination of
an implicit interpolation algorithm with a local smoothing
method based on the concepts of nugget effect and filtered
kriging known from conventional geostatistics.

For continuous radial basis function (RBF) or HRBF in-
terpolation schemes of implicit modeling without a mesh,
Cowan et al. (2003) constructed an implicit model of the
orebody or stratigraphic interface using a volumetric RBF
interpolation function with an equipotential surface that in-

cludes the interface points and conventionally assigned an
attribute value of zero and a “±” sign to indicate the inside
and outside of the interface. Hillier et al. (2014, 2016) pre-
sented a generalized interpolation framework using RBF in
Surfe, an open-source library, to implicitly model 3D contin-
uous geological interfaces from on-surface points with gra-
dient constraints as defined by strike–dip data with assigned
polarity. Leapfrog Geo (http://www.leapfrog3d.com, last ac-
cess: 30 June 2022) is an implicit geological modeling soft-
ware package that models scattered data for interfaces using
fast RBF interpolation methods (Vollgger et al., 2015; Bas-
son et al., 2016, 2017; Creus et al., 2018; Stoch et al., 2020).
Martin and Boisvert (2017) developed a RBF-based implicit
modeling framework using domain decomposition to locally
vary orientations and magnitudes of anisotropy for geologi-
cal boundary models. Zhong et al. (2019, 2021) introduced
combination constraints for modeling ore bodies based on
multiple implicit field interpolation through RBF methods,
in which a multiply labeled implicit function was defined
that combines different implicit sub-fields by the combina-
tion operations to construct constraints honoring geological
relationships more flexibly. Guo et al. (2016, 2018, 2020,
2021) proposed an explicitly and implicitly integrated 3D ge-
ological modeling approach for the geometric fusion of dif-
ferent types of complex geological structure models; therein,
the HRBF-based implicit method was used to model general
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strata, faults, and folds, and the skinning method and the free-
form surface were used to model local detailed structures.
Wang et al. (2018) proposed an implicit modeling approach
to automatically build a 3D model for orebodies by means
of spatial HRBF interpolation directly based on geological
borehole data.

However, the above RBF and HRBF interpolants, which
use only the on-contact point datasets for each geological
interface or assign an approximate gradient vector for each
on-contact point according to its nearest strike and dip mea-
surements, cannot be accurately consistent with actual strike
and dip survey data. To maintain topological consistency be-
tween geological bodies and represent their internal burial
depth and structural orientations, our AdaHRBF interpola-
tion scheme yields an HRBF linear system that is analogous
in form to the previously developed implicit potential-field
interpolation method based on cokriging of contact incre-
ments using parametric isotropic covariance functions.

3 Methodology

3.1 Modeling constraints

The geological boundaries and structural orientations on pla-
nar geological maps and cross-sections are the most common
data used for 3D geological modeling. Besides the geological
boundaries extracted from boreholes, cross-sections, and ge-
ological maps, structural orientation (including strike direc-
tion, dip direction, and dip angle) data from geological maps
play important roles in characterizing the shape and distribu-
tion of geological bodies, as shown in Fig. 1. The SPF mod-
eling method can jointly reconstruct a 3D geological model
using these data extracted from geological maps and cross-
sections.

A field in a spatial domain Rn defines the function f =
f (p) at a point p ∈ Rn in domain Rn, and f (p) is also called
field function. The SPF defines the 3D space as a scalar func-
tion f (p) at any point p; meanwhile, the stratigraphic inter-
faces are simulated and expressed as specific equipotential
surfaces satisfying f (p)= fk(i = 1, . . . , K) in the SPF. In
practice, this specific function value fk may correspond to
the age of the stratigraphic interface or a relative distance
from a reference interface (Mallet, 2004). Therefore, a stra-
tum occupies the space between its bottom surface fk and top
surface fk+1, while there are countless disjoint equipotential
surfaces in each stratum (Mallet, 2004). A well-known prob-
lem is how to interpolate unknown points by a function f (·)
using known points of the space Rn. The key problem of
SPF modeling is to obtain surfaces that are consistent with
known on-contact points on the stratigraphic interfaces and
the off-contact strike and dip directions of the strata. The
stratigraphic interface points define the distribution of ref-
erence equipotential surfaces, while the strike and dip points
define the gradient vectors of the scalar field.

The SPF modeling by the HRBF interpolant satisfies
both the on-contact attribute constraint and off-contact strike
and dip constraint. To fit an implicitly defined SPF from
known attribute values

{(
pi,fi

)}N
i=1 ∈ Rn×R and gradients

(pj ,gj )}Mj=1 ∈ Rn×Rn derived from strike and dip data, we
can search for a function f : Rn→ R which satisfies both
the on-contact constraints f

(
pi
)
= fi for each i = 1, . . .,N

and the off-contact gradient constraints ∇f
(
pj
)
= gj for

each j = 1, . . . , M . In particular, pi =
[
pxi p

y
i pzi

]
,

and gj =
[
gxj g

y
j gzj

]
in space R3.

