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Abstract. In recent years, there has been a growing inter-
est in ensemble approaches for modelling the atmospheric
transport of volcanic aerosol, ash, and lapilli (tephra). The
development of such techniques enables the exploration of
novel methods for incorporating real observations into tephra
dispersal models. However, traditional data assimilation al-
gorithms, including ensemble Kalman filter (EnKF) meth-
ods, can yield suboptimal state estimates for positive-definite
variables such as those related to volcanic aerosols and
tephra deposits. This study proposes two new ensemble-
based data assimilation techniques for semi-positive-definite
variables with highly skewed uncertainty distributions, in-
cluding aerosol concentrations and tephra deposit mass load-
ing: the Gaussian with non-negative constraints (GNC) and
gamma inverse-gamma (GIG) methods. The proposed meth-
ods are applied to reconstruct the tephra fallout deposit re-
sulting from the 2015 Calbuco eruption using an ensemble
of 256 runs performed with the FALL3D dispersal model.
An assessment of the methodologies is conducted consider-
ing two independent datasets of deposit thickness measure-
ments: an assimilation dataset and a validation dataset. Dif-
ferent evaluation metrics (e.g. RMSE, MBE, and SMAPE)
are computed for the validation dataset, and the results are
compared to two references: the ensemble prior mean and
the EnKF analysis. Results show that the assimilation leads
to a significant improvement over the first-guess results ob-
tained from the simple ensemble forecast. The evidence from
this study suggests that the GNC method was the most skilful
approach and represents a promising alternative for assimila-
tion of volcanic fallout data. The spatial distributions of the

tephra fallout deposit thickness and volume according to the
GNC analysis are in good agreement with estimations based
on field measurements and isopach maps reported in previ-
ous studies. On the other hand, although it is an interesting
approach, the GIG method failed to improve the EnKF anal-
ysis.

1 Introduction

Multiple hazards are associated with volcanic eruptions in-
cluding lava flows, pyroclastic density currents, lahars, vol-
canic plumes, and tephra fallout. Specifically, the dispersal
of volcanic plumes poses a serious threat to flight safety (e.g.
Clarkson et al., 2016), and the subsequent fallout of tephra
can cause structural damage to buildings and infrastructure
due to excessive loading, as well as disrupting communi-
cation networks, airports, power plants, and water and en-
ergy distribution networks (Wilson et al., 2014). Addition-
ally, fresh fallout deposits may be resuspended by aeolian
processes, affecting the air quality and prolonging the im-
pacts of an eruption many years afterwards (Folch et al.,
2014; Dominguez et al., 2020; Mingari et al., 2020).

The characterisation and quantification of past eruptive
events are also of paramount importance for volcano haz-
ard and risk assessment studies, which infer the likelihood of
future eruption scenarios based on past volcano behaviour.
Explosive volcanic eruptions are often characterised and
classified by means of tephra deposits (Bonadonna et al.,
2015), which provide critical information to infer eruption
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source parameters (ESPs) relevant to hazards, such as erup-
tion column height, mass eruption rate, and total erupted vol-
ume (Martí et al., 2016; Constantinescu et al., 2022). Tra-
ditionally, volcanologists rely on simple field-based mod-
els to obtain certain ESPs (e.g. erupted volume) assuming
an exponential-like decay with distance for some deposit-
related variables such as deposit thickness (Pyle, 1989;
Bonadonna and Costa, 2013). However, it is well-recognised
that this simplistic approach is inappropriate for tephra fall
deposits with complex distribution patterns (e.g. Bonadonna
et al., 1998; Martí et al., 2016). In fact, many deposits ex-
hibit abrupt thickness variations over short distances, dis-
play well-developed secondary maxima, show grain-size bi-
modality (Durant et al., 2009), are stratified deposits with al-
ternating layer characteristics, and include other complexi-
ties that make the reconstruction of tephra fallout deposits
challenging (Scasso et al., 1994).

In contrast, physics-based approaches, built upon volcanic
ash transport and dispersal (VATD) models, include multi-
ple physical parameterisations and are a much more powerful
tool for representing the real distribution of tephra deposits.
However, the accuracy of deterministic models is highly sen-
sitive to uncertain model input parameters (e.g. eruption col-
umn height or physical properties of particles) and the under-
lying meteorological fields. Alternatively, probabilistic mod-
elling approaches provide a framework to incorporate un-
certainties associated with model input data. Specifically,
ensemble-based modelling strategies allow one to charac-
terise and quantify model uncertainties and have been proven
to enhance VATD model skills (Bonadonna et al., 2012;
Madankan et al., 2014; Stefanescu et al., 2014). For exam-
ple, several VATD models have been used to conduct ensem-
ble simulations, including ASH3D (Denlinger et al., 2012),
COSMO-ART (Vogel et al., 2014), HYSPLIT (Dare et al.,
2016; Zidikheri et al., 2018), NAME (Dacre and Harvey,
2018; Beckett et al., 2020), and FALL3D (Sandri et al., 2016;
Folch et al., 2022b; Martinez et al., 2022). Furthermore, dif-
ferent inversion modelling techniques based on ensemble ap-
proaches have been shown to produce improved volcanic ash
forecasts consistent with observations by constraining ash
emission estimates and model parameters (Pelley et al., 2015;
Zidikheri et al., 2017; Harvey et al., 2020).

The incorporation of ensemble capabilities in VATD mod-
els lays the foundation for developing and implementing
ensemble-based data assimilation and inversion techniques
(see Folch and Mingari, 2023, for a recent detailed review).
Two main approaches have been explored in the literature to
assimilate volcanic aerosol observations from satellites: en-
semble Kalman filters (Fu et al., 2016, 2017; Osores et al.,
2020; Pardini et al., 2020; Mingari et al., 2022b) and ensem-
ble particle filter methods (Zidikheri and Lucas, 2021a, b).
Specifically, ensemble Kalman filter (EnKF) methods, used
for sequential data assimilation, are based on the Kalman fil-
ter (Kalman, 1960). They approximate the probability dis-
tributions by an ensemble of system states and assume

that the prior model errors and the observation noise are
Gaussian. However, lower-bounded variables such as water-
vapour mixing ratio (Kliewer et al., 2016), rainfall (Husak
et al., 2007) and aerosol concentrations (O’Neill et al., 2000)
frequently have skewed and near-zero distributions and are
not well-described by Gaussian distributions. As a result, tra-
ditional EnKF methods in VATD models often yield subop-
timal state estimates (Folch and Mingari, 2023).

This study explores two new ensemble-based data assim-
ilation techniques for positive-definite variables and their
implementation in VATD models, the Gaussian with non-
negative constraints (GNC) method and the gamma, inverse-
gamma, and Gaussian ensemble Kalman filter (GIGG-
EnKF), a sequential method proposed by Bishop (2016) for
highly skewed non-negative distributions. Posselt and Bishop
(2018) applied this approach for the non-linear data assim-
ilation of precipitation rate observations and compared the
results with the analysis produced by a classical EnKF algo-
rithm. It was concluded that the analysis ensemble of pre-
cipitation rates produced by the GIGG-EnKF bears a closer
resemblance to the Bayesian posterior when the distribution
is skewed.

