
Geosci. Model Dev., 16, 2833–2850, 2023
https://doi.org/10.5194/gmd-16-2833-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.

D
evelopm

entand
technicalpaper

C-Coupler3.0: an integrated coupler infrastructure
for Earth system modelling
Li Liu1, Chao Sun1, Xinzhu Yu1, Hao Yu1, Qingu Jiang1,2, Xingliang Li2, Ruizhe Li1, Bin Wang1,3, Xueshun Shen2,
and Guangwen Yang4,1

1Ministry of Education Key Laboratory for Earth System Modeling, Department of Earth System Science,
Tsinghua University, Beijing, China
2CMA Earth System Modeling and Prediction Center, China Meteorological Administration, Beijing 100081, China
3State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics (LASG),
Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China
4Department of Computer Science and technology, Tsinghua University, Beijing, China

Correspondence: Li Liu (liuli-cess@tsinghua.edu.cn)

Received: 22 October 2022 – Discussion started: 2 January 2023
Revised: 3 April 2023 – Accepted: 18 April 2023 – Published: 25 May 2023

Abstract. The community coupler (C-Coupler) for Earth
system modelling is a coupler family that was developed
in China in 2010. C-Coupler3.0, the latest version, is fully
compatible with the previous version, C-Coupler2, and is an
integrated infrastructure with new features, i.e. a series of
parallel-optimization technologies for accelerating coupling
initialization and reducing memory usage, a common halo-
exchange library for developing a parallel version of a model,
a common module-integration framework for integrating a
software module (e.g. a flux algorithm, a parameterization
scheme, and a data assimilation method), a common frame-
work for conveniently developing a weakly coupled ensem-
ble data assimilation system, and a common framework for
flexibly inputting and outputting fields in parallel. Specifi-
cally, C-Coupler3.0 is able to handle coupling under much
finer resolutions (e.g. more than 100 million horizontal grid
cells) with fast coupling initialization and successful genera-
tion of remapping-weight files.

1 Introduction

Couplers, as well as coupling software (Hill et al., 2004;
Larson, et al., 2005; Balaji et al., 2006; Craig et al., 2005,
2012, 2017; Redler et al., 2010; Valcke, 2013; Liu et al.,
2014, 2018; Hanke et al., 2016), have been widely used in
building the coupled models for weather forecasting and cli-

mate simulation and prediction. The community coupler (C-
Coupler) family, whose development was initiated in 2010,
has already been widely used for the model development in
China (Zhao et al., 2017; Lin et al., 2019; Li et al., 2020;
Ren et al., 2021; Shi et al., 2022). The first generation, C-
Coupler1 (Liu et al., 2014), which was finished in 2014, can
handle the data transfer between different models and the
data interpolation (including 2-D and 3-D) between different
grids. C-Coupler2 (Liu et al., 2018), released in 2018, fur-
ther improves the flexibility and user-friendliness with a set
of new features, e.g. coupling configurations with new ap-
plication programming interfaces (APIs) and XML config-
uration files, automatic coupling-procedure generation, dy-
namic 3-D coupling under time-evolving vertical coordinate
values, etc. To further help the model development in China,
the next-generation C-Coupler3.0 becomes an integrated in-
frastructure with the following series of new features:

1. C-Coupler3.0 can handle coupling under much finer
resolutions (e.g. with more than 100 million horizon-
tal grid cells) with fast coupling initialization. This is
achieved through a series of parallel-optimization tech-
nologies, i.e. parallel triangulation of a horizontal grid
(Yang et al., 2019), a distributed implementation of
routing-network generation for data transfer (Yu et al.,
2020), distributed management of horizontal grids and
the corresponding parallel remapping weights, and par-

Published by Copernicus Publications on behalf of the European Geosciences Union.

2834 L. Liu et al.: C-Coupler3.0: an integrated coupler infrastructure for Earth system modelling

allel input/output (I/O) of remapping weights from or to
a file.

2. C-Coupler3.0 can help to conveniently parallelize a
component model with a common halo-exchange li-
brary. This library can support various horizontal grids
and halo regions and can simultaneously handle the halo
exchange for multiple fields for better parallel perfor-
mance of the model.

3. A new framework in C-Coupler3.0 (hereafter called
the common module-integration framework) enables a
model to conveniently integrate and then use a soft-
ware module (e.g. a flux algorithm, a parameterization
scheme, or a data assimilation method). This framework
can automatically and efficiently handle argument pass-
ing between a model and a module, even when they use
different data structures, grids, or parallel decomposi-
tions.

4. C-Coupler3.0 includes a common framework (Sun
et al., 2021) for conveniently developing a weakly cou-
pled ensemble data assimilation (DA) system. This
framework provides online data exchanges between a
model ensemble and a DA method for better parallel
performance.

5. C-Coupler3.0 includes a common framework (Yu et al.,
2022) for flexible parallel inputting and outputting of
fields. This framework has already been used by C-
Coupler3.0 for improving the input and output of restart
fields, and it may also benefit models.

The development of C-Coupler3.0 is based fully on the
prior version, so the new coupler is fully compatible with C-
Coupler2; i.e. model developers can easily upgrade a coupled
model from C-Coupler2 to C-Coupler3.0 without modifying
model codes or existing XML configuration files.

The remainder of this paper is organized as fol-
lows. Sections 2 to 6, respectively, introduce the parallel-
optimization technologies, halo-exchange library, module-
integration framework, data assimilation framework, and
data input/output framework. Section 7 empirically evaluates
C-Coupler3.0, and conclusions and a discussion are provided
in Sect. 8.

2 New parallel-optimization technologies

Ever finer resolution is a perennial object of model de-
velopment. Any new coupler should be developed to sup-
port finer-resolution coupling. However, we developed C-
Coupler2 with the main focus of making it as flexible and
user friendly as possible. As a result, C-Coupler2 introduced
high overheads in coupling initialization; e.g. it takes more
than 80 s to initialize 2-D coupling for about 1 million hor-
izontal grid points (representing a resolution of ∼ 25 km at

a global scale) using 1 000 processor cores (see Fig. 8 in
Liu et al., 2018). This becomes a bottleneck in the applica-
tion of coupled models, and several main shortcomings have
emerged.

1. The global management of model grids is very mem-
ory consuming. C-Coupler2 keeps the data of each
model grid in memory for remapping-weight genera-
tions. When C-Coupler2 outputs fields into files, grid
data will also be output. Global management that means
that each process keeps the data of all cells (or points)
of a grid will use excessive memory at very fine model
resolutions. For example, a global model at 3 km res-
olution will have more than 50 million cells in a hori-
zontal grid, and thus the global management of such a
grid will take more than 4 GB memory (given that each
grid cell has one centre point and four vertexes and that
C-Coupler uses double-precision floating points in grid
management).

2. The sequential triangulation of horizontal grids for
generating remapping weights requires much time
and memory. C-Coupler2 can automatically generate
remapping weights between two different horizontal
grids. This requires the vertexes of each grid cell; they
can be user specified, or C-Coupler2 can generate them
automatically by triangulation to improve user friendli-
ness.

3. A global implementation of routing-network generation
for data transfer is time consuming. C-Coupler2 can
transfer fields between different component models or
within one component model. C-Coupler achieves data
transfer through M ×N communication (Jacob et al.,
2005) following a routing network. Routing networks
are generated when initializing model coupling.

4. The global implementation of obtaining remapping
weights from a file also requires much time and mem-
ory. C-Coupler2 can use the remapping weights from an
existing file for the data interpolation between two hor-
izontal grids. During global implementation, each pro-
cess reads in all weights from a file but uses only part of
the weights for parallel data interpolation.

To address the above shortcomings, we should develop
distributed management of horizontal grids, parallel trian-
gulation of a horizontal grid, distributed implementation of
routing-network generation, parallel calculation of remap-
ping weights, and parallel input of remapping weights from
a file.

2.1 Distributed management of horizontal grids

As it is impractical for each process to keep all the data of a
very fine horizontal grid, the data should be kept and man-
aged in a distributed manner; i.e. each process keeps the

Geosci. Model Dev., 16, 2833–2850, 2023 https://doi.org/10.5194/gmd-16-2833-2023

L. Liu et al.: C-Coupler3.0: an integrated coupler infrastructure for Earth system modelling 2835

data of a subset of grid cells, while all processes work co-
operatively for horizontal grid management. To investigate
how to divide a horizontal grid into subsets of grid cells, C-
Coupler2’s use of horizontal grids should be studied. There
are four types of usage.

1. C-Coupler2 outputs a horizontal grid to a data file with
model fields.

2. Two horizontal grids are compared to determine the ne-
cessity of data interpolation and are further used for
generating remapping weights online when data inter-
polation is required.

3. C-Coupler2 enables a process to get the data of a spe-
cific subset of grid cells. The whole domain correspond-
ing to a horizontal grid is generally decomposed for par-
allel integration among processes, where each process
conducts integration for a number of local grid cells
(such decomposition is called parallel decomposition
hereafter). A process may want to get the data of its lo-
cal grid cells.

Corresponding to the above usage, we designed the fol-
lowing three types of horizontal grid cell distributions among
processes: index-based distribution, domain-based distribu-
tion, and parallel-decomposition-based distribution. Trans-
formation between different types of grid distribution was
also developed.

2.1.1 Index-based distribution

In C-Coupler2, each grid is associated with a component
model that runs on a set of processes. Index-based distribu-
tion evenly distributes cells of a horizontal grid among all
processes of the corresponding component model according
to the global indexes of the cells (e.g. each cell has a unique
global index between 1 and the grid size), where each pro-
cess keeps a portion of cells with successive global indexes.
For example, given a component model running on four pro-
cesses with a horizontal grid of 10 000 cells, the four pro-
cesses keep cells numbered 1–2500, 2501–5000, 5001–7500,
and 7501–10 000, respectively.

Index-based distribution enables all processes of a compo-
nent model to directly use parallel I/O supports (e.g. MPI-IO
and PnetCDF) to output a horizontal grid. Moreover, it en-
ables a component model to compare two horizontal grids
in parallel; i.e. each process can perform the comparison for
only a portion of the grid cells it keeps.

2.1.2 Domain-based distribution

A fundamental operation of generating remapping weights is
searching the source grid cells around a destination grid cell.
In general, these source grid cells are located within a circle
centred on the destination grid cell. Index-based distribution
is not suitable for searching adjacent source grid cells, as it

does not consider the location of each grid point. Therefore,
we designed a domain-based distribution that divides a grid
domain into a number of subdomains distributed to differ-
ent processes. Given two horizontal grids, the domain-based
distribution of each grid is constructed as follows:

1. Calculate the union domain of the two grid domains.

2. Divide the union domain into a number of non-
overlapping subdomains, each of which is assigned to
a process.

3. For each grid cell, confirm the subdomain it belongs to,
and then distribute it to the corresponding process.

Specifically, a regular division of a grid domain based on
the longitude and latitude coordinates is employed; i.e. the
whole domain of a grid is represented as a rectangle, each
polar subdomain is a circle with the boundary of a uniform
latitude value, and all non-polar subdomains are rectangles
with the same length and width. All subdomains are labelled
with successive IDs and are assigned to a set of processes
in a round-robin manner. Such an implementation can easily
confirm the subdomain corresponding to the coordinates of a
grid cell, the subdomains around a subdomain, and the owner
process corresponding to a subdomain ID.