3.2 HRBF interpolant

Generally, the basic RBF reconstructs an implicit function
with constraint f

(
pi
)
= fi ; however, the HRBF reconstructs

an implicit function which interpolates scattered multivariate
Hermite–Birkhoff data (i.e., unstructured points and orien-
tations) (Macedo et al., 2011). With the joint constraints of
f
(
pi
)
= fi and∇f

(
pj
)
= gj , the optional solution is to ob-

tain equipotential surfaces that are as smooth as possible, that
is, to ensure the energy function, which represents the degree
of equipotential surface smoothness and unevenness of SPF,
is as small as possible. Therefore, the energy function E of
the SPF is defined by further combining the thin-plate regu-
larizer of f (Wahba, 1990; Walder et al., 2006) as

E =

N∑
i=1

(
f (pi)− fi

)2
+

M∑
j=1

(
∂f (pj )

∂x
− gxj

)2

+

(
∂f (pj )

∂y
− g

y
j

)2

+

(
∂f (pj )

∂z
− gzj

)2

+

3∫
R

∂2f (p)

∂2x
+
∂2f (p)

∂2y
+
∂2f (p)

∂2z

+ 2
∂2f (p)

∂x∂y
+ 2

∂2f (p)

∂y∂z
+ 2

∂2f (p)

∂z∂x
dxdydz , (1)

where
∂f (pj )

∂x
,
∂f (pj )

∂y
, and

∂f (pj )

∂z
are the first-order partial

derivatives of implicit function f (p) at point pj , and ∂2f (p)

∂2x
,

∂2f (p)

∂2y
, ∂2f (p)

∂2z
, ∂2f (p)

∂x∂y
, ∂2f (p)

∂y∂z
, and ∂2f (p)

∂z∂x
are the second-

order partial derivatives of implicit function f (p). The first
and second components of energy function represent the mis-
fit between the estimated values and observed contact and
orientation points, respectively, and the third component of
a second-order derivative of implicit function guarantees the
smoothness of SPF implicit function.

When using the HRBF interpolation method, we usually
add a first-order polynomial C(p) to ensure the smooth-
ness and continuity of equipotential surfaces. In particular,
C (p)= c1+ c2p

x
+ c3p

y
+ c4p

z. The HRBF interpolation
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function has a concrete estimation form f ∗ (p):

f ∗ (p)=

N∑
i=1

αiϕ
(∥∥p−pi∥∥)

+

M∑
j=1
〈βj ,∇ϕ(‖p−p‖)〉+C (p) (2)

∇f ∗ (p)=

N∑
i=1

αi∇ϕ
(∥∥p−pi∥∥)

+

M∑
j=1
∇

2ϕ
(∥∥p−pj∥∥)βj +∇C (p) , (3)

where
∥∥p−pi∥∥ denotes the Euclidean distance between

locations p and pi ; ϕ (r) is the radial basis function,
herein, for which the cubic function ϕ (r)= r3 is used
in this study; ∇ is the Hamiltonian operator; ∇2 is

the Hessian operator, in particular, ∇ =

[
∂
∂x

∂
∂y

∂
∂z

]T
and ∇2

=


∂2

∂2x
∂2

∂x∂y
∂2

∂x∂z
∂2

∂y∂x
∂2

∂2y
∂2

∂y∂z

∂2

∂z∂x
∂2

∂z∂y
∂2

∂2z

; and 〈a,b〉 is the in-

ner product of vectors a and b. The scalar weight co-
efficients αi ∈ R, vector weight coefficients βj ∈ Rn, and

c ∈ Rn+1 (in particular, βj =
[
βxj β

y
j βzj

]T
and c=[

c1 c2 c3 c4
]T
) are unknown and uniquely deter-

mined by the joint constraints f ∗
(
pi
)
= fi for each i = 1,

. . . , N and ∇f ∗
(
pj
)
= gj for each j = 1, . . . , M .

The HRBF interpolant defines the implicit function as a
sum of chosen basic functions with their linear weights. Fur-
thermore, the type of basic functions (e.g., Gaussian, multi-
quadric, and thin-plate spline) affects the result of spatial
interpolation (Wendland, 2005; Rasmussen and Williams,
2006), which is split into two categories, i.e., strictly posi-
tive definite (SPD) and conditionally positive definite (CPD)
functions (Hillier et al., 2014). We adopt the cubic function
as the basis function in this study, i.e., ϕ (R)= r3, since it
minimizes the curvature in three dimensions (Eq. 1).

According to the joint constraints, the weight coefficients
α, β, and c of the interpolant are determined by the following
linear system: 8 ∇8 C
(∇8)T ∇28 ∇C
CT (∇C)T 0

 α

β

c

=
 f

g
0

 , (4)

where

8=


ϕ11 ϕ12 · · · ϕ1N
ϕ21 ϕ22 · · · ϕ2N
...

...
. . .

...

ϕN1 ϕN2 · · · ϕNN


N×N

,

whose element ϕij = ϕ
(∥∥pi −pj∥∥) represents the RBF

value between a pair of contact points;

∇8=


∇ϕ11 ∇ϕ12 · · · ∇ϕ1M
∇ϕ21 ∇ϕ22 · · · ∇ϕ2M
...

...
. . .

...

∇ϕN1 ∇ϕN2 · · · ∇ϕNM


N×nM

,

whose element ∇ϕij =∇ϕ
(∥∥pi −pj∥∥) represents the dif-

ferential RBF value between a contact point and an orienta-
tion point;

∇
28=


∇

2ϕ11 ∇
2ϕ12 · · · ∇

2ϕ1M
∇

2ϕ21 ∇
2ϕ22 · · · ∇

2ϕ2M
...

...
. . .

...

∇
2ϕM1 ∇

2ϕM2 · · · ∇
2ϕMM


nM×nM

,

whose element ∇2ϕij =∇
2ϕ
(∥∥pi −pj∥∥) represents the

second-order differential RBF value between a pair of ori-
entation points, C = C(p), in particular,

C=


1 px1 p

y

1 pz1
1 px2 p

y

2 pz2
...

...
...

...

1 pxN p
y
N pzN


N×(n+1)

and

∇C =


0 ∇px1 ∇p

y

1 ∇pz1
0 ∇px2 ∇p

y

2 ∇pz2
...