This study aims to reconstruct the tephra fall deposit of the
2015 Calbuco eruption from a scattered set of observations.
The rich existing dataset available for this eruption, consist-
ing of deposit samples collected up to 500 km downwind
from the volcano, provides an excellent test case to evaluate
the proposed methodology. The Gaussian with non-negative
constraints (GNC) method and the gamma inverse-gamma
(GIG) method, based on the GIG equation set proposed by
Bishop (2016), are used to assimilate deposit thickness data.
Both methods are used here to reconstruct a complete map
of the tephra fall deposit from a dataset of uncertain obser-
vations and an ensemble of model realisations based on nu-
merical simulations performed with the FALL3D dispersal
model. In addition, a technique for emission source inversion
based on the GNC method is also presented and discussed.
As an initial step, this paper is focused on the assimilation
of tephra deposits, which is crucial for long-term tephra haz-
ard assessment, leaving the assimilation of volcanic clouds
and the potential use of these two methods in operational ash
forecast contexts to future studies.

The paper is organised as follows. The ensemble-based
data assimilation methods are introduced in Sect. 2. A brief
description of the 2015 Calbuco eruption is outlined in
Sect. 3 where details about the observational datasets are
given. Subsequently, Sect. 3 describes the numerical exper-
iments and shows the results obtained by both methods. In
Sect. 4, the GNC method is used to invert the Calbuco source
term. Section 5 focuses on potential implications of the pro-
posed methodology, and possible future applications and lim-
itations are further discussed. Finally, conclusions are drawn
in Sect. 6.
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2 Methodology

Data assimilation (DA) techniques have been widely used to
study and forecast geophysical systems and have been ap-
plied in a variety of research and operational settings (Car-
rassi et al., 2018). Data assimilation methods aim at obtain-
ing an estimation of the state of a dynamical system (e.g. a
component of the Earth system such as the atmosphere or the
ocean) by exploiting information from numerical models and
observations.

The ensemble Kalman filter (EnKF) is a remarkable ex-
ample of a sequential data assimilation scheme based on the
Kalman filter theory (Kalman, 1960) using a Monte Carlo ap-
proach (Evensen, 1994; Burgers et al., 1998). Given a prob-
ability density function (PDF) of the model state (the so-
called prior or forecast) and the observation likelihood, the
goal is to estimate the updated PDF (the so-called posterior
or analysis) taking into account the observation likelihood.
Assume that the state of the physical system is represented
by a model state vector x ∈ Rn, where n is the system dimen-
sion, and that the observations are given by a vector yo

∈ Rp,
where p is the number of observations. EnKF uses an en-
semble of model states to represent the distribution of the
model state. Specifically, this ensemble-based data assimila-
tion technique relies on a forward model, which is used to
generate an ensemble of trajectories of the model dynamics,
and the state estimate of the system is represented by an en-
semble of m system state vectors xi ∈ Rn, with m being the
ensemble size. The average model state vector x ∈ Rn can be
approximated by the ensemble mean:

x ≈
1
m

m∑
i=1

xi, (1)

whereas the ensemble-based error covariance matrix is used
to approximate the covariance P according to

P≈
1

m− 1
X′X′ᵀ, (2)

where the matrix of ensemble perturbations X′ ∈ Rn×m is
given by [x1− x, . . .,xm− x]. In the EnKF framework, all
PDFs are assumed to be Gaussian, and consequently Eqs. (1)
and (2) for mean and covariance fully define the multivariate
normal distribution. The EnKF method decomposes into a
forecast step and an analysis step. In the forecast step, an en-
semble of model states is evolved up to the observation time
using the forward model in order to estimate a prior ensemble
of model states x

f
i (i = 1. . .m). No observation information

is included in this forecast or prior state estimate. The anal-
ysis step is performed by updating each individual ensemble
member according to

xa
i = x

f
i +K

(
yo
i −Hx

f
i

)
(3)

in order to generate a posterior ensemble of model states xa
i

(i = 1. . .m). The p-dimensional vectors yo
i in Eq. (3) rep-

resent an ensemble of perturbed observations with ensemble

mean equal to the actual observation vector (yoi = yo) and er-
ror covariance R; the observation operator is denoted by H,
and the matrix K is the ensemble-based Kalman gain:

K= PfHᵀ(HPfHᵀ
+R)−1. (4)

The ensemble-based versions of the matrices P and mea-
surement covariance matrix R are used here. Using Eq. (3),
it is possible to obtain the EnKF update equations for
the (ensemble-based) mean and covariance (Evensen, 1994;
Burgers et al., 1998):

xa
= xf +K(yo

−Hxf ), (5a)

Pa
= (1−KH)Pf . (5b)

2.1 Deposit reconstruction methods

In this work, the state of the physical system is fully
determined by the two-dimensional tephra deposit load
(in kgm−2), and the components of the model state vector x

represent the mass load at the n grid points of the computa-
tional domain. The FALL3D model for atmospheric passive
transport and deposition of volcanic tephra is used to pro-
duce the prior ensemble of volcanic deposit states x

f
i by run-

ning multiple instances of the forward model. The eruption
source parameters (ESPs) are perturbed around a first-guess
configuration in order to define a model run for each ensem-
ble member, as detailed in Sect. 3.3.

The observations vector yo represents a list of scattered
deposit thickness observations (in cm). In consequence, the
operator H that relates the model state to the measurements
can be considered to be linear in the present case: the de-
posit mass load (model state) and the deposit thickness at the
measurement site (observation) are related by a proportion-
ality factor, i.e. the bulk density of the tephra deposit, which,
for the sake of simplicity, is assumed to be constant and equal
to 800 kgm−3. In addition, horizontal bi-linear interpolations
are also required in order transform from the computational
domain to the measurement sampling sites.

According to the analysis scheme in the EnKF, given the
prior ensemble and the observations, the deposit can be re-
constructed by means of Eq. (5a) since the analysis ensemble
mean can be interpreted as the best estimate (e.g. see Burg-
ers et al., 1998) due to the underlying assumption in Kalman
filters that errors are Gaussian. However, the EnKF analysis
becomes suboptimal for non-Gaussian distributions. Specif-
ically, when dealing with dispersal models of aerosols and
volcanic tephra, the Gaussian assumption is critical and the
EnKF analysis scheme can lead to unrealistic results in those
cases, as will be shown in Sect. 3. In consequence, two new
methods are proposed for the reconstruction of volcanic de-
posits. To this purpose, let us rewrite Bayes’ theorem in terms
of model state mapped in the observation space. Assume that
a linear observation operator H ∈ Rp×n exists, which trans-
lates the model state x into the observation space:

y =Hx, (6)
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where y represent a p-dimensional vector. In a probabilistic
framework, the PDF of the state y conditioned to the obser-
vation yo is relevant to the assimilation techniques and can
be computed via Bayes’ theorem (Jazwinski, 1970):

P(y|yo)=
P(yo
|y)P (y)

P (yo)
, (7)

where P(y|yo) is the posterior distribution, P(y) is the prior
PDF, P(yo

|y) is the likelihood of the data conditioned on
the state y, and P(yo) is the marginal distribution of the ob-
servation. In consequence, the determination of the posterior
PDF requires the specification of both the prior and the ob-
servational PDFs. This paper proposes two ensemble-based
assimilation strategies which rely on Eq. (7) and differ in
the assumptions made about these PDFs. The GNC method
(Sect. 2.2) uses an all-at-once assimilation approach look-
ing for the model state that maximises the vectorial form of
Eq. (7) and observations are assimilated all at once. In con-
trast, the GIG method (Sect. 2.3) uses a serial assimilation
approach in which the univariate version of Eq. (7) is explic-
itly written for each single observation and the full dataset of
p observations is assimilated in a sequential way.