2.1.3 Parallel-decomposition-based distribution

The parallel-decomposition-based distribution in C-
Coupler3.0 is not new, as it was implemented in both prior
versions. When registering a parallel decomposition on a
horizontal grid to C-Coupler, a grid distribution correspond-
ing to the parallel decomposition is generated, where each
process of the corresponding component model keeps only
the local cells determined by the parallel decomposition.

2.1.4 Transformation among grid distributions

Different distribution types of the same horizontal grid gener-
ally co-exist in a coupled model integration. Distributed grid
management should guarantee consistency among the differ-
ent distribution types of the same grid; i.e. the same grid cell
has the same data values throughout different types of distri-
bution. To achieve such consistency, we refer to the index-
based distribution as the primary distribution that exists per-
manently in the coupler. When registering a horizontal grid
to C-Coupler, its index-based distribution is generated first.
The domain- or parallel-decomposition-based distribution is
temporary and generated from the index-based distribution
when required. Such generation will lead to rearrangement
of grid data among a set of processes. To achieve parallel re-
arrangement without collective communications, the existing
data transfer functionality of C-Coupler is employed to gen-
erate a domain- or parallel-decomposition-based distribution
from the index-based distribution.

https://doi.org/10.5194/gmd-16-2833-2023 Geosci. Model Dev., 16, 2833–2850, 2023

2836 L. Liu et al.: C-Coupler3.0: an integrated coupler infrastructure for Earth system modelling

2.2 Parallel triangulation of a horizontal grid

To achieve parallel triangulation, we upgraded the sequen-
tial procedure in the previous C-Couplers into a parallel pro-
cedure. Specifically, this upgrade employs a parallel algo-
rithm, PatCC1 (Parallel triangulation algorithm with Com-
monality and parallel Consistency, version 1), based on De-
launay triangulation (Su and Drysdale, 1997). PatCC1 per-
forms the following three major steps for triangulating a hor-
izontal grid (see Yang et al. (2019) for further details): (1) it
divides a global grid (each process keeps the data of all grid
cells) into a number of non-overlapping kernel subgrid do-
mains; (2) each kernel subgrid domain is properly enlarged
into an expanded subgrid domain; and (3) each process in-
dependently conducts triangulation for a subset of expanded
subgrid domains. PatCC1 then checks whether the triangula-
tion results are consistent among the expanded subgrid do-
mains; i.e. if the kernel subgrid domains of two expanded
subgrid domains have a common boundary, the triangulation
results from these two expanded subgrid domains must be
the same on the common boundary.

Adapting PatCC1 to C-Coupler3.0 requires modifications.
As C-Coupler3.0 keeps a horizontal grid in a distributed
manner rather than globally, the domain-based distribution is
generated instead of following the first major step of PatCC1;
e.g. each subdomain is exactly a kernel subgrid domain of
PatCC1. Moreover, each kernel subgrid domain is also en-
larged based on the domain-based distribution.

In theory, the vertexes of the grid cells should originate
from the Voronoi diagram generated from the triangulation
results; i.e. each vertex should be the circumcentre of a tri-
angle. However, C-Coupler1 and C-Coupler2 implement a
simple, imprecise approximation, whereby the point at the
average longitude and latitude values of the three vertexes
of a triangle is used as the circumcentre. To improve vertex
generation, C-Coupler3.0 uses the real circumcentres after
removing irregular triangles. An irregular triangle has its cir-
cumcentre outside itself. The vertexes of grid cells are also
generated in parallel; i.e. each process only generates ver-
texes within its kernel subgrid domains.

2.3 Parallel remapping-weight calculation

Both C-Coupler1 and C-Coupler2 can generate the remap-
ping weights from a source horizontal grid to a destination
horizontal grid online. C-Coupler2 achieves parallel calcula-
tion of remapping weights based on the global management
of model grids, where a process only works for the local grid
cells on a parallel decomposition of the destination grid. This
parallel implementation is further improved in C-Coupler3.0
to accommodate the distributed management of horizontal
grids. Specifically, the remapping weights are calculated un-
der the domain-based distribution, and different processes
work for different grid subdomains. When a process calcu-
lates remapping weights for a subdomain, it can keep only

the destination grid cells in this subdomain, whereas it should
have the source grid cells in a larger subdomain (referred to
hereafter as the source subdomain). It is possible that the cur-
rent source subdomain does not contain all source grid cells
required to calculate the remapping weights for a destination
grid cell (e.g. especially when extrapolation is enabled), so
the source subdomain should be further enlarged by obtain-
ing the corresponding source grid cells from the correspond-
ing processes. An implementation based on MPI one-sided
communication functionality has been developed for enlarg-
ing a source subdomain.

2.4 Parallel input of remapping weights

Instead of generating the remapping weights online, C-
Coupler2 can use offline remapping weights from a file when
this file matches the corresponding source and destination
horizontal grids. To reduce memory consumption and to
expedite operation, C-Coupler3.0 achieves parallel input of
remapping weights as follows:

1. Processes cooperatively read in remapping weights in
parallel from a file; i.e. each process reads in a subset of
the remapping weights.

2. Processes cooperatively and in parallel sort remapping
weights in ascending order of destination cell index (a
remapping weight generally comprises the source cell
index, destination cell index, and weight value).

3. Processes cooperatively rearrange the sorted remap-
ping weights to make each process obtain the subset of
remapping weights it requires locally.

2.5 Distributed routing-network generation

C-Coupler1 and C-Coupler2 employ the data transfer func-
tionality only for model coupling invoked by API calls
from component models. However, C-Coupler3.0 more fre-
quently uses this functionality internally, e.g. for transfor-
mation among grid distributions, halo exchange (Sect. 3),
passing an argument between a model and a software mod-
ule (Sect. 4), online data exchanges between a model en-
semble and a DA method (Sect. 5), and data rearrange-
ment for parallel I/O (Sect. 6). Although C-Coupler1 and
C-Coupler2 use an M ×N communication approach (Jacob
et al., 2005) that transfers data with parallel communications,
data transfer is initialized using a global implementation of
routing-network generation that relies on inefficient gather–
broadcast communications. To accelerate routing-network
generation, a distributed implementation of routing-network
generation (DiRong1.0) was designed and implemented in
C-Coupler3.0 (see Yu et al., 2020, for details). DiRong1.0
does not introduce any gather–broadcast communication via
distributed sorting of the corresponding routing-information
tables.

Geosci. Model Dev., 16, 2833–2850, 2023 https://doi.org/10.5194/gmd-16-2833-2023

L. Liu et al.: C-Coupler3.0: an integrated coupler infrastructure for Earth system modelling 2837

Figure 1. Example of parallel decomposition on a horizontal grid
using four processes to run a component model. Each colour repre-
sents a subdomain assigned to a distinct process.

3 Common halo-exchange library

The development of a component model generally includes
parallelizing a serial programme to allow effective use of a
large number of processor cores to accelerate model integra-
tion. A typical approach to model parallelization is to decom-
pose the whole grid domain into a number of subdomains,
assign each subdomain to a process, and then make different
processes conduct the integration for different subdomains.
To achieve correct parallelization that maintains almost ex-
actly the same simulation results as the original serial pro-
gramme, processes in a parallel execution should work coop-
eratively; e.g. processes should exchange data among them-
selves when required.

Given a component model running on four processes,
Fig. 1 shows a parallel decomposition of the horizontal grid,
where each subdomain is assigned to each process. As data
in grid cells are generally interdependent (i.e. the integration
calculation on one grid cell depends on the results for the grid
cells around it), correct parallelization requires the enlarge-
ment of a process’s subdomain using a certain halo region to
keep the results from other processes. This requires processes
to cooperatively exchange data to gather the results for these
halo regions (called halo exchange for short). Corresponding
to Fig. 1, Fig. 2 shows the halo region for each process and
the source processes of the results in each halo region.

Implementing halo exchange is a fundamental part of de-
veloping model parallelization. Various component models
have their own halo-exchange libraries or procedures based
on MPI communications (Dennis et al., 2012; Wang et al.,
2014; Deconinck et al., 2017; Adams et al., 2019). To aid
the parallelization of various component models in China,
it would be beneficial to develop a common halo-exchange
library that can work for any model grid, parallel decom-
position, and halo region. A fundamental part of halo ex-
change is the transfer of data among the processes of a

Figure 2. Example of halo regions corresponding to the parallel de-
composition in Fig. 1. Spotted boxes around each subdomain denote
each process’s halo region; the colour of each spotted box indicates
the corresponding source process.

component model. As C-Coupler2 can handle data transfer
within a component model, we propose that it be used as
the foundation for developing a common halo-exchange li-
brary. Moreover, C-Coupler2 provides common representa-
tions for 1-D to 4-D grids and parallel decompositions. Its
API (CCPL_register_normal_parallel_decomp – API 1 in
the Appendix) for registering a parallel decomposition on a
grid allows each grid cell to be specified in the local sub-
domains of each process. Specifically, a cell calculated by
the current process can be specified using its global index,
whereas a grid cell in a halo region can be labelled using a
special value (i.e. CCPL_NULL_INT).

To support halo exchanges in C-Coupler3.0, a new
API (CCPL_register_halo_region – API 2 in the Ap-
pendix) is designed to describe a halo region based
on the corresponding parallel decomposition. This en-
ables specification of the global index of each grid cell
in the halo region. Users can further register a halo-
exchange handler for a number of fields via a new API
(CCPL_register_halo_exchange_interface – API 3 in the
Appendix) and then conduct halo exchange via a new API
(CCPL_execute_halo_exchange_using_id – API 4 in the Ap-
pendix). A new API (CCPL_finish_halo_exchange_using_id
– API 5 in the Appendix) can be used to further achieve
asynchronous communications. Halo exchange is performed
by C-Coupler2 internal import–export interfaces using data
transfer operations that are automatically generated when
registering a halo-exchange handler.

The above implementation based on C-Coupler2 achieves
the following advantages:

https://doi.org/10.5194/gmd-16-2833-2023 Geosci. Model Dev., 16, 2833–2850, 2023

2838 L. Liu et al.: C-Coupler3.0: an integrated coupler infrastructure for Earth system modelling

1. Commonality. Besides the common representations for
grids and parallel decompositions, the representation of
halo regions is also common, as each grid cell in a
halo region is specified independently. As a result, the
halo-exchange library supports any width of the halo re-
gion and allows a component model not to conduct ex-
changes for some grid cells (e.g. land cells in an ocean
model) for better parallel performance.

2. Convenience. The halo-exchange library only requires
users to describe the halo region, the corresponding par-
allel decomposition, and the fields to be exchanged,
whereas the parallelization operations (i.e. generation
of a routing network among processes, MPI communi-
cations following the routing network, and packing and
unpacking of data values) are automated.