...
...

...

0 ∇pxM ∇p
y
M ∇pzM


nM×(n+1)

,

whose elements are ∇pxi =
[

1 0 0
]T , ∇pyi =[

0 1 0
]T , and ∇pzi =

[
0 0 1

]T , respectively.

α =
[
α1 α2 · · · αN

]T
; β =

[
β1 β2 · · · βM

]T
;

f=
[
f1 f2 · · · fN

]T
; and g=

[
g1 g2 . . . gM

]T
.

Once we have the weight coefficients (αi , βj ) and the poly-
nomial coefficients (c1, c2, c3, c4) by solving the above
HRBF linear system, we can substitute the weight coeffi-
cients and polynomial coefficients into the HRBF equations;
then the interpolant function f (p) and its gradient function
∇f (p) can be easily obtained.

3.3 Adaptive gradient constraint

3.3.1 Determination of gradient direction

The gradient of the SPF is an important feature of stratum
shape because it indicates the strike and dip of a stratum. For
construction of a scalar field f (p), the gradient constraints
∇f

(
pj
)
= gj can also be added into modeling process (Cau-

mon et al., 2013; Hillier et al., 2014). As shown in Fig. 2,
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Figure 2. The gradient vector g, the strike vector s, and the dip vec-
tor d. The gradient vector g, the strike vector s, and the dip vector
d of the SPF are orthogonal to each other. The strike θ1 is the direc-
tion of the intersection of the stratigraphic interface and horizontal
plane, which is represented by the angle between the strike vector
s and the northern direction. The dip θ2, which is the projected di-
rection of the dip vector d onto the horizontal plane, is represented
by the angle between the projected dip direction and the northern
direction. Strike direction and dip direction are perpendicular to
each other, i.e., θ2 = θ1+ 90◦. Dip angle θ3 is the angle between
the dip vector and projected dip direction. The three elements form
the stratigraphic interface’s strike and dip.

the gradient vector g of SPF and the normal vector n of the
stratigraphic interface have the same direction, which can be
obtained through geological observation.

The gradient g is a vector with magnitude and direction
(which is the same as the normal direction n of the strati-
graphic interface). The x-axis, y-axis, and z-axis components
of the normal direction, nx , ny , and nz, in the 3D Cartesian
coordinate system can be derived from the strike, dip, and
angle of dip of the stratigraphic interface as follows: nx = cos(radians(θ3)) · sin(radians(θ2))

ny = cos(radians(θ3)) · cos(radians(θ2))

nz =−sin(radians(θ3))

. (5)

3.3.2 Optimization of gradient magnitude

The exact definition of gradient magnitude (‖g‖) is the
change in an attribute value over unit distance along the gra-
dient direction. The gradient magnitude reflects the rate of
change in the scalar field values, which is caused by the dif-
ference in stratum thickness at different locations. A larger
gradient magnitude indicates that the stratum becomes thin-
ner, whereas a smaller gradient magnitude indicates that the
stratum tends to become thicker. Laurent (2016) iteratively
adjusted the magnitude of scalar field gradient in the direc-
tion obtained after previous iterations on a discrete mesh to
prevent the interpolated gradient magnitude from varying too

much. Grose et al. (2021b) used constant gradient regular-
ization in LoopStructural to minimize the change in gradi-
ent of the implicit function between tetrahedra with a shared
face. We assume that the gradient magnitude changes grad-
ually everywhere in the scalar field instead of the constant
gradient magnitude existing on the interfaces (Frank et al.,
2007; Caumon et al., 2013); therefore, every equipotential
surface inside of the stratum changes uniformly. In the ap-
plication, it is difficult to determine the exact gradient mag-
nitude through any geological measurement. However, if we
force all gradient magnitudes to be equal, it may cause incon-
sistent SPF changes with neighbors, which results in artifacts
whereby the trends of some equipotential surfaces inside of
the stratum change suddenly compared to other equipoten-
tial surfaces. To estimate self-adaptive gradient magnitudes,
we optimize the gradient magnitudes in the framework of the
HRBF energy in Eq. (1), aiming at finding the smooth gradi-
ent magnitudes that minimize the energy like Eq. (1):

N∑
i=1

(
f (pi)− fi

)2
+

M∑
j=1

(
∂f (pj )

∂x
− ljn

x
j

)2

+

(
∂f (pj )

∂y
− ljn

y
j

)2

+

(
∂f (pj )

∂z
− ljn

z
j

)2

+

3∫
R

∂2f (p)

∂2x
+
∂2f (p)

∂2y

+
∂2f (p)

∂2z
+ 2

∂2f (p)

∂x∂y

+ 2
∂2f (p)

∂y∂z
+ 2

∂2f (p)

∂z∂x
dxdydz , (6)

where lj and nj =
[
nxj n

y
j nzj

]
denote the gradient

magnitude and a unit normal vector for j th gradient con-
straints, respectively, and l= {l1, · · ·, lM} is the vector of gra-
dient magnitudes to be optimized. Given the optimization
problem with respect to both f and l in Eq. (6), it is in-
tractable to directly optimize both f and l using the common
optimization techniques such as the variational approach. In-
stead, we use the alternating optimization (Bezdek and Hath-
away, 2002) to optimize the problem in Eq. (6). The alternat-
ing optimization is an optimization scheme that alternately
updates just some variables (while fixing other variables) at a
time rather than updating of all variables simultaneously like
gradient descendent techniques. The scheme is well suited to
the scenario where the variables can be divided into several
subsets, and an explicit partial minimizer of each subset ex-
ists. For our optimization problem in Eq. (6), since the vari-
ables f and l can be minimized individually by fixing each
other, we can solve the minimizer of f and l by using the
alternating optimization. Thus, we use an iteration to alter-
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nately update f and l, which is expected to converge to the
solution of Eq. (6). This leads to a two-pass optimization at
every iteration step: at the iteration step t , without loss of
generality, we firstly optimize the f t by fixing gradient mag-

nitudes lt−1
=

{
lt−1
j

}M
j=0

at the iteration step t − 1,

f t = arg
N∑
i=1

(
f (pi)− fi

)2
+

M∑
j=1

(
∂f (pj )