2.2 The GNC method

The Gaussian with non-negative constraints (GNC) method
assumes a multi-dimensional Gaussian probability distribu-
tion for y, defined in Eq. (6), given as

P(y)∝ exp
{
−

1
2
(y− y)ᵀP−1(y− y)

}
, (8)

where P ∈ Rp×p is the error covariance matrix and y ∈ Rp is
the average model state vector in the observation space. Sim-
ilarly, for the sake of simplicity, measurements are assumed
to be normally distributed with observation error covariance
matrix R ∈ Rp×p, i.e.

P(yo
|y)∝ exp

{
−

1
2
(yo
− y)ᵀR−1(yo

− y)

}
. (9)

The most likely state is the one that maximises the pos-
terior PDF, as in Eq. (7), or, equivalently, the one that min-
imises the GNC cost function J :

J (y)∝ (y−y)ᵀP−1(y−y)+ (yo
−y)ᵀR−1(yo

−y). (10)

Note that the expression above is actually very similar to
the cost function used in classical variational methods (e.g.
3D-Var, Carrassi et al., 2018) with the difference that y plays
the role of the model background state in VAR methods,
and the first term in Eq. (10) is computed in the observa-
tion space rather than in the model space as usual. This is
justified because expressing the functional J in the obser-
vation space is advantageous in cases in which observations
are localised and/or nearly zero, i.e. circumscribed to a por-
tion of the computational domain (this is what typically oc-
curs for volcanic clouds and fallout deposits). Moreover, the

functional in Eq. (10) yields a greatly reduced system when
compared to classical VAR methods because the observation
space normally has a much lower dimension (p� n).

Given a prior ensemble of m state vectors xi representing
m model realisations at the analysis time, the GNC method
looks for the best linear estimate of the system state in the
subspace spanned by the ensemble of vectors:

x = w1x1+ . . .+wmxm, (11)

wherewi ≥ 0 (i = 1. . .m) is a set of non-negative weight fac-
tors for each ensemble member. The important point here is
that the non-negative constraints on wi relax the Gaussian
hypotheses and avoid the occurrence of non-physical solu-
tions. The linearity of the observation operator H allows the
analysis to be expressed in the observation space as

y = w1y1+ . . .+wmym = Yw, (12)

where yi =Hxi and the matrix Y ∈ Rp×m is defined by
[y1, . . .,ym]. The ensemble mean is used to approximate the
average model state vector y ∈ Rp, i.e.

y ≈
1
m

m∑
i=1

yi, (13)

whereas the ensemble-based error covariance matrix is used
to approximate P according to

P≈
1

m− 1
Y′Y′ᵀ, (14)

where the matrix of ensemble perturbations Y′ ∈ Rp×m is
given by [y1− y, . . .,ym− y]. Replacing Eqs. (12)–(14) in
Eq. (10), the GNC cost function J can be expressed as the
equivalent quadratic form:

J (w)=
1
2
wᵀQw+ bᵀw+ . . . (15)

with

Q= Yᵀ(P−1
+R−1)Y, (16a)

b =−Yᵀ(P−1y+R−1yo). (16b)

In order to find the optimal vector of weight factors w, the
optimisation problem minw≥0J (w) must be solved. Then,
the analysis vector state xa can be computed by replacing
the optimal w in Eq. (11). The minimisation of the quadratic
form in Eq. (15) subject to the constraints wi ≥ 0∀i is a non-
negative quadratic programming problem, and there is no
analytical solution for the global minimum due to the non-
negativity constraint. However, it can be solved using the it-
erative approach proposed by Sha et al. (2007) as

wi← wi

−bi +
√
b2
i + aici

ai

 (17)
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Figure 1. Iterative approach to minimise the GNC cost function J
subject to the non-negativity constraints. Under the multiplicative
updates in Eq. (17) the cost function decreases monotonically. In
this particular example, the convergence required more than 104 it-
erative steps.

as long as the matrix Q is symmetric and positive semi-
definite, as can be easily verified from Eq. (16a). Under the
multiplicative updates in Eq. (17), the cost function decreases
monotonically to the value of its global minimum as shown
by Sha et al. (2007). The vectors a = A+w and c = A−w

must be updated in each iterative step, where A+ = |Q| +Q
and A− = |Q|−Q. For illustrative purposes, Fig. 1 shows the
decrease in the normalised cost function, defined as

√
J/p,

under the multiplicative updates in Eq. (17) for the case study
presented later in Sect. 3. More than 104 iterative steps were
required to get residuals low enough to satisfy the conver-
gence criteria.

2.3 The GIG method

Bishop (2016) introduced a variation of the ensemble
Kalman filter (EnKF) that solves the univariate Bayes’ theo-
rem for non-negative variables with skewed (asymmetrical)
probability distributions. The so-called GIGG-EnKF (with
GIGG standing for gamma, inverse-gamma, and Gaussian)
allows non-negative variables typically involving near-zero
values (i.e. with right-skewed probability distributions), such
as aerosol, water vapour, cloud, and precipitation concen-
trations, to be directly assimilated, thus avoiding the use
of Gaussian anamorphosis non-linear transformations (e.g.
Amezcua and Leeuwen, 2014). The GIGG-EnKF algorithm
is based on the generalised two-stage multivariate ensemble
filter described by Anderson (2003). The first stage involves
the univariate GIGG-EnKF in which an ensemble-based es-
timate of the posterior distribution of the observed variable
is generated from a single observation and a prior ensemble
of state estimates. In the second stage, the univariate method
is extended by propagating this information to the complete
model state vector using a linear regression approximation.

According to the strategy proposed by Bishop (2016), in
the first step, Bayes’ theorem is solved in the univariate form
of Eq. (7) assuming a distribution pair for the prior prob-
ability and the likelihood PDF of the error-prone observa-
tions given the truth, respectively. A single observation is
assimilated using an appropriate equation set depending on
three different cases: GIG, IGG, and G. The GIG equation
set is aimed at situations in which the prior can be described
by a gamma distribution and the observation likelihood can
be represented by an inverse-gamma distribution. In addi-
tion, Bishop (2016) introduced the IGG equation set (inverse-
gamma prior and gamma observation likelihood) and the G
equation set (Gaussian distributions). Volcanic aerosols have
been found to be well-approximated by gamma distributions
(Mingari et al., 2022b). Similarly, it is shown in this paper
that the prior distributions of deposit mass loading can be
well-represented to some extent by gamma distributions (see
Sect. 3.4). Consequently, this paper will focus exclusively on
the GIG case. In the GIG case, the posterior probability is
given by a gamma PDF:

P
(
yj |y

o
j

)
∝ y

(
5r
j

)−1
−1

j exp

{
−

yj

5r
j y

a
j

}
, (18)

where yj and yo
j are the j th components of the vectors y

and yo, respectively. The posterior univariate gamma PDF is
characterised by two parameters, namely the analysis mean
ya
j and the type 1 relative error variance of the analysis5r

j :=

var(ya
j )/(y

a
j )

2, that in the GIG method are given by

1
ya
j

=
1

y
f
j

+
P̃ r
j

R̃r
j + P̃

r
j

 1
yoj
−

(
R̃r
j + 1

) 1

y
f
j

 , (19a)

(
5r
j

)−1
=

(
R̃r
j

)−1
+

(
P̃ r
j

)−1
, (19b)

where P̃ r
j and R̃r

j are the type 2 relative error variance of
the prior and observations, respectively (see Table A1 in the
Appendix for details).