3. Efficiency. The halo-exchange library allows multiple
fields to be bundled together in MPI communications
for better parallel performance.

The halo-exchange library further provides two
new APIs, primarily for testing and debugging,
i.e. CCPL_report_one_field_instance_checksum and
CCPL_report_all_field_instances_checksum (APIs 6 and 7
in the Appendix), which calculate and then report the
global checksums of fields that have been registered to
C-Coupler3.0. In most cases, correct parallelization of a
code segment should not change the global checksum of
each model field; i.e. the global checksum of each field
should remain the same under different parallel settings
(e.g. serial or parallel run, different numbers of processes,
or different parallel decompositions). These two APIs can
conveniently check whether the parallelization of a code
segment is correct and thus enable users to develop a parallel
version of a model incrementally in a segment-by-segment
manner.

4 Common module-integration framework

The development of a model always requires integration of
a new software module into the model – for example, in-
tegrating a parameterization scheme into the physical pack-
age of an atmosphere model. Such integration is tradition-
ally achieved internally (referred to hereafter as internal in-
tegration), whereby the new module becomes a native pro-
cedure that is directly called by the model. Internal integra-
tion generally requires the source code of the new module to
be adapted to the compilation system and data structures of
the model, which can introduce much work in some cases.
For example, model developers should compile and stati-
cally link together codes of the model and the new module
while possibly having to change the names of some variables
if the model and the new module apply the same name to
different common variables. Data dependencies in the hor-
izontal direction are always neglected in existing physical

parameterization schemes for atmosphere models when the
horizontal grid interval is large, as has been the case in the
past. As a result, single-column data structures have been
used in the physical packages of atmosphere models for bet-
ter data access locality. To improve the simulation results
under finer horizontal resolutions, some 3-D parameteriza-
tion schemes that consider data dependencies in the horizon-
tal direction are being developed (Zhang et al., 2018; Veer-
man et al., 2019). As a 3-D parameterization scheme can-
not use the single-column data structures for implementation
and because its parallelization may rely on halo exchanges
in the horizontal direction, there will be many technical chal-
lenges when integrating a 3-D parameterization scheme into
a single-column physical package.

External integration is another methodology for integra-
tion. A model indirectly calls a module based on an integra-
tion framework; i.e. the model calls the APIs of the frame-
work, then the framework calls the module. External integra-
tion offers the following advantages over internal integration:

Independence. The module can remain independent of the
model; i.e. the module does not become a native procedure
of the model and thus can have its own compilation system
or even its own data structures, parallel decompositions, and
grids.

Convenience. When there are inconsistencies (e.g. in terms
of data structure, parallel decomposition, or grid) between
the module and the model, the framework can automatically
handle them without introducing extra work to users.

A framework should be able to pass arguments be-
tween the model and the module. The Common Community
Physics Package (CCPP; Heinzeller et al., 2022) achieves
this through memory sharing; i.e. each field in the argument
list of the module is essentially a common variable of the
model. CCPP, therefore, requires the model and the module
to use the same data structure, parallel decomposition, and
grid and thus does not fully achieve the above advantages. To
develop a new module-integration framework more common
than CCPP, we propose employing C-Coupler for passing ar-
guments because it can automatically handle the coupling be-
tween different grids or different parallel decompositions.

A framework should be able to call the modules with var-
ious argument lists, whereas a programming language such
as Fortran, C, or C++ requires a caller to match the spe-
cific argument list of a callee. It is impractical to make the
codes of a framework enumerate the callers corresponding
to all possible argument lists. To overcome this challenge,
CCPP designs a text rule to describe the information of all
arguments of a module and thus can follow the rule to auto-
matically generate the caller’s code for calling the module.
We do not recommend this because it forces users to study
the new rule, and it is difficult to design a common rule that
can describe an argument with any grid and any parallel de-
composition. We prefer a new solution of designing a rule
for writing driving procedures that can flexibly declare each
argument of the module via the APIs of the framework.

Geosci. Model Dev., 16, 2833–2850, 2023 https://doi.org/10.5194/gmd-16-2833-2023

L. Liu et al.: C-Coupler3.0: an integrated coupler infrastructure for Earth system modelling 2839

With the experiences learned from CCPP, we prefer to use
a dynamic-link library (DLL) to integrate a module. This
technique guarantees independence between the model and
the module and maintains the privacy of the module; i.e.
module developers need only provide the binary of the DLL
without the source code in a community development of the
model.

Overall, we designed the architecture of the common
module-integration framework based on C-Coupler. This
framework consists of an external-module-integration man-
ager, an argument-coupling manager, an external-module-
driving engine, and hybrid interfaces with APIs and a con-
figuration file (see Sects. 2.12 and 3.7 in the C-Coupler3.0
User Guide for further details). The following subsections
further examine the detailed implementation of the integra-
tion framework.

4.1 External-module-integration manager

The external-module-integration manager employs the DLL
technique; i.e. an external module is compiled into a DLL
that is loaded when the model launches the module. To in-
tegrate an external module, users should develop the driv-
ing procedures; i.e. an initialization-driving subroutine, an
execution-driving subroutine, and a finalization-driving sub-
routine. The initialization-driving subroutine is used for
declaring the arguments and driving the initialization of the
external module; it only has one input argument, an ID for
labelling the current external module (called the module ID).
The execution-driving subroutine is used to drive the execu-
tion of the external module. It has two input arguments, the
module ID and a chunk index that can be used for single-
column parameterization schemes. The finalization-driving
subroutine is used to drive the finalization of the external
module and does not have any argument.

Each external module has a unique name that determines
the subroutine name of each driving procedure. For example,
given an external module named EM, its three driving proce-
dures should be named EM_CCPL_INIT, EM_CCPL_RUN,
and EM_CCPL_FINALIZE, respectively. A DLL can include
multiple external modules, and each module should have a
unique name. The module name and the corresponding DLL
are specified in the configuration file when users want to use
the corresponding external module. As a result, users can
flexibly change the external module used by modifying the
configuration file without modifying the model code.

4.2 Argument-coupling manager

Each argument that an external module passes with a model
should be declared in the initialization-driving subroutine via
the new API CCPL_external_modules_declare_argument
(API 8 in the Appendix). The corresponding grid and parallel
decomposition should be specified when declaring a mod-
ule’s argument. An external module can have its own grid

or parallel decomposition but can also share the same grid
and the same parallel decomposition with the model; e.g. the
new APIs CCPL_external_modules_para_get_field_grid_ID
and CCPL_external_modules_para_get_field_decomp_ID
(APIs 9 and 10 in the Appendix) enable the external module
to obtain the model’s grid and parallel decomposition,
respectively. The memory space of a module’s argument
can be allocated either explicitly by the external module or
implicitly by the common module-integration framework.
Moreover, a module’s argument can share the memory space
of the corresponding model field when it uses the same grid
and parallel decomposition as the model field.

The argument-coupling manager is responsible for ex-
changing values between each pair of a module’s argument
and the corresponding model field; i.e. each input argument
obtains values from the corresponding model field before
calling the execution-driving subroutine, then each output ar-
gument returns values to the corresponding model field when
the execution-driving subroutine finishes. The values can be
exchanged by the coupling functionality of C-Coupler, which
enables an input (or output) argument and the corresponding
model field to use different memory space, grids, parallel de-
compositions, or data structures.

4.3 External-module-driving engine

The external-module-driving engine enables a model
to initialize, execute, and finalize a set of external
modules that have been enclosed in DLLs through
calling the APIs CCPL_external_modules_inst_init,
CCPL_external_modules_inst_run, and CCPL_external_
modules_inst_finalize (APIs 11–13 in the Appendix). The
API CCPL_external_modules_inst_init is responsible for
creating an instance of the external modules. For each
external module, the corresponding DLL is loaded when
required, and then the initialization driving subroutine is
called to initialize the external module. After returning from
the initialization-driving subroutine, the common module-
integration framework knows all input and output arguments
of the external module, and then its argument-coupling
manager generates two coupling procedures, namely an
input-coupling procedure for passing the values of the input
arguments from the model to the external module and an
output-coupling procedure for passing the values of the
output arguments from the external module to the model. A
set of model fields should be specified when calling the API
CCPL_external_modules_inst_init (corresponding to the
parameter field_inst_ids). For each argument of the external
module, there must be a corresponding model field; i.e. the
argument and the model field have the same name, or the
mapping between their different names has already been
specified in the corresponding configuration file.

The API CCPL_external_modules_inst_run is responsible
for executing an external module. It first executes the input-
coupling procedure to make the external module obtain the

https://doi.org/10.5194/gmd-16-2833-2023 Geosci. Model Dev., 16, 2833–2850, 2023

2840 L. Liu et al.: C-Coupler3.0: an integrated coupler infrastructure for Earth system modelling

input values from the model. Next, it calls the correspond-
ing execution-driving subroutine to run the external module.
Finally, it executes the output-coupling procedure to make
the model obtain the return values from the external mod-
ule. The API CCPL_external_modules_inst_finalize calls the
corresponding finalization-driving subroutine to finalize the
external module.

5 Common ensemble coupled data assimilation
framework

DAFCC1 (Sun et al., 2021), a DA framework based on C-
Coupler2.0, is now part of C-Coupler3.0, and it enables
users to conveniently develop a weakly coupled ensemble
DA system. It benefits greatly from other functionalities of
C-Coupler3.0. For example, its initialization has been accel-
erated by new parallel-optimization technologies; the inte-
gration of a DA method and online data exchanges between
a model ensemble and a DA method are achieved by the com-
mon module-integration framework. The C-Coupler3.0 User
Guide and Sun et al. (2021) give further details of DAFCC1.

6 Common data input/output framework

A common parallel input/output framework based on C-
Coupler2.0 (CIOFC1.0), is now part of C-Coupler3.0.
CIOFC1 can adaptively input data fields from a time se-
ries dataset during model integration; interpolate data in 2-D,
3-D, or the time dimension automatically when necessary;
and output fields either periodically or irregularly. It helps
C-Coupler3.0 to input and output restart fields in parallel
and further provides APIs and configuration files to enable
a component model to conveniently use parallel I/O and to
enable users to flexibly specify I/O settings, e.g. the model
fields for I/O, the time series of the data files for I/O, and the
data grids in the files. The C-Coupler3.0 User Guide and Yu
et al. (2022) give further details of CIOFC1.

7 Empirical evaluation

This section reports an empirical evaluation of C-Coupler3.0,
including the parallel-optimization technologies, common
halo-exchange library, and common module-integration
framework. For the evaluation of the DA framework
DAFCC1 and the I/O framework CIOFC1, please refer to
Sun et al. (2021) and Yu et al. (2022), respectively.