∂x
− lt−1

j nxj

)2

+

(
∂f (pj )

∂y
− lt−1

j n
y
j

)2

+

(
∂f (pj )

∂z
− lt−1

j nzj

)2

+

3∫
R

∂2f (p)

∂2x
+
∂2f (p)

∂2y
+
∂2f (p)

∂2z
+ 2

∂2f (p)

∂x∂y

+ 2
∂2f (p)

∂y∂z
+ 2

∂2f (p)

∂z∂x
dxdydz . (7)

And then we optimize gradient magnitudes lt at the iteration
step t by given f t ,

lt = arg
M∑
j=1

(
∂f t (pj )

∂x
− lt−1

j nxj

)2

+

(
∂f t (pj )

∂y
− lt−1

j n
y
j

)2

+

(
∂f t (pj )

∂z
− lt−1

j nzj

)2

. (8)

The above procedure is iterated until f t and lt converge.
Simply optimizing Eq. (7) would lead to a linear system as 8 ∇8 C
∇8T ∇28 ∇C
CT

∇CT 0

 α

β

c

=
 f

lt � n
0

 , (9)

where � denotes the Hadamard product between vectors.
Equation (9) demonstrates that the gradients of potential
function rigorously fit to lt � n. However, the gradient mag-
nitude lt might not be reliable at the iteration step t . Instead,
we relax the linear system in Eq. (9) by adding a diagonal
matrix 3 to the associated rows of Eq. (4): 8 ∇8 C
(∇8)T ∇28+3 ∇C
CT (∇C)T 0

[ α
β
c

]
=

[ f
lt � n
0

]
, (10)

where the diagonal coefficient matrix is given by

3=


λ1 0 0 0
0 λ2 0 0
...

...
. . .

...

0 0 0 λM

 ;

in particular, λj =

 λxj 0 0
0 λ

y
j 0

0 0 λzj

. With3 6= 0, the solu-

tion of Eq. (10) becomes a problem of approximations by the

Figure 3. Pseudo-code of iterative algorithm for optimizing gradi-
ent magnitude.

gradient magnitude lt , where diagonal elements of 3 repre-
sents the degrees of approximations for each gradient con-
straint. When 3→ 0, the solution is close to interpolation.

On the other hand, to optimize l by given f t , we can derive
the update to each ltj using simple algebra as

ltj =
∥∥∇f t∥∥=

√(
∂f t

∂x

)2

+

(
∂f t

∂y

)2

+

(
∂f t

∂z

)2

. (11)

Using the above iteration scheme, we can optimize ltj by tun-
ing the coefficients λtj according to the reliability of ltj . Ini-

tially we set λ(t=0)
j to a nonzero constant vector and l(t=0)

j =

1. After solving the HRBF system, we can obtain the func-
tion of scalar field f (p); then the gradient vector on the ob-
served strike and dip point pj is easily obtained according to
gj =∇f (pj ). We record the HRBF coefficients calculated at
the t th time as αti and β tj and record the gradient magnitude
at the observed strike and dip point pj as ltj . After the solu-
tion of the linear system in Eq. (10), we estimate the gradient
magnitudes ltj in terms of Eq. (11) and generate the gradi-
ent constraint at the next iteration step as gtj = l

t
j ×nj . With

the gradient magnitude becoming more reliable, we shrink
the coefficient λt+1

j to fit more closely to the updated gra-
dient constraint. Our idea is that when gradient magnitudes
converge, the resulting implicit function interpolates the con-
verged ltj .

In this study, we calculate the increment of λ from

λt+1
j =

a0

1+ t
+ a1(l

t
j − l

t−1
j )2 , (12)
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Figure 4. Experimental field 1: (a) original potential field, (b) field reconstructed when each gradient magnitude was set to a constant value
of 1, (c) distribution of field attribute and unit gradient points, (d) field reconstructed when the gradient magnitude was obtained iteratively,
and (e) distribution of field attribute and iteratively obtained gradient points.

where a0 and a1 are constant coefficients. We apply the same
λt+1
j to three axes of x, y, and z. Given the updated λt+1

j and
ltj , we substitute them into the (t+1)th HRBF system (Eq. 10)
and solve for the updated coefficient of implicit function.
This iterative process continues until the stopping criteria are
satisfied.

We use two stopping criteria to finish the iterations. Firstly,
for all observed strike and dip points, if the sum of differ-
ences in gradient magnitudes between two consecutive iter-
ations is less than or equal to a small enough threshold ε,
we stop the iterations when convergency is reached. Sec-
ondly, when the number of iterations reaches a given number

Niterate, we also obtain the final results of αti , β
t
j , and ltj .

M∑
j=1

∣∣∣ltj − lt−1
j

∣∣∣≤ ε , (13)

where || represents the absolute value of a real number, and
M is the number of observed strike and dip points. The basic
steps of the iterative calculation of gradient magnitude are
given in the pseudo-code (Fig. 3).
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Figure 5. Experimental field 2: (a) original potential field, (b) field reconstructed when each gradient magnitude was set to a constant value
of 1, (c) distribution of field attribute and unit gradient points, (d) field reconstructed when the gradient magnitude was obtained iteratively,
and (e) distribution of field attribute and iteratively obtained gradient points.