In order to generate an analysis ensemble ya
ji with the low-

order moments of the posterior distribution being consistent
with Eqs. (19a) and (19b), Bishop (2016) provides the fol-
lowing stochastic equation for the case of a univariate gamma
prior and inverse-gamma observation-likelihood PDFs.

ya
ji − y

a
j

ya
j

=
y
f
ji − y

f
j√(

y
f
j

)2
+ var

(
y
f
ji

) + P̃ r
j

(
P̃ r
j + R̃

r
j

)−1
×

×


zji − zj√(

zj
)2
− 2var

(
zji
) − y

f
ji − y

f
j√(

y
f
j

)2
+ var

(
y
f
ji

)
 (20)

Here, ya
j can be computed using Eq. (19a). Equation (20)

ensures that the analysis ensemble ya
ji is consistent with
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the type 1 relative error variance of the posterior given by
Eq. (19b) provided zji is randomly sampled from a gamma
PDF with type 1 relative error varianceRzj and mean zj given
by(
Rzj

)−1
=

(
R̃r
j

)−1
+ 2, (21a)

zj =

(
R̃r
j

)−1
+ 2(

R̃r
j

)−1 yo
j . (21b)

In addition, the ensemble generated in this way is ensured
to converge to the true posterior PDF for large ensembles.

The univariate case is extended according to the second-
stage linear regression step proposed by Anderson (2003) in
order to find the analysis ensemble for the complete model
state vector. The update of the kth model state vector variable
of the ith ensemble member due to the j th observation is
computed according to

xa
ki = x

f
ki +

cov
(
x
f
k ,y

f
j

)
var
(
y
f
j

) (
ya
ji − y

f
ji

)
. (22)

The inverse-gamma PDFs assign non-zero probability
densities only for positive observations, and, as a result, zero
observations cannot be properly assimilated using the GIG
equation set (see e.g. Eq. 19a). This problem is addressed
here by redefining zero observation data according to

yo
j ← r × εmin, (23)

where r ∈ (0,1] is a random number and εmin is a typical
error expected for zero-valued observations of deposit thick-
ness (assumed to be εmin= 1 mm in this work since only vis-
ible tephra deposits are considered here).

The GIG method is a sequential procedure: a single ob-
servation is assimilated in order to update the prior ensemble
forecast using the GIG equation set; subsequently, this pro-
cedure is repeated until all observations have been sequen-
tially assimilated. In contrast, the GNC method described in
Sec. 2.2 represents an all-at-once assimilation technique. An-
other important difference is that the GIG method is stochas-
tic; i.e. different applications of the method will lead to dif-
ferent realisations of the analysis. To summarise, a pseu-
docode of the sequential procedure used to implement the
GIG method is detailed in Algorithm 1.

3 Reconstruction of the 2015 Calbuco deposit

In this section, the procedures described in Sect. 2 are applied
to the 2015 Calbuco eruption in order to obtain the analysed
deposit thickness. With this in mind, a total of 204 field mea-
surements of deposit thickness will be considered for assim-
ilation and validation purposes. This dataset is composed of

Algorithm 1 Pseudocode of the GIG method based on the
Bishop (2016) algorithm for the case in which the prior is
a gamma distribution and the observation likelihood is an
inverse-gamma distribution.

Require: List of observations {yo
j
} with their relative errors

Ensure: Analysis ensemble xa
ki

1: get xf
ki

FGenerate the prior ensemble
2: procedure GIG Method
3: randomly shuffle observation list
4: for all yo

j
do FIterate over observations

5: if yo
j
= 0 then

6: r← random number ∈ (0,1]
7: yo

j
← r ∗ εmin FRedefine zero observations

8: end if
9: ya

j
← Eq. (19a)

10: ya
ji
← Eq. (20)

11: xa
ki
← Eq. (22) FGenerate the analysis ensemble

12: x
f
ki
← xa

ki
FUpdate the prior ensemble

13: end for
14: end procedure

160 measurements reported by Van Eaton et al. (2016) and an
independent dataset of 44 measurements provided by Floren-
cia Reckziegel (personal communication, September 2020).
Figure 2 shows the location of the sampling sites for both
datasets.

3.1 Fallout deposit and datasets

The 2015 eruption of the Calbuco stratovolcano (41.33◦ S,
72.61◦W) in southern Chile involved two major eruptive
pulses on 22–23 April along with a third minor pulse on
30 April (Romero et al., 2016). During the most energetic
phase on 23 April, stratospheric eruption columns higher
than 15 km above the vent level (∼ 17 km above sea level)
were developed. Regions over southern Chile and the Argen-
tinian Patagonia were severely affected by tephra fall. Ac-
cording to different estimations based on field studies, de-
posit volume ranges between 0.27 and 0.58 km3 (Romero
et al., 2016; Van Eaton et al., 2016).

The availability of independent and comprehensive
datasets of field observations makes the Calbuco tephra de-
posit an excellent case study. Van Eaton et al. (2016) re-
ported the thickness and stratigraphy of the fall deposits at
163 sampling sites within a 500 km radius from the volcano
summit. In addition, a complementary dataset composed of
45 independent measurements of deposit thickness (Floren-
cia Reckziegel, personal communication) distributed over a
larger region is also available (Fig. 2). Finally, a hand-drawn
isopach map built from a third independent dataset (Romero
et al., 2016) is also used to evaluate the tephra deposit dis-
tribution. The corresponding isopachs for 0.1, 0.5, 1.0, 2.0,

Geosci. Model Dev., 16, 3459–3478, 2023 https://doi.org/10.5194/gmd-16-3459-2023



L. Mingari et al.: Reconstructing tephra fall deposits 3465

Figure 2. Location of the sampling sites corresponding to the dataset reported by Van Eaton et al. (2016) (blue diamond) and an independent
dataset composed of 45 measurements (red circle) provided by Florencia Reckziegel (personal communication, September 2020). The map
also shows the isopachs of fall deposit thickness in millimetres reported by Romero et al. (2016) used for validation purposes in this work.

Table 1. Calbuco deposit datasets considered in this study.

Reference Data type Purpose

Van Eaton et al. (2016) Thickness at Data assimilation
163 locations and validation

Reckziegel (unpublished) Thickness at Data assimilation
45 locations and validation

Romero et al. (2016) Isopach map Data validation

and 4 mm are represented in Fig. 2. The three datasets are
summarised in Table 1.