All test cases in this section were run on the high-
performance computing system (HPCS) of the Earth sys-
tem numerical simulator (https://earthlab.iap.ac.cn/en/, last
access: 16 May 2023), which has 70 PB parallel storage ca-
pacity and ∼ 100 000 CPU cores running at 2.0 GHz. Each
computing node includes 64 cores and 256 GB memory. All
nodes are connected by a network system with a communica-

tion bandwidth up to 100 Gbps. All codes of the test coupled
model are compiled by an Intel Fortran and C++ compiler
(version 17.0.5) at the O2 optimization level using an Open-
MPI library.

7.1 Evaluation of the parallel-optimization
technologies

To evaluate the impact of the parallel-optimization technolo-
gies, we developed a test coupled model that consists of two
toy-component models with two-way coupling based on C-
Coupler3.0. The test coupled model allows us to flexibly
change the model settings in terms of grid size and number
of processor cores (processes).

We first evaluate the coupling initialization (using offline
remapping-weight files) in the test coupled model in terms
of time and memory usage. The results in Table 1 demon-
strate that C-Coupler3.0 can initialize coupling quickly
for ultra-large grid sizes and many processes (cores). In
some cases, faster coupling initialization can be achieved
when the component models use more processes. This is
because most computation in coupling initialization has been
parallelized. As the parallel reading of a remapping-weight
file cannot be accelerated continuously by increasing the
I/O processes and because the global communications in
automatic coupling-procedure generation always introduce
higher overheads using more processes, coupling initial-
ization can become slower by employing more processes
of the component models. The results in Table 2 show
that both OASIS3-MCT_5.0 (https://oasis.cerfacs.fr/en/
actualites/oasis3-mct_5-0-official-release-december-2021/,
last access: 16 May 2023) and C-Coupler3.0 can achieve
much faster coupling initialization than their previous
versions (Fig. 2 in Craig et al., 2017, and Fig. 8 in Liu et al.,
2018, respectively), while C-Coupler3.0 is faster in terms of
coupling initialization.

Table 1 also shows that the average memory usage of the
processes of the test coupled model is affordable (each pro-
cess or core has an average memory capacity of 4 GB), even
when the grid size is extremely large, which demonstrates
the effectiveness of the distributed management of horizontal
grids in decreasing the memory usage of C-Coupler. More-
over, the parallel-optimization technologies appear to enable
C-Coupler3.0 to generate large remapping-weight files (a bi-
linear remapping algorithm is used), and the generation can
become faster when using more processes. We noted that
C-Coupler2 cannot support any test case in Table 1 due to
an unaffordable memory requirement either in coupling ini-
tialization with offline remapping-weight files or in online
remapping-weight generation.

Based on the models coupled with C-Coupler2, the cor-
rectness of the parallel-optimization technologies has been
verified under a bitwise-identical criterion with the follow-
ing properties:

Geosci. Model Dev., 16, 2833–2850, 2023 https://doi.org/10.5194/gmd-16-2833-2023

https://earthlab.iap.ac.cn/en/
https://oasis.cerfacs.fr/en/actualites/oasis3-mct_5-0-official-release-december-2021/
https://oasis.cerfacs.fr/en/actualites/oasis3-mct_5-0-official-release-december-2021/

L. Liu et al.: C-Coupler3.0: an integrated coupler infrastructure for Earth system modelling 2841

Table 1. The time of coupling initialization and the average memory usage per process of the test coupled model under different global reso-
lutions (cubed-sphere grids) and process numbers for two toy-component models. The time taken for parallel remapping-weight generation
by C-Coupler3.0 is also listed. The time and memory usage of coupling initialization was measured when using offline remapping-weight
files that had already been generated.

Resolution of
toy comp1
(grid size)

Resolution of
toy comp2
(grid size)

Procs of Procs of Time (s) of Average Time (s) of Size (GB) of
comp1 comp2 coupling memory remapping-weight remapping-weight

initialization usage (MB) generation files

0.0375◦

(34 588 806)
0.075◦

(8 654 406)
1920 1920 7.92 601 99.91 2.5
3840 3840 7.27 624 65.31 0.96
7680 7680 8.50 649 65.21

0.0375◦

(34 588 806)
0.05◦

(19 461 606)
1920 1920 12.19 594 127.12 3.0
3840 3840 10.71 617 86.71 2.1
7680 7680 14.15 640 93.23

0.025◦

(77 803 206)
0.075◦

(8 654 406)
1920 1920 18.85 629 179.67 5.6
3840 3840 15.58 649 150.31 1.8
7680 7680 15.81 658 130.31

0.015◦

(175 024 806)
0.0375◦

(34 588 806)
7680 7680 40.41 683 556.89 15.0

15 360 15 360 56.50 729 592.44 5.9
23 040 7680 56.74 791 645.56

Table 2. The time of coupling initialization of the test coupled model with OASIS3-MCT5.0 and C-Coupler3.0, respectively. The time was
measured when using offline remapping-weight files and longitude–latitude grids for the two toy-component models.

Horizontal grid size Horizontal grid size2 Procs of comp1 Procs of comp2 Time (s) for Time (s) for
of toy comp1 of toy comp2 OASIS3-MCT5.0 C-Coupler3.0

8 000 000 5 000 000 300 300 13.35 4.10
900 900 19.13 3.91

1600 1600 23.00 3.67

16 000 000 12 000 000 300 300 33.19 8.03
1200 1200 34.62 4.62
3200 3200 68.39 6.93

50 000 000 30 000 000 300 300 84.37 23.7
3200 3200 100.83 11.36

12 000 12 000 167.50 14.17

1. C-Coupler3.0 achieves bitwise-identical results com-
pared to C-Coupler2 when using the same offline
remapping-weight files (some bugs in remapping-
weight generation were fixed during the development
of C-Coupler3.0).

2. C-Coupler3.0 achieves bitwise-identical results (includ-
ing the remapping-weight file and the fields after cou-
pling) using different numbers of processes.

7.2 Evaluation of the common halo-exchange library

To evaluate the common halo-exchange library, we devel-
oped a test component model that allowed us to flexibly
change the grid size, the halo regions, the model fields corre-
sponding to halo exchanges, and the number of processes.

The halo-exchange library allows multiple fields with dif-
ferent dimensions to be bundled in the same halo-exchange
operation in order to improve performance. For example,
multiple 2-D and 3-D fields can be bundled together. To eval-
uate the impact of this functionality, we designed different
bundle settings corresponding to five 2-D and five 3-D fields.
Table 3 shows the performance of halo exchange for differ-
ent sizes of horizontal grids and different numbers of pro-
cesses. The results show that field bundling can significantly
improve the performance of halo exchange. This is because
the performance of data transfer by MPI generally depends
on the size of the data transferred, with a smaller data size
generally resulting in lower performance. Although the size
of the data transferred by each process in halo exchange is
generally small, field bundling can effectively enlarge the

https://doi.org/10.5194/gmd-16-2833-2023 Geosci. Model Dev., 16, 2833–2850, 2023

2842 L. Liu et al.: C-Coupler3.0: an integrated coupler infrastructure for Earth system modelling

Table 3. Performance of halo exchange for different bundle settings of fields (five 2-D and five 3-D fields), horizontal grid sizes, and numbers
of processes. The 3-D fields include 50 vertical levels. The data type is double floating point (8 bytes). The parallel decomposition is regular
(rectangle based) on the horizontal grid, and the halo region on each process has two levels (width).

Horizontal Number of Size (MB) of Performance (MBs−1) of halo exchange per process

grid size processes data transferred Each field 2-D separately, All 2-D together, All fields
by each process separately all 3-D together 3-D separately together

1000× 1000 20× 25 0.70 14.4 54.2 57.8 109.6
40× 50 0.37 8.9 24.8 22.3 66.0

2000× 2000 40× 50 0.71 9.3 25.1 25.5 70.3
80× 100 0.38 4.9 13.4 12.8 38.7

4000× 4000 80× 100 0.72 8.0 22.0 20.0 60.4
160× 200 0.37 3.0 9.6 9.9 35.2

Table 4. Performance of halo exchange for five 3-D fields (bundled together) under different horizontal grid sizes and numbers of processes.
The 3-D fields include 50 vertical levels. The data type is double floating point (8 bytes). The parallel decomposition is regular (rectangle
based) on the horizontal grid, and the halo region on each process has four levels (width).

Horizontal grid Number of Size (MB) of data Performance of halo exchange per process under different proportions of
size processes transferred by each land cells in halo regions

process corresponding Performance (MBs−1) Speedup under Speedup under Speedup under
to 0 % land cells under 0 % useless cells 20 % useless cells 50 % useless cells 80 % useless cells

1000× 1000 20× 25 1.42 113.7 1.13 1.76 3.21
40× 50 0.79 69.5 1.10 1.70 3.01

2000× 2000 40× 50 1.46 74.0 1.13 1.73 3.12
80× 100 0.80 52.2 1.12 1.75 2.98

4000× 4000 80× 100 1.48 58.2 1.14 1.78 3.01
160× 200 0.80 38.2 1.05 1.42 2.20

data size of an MPI transfer, thus improving the performance
of halo exchange.

When parallelizing a model with a rectangle-based paral-
lel decomposition, the halo region is generally regular with a
fixed number of levels around each rectangle. For an ocean
model, the land cells in each halo region are useless and can
be neglected during halo exchange. The halo-exchange li-
brary improves performance by enabling the convenient ne-
glect of useless cells in each halo region. To evaluate the im-
pact of this functionality, we design a test case with a propor-
tion of useless cells distributed randomly in each halo region
(four levels). Table 4 shows the corresponding performance
of halo exchanges for different sizes of horizontal grid and
different numbers of processes when there are five 3-D fields
bundled together in each halo-exchange operation. The re-
sults show that the capability to neglect useless cells can fur-
ther improve the performance of halo exchanges, as it can
reduce the amount of data transferred among processes.

7.3 Evaluation of the common module-integration
framework

To confirm that the module-integration framework can work
as an extra layer for using an algorithm, we use the Com-
munity Earth System Model (CESM; Hurrell et al., 2013)

version 1.2.1 (called the baseline version), as well as the air–
sea flux algorithm used in the model. Specifically, a test ver-
sion based on the baseline version, where the air–sea flux
algorithm is indirectly called by the model via the module-
integration framework, was developed as follows:

1. Develop the initialization-, execution-, and finalization-
driving subroutines of the air–sea flux algorithm. The
initialization-driving subroutine makes the air–sea flux
algorithm share the same grid, parallel decomposition,
and memory space of each field with the model.

2. Compile the code of the air–sea flux algorithm and the
driving subroutines into a DLL.

3. Replace the original call of the air–sea flux algo-
rithm by calling the corresponding APIs of the module-
integration framework, and then develop a configuration
file corresponding to the air–sea flux algorithm in the
DLL.

We find that the test version can achieve bitwise-identical
results compared to the baseline version, thus showing that a
flux calculation algorithm can be correctly integrated into a
coupled model using the module-integration framework.