4 Verification experiments

Two experimental fields in 2D space, with the gradient
changing in direction or magnitude, were designed to ver-
ify the AdaHRBF method. The experimental results show
that the different gradient magnitude settings apparently af-
fect the modeled fields; moreover, the AdaHRBF method is
effective to iteratively obtain the optimized gradient magni-
tude of the fields. We modeled an analytic field of f1 (p)=

((px − 300)2+(py)2)
3
2 with the changing gradient direction

and magnitude, as shown in Fig. 4a. Then we sampled at-
tribute and strike and dip points from the analytic field with
different locations, as shown in Fig. 4b. Hence, we can re-
trieve the coefficients αi and βj of the HRBF formula and

the polynomial coefficients, respectively. We compared two
different experimental settings. (1) Assuming that the gradi-
ent is a unit vector, and each gradient magnitude is 1, we used
the HRBF interpolant to reconstruct the field, as shown in
Fig. 4c. Although the field values at the sampling points are
equal to the given attribute values, the retrieved field values
change irregularly; thus we obtained a large number of ex-
ceptional values in the reconstructed field. (2) The optimized
gradient magnitude was obtained via the iterative AdaHRBF
method introduced above. In this condition, we more accu-
rately restored the field (as shown in Fig. 4d) and also got the
optimized gradient magnitude after the iterations, which was
close to the true value.
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Figure 6. Geological map of the study area.

We also modeled a potential field of f2 (p)= (p
y)3 with

the changing gradient magnitude, as shown in Fig. 5a. It is
known that each direction of gradient points is the positive
y-axis direction. We sampled attribute points and strike and
dip points, as shown in Fig. 5b. We also compared two dif-
ferent experimental conditions: (1) assuming that each fixed
gradient magnitude is 1, we used the HRBF interpolant to re-
construct the field, as shown in Fig. 5c, and (2) the optimized
gradient magnitude was obtained via the iterative AdaHRBF
method. In this condition, we more accurately restored the
potential field (as shown in Fig. 5d) and also got the opti-
mized gradient magnitude after the iterations.

5 Case study

5.1 Study area and dataset

The study area is located in the Lingnian–Ningping man-
ganese ore zone, in Debao County, southwestern Guangxi
Zhuang Autonomous Region, China (Fig. 6). The study area
mainly consists of strata from the late Paleozoic to the late
Triassic–Pliocene (T3–N2). The middle Permian (P2) strata
are in para-unconformity contact with early Triassic (T1)
strata; the middle Triassic (T2) strata are in angular uncon-
formity contact with the Quaternary. There is a left strike–
slip inverse fault, the Nacha Fault, in the middle of the study
area. It dips to the southeast, with a northeastern strike di-
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Figure 7. Model of Nacha Fault: (a) potential field and (b) surface model. We extracted the zero equipotential surface of the fault potential
field (a) to reconstruct the surface model of the Nacha Fault, which divides the study area into two sub-domains (b). In each sub-domain, the
coefficients of the HRBF linear system were separately solved according to the joint samplings of the SPF and its gradient.

rection of 45◦; a dip angle of about 70◦; and a total length
of about 12 km, extending outside the study area. The foot-
wall slid to the west relative to the hanging wall, and the slip
distance is about 600 m. There are two synclines (I and III)
and an anticline (II) in the study area. Syncline III is located
in the middle of the study area with a high symmetry. The
axis of syncline III strikes nearly northeast, and its southern
limb is cut by the Nacha Fault. Anticline II is located in the
northwest of the study area with a good symmetry, the fold
axis striking about 30◦ northeast.

Faults, unconformable strata, and intrusive rocks all cause
discontinuities in a SPF (Calcagno et al., 2008). We used the
fault surface samplings to interpolate the potential field and
extract the surface model of the Nacha Fault (Fig. 7).

According to the comprehensive stratigraphic column, the
burial depth of each stratigraphic interface relative to the top
surface of the Quaternary was used as the attribute value of
the SPF (Fig. 8) for implicit-function interpolation. The SPF
defines the 3D space as a scalar function f (p) at any point p,
where f is defined as the relative burial depth in this study.
Each point inside of a stratum has its own burial depth rela-
tive to the top surface of the Quaternary; therefore, the depth
values in the field decrease gradually from bottom to top in
strata. When the relative burial depth is used as the attribute
value of the SPF, we can set the initial gradient magnitude
‖g‖ ∼= 1 if the strata underwent heterogenous deformation.
However, if we use geological age as the attribute value of
the SPF, ‖g‖ can no longer be initially assumed to be 1 be-
cause the stratigraphic age and distance along the gradient
direction are from different measured variables.

Based on the geological map and DEM of the study area,
we produced a series of cross-sections (Fig. 9). However, the
cross-sections were presented in 2D form. According to the

necessary geographic projection parameters and scale, we
derived the mapping relationship between 2D and 3D. Fi-
nally, we extracted the geological boundary points with 3D
coordinates from 2D cross-sections.

The attribute points and strike and dip points of each strati-
graphic interface and fault plane extracted from the geologi-
cal map and cross-sections were used as the original dataset
for 3D SPF modeling. The 3D points of stratigraphic inter-
faces extracted from the geological map and cross-sections
were regarded as samplings of the SPF. The gradient vec-
tors which are transformed from the off-contact stratigraphic
strike and dip points were regarded as the samplings of the
gradient of SPF.