It is interesting to note the presence of a secondary thick-
ness maximum ∼ 200 km downwind from the vent, located
around two major cities of the Argentinian Patagonia, Junín
de los Andes (39.95◦ S, 71.07◦W) and San Martín de los An-
des (40.16◦ S, 71.35◦W), likely due to ash aggregation pro-
cesses (e.g. Costa et al., 2010). The emergence of this distal
maximum indicates that complex plume dynamics were in-
volved in the volcanic eruption.

The assimilation methods require a dataset of measure-
ments along with the corresponding absolute or relative er-
rors. Specifically, the GNC method requires the absolute er-

ror εj associated with the j th measurement yo
j (the observa-

tion error covariance matrix R is assumed to be diagonal with
elements ε2

j ). On the other hand, the GIG method requires
the relative error εr

j = εj/y
t
j , where yt

j is the true value of
the j th observation.

The strategy adopted in this work to provide reasonable
error estimates is based on a clustering algorithm, and obser-
vation error standard deviations are assumed to be dependent
on the measured value. In summary, observational data are
organised into groups with similar characteristics, and an ab-
solute and relative error is assigned to each group or cluster.
The error for the j th measurement yo

j is approximated by the
standard deviation associated with the corresponding clus-
ter; the true value yt

j , required to estimate relative errors, is
approximated by the cluster mean value. A more detailed ex-
planation of the strategy used to estimate errors can be found
in the Supplement.

3.2 Validation metrics

As validation metrics, we consider the weighted versions of
the mean bias error (MBE) and the root mean square er-
ror (RMSE) to measure the differences between observations
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and analyses, defined as

MBE=
1
p

p∑
j=1

ωi

(
yo
j − yj

)
, (24a)

RMSE=

√√√√ 1
p

p∑
j=1

ω2
i

(
yo
j − yj

)2
. (24b)

Notice that if the non-weighted (ωj = 1) versions of
Eq. (24b) are used, the MBE (in cm) quantifies the tendency
to overestimate or underestimate observations for the over-
all dataset, whereas the RMSE (in cm) measures the aver-
age magnitude of the errors. These two metrics are suitable
when a uniform distribution of errors is expected. However,
the datasets in this work contain measurements spanning 4
orders of magnitude, and the assumption of a constant ab-
solute error seems to be inappropriate in this case because
only proximal data (i.e. the largest measurements of deposit
thickness) contribute significantly to the non-weighted ver-
sions of MBE and RMSE. Instead, in order to treat the devi-
ations more evenly, the observation uncertainties are used to
define the weights according to ωj = 1/εj . These weighted
versions of MBE and RMSE represent dimensionless evalua-
tion metrics, and the impact of the assimilation can be better
characterised by means of these metrics. Ideally, the MBE
should be close to zero and RMSE should be close to 1.

Another relative metric used to evaluate the deposit recon-
struction is the symmetric mean absolute percentage error
(SMAPE), defined as

SMAPE= 100×
2
p

p∑
j=1

|yoj − yj |

|yoj | + |yj |
, (25)

and is expressed in percentages. Notice that this metric does
not depend on the observation errors.

3.3 Ensemble modelling

Numerical simulations were carried out using the lat-
est version release of FALL3D (v8.2), an open-source
offline Eulerian model for atmospheric transport and
deposition of aerosols and particles, including tephra
species. FALL3D solves the so-called advection–diffusion–
sedimentation (ADS) equation (Folch et al., 2020; Prata
et al., 2021). The new FALL3D version has been designed to
support increasingly larger scientific workloads and prepare
the code for the transition to extreme-scale computing sys-
tems (Folch et al., 2023). Specifically, the code version v8.x
has been released with several improvements over previous
versions, including improvements in the model physics, nu-
merical algorithmic methods, and computational efficiency.
In addition, from version v8.1 onwards, the FALL3D model
enables ensemble simulations to be performed very effi-
ciently by means of a single parallel task (Folch et al.,
2022b). Ensemble modelling allows one to characterise and

Table 2. FALL3D model configuration parameters for the 2015 Cal-
buco runs.

Parameter Value

Ensemble size 256
Resolution 0.05◦× 0.05◦

Number of grid points 180× 160× 45
Species 40 tephra bins
Grain-size distribution bi-Gaussian
Run time 100 h
Emission source Suzuki source (Pfeiffer et al., 2005)
Mass emission rate Estimated from column height

(Degruyter and Bonadonna, 2012)

quantify model uncertainties due to poorly constrained input
parameters and errors in the model physics parameterisations
or the underlying model-driving meteorological data. In ad-
dition, the ability to generate ensemble runs makes it possi-
ble to improve forecasts by incorporating observations using
different ensemble-based data assimilation techniques.

The configuration of the FALL3D model used in this
work is summarised in Table 2. A three-dimensional com-
putational domain with a horizontal resolution of ∼ 4 km
(0.05◦) and 180× 160× 45 grid points was defined. The to-
tal grain-size distribution (TGSD) of tephra injected into the
atmosphere consists of the sum of two log-normal distribu-
tions (i.e. bi-Gaussian in 8 units) including 40 tephra bins.
The modes and standard deviations of the bimodal distri-
bution were computed using the parameterisation proposed
by Costa et al. (2016), which estimates them from the erup-
tion intensity and magma viscosity. The mode of the coarser
population was located at −1.28 with a standard deviation
of 1.718, while the mode of the finer population was 3.498
with a standard deviation of 1.468. The weight of each sub-
population was set to pc = 0.15 and pf = 0.85 for the coarse
and fine population, respectively. The vertical mass distri-
bution of the source term depends on the eruptive column-
top height (H ) according to the following parameterisation
(Pfeiffer et al., 2005):

dm
dz
∝

{(
1−

z

H

)
exp

[
As

( z
H
− 1

)]}λs
, (26)

whereAs and λs are the so-called Suzuki parameters (Suzuki,
1983; Pfeiffer et al., 2005). Finally, the mass emission rate
was computed from the eruptive column-top height using the
relationship proposed by Degruyter and Bonadonna (2012).

A 256-member prior ensemble was generated by per-
turbing the eruption source parameters (ESPs) and the hor-
izontal wind components around a reference value using
either uniform or truncated normal distributions. Table 3
lists the perturbed model parameters along with the corre-
sponding reference values and sampling uncertainty ranges.
Latin hypercube sampling (LHS, McKay et al., 1979) was
used to efficiently sample the parameter space. Two erup-
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tive phases were considered with reference values of column-
top heights at H = 15 kma.v.l. (above vent level) for each
phase. The column-top height H was independently per-
turbed for each phase assuming a sampling range of ± 25 %.
The source start time for the central member was defined at
21:00 UTC on 22 April 2015 (first phase) and at 04:00 UTC
on 23 April 2015 (second phase) assuming a duration of 1.6
and 6 h for each phase. Source start times and phase duration
were also perturbed.

3.4 Prior ensemble distribution

Before showing how the assimilation methods perform, it
is worth characterising the prior ensemble distribution and
checking whether the assumptions of the GIG method are
fulfilled (i.e. the prior distribution can be approximated by
a gamma PDF). To this purpose, the skewness µ̃3 (i.e. the
third standardised moment, µ3/σ

3) of the prior distribution
was computed from the random samples yfji , i.e. the fore-
casted deposit thickness according to the ith ensemble mem-
ber (i = 1. . .m) at the sampling site of the j th observation
(j = 1. . .p). Figure 3 shows the results for each observation
point by plotting µ̃3 as a function of the ratio of the stan-
dard deviation to the mean, i.e.