Sun et al. (2021) also confirmed the effectiveness of
the module-integration framework, as the DA framework

Geosci. Model Dev., 16, 2833–2850, 2023 https://doi.org/10.5194/gmd-16-2833-2023

L. Liu et al.: C-Coupler3.0: an integrated coupler infrastructure for Earth system modelling 2843

Table 5. Performance of data exchange handled by the module-integration framework for an individual DA algorithm (DA1), an ensemble-
mean DA algorithm (DA2), and an ensemble-gather DA algorithm (DA3). The overhead of C-Coupler3.0 in initializing a DA algorithm is
also shown. Two 2-D and four 3-D fields (50 vertical levels) are assimilated by each DA algorithm. The data type is single floating point
(4 bytes).

Horizontal Number of Size (GB) of the data Processes for each Time (s) of initialization Performance (GBs−1) of
grid size ensemble exchanged between the model ensemble instance of the online data exchange
(resolution) members ensemble and a DA algorithm component model

DA1 DA2 DA3 DA1 DA2 DA3 DA1 DA2 DA3

3600× 1801 10 97.579 48.79 97.579 400 3.08 20.37 19.708 728.5 109.8 110.5
(10 km) 800 2.92 19.20 18.068 1566.6 233.5 210.6

1200 2.70 18.35 17.942 2085.0 360.5 329.9
1600 2.73 17.70 18.589 2927.6 436.0 415.2
2000 2.68 17.71 17.512 3519.8 650.9 557.0

1800× 901 10 24.408 12.204 24.408 400 0.97 9.18 7.58 741.9 130.1 123.3
(20 km) 800 0.98 7.85 6.85 1492.7 258.3 226.2

1200 0.94 9.22 7.10 2428.2 462.5 342.5
1600 0.97 9.25 7.13 3517.5 597.3 484.5
2000 0.96 8.65 8.51 4614.9 784.3 601.8

1800× 901 20 48.816 24.408 48.816 200 0.90 25.70 22.575 777.5 123.3 114.0
(20 km) 400 1.03 34.66 22.84 1481.3 215.0 205.8

600 1.22 44.29 29.84 2159.2 387.3 260.0
800 1.41 66.17 30.93 2894.0 566.0 359.9

1000 1.68 88.66 35.78 3784.8 741.4 575.0

DAFCC1 employs the module-integration framework for
integrating the codes of DA methods and for online data
exchange between the model and DA methods. With the
DLL technique used in the module-integration framework,
DAFCC1 enables users to flexibly specify or change a DA
method for simulations via the method’s name in the con-
figuration file. DAFCC1 is mainly for achieving online cou-
pled ensemble DA, where an ensemble DA algorithm can
run on the processes of all ensemble members. The online
data exchange between each model ensemble member and
a DA method is achieved by the module-integration frame-
work, where an ensemble member and a DA method can run
on different sets of processes and use different parallel de-
compositions.

With regard to the performance of the module-integration
framework, we developed a test coupled ensemble DA sys-
tem to evaluate the performance of data exchange in argu-
ment passing. This system includes a toy coupled model with
two toy-component models, where one component model is
assimilated with three toy DA algorithms. These DA algo-
rithms are an individual algorithm that operates separately on
the data of each ensemble member (called individual DA), an
ensemble algorithm that operates on the ensemble mean data
(called ensemble-mean DA), and an ensemble algorithm that
operates on the data gathered from all ensemble members
(called ensemble-gather DA). The test system allows us to
flexibly change the grid size, the number of ensemble mem-
bers, and the number of processes of the assimilated compo-
nent model.

Table 5 shows that the data exchange corresponding to the
individual DA performs best. As the individual DA operates
on the data of each ensemble member separately, different
ensemble members can handle the data exchange simultane-
ously. As an ensemble DA (the ensemble-mean DA or the
ensemble-gather DA) operates on the data from the whole
model ensemble, the ensemble DA has to exchange data with
all ensemble members individually. So, it is reasonable that
the data exchange corresponding to the ensemble DA is much
slower than the individual DA. In this evaluation, we made
the ensemble DA run on all processes of the whole model
ensemble for maximum parallelism of the ensemble DA,
which minimizes the MPI message size in the data exchanges
and can result in poor performance of MPI communications.
However, fast online data exchange for the ensemble DA is
achieved (i.e. larger than 100 GBs−1 in all test cases). The
results in Table 5 also reveal that the parallel-optimization
technologies make C-Coupler3.0 initialize a DA algorithm
with reasonable overhead. An ensemble DA algorithm cor-
responds to a larger initialization overhead than that from
an individual DA algorithm. This is because the initializa-
tion of an individual DA algorithm only introduces the cou-
pling generation within each ensemble member, whereas the
initialization of an ensemble DA algorithm introduces more
occurrences of coupling generation (i.e. coupling generation
between the whole ensemble and each ensemble member).

https://doi.org/10.5194/gmd-16-2833-2023 Geosci. Model Dev., 16, 2833–2850, 2023

2844 L. Liu et al.: C-Coupler3.0: an integrated coupler infrastructure for Earth system modelling

8 Summary and discussion

As a new version of C-Coupler, C-Coupler3.0 achieves var-
ious advancements over its predecessors, e.g. parallel op-
timizations, halo exchanges for model parallelization, and
frameworks for integrating a software module, developing
a weakly coupled ensemble data assimilation system, and
inputting and outputting fields in parallel. As a result, C-
Coupler3.0 is an integrated infrastructure for Earth system
modelling and can effectively handle coupling at ultra-high
resolutions.

The development of C-Coupler3.0 is based fully on C-
Coupler2. All APIs, configuration files, and existing func-
tionalities of C-Coupler2 are maintained in C-Coupler3.0,
making it fully compatible with the prior version, so model
developers can easily upgrade a coupled model from C-
Coupler2 to C-Coupler3.0 without modifying model codes
or existing XML configuration files. As an integrated infras-
tructure, C-Coupler3.0 provides more functionalities with the
same suit of APIs and configuration files while also keep-
ing flexibility in usage. Model developers can separately use
the functionalities for model coupling, halo exchanges, mod-
ule integration, ensemble data assimilation, and data I/O.
C-Coupler3.0 benefits from the architecture of C-Coupler2,
and its code complexity is not increased significantly rel-
ative to the prior version. Specifically, C-Coupler3.0 has
about 66 000 lines of code and 140 APIs, of which around
30 000 lines of code and 50 APIs are new compared with C-
Coupler2.

Our future work will further improve C-Coupler3.0 by, for
example, upgrading the DA framework to support a strongly
coupled DA, upgrading the data I/O framework to support
asynchronous I/O, and improving the accuracy of remapping
with high-order algorithms (Ullrich and Taylor, 2015).

Appendix A: Introductions to a part of C-Coupler APIs
referred to in this paper

API 1: CCPL_register_normal_parallel_decomp

– integer FUNCTION CCPL_register_normal_parallel_
decomp(decomp_name, grid_id, num_local_cells, lo-
cal_cells_global_index, annotation)

– return value [INTEGER; OUT]: the ID of the par-
allel decomposition.

– decomp_name [CHARACTER; IN]: the name of
the parallel decomposition. It has a maximum
length of 80 characters. Each character must be A–
Z, a–z, 0–9, or _.

– grid_id [INTEGER; IN]: the ID of the correspond-
ing horizontal (H2D) grid that has already been reg-
istered to C-Coupler.

– num_local_cells [INTEGER; IN]: the number of
local grid cells (≥ 0) in the parallel decomposition
of the current MPI process.

– local_cells_global_index [INTEGER, DIMEN-
SION(:); IN]: the global index of the local grid cells
in the parallel decomposition of the current MPI
process. The array size of local_cells_global_index
cannot be smaller than num_local_cells. Each
value in local_cells_global_index must be
CCPL_NULL_INT or a value between 1 and
the grid size.

– annotation [CHARACTER, OPTIONAL; IN]: the
annotation used to mark the corresponding model
code that calls this API. It has a maximum length
of 512 characters.

– Description of this API.

This API registers a new parallel decomposition of a
horizontal grid (grid_id) among all MPI processes of
the component model corresponding to grid_id and re-
turns the ID of the new parallel decomposition when the
registration succeeds. The new parallel decomposition
corresponds to the same component model with grid_id.
All MPI processes of the component model are required
to call this API at the same time, with the same de-
comp_name and the same horizontal grid. This API can-
not be called when the coupling-configuration stage of
the corresponding component model has already been
ended.

API 2: CCPL_register_halo_region

– integer FUNCTION CCPL_register_halo_region(halo_
name, decomp_id, num_local_cells, local_cells_local_
indexes, local_cells_global_indexes, annotation)

– return value [INTEGER; OUT]: the ID of the new
halo region.

– halo_name [CHARACTER; IN]: the name of the
halo region. It has a maximum length of 80 char-
acters. Each character must be A–Z, a–z, 0–9, or
_. There cannot be two halo regions with the same
name under the same parallel decomposition.

– decomp_id [INTEGER; IN]: the ID of an exist-
ing parallel decomposition corresponding to the
halo region. In Each process, the local subdo-
mains corresponding to the given parallel decom-
position should contain all grid cells in the halo
regions. When registering a parallel decomposition
(Sect. 2.5), the global index of each cell in the halo
regions should be set to CCPL_NULL_INT.

– num_local_cells [INTEGER; IN]: the number of
local grid cells (≥ 0) in the halo region in the cur-
rent MPI process.

Geosci. Model Dev., 16, 2833–2850, 2023 https://doi.org/10.5194/gmd-16-2833-2023

L. Liu et al.: C-Coupler3.0: an integrated coupler infrastructure for Earth system modelling 2845

– local_cells_local_indexes [INTEGER; DIMEN-
SION(:); IN]: the local index of each grid cell
in the halo region of the current MPI process.
The local index means the index of a grid cell
in the local subdomains of current MPI process
corresponding to the given parallel decomposition.
The local index starts from 1. The array size of
local_cells_local_indexes cannot be smaller than
num_local_cells.

– local_cells_global_indexes [INTEGER; DIMEN-
SION(:); IN]: the global index of each grid cell in
the halo region of the current MPI process. The ar-
ray size of ‘local_cells_global_indexes cannot be
smaller than num_local_cells. Each element of lo-
cal_cells_global_indexes should be between 1 and
size of the whole grid domain.

– annotation [CHARACTER, OPTIONAL; IN]: the
annotation used to mark the corresponding model
code that calls this API. It has a maximum length
of 512 characters.

– Description of this API.

This API registers halo regions on the given parallel de-
composition and returns the ID of the new halo regions
when the registration succeeds. All MPI processes of
the component model are required to call this API at the
same time with consistent parameters.

API 3: CCPL_register_halo_exchange_interface

– integer FUNCTION CCPL_register_halo_exchange_
interface(interface_name, num_field_instances, field_
instance_IDs, halo_region_IDs, annotation)

– return value [INTEGER; OUT]: the ID of the new
halo exchange interface.

– interface_name [CHARACTER; IN]: the name of
the halo exchange interface. Each character must
be A–Z, a–z, 0–9, or _. There cannot be two halo-
exchange interfaces with the same name in the same
component model.