5.2 Optimizing gradient magnitude

There are 1410 known on-contact attribute points and 34 off-
contact strike and dip points scattered throughout the study
area (Fig. 10a). The known strike and dip sampling points
are scattered on the southern limb of fold I, the northern and
southern limbs of fold II, and the northern and southern limbs
of fold III. There are 17 strike and dip sampling points on
the northern side of the Nacha Fault and 17 strike and dip
sampling points on the southern side. The distribution of the
dip directions and dip angles is shown in Fig. 10b.

First, we set the initial gradient magnitude to 1.0 and cal-
culated the x-, y-, and z-axis components of the gradient vec-
tor field according to the dip direction and angle of the strike
and dip points. We constructed HRBF solution matrices on
the northern and southern side of the Nacha Fault, respec-
tively. Then, we iterated to converge toward the optimized
gradient magnitudes by adding an optimization term to the
HRBF linear system. The termination conditions were met
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Figure 8. Comprehensive stratigraphic column of the study area. In this context, the SPF is fitted by a scalar function of the relative burial
depth. Burial depth decreases as geological time progresses; therefore, earlier-deposited strata are assigned a relatively larger burial depth,
while later-deposited strata are assigned a relatively smaller burial depth.

after 200 iterations in the northern sub-domain and 300 iter-
ations in the southern sub-domain. The gradient magnitudes
became stable, and finally the optimized magnitudes of the
gradient were obtained. The changes in gradient magnitude
are shown in Fig. 11.

On a specific grid resolution, we modeled the scalar field
of gradient magnitude before and after optimization for each
strike and dip point (Fig. 12). Furthermore, we cut four cross-
sections of the gradient magnitude scalar field, as shown in
Fig. 13.
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Figure 9. Geological cross-sections, mapped according to the planar geological map and DEM of study area. The cross-sections were mapped
by vertical extension according to the boundaries and strike and dip points of strata along the layout lines of cross-sections.

5.3 Stratigraphic potential field (SPF)

After the optimized gradient magnitude for each strike and
dip point was obtained, all scattered attribute points and
strike and dip points were finally substituted into the HRBF
linear system to respectively solve the HRBF coefficients
(αi , βj ) and the polynomial coefficients (c1c2c3c4) for each
side of the Nacha Fault. On a specific grid resolution, we
generated the regular discrete grids as interpolated points in
3D space. Then the points above the digital elevation model
(DEM) were removed from the interpolated points. Finally,
we reconstruct the SPFs in 3D space before and after opti-
mization of the gradient magnitude according to the respec-
tive HRBF interpolant of each sub-domain. In this study,
the SPF represents the relative burial depth in 3D space.
The larger field value represents earlier-deposited strata with
larger relative burial depth, and vice versa. The same strati-
graphic interfaces in different sub-domains share the same
field value. The field values change abruptly at the Nacha
Fault because the conformable strata were cut by the fault
plane.

The SPFs are both constrained so that the interpolated SPF
values at the attribute points are equal to the initial relative

burial depths, but the SPF values may abruptly change or pro-
duce outliers at some locations. Obviously, the SPF values
change nonuniformly with gradient magnitude before opti-
mization (Fig. 14a), which caused the SPF values that origi-
nally belonged to the Carboniferous strata to be interpolated
as those of other strata and sequentially resulted in incorrect
extraction of the stratigraphic interfaces. This nonuniform
gradient change in stratigraphic potential field causes sep-
arated, discontinuous, and dispersed stratigraphic interfaces
to be extracted through equipotential surface tracking. How-
ever, reconstructing the SPF through optimization of gradient
magnitude for each strike and dip point (Fig. 14b) avoids the
generation of either abnormal field values or of the wrong
equipotential surfaces. This geologically plausible SPF can
be appropriately constrained by the known gradient direction
and the optimized gradient magnitude at the strike and dip
sampling points.

We cut the SPF along four section lines, and the SPF value
also changes more uniformly from older to younger strata
after gradient magnitude optimization than using a fixed gra-
dient magnitude of 1, as shown in Fig. 15.
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Figure 10. Scattered attribute points and strike and dip points of strata: (a) known attribute points and strike and dip points of strata and
(b) distribution of the dip directions and dip angles of the strike and dip points, in which the symbols represent different strata, and the colors
represent different limbs of folds.

5.4 Three-dimensional models of strata

Once the field was interpolated in 3D space, the specific
equipotential surfaces were extracted from the implicit volu-
metric function as stratigraphic interfaces within each main-
structure-bounded sub-domain. We used the marching cube
method to extract the equipotential surfaces with a specific
relative burial depth from the stratigraphic interfaces by con-
necting all the points with the same field value in the strati-
graphic potential field (Fig. 16). The interface model on both
sides of the Nacha Fault restores the location of the fault in
the southern limb of syncline III.

Sequentially, according to the range of relative burial
depth of stratigraphic top and bottom, two solid stratigraphic
models were reconstructed from these equipotential surfaces
before and after optimization of gradient magnitude for each
strike and dip point, respectively, combined with sub-domain
boundaries and the DEM (Fig. 17). The HRBF interpolation
with the initial fixed gradient magnitude of 1 roughly reflects
stratigraphic on-contact information and captures the struc-
ture of syncline I in the north. However, several details are
different from the stratigraphic structure on the geological
map. Where the Nacha Fault passes through syncline III, the
strata on the southern side of the fault plane should corre-
spond to the same strata on the northern side. However, the
Devonian strata corresponded to the Permian strata in area B,

as shown in Fig. 17a and b, which is inconsistent with the ge-
ological structure. The geological model extracted using the
optimized gradient magnitude for each strike and dip point is
shown in Fig. 17c. Overall, the obtained geometries follow
the shape of the folds and stratigraphic on-contact lines more
closely. From north to south in the study area, anticline II and
syncline III were successfully modeled with the Nacha Fault
correctly represented as an inverse fault that cuts syncline III.
On both sides of the Nacha Fault, the sequence of the strata
is the same, and the model exhibits traces of the fault plane
passing through the stratigraphic surfaces.