√
P r
j (using the notation in-

troduced in Sect. 2.3). For illustrative purposes, the skew-
ness of three different theoretical distributions (Gaussian,
log-normal, and gamma) is shown. As expected, the sym-
metric Gaussian distribution, characterised by µ̃3 = 0, does
not reproduce the positively skewed prior distribution. The
log-normal family of probability distributions represents an
example of distributions for positive-definite variables with
a lower bound. However, as shown in Fig. 3, the log-normal
distribution cannot properly represent the prior distribution
because the theoretical skewness is extremely large in this
case. In contrast, the skewness computed from the prior dis-
tributions (blue dots) is well-approximated by the relation-
ship µ̃3 = 2

√
P r
j , which is the theoretical expression corre-

sponding to the gamma distribution (solid black line).
In order to further understand the similarities between the

gamma and prior distributions, Fig. 4 explicitly shows his-
tograms of sampled prior distributions along with the cor-
responding theoretical gamma distribution for some obser-
vation sites. The theoretical gamma distributions were con-
structed using the sampled first and second moments. As ob-
served, good agreement is found between the two distribu-
tions in almost all cases. Note that when the type 1 relative
error variance is greater than 1 (P r

j > 1) the gamma probabil-
ity density decreases monotonically (Fig. 4a–c) and the mode
becomes zero. In contrast, when P r

j < 1 or, equivalently,
when y2

j > var(yj ), the mode becomes positive (Fig. 4d–p).
The results obtained is this section justify the suitability of
the GIG method to deal with the assimilation of volcanic de-
posit data.

Figure 3. Skewness as a function of the ratio of the standard devia-
tion to the mean for the prior distribution at the sampling locations
(blue circles). Results for some theoretical distributions (Gaussian,
log-normal, and gamma) are also shown for comparison.

3.5 Analyses

In this section, we compare the tephra deposit field recon-
structed according to four strategies: (i) forecast, i.e. the prior
ensemble mean, (ii) the EnKF method, i.e. the analysis en-
semble mean via Eq. (5a), (iii) the GNC method, and (iv) the
GIG method. Notice that the GNC method gives a set of
weight factors for each ensemble member wi (i = 1, . . .,m),
and the best estimate of the system state is obtained by re-
placing the optimal weight factors in Eq. (11). On the other
hand, the GIG method produces an ensemble of analysis
states and the analysis ensemble mean is used for compari-
son purposes in this section. The full dataset of 204 measure-
ments was assimilated to compute the analysis according to
strategies (ii)–(iv).

The results of the tephra fall deposit reconstruction are
shown in Fig. 5. For comparative purposes, the Romero et al.
(2016) deposit contours (hand-drawn isopachs for 0.1, 0.5, 1,
2, and 4 mm) are superimposed in Fig. 5. These contours are
based on an independent dataset of thickness measurements
(different from the assimilation dataset). The presence of the
distal secondary thickness maximum was reproduced by the
reconstructed deposits taking into account the ash aggrega-
tion processes in the numerical simulation. To this purpose,
the parameterisation proposed (Cornell et al., 1983; Folch
et al., 2010) was used assuming an aggregate particle class
having a diameter of 200 µm and a density sampled in a range
centred around 450 kgm−3 (see Table 3).

The forecast (Fig. 5a) indicates an excessively high de-
posited mass. In particular, the 2 and 4 mm contours are over-
estimated by almost an order of magnitude. This is corrected
by the three methods (Fig. 5b and c), which yield analyses
with reduced total mass on the ground.
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Table 3. Ensemble configuration. The perturbed model parameters are eruption column height (H ), eruption phase start time (Ti ), phase
duration (1T ), parameters As and λs of the Suzuki vertical mass distribution, the fine mode of the bi-Gaussian TGSD, the density of
aggregates, and the wind components.

Parameter Reference value Distribution Sampling range

H 15 and 15 kma.v.l.a Uniform ± 25 %
Ti 21 and 28 hb Uniform 15 min
1T 1.5 and 6 h Uniform 15 min
As 6 Uniform 3
λs 3 Uniform 2
Fine mode 3.498 Uniform 28
Density agg. 450 kgm−3 Uniform 100 kgm−3

U wind ERA5c Gaussian ± 20 %
V wind ERA5c Gaussian ± 20 %

a Two eruptive phases are considered. Heights are given in kilometres above the vent level.
b Hours since 22 April 2015 at 00:00 UTC. c ECMWF atmospheric reanalysis (137 model
levels).

The EnKF analysis shows a very noisy spatial distribution
with large oscillations and negative values in some regions,
leading to artificial spatial structures. On the other hand, the
GNC shows smoother deposit thickness contours with a spa-
tial distribution having a more physically plausible structure.
The GIG method represents an intermediate case between the
EnKF and GNC methods. Although this method gives unre-
alistic results as well, the fraction of negative values and the
amplitude of oscillations are noticeably reduced compared to
the EnKF method (negative data were remove and reassigned
to zero).

3.6 Validation

In order to evaluate the performance of the analysis schemes,
the full dataset of observations was split into two subsets:
an assimilation dataset and a validation dataset. The assim-
ilation dataset was used to produce new analyses, and the
validation metrics defined in Sect. 3.2 were computed for the
validation dataset. This methodology ensures that validation
is done against non-assimilated observations. However, the
validation metrics will be meaningless if the assimilation and
validation datasets are strongly correlated (e.g. if measure-
ment sites are very close to each other). The splitting proce-
dure aims to reduce the correlation between the two subsets
and is described in the Supplement.

Figure 6 compares the analysis results at each sampling
site with observations from the assimilation dataset (Fig. 6a–
d) and the validation dataset (Fig. 6e–h) considering a dataset
partition of 60 % and 40 %, respectively. The forecast sys-
tematically overestimates observations (Fig. 6a and e), as al-
ready noted in Sect. 3.5. Since measurements span a range
of 4 orders of magnitude between 10−2 and 102 cm, good
agreement for the entire range of data values turns out to
be challenging. Nevertheless, results for the analyses corre-
sponding to EnKF (Fig. 6b and f), GNC (Fig. 6c and g), and

GIG (Fig. 6d and h) methods show that most of the data lie
within the 1-to-10 ratio band (black dashed lines).

In order to quantify deviations from observations accord-
ing to the prior ensemble mean (forecast) and the analysis
schemes, the evaluation metrics computed for the assimi-
lation dataset (60 %) and the validation dataset (40 %) are
reported in Fig. 7. Since the GIG method is stochastic, six
realisations of the analysis were computed, and the average
over the realisations are reported for each metric. The EnKF,
GNC, and GIG methods improve all metrics compared to
the forecast. In particular, the RMSE computed from the as-
similation dataset (Fig. 7a, green bar) is reduced from 7.1
(forecast) to 0.9 (EnKF) and 1.2 (GNC, GIG). Since the
EnKF provides the best estimate in terms of RMSE, this is
an expected result. However, when the RMSE is computed
for the validation dataset (Fig. 7a, brown bar), the perfor-
mance of EnKF (2.3) and GIG (5.2) methods degrades sig-
nificantly, and the best performance is achieved by the GNC
method (1.1). Note that this result is very close to the ideal
value RMSE= 1, meaning that deviations are similar to the
observation uncertainty (see Eq. 24b).