– num_field_instances [INTEGER; IN]: the number
of field instances (> 0) exchanged via this halo-
exchange interface.

– field_instance_IDs [INTEGER, DIMENSION(:);
IN]: the ID of the field instances that are ex-
changed by this interface. All field instances
specified by field_instance_IDs must correspond
to the same component model. The array size
of field_instance_IDs cannot be smaller than
num_field_instances. Any two field instances can-
not share the same field name.

– halo_region_IDs [INTEGER, DIMENSION(:);
IN]: the ID of the halo regions corresponding to
the given field instances (each ID corresponds to
a field instance). The array size of the parameter
halo_region_IDs cannot be smaller than the pa-
rameter num_field_instances. All halo regions and
all field instances must correspond to the same
component model.

– annotation [CHARACTER, OPTIONAL; IN]: the
annotation used to mark the corresponding model
code that calls this API. It has a maximum length
of 512 characters.

– Description of this API.

This API registers a new halo-exchange interface for a
set of field instances and returns the ID of the new halo-
exchange interface when the registration succeeds. All
MPI processes of the component model are required to
call this API at the same time with consistent parame-
ters.

API 4: CCPL_execute_halo_exchange_using_id

– SUBROUTINE CCPL_execute_halo_exchange_using_
id(interface_id, is_asynchronous, annotation)

– interface_id [INTEGER; IN]: the ID of a halo ex-
change interface.

– is_asynchronous [LOGICAL; IN]: a mark of the
asynchronous or synchronous mode for executing
the interface. When is_asynchronous is set to true,
the interface will be returned immediately without
waiting for completion of the halo exchange. When
is_asynchronous is set to false, the interface will not
be returned until the halo exchange finishes.

– annotation [CHARACTER, OPTIONAL; IN]: the
annotation used to mark the corresponding model
code that calls this API. It has a maximum length
of 512 characters.

– Description of this API.

This API executes a halo-exchange interface based on
the given interface ID. All MPI processes of the corre-
sponding component model are required to call this API
at the same time with consistent parameters.

API 5: CCPL_finish_halo_exchange_using_id

– SUBROUTINE CPL_finish_halo_exchange_using_
id(interface_id, annotation)

– interface_id [INTEGER; IN]: the ID of a given
halo-exchange interface.

https://doi.org/10.5194/gmd-16-2833-2023 Geosci. Model Dev., 16, 2833–2850, 2023

2846 L. Liu et al.: C-Coupler3.0: an integrated coupler infrastructure for Earth system modelling

– annotation [CHARACTER, OPTIONAL; IN]: the
annotation used to mark the corresponding model
code that calls this API. It has a maximum length
of 512 characters.

– Description of this API.

This API finishes execution of a halo-exchange inter-
face based on the given interface ID. All MPI processes
of the corresponding component model are required to
call this API at the same time with consistent param-
eters. If the halo-exchange interface is executed asyn-
chronously, this API will wait until the halo exchange
finishes; otherwise, this API will return immediately.

API 6: CCPL_report_one_field_instance_checksum

– SUBROUTINE CCPL_report_one_field_instance_
checksum(field_instance_id, bypass_decomp, hint, an-
notation)

– field_interface_id [INTEGER; IN]: the ID of a
given field instance.

– bypass_decomp [LOGICAL; IN]: a mark to spec-
ify whether to consider the parallel decomposition
when calculating the checksum. When its value is
false, the parallel decomposition of the field will be
considered.

– hint [CHARACTER; IN]: the hint used to mark the
code position when calling this API. It has a max-
imum length of 512 characters. It will be output
when reporting the checksum value.

– annotation [CHARACTER, OPTIONAL; IN]: the
annotation used to mark the corresponding model
code that calls this API. It has a maximum length
of 512 characters.

– Description of this API.

This API calculates and reports the checksum of a field
instance throughout the processes of the correspond-
ing component model. The information of checksums
will be output to C-Coupler’s log files under the direc-
tory CCPL_dir/run/CCPL_logs. All MPI processes of
the corresponding component model are required to call
this API at the same time with consistent parameters.

API 7: CCPL_report_all_field_instances_checksum

– SUBROUTINE CCPL_report_all_field_instances_
checksum(comp_id, bypass_decomp, hint, annotation)

– comp_id [INTEGER; IN]: the ID of a the given
component model.

– bypass_decomp [LOGICAL; IN]: a mark to spec-
ify whether to consider the parallel decomposition

when calculating the checksum. When its value is
false, the parallel decomposition of the field will be
considered.

– hint [CHARACTER; IN]: the hint used to mark the
code position when calling this API. It has a max-
imum length of 512 characters. It will be output
when reporting the checksum value.
annotation [CHARACTER, OPTIONAL; IN]: the
annotation used to mark the corresponding model
code that calls this API. It has a maximum length
of 512 characters.

– Description of this API.

This API calculates and reports the checksum of all reg-
istered field instances of the given component model
throughout the processes of the component model. The
information of checksums will be output to C-Coupler’s
log files under the directory CCPL_dir/run/CCPL_logs.
All MPI processes of the given component model are re-
quired to call this API at the same time with consistent
parameters.

API 8: CCPL_external_modules_declare_argument

– INTEGER FUNCTION CCPL_external_modules_
declare_argument (proc_inst_id, data_pointer, field_
name, type_inout, decomp_id, grid_id, dims_size,
field_unit, annotation)

– return value [INTEGER; OUT]: the ID of the de-
clared argument.

– proc_inst_id [INTEGER; IN]: the ID of the
external-module instance.

– data_pointer [REAL or INTEGER, no DIMEN-
SION or DIMENSION|(:), (:,:), (:,:,:) or (:,:,:,:)|;
INOUT]: the data buffer pointer corresponding to
the declared argument. The number of dimensions
of the data buffer pointer cannot be larger than the
array size of dims_size.

– field_name [CHARACTER; IN]: the name of the
declared argument. It has a maximum length of
80 characters. Each character must be A–Z, a–z, 0–
9, or _. A field_name is legal only when there is a
corresponding entry in the configuration file pub-
lic_field_attribute.xml.

– type_inout [INTEGER; IN]: the mark for spec-
ifying whether the declared argument of the
external-module instance is an input or output
argument. The value of CCPL_PARA_TYPE_IN
means an input argument passed from the com-
ponent model to the external module. The
value of CCPL_PARA_TYPE_OUT means an out-
put argument passed from the external mod-
ule to the component model. The value of

Geosci. Model Dev., 16, 2833–2850, 2023 https://doi.org/10.5194/gmd-16-2833-2023

L. Liu et al.: C-Coupler3.0: an integrated coupler infrastructure for Earth system modelling 2847

CCPL_PARA_TYPE_INOUT means the declared
argument is both input and output.

– decomp_id [INTEGER; IN]: the ID of the corre-
sponding parallel decomposition. If the declared ar-
gument is a scalar variable or a field instance on a
grid without a horizontal subgrid (for example, the
field instance is only on a vertical grid), decomp_id
should be specified to −1.

– grid_id [INTEGER; IN]: the ID of the correspond-
ing grid. If the declared argument is a scalar vari-
able, grid_id should be set to −1. When both
grid_id and decomp_id are not −1, they must cor-
respond to the same component model, and the hor-
izontal grid corresponding to decomp_id must be a
subgrid of the grid corresponding to grid_id.

– dim_size [INTEGER, DIMENSION(:), OP-
TIONAL; IN]: an array each element of which
specifies the size of a dimension of the data
buffer pointer. The array size of dim_size must
be no smaller than the number of dimensions of
data_pointer. dim_size should be provided when
data_pointer points to an empty space (it does not
point to an existing memory space).

– field_unit [CHARACTER, OPTIONAL; IN]: the
unit of the declared argument. The default
unit specified in the configuration file pub-
lic_field_attribute.xml (please refer to Sect. 3.2 for
details) will be used when field_unit is not specified
when calling this API.

– annotation [CHARACTER, OPTIONAL; IN]: the
annotation used to mark the corresponding model
code that calls this API. It has a maximum length
of 512 characters.

– Description of this API.

This API declares an argument of the corresponding
external-module instance and returns the ID of the new
argument when the declaration succeeds. field_name,
decomp_id, and grid_id are keywords of the declared
argument. If the data_pointer points to an existing mem-
ory space, the declared argument will use this memory
space, and the size of the memory space must be the
same as the required size; otherwise, data_pointer will
be assigned to point to a memory space managed by C-
Coupler, and such memory space will be shaped follow-
ing the dimension sizes specified by the dim_size. All
MPI processes of the corresponding component model
should call this API for starting the declaration of an ar-
gument, while more calls of this API will be required
when the argument has multiple chunks in the current
MPI process (each call of this API declares a chunk of
the argument).

API 9: CCPL_external_modules_para_get_field_
grid_ID

– integer FUNCTION CCPL_external_modules_para_
get_field_grid_ID (instance_id, field_name, annotation)

– return value [INTEGER; OUT]: the grid ID of the
corresponding model field instance.

– instance_id [INTEGER; IN]: the ID of the external-
module instance.

– field_name [CHARACTER; IN]: the name of the
model field instance. It has a maximum length of
80 characters. Each character must be A–Z, a–z, 0–
9, or _.

– annotation [CHARACTER, OPTIONAL; IN]: the
annotation used to mark the corresponding model
code that calls this API, which is recommended but
not mandatory and should be provided by the user.
It has a maximum length of 512 characters.

– Description of this API.

This API returns the grid ID of the model field instance
corresponding to the given field name, which has been
registered to C-Coupler in the component model of call-
ing the external module. This API can be called at all
stages of an external module.

API 10: CCPL_external_modules_para_get_field_
decomp_ID

– integer FUNCTION CCPL_external_modules_para_
get_field_decomp_ID (instance_id, field_name, annota-
tion)

– return value [INTEGER; OUT]: the parallel de-
composition ID of the corresponding model field
instance.

– instance_id [INTEGER; IN]: the ID of the external-
module instance.

– field_name [CHARACTER; IN]: the name of the
model field instance. It has a maximum length of
80 characters. Each character must be A–Z, a–z, 0–
9, or _.

– annotation [CHARACTER, OPTIONAL; IN]: the
annotation used to mark the corresponding model
code that calls this API, which is recommended but
not mandatory and should be provided by the user.
It has a maximum length of 512 characters.

– Description of this API.

This API returns the parallel decomposition ID of the
model field instance corresponding to the given field
name, which has been registered to C-Coupler in the
host component model of the external module. This API
can be called at all stages of an external module.

https://doi.org/10.5194/gmd-16-2833-2023 Geosci. Model Dev., 16, 2833–2850, 2023

2848 L. Liu et al.: C-Coupler3.0: an integrated coupler infrastructure for Earth system modelling

API 11: CCPL_external_modules_inst_init

– integer FUNCTION CCPL_external_modules_inst_init
(host_comp_id, inst_name, modules_name, ptype,
dl_name, process_active, control_vars, field_inst_ids,
timer_ids, annotation)

– return value [INTEGER; OUT]: the ID of the in-
stance of external modules.