Four cross-sections through the solid models (see the geo-
logical map for cross-section lines) were cut, and the cross-
sections of the solid model are more consistent with the
original structural relationships on the geological map af-
ter gradient magnitude optimization than using HRBF with
a fixed gradient magnitude of 1 and RBF without gradient
constraint, as shown in Fig. 18.

The highest stratum and section coincidence percentages
on cross-sections are 74.50 % (T2) and 78.03 % (Section 16)
before optimization, respectively, as shown in Table 1. How-
ever, the highest stratum and section coincidence percent-
ages on cross-sections are 98.99 % (D1) and 98.01 % (Sec-
tions 13 and 15) using the optimized gradient magnitude for
each strike and dip point, respectively, as shown in Table 2.
The total coincidence percentage on cross-sections increases
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Figure 11. Changes in optimization coefficient λ and gradient magnitude: (a) gradient magnitudes for all strike and dip points in the northern
sub-domain, (b) gradient magnitudes for all strike and dip points in the southern sub-domain, (c) optimization coefficients for all strike
and dip points in the northern sub-domain, and (d) optimization coefficients for all strike and dip points in the southern sub-domain. The
corresponding number of strike and dip points can be found in Fig. 6.

Figure 12. Scalar field of (a) gradient magnitude assigning an initial fixed gradient magnitude of 1 for each strike and dip point and (b) gra-
dient magnitude after optimization. Along the northern side of the Nacha Fault in (a), the gradient magnitudes obtained by interpolation in
area B exceed the maximum values. Compared with the scalar field of gradient magnitude before optimization, the scalar field of gradient
magnitude after optimization (b) more smoothly represents changes in the strata. The Carboniferous strata have the largest optimized gradient
magnitude, while the optimized gradient magnitudes of the Devonian strata are smallest.
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Figure 13. Cross-sections of the gradient magnitude field: (a) assigning an initial fixed gradient magnitude of 1 for each strike and dip point
and (b) after optimization.
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Figure 14. Stratigraphic potential field (a) before and (b) after optimization of gradient magnitude. The abnormal SPF values (areas A, B,
and C in panel a) are not continuously distributed along stratigraphic interfaces but appear at irregular intervals.

from 67.03 % to 98.27 % after optimizing the gradient mag-
nitude.

6 Discussions

The AdaHRBF proposed in this study improves the use of
strike and dip data in SPF modeling by optimization of gra-
dient magnitudes. In addition to use of strike and dip infor-
mation as the gradient directions of SPFs, we use the gradient
magnitude as a new constraint to control the rate of change
in SPF values. The gradient of a SPF is a vector with cer-
tain direction and magnitude, in which the gradient magni-
tude provides constraints on the thickness of deformed strata.
Therefore, it is extremely important to construct HRBF linear
systems with accurate gradient magnitudes in 3D SPF mod-
eling. As a “chicken-and-egg” problem, it is difficult to de-
termine the exact gradient magnitude through the geological
measurements or prior structural knowledge. We proposed an
iterative optimization method which alternates between esti-
mation of SPF and gradient magnitudes so that the gradient
magnitudes progressively converge towards the values and
are adaptive to the stratigraphic architecture. The optimized
gradient magnitudes more accurately simulate the variations
in the SPF between the top and bottom surfaces. Besides con-
straints of scattered multivariate Hermite–Birkhoff data, the
generalized RBF (Hillier et al., 2014) reconstructs an im-
plicit function with more constraints of lithologic markers
(inequality) and lineations (tangent). How to integrate these
constraints in our solution to utilize more kinds of modeling
data shall be studied in future work.

Jessell et al. (2014) highlighted two limitations of current
implicit modeling schemes: (1) they are incapable of inter-
polating or extrapolating a fold series within a continuous
structural style; (2) the shape of fold hinges they produce
is not controlled and may yield inconsistent geometries. To

overcome these two limitations, we adopted two strategies:
(1) a 3D stratigraphic-potential-field modeling method based
on HRBF interpolants was used to interpolate a fold series
within a structurally continuous domain; (2) a number of
structural strike and dip points were sampled on both limbs
of the folds to control the geometries of fold hinges. A novel
method for modeling folds uses a fold coordinate system
based on fold axis direction, fold axial surface, and exten-
sion direction and incorporates a parametric description of
fold geometry (e.g., fold wavelength, amplitude, tightness,
and rotation angle) into the interpolation algorithm (Lau-
rent et al., 2016; Grose et al., 2017, 2019), which would be
our future research direction of fine fold modeling based on
AdaHRBF.

There are several choices for the value of the potential
field, e.g., the sorted serial number, burial depth, or depo-
sitional time for each stratigraphic interface (Mallet, 2004).
However, the thickness of the stratum is not necessarily pro-
portional to the sorted serial number and deposition time.
Compared with using the sorted serial number or deposi-
tional age of stratigraphic interfaces as the potential-field
value, choosing the burial depth is more in line with 3D SPF
modeling. We derived the gradient direction from the strike
and dip points; moreover, we used the gradient magnitude as
a constraint to control the rate of change in the SPF.