The bias is presented in Fig. 7b. The GNC MBE (0.3)
is positive, meaning that measurements are underesti-
mated, but this bias is within the observation uncertainty
range since MBE< 1. In contrast, the analysis overes-
timates observations according to EnKF (MBE=−0.5)
and GIG (MBE=−1.5) methods. The best SMAPE re-
sults were obtained for GNC (SMAPE= 31.8 %) and EnKF
(SMAPE= 32.6 %) as shown in Fig. 7c. Finally, Fig. 7d
presents the 1-to-3 ratio band score, defined as the percent-
age of data points within the 1-to-3 ratio band (blue dashed
lines in Fig. 6). Again, the best result was obtained for the
GNC method (84.1 %).

In conclusion, the GNC method outperforms the EnKF
and GIG methods in term of all metrics computed for the
validation dataset. In contrast, the EnKF and GIG analyses
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Figure 4. Histograms of sampled prior distributions along with the corresponding theoretical gamma distribution (solid line) at some selected
observation sites.

perform well over regions around the observation sites, but
the analyses cannot fully capture all deposit features beyond
these regions. In order to illustrate this point, the uncorrected
EnKF analysis (i.e. negative data were not removed) and
the location of the assimilated observations (60 % of the full
dataset) are presented in Fig. 8, where colour-shaded regions
represent positive data and negative data are masked. Large
oscillations emerge in regions without observation data, lead-
ing to artificial structures in the deposit field. This exam-
ple clearly highlights the problems arising when the EnKF
is applied to this case and the importance of dealing with
the assimilation of volcanic deposit data using alternative ap-
proaches.

To conclude this section, different partitions of the obser-
vational dataset are considered, and the RMSE is computed
for the validation dataset. Results are shown in Fig. 9, ex-

pressed in terms of the percentage of assimilated observa-
tions for each partition. Again, the results show that the GNC
outperforms the EnKF and GIG methods systematically, not
just for a particular choice of the validation dataset. Unfortu-
nately, it is not possible to conclude that the GIG method has
improved the results of the EnKF analysis from the evidence
presented in this paper.

4 Source term inversion: application to the 2015
Calbuco eruption

A major advantage of the GNC method is that it allows esti-
mating the eruption source parameters (ESPs) in a straight-
forward way, with inverse modelling coming at no extra com-
putational cost. This is because FALL3D solves an almost
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Figure 5. Reconstructed tephra fall deposit according to the forecast (a), EnKF method (b), GNC method (c), and GIG method (d). The
Romero et al. (2016) deposit contours (isopachs for 0.1, 0.5, 1, 2, and 4 mm) are also superimposed for comparative purposes.

linear problem with weak non-linearity effects (e.g. due to
gravity current, wet deposition, or aggregation), and conse-
quently, a rescaling of the emission source term si associated
with the ith ensemble member according to si→ wisi leads
to a deposit mass loading rescaled correspondingly, with
wi being the weight factor provided by the GNC method. In
this case, the best estimation of the total source term is given
by

sa
=

∑
i

wisi, (27)

where {si} represents the emission source terms of the prior
ensemble members (in kgm−3 s−1). Figure 10 shows the
emission rate profiles resulting from the source inversion, ex-
pressed in terms of the linear source emission strength (in

kgm−1 s−1), i.e. sa
× dA, where dA is the area of the grid

cell.
As most of the 256 weight factors converge to zero, wi→

0, the profiles in Fig. 10 reflect only those ensemble mem-
bers that effectively contribute to the analysed deposit mass
loading. According to the GNC inverse modelling results,
each eruptive phase is characterised by different vertical
mass distribution and emission rates. The first phase results
in higher cloud-top heights, reaching almost 20 kma.s.l.,
whereas the column heights during the second phase remain
at around 16 kma.s.l. Also note that the prior ensemble was
defined assuming the same emission source and sampling pa-
rameters for both eruptive phases. For instance, the ensem-
ble configuration was defined assuming the same reference
value for column heights, i.e. 15 km above vent level for
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Figure 6. Comparison between analyses and observations for the forecast (a, e), EnKF (b, f), GNC (c, g), and GIG (d, h) methods. Panels in
the left column (a–d) present the assimilation dataset (60 % of the full dataset), and the validation dataset (40 % of the full dataset) is shown
in the right column (e–h).
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Figure 7. Evaluation metrics for the prior ensemble mean (forecast) and the EnKF, GNC, and GIG analysis schemes. The metrics were
computed from the assimilation and validation datasets considering a partition of the full dataset of 60 % and 40 %, respectively.

both phases (Table 3) or approximately 17 kma.s.l. There-
fore, the resulting asymmetry between the two pulses ob-
served in Fig. 10 is a consequence of the GNC inversion
procedure. In other words, the GNC method can discard in-
appropriate ensemble members and pick out those that are
consistent with observations.

The time series for mass eruption rate and total erupted
volume are also depicted in Fig. 10. Although the maximum
emission rate is reached during the more intense first phase,
most of the total erupted mass stems from the longer sec-
ond phase. In order to estimate the total erupted volume,
a bulk density of ρb= 800 kgm−3 was assumed (a typical
value for fresh deposits). In particular, the final total erupted
volume was around 0.25 km3. According to the inversion,
the erupted volumes corresponding to the first and second
phases were 0.078 km3 (31.6 %) and 0.169 km3 (68.4 %), re-
spectively. These results are in good agreement with the es-
timations reported by Romero et al. (2016), which give a
total bulk tephra fall deposit volume of 0.27± 0.007 km3

with 62 % of the total volume corresponding to the second
phase.

5 Discussion

Traditional ensemble-based DA methods such as the ensem-
ble Kalman filter (EnKF) are based on the Gaussian hy-
pothesis. However, it is well-known that analyses produced
by these methods are suboptimal when either the model
state variables or the observation errors are not Gaussian-
distributed. Volcanic aerosol concentrations and tephra de-
posit mass loading are two remarkable examples of non-
Gaussian-distributed variables with highly skewed distribu-
tions (Mingari et al., 2022b). This explains why the applica-
tion of EnKF-like methods in VATD models often leads to
non-physical results and oscillations (e.g. the occurrence of
negative concentrations). The ensemble-based GNC method
introduced in this paper and the GIG method (Bishop, 2016)
represent potential alternatives for dealing with the assimila-
tion of volcanic data. In addition, the proposed methodolo-
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Figure 8. Tephra fall deposit according to the EnKF method and
location of the assimilated observations (60 % of the full dataset).
Colour-shaded regions represent positive data, and negative data are
masked in order to illustrate the emergence of large oscillations and
unphysical values in regions with scarce observational data.