– host_comp_id [INTEGER; IN]: the ID of the host
component model that calls the API.

– inst_name [CHARACTER; IN]: the name is also
the keyword of the external-module instance. It has
a maximum length of 80 characters. Each character
must be A–Z, a–z, 0–9, or _.

– modules_name [CHARACTER; IN]: the name of
the external modules, which specifies the informa-
tion in the corresponding XML configuration file. It
has a maximum length of 80 characters. Each char-
acter must be A–Z, a–z, 0–9, or _.

– ptype [CHARACTER; IN]: the type of the exter-
nal module, including individual and package. The
type “individual” means a unique procedure, while
the type “package” means a package that contains
multiple procedures specified through the corre-
sponding configuration files. When it is a unique
procedure, modules_name must be consistent with
the corresponding driving subroutines in the dy-
namically linked library.

– dl_name [CHARACTER, OPTIONAL; IN]: the
name of the dynamic library that contains the
unique external module. It should be specified
when the value of ptype is individual. It has a max-
imum length of 80 characters. Each character must
be A–Z, a–z, 0–9, or _.

– process_active [LOGICAL, OPTIONAL; IN]: a
mark for specifying whether the current MPI pro-
cess is active to run and finalize the external mod-
ule. All processes of the current component model
will call the initialization-driving subroutine of
each external module, while only the active pro-
cesses will call the running-driving subroutine of
each external module. When process_active is not
specified, it means that the current process is active.

– control_vars [INTEGER, DIMENSION(:), OP-
TIONAL; IN]: an integer array of control variables
that can be obtained by the external module via the
corresponding APIs.

– field_inst_ids [INTEGER, DIMENSION(:), OP-
TIONAL; IN]: the IDs of model field instances cor-
responding to the arguments of each external mod-
ule; e.g. these field instances should cover all input
and output arguments of each external module. All

these field instances should correspond to the same
component model.

– timer_ids [INTEGER, DIMENSION(:), OP-
TIONAL; IN]: the IDs of timers that can be
obtained by the external modules.

– annotation [CHARACTER, OPTIONAL; IN]: the
annotation used to mark the corresponding model
code that calls this API, which is recommended but
not mandatory and should be provided by the user.
It has a maximum length of 512 characters.

– Description of this API.

This API initializes an external-module instance and re-
turns its ID. All MPI processes of the host component
model are required to call this API at the same time with
consistent parameters. This API will load in the corre-
sponding DLLs and call the initialization-driving sub-
routine of the corresponding external modules.

API 12: CCPL_external_modules_inst_run

– SUBROUTINE CCPL_external_modules_inst_run (in-
stance_id, chunk_index, annotation)

– instance_id [INTEGER; IN]: the ID of an external-
module instance.

– chunk_index [INTEGER; IN]: the index of the
given chunk corresponding to single-column data
structures. If the corresponding external modules
do not use single-column data structures, the chunk
index should be −1. The index of the first chunk
is 1.

– annotation [CHARACTER, OPTIONAL; IN]: the
annotation used to mark the corresponding model
code that calls this API, which is recommended but
not mandatory and should be provided by the user.
It has a maximum length of 512 characters.

– Description of this API.

This API executes an external-module instance, where
the running-driving subroutine of each corresponding
external module will be called. All MPI processes of
the host component model are required to call this API
at the same time with the same input parameters.

API 13: CCPL_external_modules_inst_finalize

– SUBROUTINE CCPL_external_modules_inst_run (in-
stance_id, annotation)

– instance_id [INTEGER; IN]: the ID of an external-
module instance.

Geosci. Model Dev., 16, 2833–2850, 2023 https://doi.org/10.5194/gmd-16-2833-2023

L. Liu et al.: C-Coupler3.0: an integrated coupler infrastructure for Earth system modelling 2849

– annotation [CHARACTER, OPTIONAL; IN]: the
annotation used to mark the corresponding model
code that calls this API, which is recommended but
not mandatory and should be provided by the user.
It has a maximum length of 512 characters.

– Description of this API.

This API finalize an external-module instance, where
the finalization-driving subroutine of each correspond-
ing external module will be called. All MPI processes of
the host component model are required to call this API
at the same time with the same input parameters.

Code availability. A source code version of C-Coupler3.0 can
be viewed via https://doi.org/10.5281/zenodo.7235470 (Liu et
al., 2022a; please contact us for authorization before using C-
Coupler for developing a system). The user manual of C-
Coupler3.0 is attached as the Supplement. The source code
and scripts for the test coupled model used in Sect. 7.1
can be downloaded from https://doi.org/10.5281/zenodo.7236156
(Liu et al., 2022b). The source code and scripts for the
test component model used in Sect. 7.2 can be downloaded
from https://doi.org/10.5281/zenodo.7236138 (Liu et al., 2022c).
The source code of the air–sea flux algorithm with C-
Coupler3 for software integration (Sect. 7.3) can be down-
loaded from https://doi.org/10.5281/zenodo.7237292 (Sun, 2022).
The source code and scripts of the test coupled ensem-
ble DA system used in Sect. 7.3 can be downloaded from
https://doi.org/10.5281/zenodo.7237290 (Sun, 2022).

Data availability. No datasets were used in this article.

Supplement. The supplement related to this article is available on-
line at: https://doi.org/10.5194/gmd-16-2833-2023-supplement.

Author contributions. LL led the design and development of C-
Coupler3.0 and the writing of the paper. LL, CS, XY, HY, QJ, RL,
and XL contributed to the code development and the validation of
C-Coupler3.0. BW, XS, and GY contributed to the motivation and
evaluation. All the authors contributed to the improvement of ideas
and the writing of the paper.

Competing interests. The contact author has declared that none of
the authors has any competing interests.

Disclaimer. Publisher’s note: Copernicus Publications remains
neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Financial support. This work was supported in part by the National
Key Research Project of China (grant no. 2017YFC1501903) and
was jointly supported in part by the Natural Science Foundation of
China (grant no. 42075157).

Review statement. This paper was edited by Paul Ullrich and re-
viewed by two anonymous referees.

References

Adams, S. V., Ford, R. W., Hambley, M., Hobson, J. M., Kavčič,
I., Maynard, C. M., Melvin, T., Müller, E. H., Mullerworth, S.,
Porter, A. R., Rezny, M., Shipway, B. J., and Wong, R.: LFRic:
Meeting the challenges of scalability and performance portabil-
ity in Weather and Climate models, J. Parallel Distr. Com., 132,
383–396, https://doi.org/10.1016/j.jpdc.2019.02.007, 2019.

Balaji, V., Anderson, J., Held, I., Winton, M., Durachta, J., Maly-
shev, S., and Stouffer, R. J.: The Exchange Grid: a mechanism
for data exchange between Earth System components on inde-
pendent grids, in: Lect. Notes. Comput. Sc., Elsevier, 179–186,
https://doi.org/10.1016/B978-044452206-1/50021-5, 2006.

Craig, A. P., Jacob, R. L., Kauffman, B., Bettge, T., Larson, J. W.,
Ong, E. T., Ding, C. H. Q., and He, Y.: CPL6: The New Ex-
tensible, High Performance Parallel Coupler for the Community
Climate System Model, Int. J. High Perform. C., 19, 309–327,
2005.

Craig, A. P., Vertenstein, M., and Jacob, R.: A New Flex-
ible Coupler for Earth System Modeling developed for
CCSM4 and CESM1, Int. J. High Perform. C., 26–1, 31–42,
https://doi.org/10.1177/1094342011428141, 2012.

Craig, A., Valcke, S., and Coquart, L.: Development and
performance of a new version of the OASIS coupler,
OASIS3-MCT_3.0, Geosci. Model Dev., 10, 3297–3308,
https://doi.org/10.5194/gmd-10-3297-2017, 2017.

Deconinck, W., Bauer, P., Diamantakis, M., Hamrud, M., Kühn-
lein, C., Maciel, P., Mengaldo, G., Quintino, T., Raoult, B., Smo-
larkiewicz, P. K., and Wedi, N. P.: Atlas: A library for numerical-
weather prediction and climate modeling, Comput. Phys. Com-
mun., 220, 188–204, https://doi.org/10.1016/j.cpc.2017.07.006,
2017.

Dennis, J., Edwards, J., Evans, K. J., Guba, O., Lauritzen, P., Mirin,
A. A., St-Cyr, A., Taylor, M. A., and Worley, P. H.: CAM-SE:
A scalable spectral element dynamical core for the Community
Atmosphere Model, Int. J. High Perform C., 26, 74–89, 2012.

Hanke, M., Redler, R., Holfeld, T., and Yastremsky, M.: YAC 1.2.0:
new aspects for coupling software in Earth system modelling,
Geosci. Model Dev., 9, 2755–2769, https://doi.org/10.5194/gmd-
9-2755-2016, 2016.

Heinzeller, D., Bernardet, L. R., Firl, G. J., Zhang, M., Sun,
X., and Ek, M. B.: The Common Community Physics
Package (CCPP) Framework v6, EGUsphere [preprint],
https://doi.org/10.5194/egusphere-2022-855, 2022.

Hill, C., DeLuca, C., Balaji, V., Suarez, M., and Silva, A. D.: Archi-
tecture of the Earth System Modeling Framework, Comput. Sci.
Eng., 6, 18–28, 2004.

Hurrell, J. W., Holland, M. M., Gent, P. R., Ghan, S., Kay, J. E.,
Kushner, P. J., Lamarque, J.-F., Large, W. G., Lawrence, D.,

https://doi.org/10.5194/gmd-16-2833-2023 Geosci. Model Dev., 16, 2833–2850, 2023

https://doi.org/10.5281/zenodo.7235470
https://doi.org/10.5281/zenodo.7236156
https://doi.org/10.5281/zenodo.7236138
https://doi.org/10.5281/zenodo.7237292
https://doi.org/10.5281/zenodo.7237290
https://doi.org/10.5194/gmd-16-2833-2023-supplement
https://doi.org/10.1016/j.jpdc.2019.02.007
https://doi.org/10.1016/B978-044452206-1/50021-5
https://doi.org/10.1177/1094342011428141
https://doi.org/10.5194/gmd-10-3297-2017
https://doi.org/10.1016/j.cpc.2017.07.006
https://doi.org/10.5194/gmd-9-2755-2016
https://doi.org/10.5194/gmd-9-2755-2016
https://doi.org/10.5194/egusphere-2022-855

2850 L. Liu et al.: C-Coupler3.0: an integrated coupler infrastructure for Earth system modelling

Lindsay, K., Lipscomb, W. H., Long, M. C., Mahowald, N.,
Marsh, D. R., Neale, R. B., Rasch, P., Vavrus, S., Vertenstein,
M., Bader, D., Collins, W. D., Hack, J. J., Kiehl, J., and Mar-
shall, S.: The Community Earth System Model: A framework for
collaborative research, B. Am. Meteorol. Soc., 94, 1339–1360,
https://doi.org/10.1175/BAMS-D-12-00121.1, 2013.