7 Conclusions

The purpose of this study is to establish a framework for
3D SPF modeling by using the HRBF interpolant with adap-
tive gradient optimization constrained by on-contact attribute
points and off-contact structural strike and dip points. We ap-
plied this method to a study site in the Lingnian–Ningping
area, and a geological map, four cross-sections, and a DEM
were used as original data to model a SPF whose field value
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Figure 15. Cross-sections of the stratigraphic potential field (a) before and (b) after optimization of gradient magnitude.
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Figure 16. Three-dimensional model of the bottom surfaces of strata. The 3D surface model extracted from the potential field shows that the
geometrical shape of each equipotential (iso-depth) surface is smooth, and the topology is consistent.

Table 1. Coincidence percentages on cross-sections using RBF without gradient constraint.

Stratum Section 13 Section 14 Section 15 Section 16 Total

T2 – – 72.73 % 97.05 % 90.82 %
T1 – 56.75 % 86.14 % 88.09 % 85.28 %
P1 92.43 % 92.50 % 81.92 % 98.04 % 96.85 %
C3 73.71 % 77.04 % 80.62 % 87.68 % 80.76 %
C2 71.46 % 74.91 % 70.81 % 100.00 % 79.22 %
C1 85.64 % 84.96 % 80.12 % 98.49 % 85.09 %
D3 99.65 % 98.47 % 98.35 % 100.00 % 99.16 %
D2d 72.02 % 81.94 % – – 76.70 %
D1 100.00 % 95.79 % – – 97.94 %

Total 93.60 % 90.57 % 83.36 % 95.29 % 90.70 %

was taken from the relative burial depth of the stratigraphic
interfaces. The results show that the implicit modeling of
the SPF by HRBF interpolants and optimization of gradient
magnitude can be effectively adapted to 3D geological mod-
eling using the sampling points from a geological map and

cross-sections. A SPF can express the parameters of a stra-
tum such as property, shape, and topology in 3D space.

However, the modeling process is complicated because
the sub-domains are required to be divided manually. In ac-
tual geological surveys, the geological structure may be more
complex and include a large number of faults, unconformable
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Figure 17. Three-dimensional stratigraphic models using (a) RBF without gradient constraint, (b) HRBF with unit gradient, and
(c) AdaHRBF with optimized gradient magnitude. Many abnormal potential-field values and additional unreasonable geological bodies
were extracted from the model before optimization, especially in areas A, B, and C, as shown in (a) and (b). These abnormal potential-field
values lead to the occurrences of additional strata fragments that do not conform to the rule of sediments.

Table 2. Coincidence percentages on cross-sections using HRBF with an initial fixed gradient magnitude of 1 for each strike and dip point.

Stratum Section 13 Section 14 Section 15 Section 16 Total

T2 – – 78.14 % 73.27 % 74.50 %
T1 – 78.35 % 70.74 % 77.54 % 74.48 %
P1 13.66 % 47.32 % 68.13 % 77.84 % 60.90 %
C3 15.01 % 57.26 % 76.80 % 78.74 % 64.26 %
C2 13.53 % 53.57 % 74.13 % 91.83 % 63.15 %
C1 18.84 % 80.65 % 81.10 % 76.12 % 63.50 %
D3 75.62 % 53.27 % 61.53 % 77.99 % 67.08 %
D2d 12.92 % 66.21 % – – 37.91 %
D1 82.11 % 66.58 % – – 74.47 %

Total 57.84 % 60.58 % 72.13 % 78.03 % 67.03 %

strata, and intrusive rocks. Therefore, it is necessary to sepa-
rately identify the boundary of the sub-domains according
to the fault interfaces, unconformable strata, and intrusive
rocks before the 3D geological modeling work. A goal for
future work is to introduce a way to integrate faults (Grose
et al., 2021a) into the implicit model to accommodate dis-
continuity of fault planes. In addition, the 3D orientations
are usually surveyed on the outcrop strata; however, it would

introduce uncertainty if we were to assume that the orien-
tations of a totally subsurface terrain are consistent with its
conformable outcrop strata. Therefore, this uncertainty in the
model should be considered in the modeling process, and
additional geophysical exploration data and geological in-
terpretation should be incorporated into the modeling con-
straints.
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Figure 18. Cross-sections of the solid models. (a) RBF without gradient constraint, (b) HRBF with unit gradient, and (c) AdaHRBF with
optimized gradient magnitude.
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Table 3. Coincidence percentages on cross-sections using AdaHRBF with optimized gradient magnitude.

Stratum Section 13 Section 14 Section 15 Section 16 Total

T2 – – 99.40 % 96.26 % 97.06 %
T1 – 98.07 % 99.30 % 97.04 % 98.14 %
P1 99.32 % 98.20 % 97.89 % 95.18 % 97.12 %
C3 97.17 % 90.66 % 97.03 % 92.47 % 94.00 %
C2 94.82 % 95.28 % 95.53 % 94.55 % 95.08 %
C1 96.30 % 98.47 % 97.40 % 96.20 % 97.22 %
D3 97.68 % 98.58 % 99.12 % 98.77 % 98.41 %
D2d 96.65 % 91.17 % – – 94.08 %
D1 99.41 % 98.55 % – – 98.99 %

Total 98.01 % 97.22 % 98.01 % 95.90 % 97.27 %

Code availability. The source code for the AdaHRBF
is available in MATLAB at GitHub (https://github.com/
csugeo3d/AdaHRBF, last access: 30 October 2022; DOI:
https://doi.org/10.5281/zenodo.7340093; Zhang, 2022).

Data availability. The data for the AdaHRBF are avail-
able at GitHub (https://github.com/csugeo3d/AdaHRBF/
tree/main/Data, last access: 30 October 2022) and
https://doi.org/10.5281/zenodo.7340093 (Zhang, 2022).
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