Figure 9. RMSE computed for the validation dataset for different
partitions of the full dataset of observations expressed in terms of
the percentage of assimilated observations.

gies could be beneficial beyond volcanic tephra, for exam-
ple in situations involving non-negative variables with right-
skewed probability distributions, such as water-vapour mix-
ing ratio, rainfall, or aerosol concentrations. The GNC and
GIG methods differ in the assumptions made about the prior
distribution and the likelihood of the observation conditioned
on the true state. Both methods have been applied to the

assimilation of volcanic deposit data, and the results were
compared to the traditional EnKF analysis by means of dif-
ferent evaluation metrics. The GNC method produced phys-
ically plausible results and significantly outperformed the
other methods and the prior ensemble mean. Unfortunately, it
was not possible to conclude that the GIG method improved
the EnKF analysis from the results presented here.

The GNC method assumes a multi-dimensional Gaussian
distribution and solves an optimisation problem with non-
negative constraints to ensure plausible physical solutions.
The GNC method, constrained here to assimilate deposit ob-
servations, can be easily extended to other observables as
long as the observation operator is linear. For example, VATD
models could use it to assimilate column mass observations
of volcanic aerosols, but the assimilation of other satellite-
retrieved variables (e.g. aerosol optical depth) would require
an alternative approach. The solution obtained through the
minimisation process in Eq. (17) converges to an analysis
state which, by construction, improves the prior ensemble
mean and any individual ensemble member since the linear
estimator Eq. (11) includes, among the possible solutions,
the prior ensemble mean (wi = 1/m) and any specific en-
semble member (e.g. wi = δij is solution for the j th mem-
ber). Furthermore, the GNC method ensures that the prior
RMSE is reduced by the analysis state. This can be checked
from Eq. (10) by noting that the weighted RMSE of the
prior ensemble mean is the initial value of the normalised
cost function (defined as

√
J/p), provided that the itera-

tive solving procedure is started from the uniform vector
with components wi = 1/m and the matrix R is diagonal.
Figure 7a illustrates this property of the solution; e.g. the
RMSE computed for the validation dataset was reduced from
RMSE= 8.9 (prior ensemble mean) to RMSE= 1.1 (GNC).
In contrast, the analysis RMSE is not ensured to be less than
the RMSE associated with individual ensemble members.
This is a desirable property of the solution for statistically
non-significant members. In fact, note that the first term in
Eq. (10) penalises deviations from the ensemble mean (i.e.
statistically non-significant members), while the second term
penalises deviations from the observations. As a result, the
solution provided by the GNC method satisfies two proper-
ties: (i) the analysis is statistically significant, and (ii) devia-
tions from the observations are small.

The GIG method is a sequential assimilation procedure
proposed by Bishop (2016), in which single observations
are sequentially assimilated. The GIG method is based on
the GIG equation set for the special case in which the prior
distribution can be described by a gamma PDF and the ob-
servation likelihood by an inverse-gamma PDF. This is a
stochastic method providing an ensemble of analyses and
does not require a linear observation operator in principle.
These reasons make the GIG method a good candidate for
implementation in VATD models as it would allow perform-
ing multiple assimilation cycles by restarting the model from
the analysis ensembles. The GIG method enables near-zero
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Figure 10. Profiles of emission rate and time series of eruption source parameters (ESPs) for the 2015 Calbuco eruption according to the
GNC inverse modelling approach. The solid line represents the cumulative erupted volume (km3), and the dash-dotted line indicates the mass
emission rate (kgs−1).

semi-positive-definite variables with highly skewed uncer-
tainty distributions to be assimilated and avoids the occur-
rence of negative mass loading at the observation site. How-
ever, the observation information is propagated to the ex-
tended model–observation state vector using the linear re-
gression approximation in Eq. (22). This approach introduces
artificial structures in the spatial distribution of the deposit
beyond the observation sites, including a few negative values,
and the validation metrics degrade significantly over regions
with scarce observational data assimilated. As a conclusion,
the linear regression approximation should be reformulated
or corrected, e.g. exploring localisation techniques, in order
to enhance the quality of the deposit reconstruction using the
GIG method.

6 Conclusions

This paper has proposed two ensemble-based data assimila-
tion methods for semi-positive-definite variables. The meth-
ods were applied to reconstruct the tephra fallout deposit of
the 2015 Calbuco eruption in Chile by assimilating measure-
ments of deposit thickness. An assessment based on an inde-
pendent validation dataset was carried out for the GNC and
GIG methods in terms of different evaluation metrics, and the
results were compared to two references: the ensemble prior
mean and the EnKF analysis.

The evidence from this study suggests that the GNC
method was the most skilful approach and represents a
promising alternative for assimilation of volcanic fallout
data. The GNC method provides an ensemble of weight fac-
tors and can also be used for source term inversion in a
straightforward way. Unlike the majority of source term in-

version methods (e.g. Folch and Mingari, 2023), which focus
on determining specific ESPs associated with oversimplified
parameterisations of the source term, this approach recon-
structs the overall space–time distribution of the source and
it is not constrained by any specific parameterisation of the
emission source term.

On the other hand, although it is an interesting approach,
the GIG method failed to improve the EnKF analysis. Evi-
dently, the linear regression used by the GIG method needs
to be reformulated or corrected. The GIG method is a second-
order method and provides an ensemble of analyses without
the linear observation operator assumption. Consequently, it
represents an attractive alternative for assimilation of vol-
canic aerosol observations from satellite retrievals. To this
purpose, the analysis ensemble from the GIG method could
be used to perform multiple assimilation cycles by restart-
ing an ensemble forecast. This approach has the potential
to improve the accuracy of operational forecasts of volcanic
clouds. In its present form, the GNC method is not suitable
for data assimilation of volcanic aerosol observations in the
context of operational forecasting as it does not provide an
analysis ensemble. To achieve this, future studies should fo-
cus on extending the method in order to formulate a second-
order analysis scheme based on the GNC method.
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Appendix A: List of symbols using the following
convention: matrices in uppercase bold, vectors in
lowercase bold, scalars in italics

Symbol Description
General definitions
m ensemble size
n dimension of model state vector
p number of observations
x ∈ Rn Model state vector
yo
∈ Rp Observations vector

y ∈ Rp Model state vector in the observation space
H ∈ Rp×n Observation operator
GNC method
P ∈ Rp×p Model covariance matrix
R ∈ Rp×p Observation error covariance matrix
w ∈ Rm Vector of weight factors
y ∈ Rp Average model state vector (obs. space)
Y ∈ Rp×m Ensemble model state matrix (obs. space)
Y′ ∈ Rp×m Ensemble perturbation matrix (obs.

space)
GIG method
yj j th component of y

yo
j j th component of yo

y
f
j Mean of prior distribution of yj
ya
j Mean of analysis distribution of yj

(Eq. 19a)
P r
j Type 1 relative error variance of prior

P r
j := var(yfj )/(y

f
j )

2

5r
j Type 1 relative error variance of analysis

(Eq. 19b)
5r
j := var(ya

j )/(y
a
j )

2

Rr
j Type 1 relative error variance of

observation∗

Rr
j := var(yoj )/(y

t
j )

2

P̃ r
j Type 2 relative error variance of prior

(P̃ r
j )
−1
= (P r

j )
−1
+ 1

R̃r
j Type 2 relative error variance of

observation
(R̃r

j )
−1
= (Rr

j )
−1
+ 1

∗ Here, yt
j is the true value of the j th observation.
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