Jacob, R., Larson, J., and Ong, E.: M ×N Communication and Par-
allel Interpolation in Community Climate System Model Ver-
sion 3 Using the Model Coupling Toolkit, Int. J. High. Per-
form. C., 19, 293–307, 2005.

Larson, J., Jacob, R., and Ong, E.: The Model Coupling Toolkit:
A New Fortran90 Toolkit for Building Multiphysics Paral-
lel Coupled Models, Int. J. High Perf. C., 19, 277–292,
https://doi.org/10.1177/1094342005056116, 2005.

Li, L., Yu, Y., Tang, Y., Lin, P., Xie, J., Song, M., Dong, L.,
Zhou, T., Liu, L., Wang, L., Pu, Y., Chen, X., Chen, L.,
Xie, Z., Liu, H., Zhang, L., Huang, X., Feng, T., Zheng,
W., Xia, K., Liu, H., Liu, J., Wang, Y., Wang, L., Jia,
B., Xie, F., Wang, B., Zhao, S., Yu, Z., Zhao, B., and
Wei, J.: The Flexible Global Ocean-Atmosphere-Land System
Model Grid-Point Version 3 (FGOALS-g3): Description and
Evaluation, J. Adv. Model. Earth Sy., 12, e2019MS002012,
https://doi.org/10.1029/2019MS002012, 2020.

Lin, Y. L., Huang, X. M., Liang, Y. S., Qin, Y., Xu, S. M., Huang,
W. Y., Xu, F. H., Liu, L., Wang, Y., Peng, Y. R., Wang, L., Xue,
W., Fu, H. H., Zhang, G. J., Wang, B., Li, R. Z., Zhang, C., Lu,
H., Yang, K., Luo, Y., Bai, Y. Q., Song, Z., Wang, M., Zhao, W.,
Zhang, F., Xu, J. H., Zhao, X., Lu, C., Luo, Y., Hu, Y., Tang, Q.,
Chen, D., Yang, G. W., and Gong, P.: The Community Integrated
Earth System Model (CIESM) from Tsinghua University and its
plan for CMIP6 experiments, Clim. Change Res., 15, 545–550,
https://doi.org/10.12006/j.issn.1673-1719.2019.166, 2019.

Liu, L., Yang, G., Wang, B., Zhang, C., Li, R., Zhang, Z., Ji,
Y., and Wang, L.: C-Coupler1: a Chinese community coupler
for Earth system modeling, Geosci. Model Dev., 7, 2281–2302,
https://doi.org/10.5194/gmd-7-2281-2014, 2014.

Liu, L., Zhang, C., Li, R., Wang, B., and Yang, G.: C-Coupler2:
a flexible and user-friendly community coupler for model
coupling and nesting, Geosci. Model Dev., 11, 3557–3586,
https://doi.org/10.5194/gmd-11-3557-2018, 2018.

Liu, L., Sun, C., Yu, X., Yu, H., Jiang, Q., Li, X., Li, R., Wang,
B., Shen, X., and Yang, G.: C-Coupler3: an integrated cou-
pler infrastructure for Earth system modeling, Zenodo [code],
https://doi.org/10.5281/zenodo.7235470, 2022a.

Liu, L., Sun, C., Yu, X., Yu, H., Jiang, Q., Li, X., Li,
R., Wang, B., Shen, X., and Yang, G.: startup speed
test coupled model for C-Coupler3, Zenodo [code],
https://doi.org/10.5281/zenodo.7236156, 2022b.

Liu, L., Sun, C., Yu, X., Yu, H., Jiang, Q., Li, X., Li,
R., Wang, B., Shen, X., and Yang, G.: halo exchange
test coupled model for C-Coupler3, Zenodo [code],
https://doi.org/10.5281/zenodo.7236138, 2022c.

Redler, R., Valcke, S., and Ritzdorf, H.: OASIS4 – a coupling soft-
ware for next generation earth system modelling, Geosci. Model
Dev., 3, 87–104, https://doi.org/10.5194/gmd-3-87-2010, 2010.

Ren, S., Liang, X., Sun, Q., Yu, H., Tremblay, L. B., Lin, B.,
Mai, X., Zhao, F., Li, M., Liu, N., Chen, Z., and Zhang,
Y.: A fully coupled Arctic sea-ice–ocean–atmosphere model
(ArcIOAM v1.0) based on C-Coupler2: model description

and preliminary results, Geosci. Model Dev., 14, 1101–1124,
https://doi.org/10.5194/gmd-14-1101-2021, 2021.

Shi, R., Xu, F., Liu, L., Fan, Z., Yu, H., Li, H., Li, X.,
and Zhang, Y.: The effects of ocean surface waves on
global intraseasonal prediction: case studies with a coupled
CFSv2.0–WW3 system, Geosci. Model Dev., 15, 2345–2363,
https://doi.org/10.5194/gmd-15-2345-2022, 2022.

Su, P. and Drysdale, R. L. S.: A comparison of sequential Delau-
nay triangulation algorithms, Comp. Geom., Elsevier Science
Publishers B. V., https://doi.org/10.1016/S0925-7721(96)00025-
9, 1997.

Sun, C.: ChaoSun14/DEMO_DA_System_DAFCC1:
DEMO_DA_System_DAFCC1 (v1.0.0), Zenodo [code],
https://doi.org/10.5281/zenodo.7237290, 2022.

Sun, C., Liu, L., Li, R., Yu, X., Yu, H., Zhao, B., Wang, G., Liu,
J., Qiao, F., and Wang, B.: Developing a common, flexible and
efficient framework for weakly coupled ensemble data assimi-
lation based on C-Coupler2.0, Geosci. Model Dev., 14, 2635–
2657, https://doi.org/10.5194/gmd-14-2635-2021, 2021.

Ullrich P. A. and Taylor M. A.: Arbitrary-Order Conservative and
Consistent Remapping and a Theory of Linear Maps: Part I,
Mon. Weather Rev., 143, 2419–2440, 2015.

Valcke, S.: The OASIS3 coupler: a European climate model-
ing community software, Geosci. Model Dev., 6, 373–388,
https://doi.org/10.5194/gmd-6-373-2013, 2013.

Veerman, M. A., Pedruzo-Bagazgoitia, X., Jakub, F., Vilà-Guerau
de Arellano, J., van Heerwaarden, C. C.: Three-dimensional ra-
diative effects by shallow cumulus clouds on dynamic hetero-
geneities over a vegetated surface. J. Adv. Model. Earth Sy., 12,
1942–2466, 2019.

Wang, W., Barker, D., Bray, J., Bruyère, C., Duda, M., Dudhia, J.,
Gill, D., and Michalakes, J.: WRF Version 3 Modeling System
User’s Guide, http://www2.mmm.ucar.edu/wrf/users/docs/user_
guide_V3/contents.html (last access: 16 May 2023), 2014.

Yang, H., Liu, L., Zhang, C., Li, R., Sun, C., Yu, X., Yu, H.,
Zhang, Z., and Wang, B.: PatCC1: an efficient parallel triangula-
tion algorithm for spherical and planar grids with commonality
and parallel consistency, Geosci. Model Dev., 12, 3311–3328,
https://doi.org/10.5194/gmd-12-3311-2019, 2019.

Yu, H., Liu, L., Sun, C., Li, R., Yu, X., Zhang, C., Zhang, Z.,
and Wang, B.: DiRong1.0: a distributed implementation for im-
proving routing network generation in model coupling, Geosci.
Model Dev., 13, 6253–6263, https://doi.org/10.5194/gmd-13-
6253-2020, 2020.

Yu, X., Liu, L., Sun, C., Jiang, Q., Zhao, B., Zhang, Z., Yu,
H., and Wang, B.: CIOFC1.0: a Common Parallel Input/Output
Framework Based on C-Coupler2.0, Geosci. Model Dev. Dis-
cuss. [preprint], https://doi.org/10.5194/gmd-2022-77, in review,
2022.

Zhang, X., Bao, J., Chen, B., and Grell E. D.: A Three-Dimensional
Scale-Adaptive Turbulent Kinetic Energy Scheme in the WRF-
ARW Model, Mon. Weather Rev., 146, 2023–2045, 2018.

Zhao, B., Qiao, F., Cavaleri, L., Wang, G., Bertotti, L., and
Liu, L.: Sensitivity of typhoon modeling to surface waves
and rainfall, J. Geophys. Res.-Oceans, 122, 1702–1723,
https://doi.org/10.1002/2016JC012262, 2017.

Geosci. Model Dev., 16, 2833–2850, 2023 https://doi.org/10.5194/gmd-16-2833-2023

https://doi.org/10.1175/BAMS-D-12-00121.1
https://doi.org/10.1177/1094342005056116
https://doi.org/10.1029/2019MS002012
https://doi.org/10.12006/j.issn.1673-1719.2019.166
https://doi.org/10.5194/gmd-7-2281-2014
https://doi.org/10.5194/gmd-11-3557-2018
https://doi.org/10.5281/zenodo.7235470
https://doi.org/10.5281/zenodo.7236156
https://doi.org/10.5281/zenodo.7236138
https://doi.org/10.5194/gmd-3-87-2010
https://doi.org/10.5194/gmd-14-1101-2021
https://doi.org/10.5194/gmd-15-2345-2022
https://doi.org/10.1016/S0925-7721(96)00025-9
https://doi.org/10.1016/S0925-7721(96)00025-9
https://doi.org/10.5281/zenodo.7237290
https://doi.org/10.5194/gmd-14-2635-2021
https://doi.org/10.5194/gmd-6-373-2013
http://www2.mmm.ucar.edu/wrf/users/docs/user_guide_V3/contents.html
http://www2.mmm.ucar.edu/wrf/users/docs/user_guide_V3/contents.html
https://doi.org/10.5194/gmd-12-3311-2019
https://doi.org/10.5194/gmd-13-6253-2020
https://doi.org/10.5194/gmd-13-6253-2020
https://doi.org/10.5194/gmd-2022-77
https://doi.org/10.1002/2016JC012262

	Abstract
	Introduction
	New parallel-optimization technologies
	Distributed management of horizontal grids
	Index-based distribution
	Domain-based distribution
	Parallel-decomposition-based distribution
	Transformation among grid distributions

	Parallel triangulation of a horizontal grid
	Parallel remapping-weight calculation
	Parallel input of remapping weights
	Distributed routing-network generation

	Common halo-exchange library
	Common module-integration framework
	External-module-integration manager
	Argument-coupling manager
	External-module-driving engine

	Common ensemble coupled data assimilation framework
	Common data input/output framework
	Empirical evaluation
	Evaluation of the parallel-optimization technologies
	Evaluation of the common halo-exchange library
	Evaluation of the common module-integration framework

	Summary and discussion
	Appendix A: Introductions to a part of C-Coupler APIs referred to in this paper
	Code availability
	Data availability
	Supplement
	Author contributions
	Competing interests
	Disclaimer
	Financial support
	Review statement
	References

