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Abstract. In this paper we introduce a new software frame-
work for the offline calculation of tracer transport in the
ocean. The Fast Equilibration of Ocean Tracers Software
(FEOTS) is an end-to-end set of tools to efficiently calcu-
late tracer distributions on a global or regional sub-domain
using transport operators diagnosed from a comprehensive
ocean model. To the best of our knowledge, this is the first
application of a transport matrix model to an eddying ocean
state. While a Newton–Krylov-based equilibration capabil-
ity is still under development and not presented here, we
demonstrate in this paper the transient modeling capabilities
of FEOTS in an application focused on the Argentine Basin,
where intense eddy activity and the Zapiola Anticyclone lead
to strong mixing of water masses. The demonstration illus-
trates progress in developing offline passive tracer simulation
capabilities, while highlighting the challenges of the impulse
response functions approach in capturing tracer transports by
a non-linear advection scheme. Our future work will focus on
improving the computational efficiency of the code to reduce
time-to-solution, using different basis functions to better rep-
resent non-linear advection operators, applying FEOTS to a
parent model with unstructured grids (Ocean Model for Pre-
diction Across Scales, MPAS-Ocean), and fully implement-
ing a Newton–Krylov steady-state solver.

1 Introduction

Many oceanographic research problems involve the trans-
port and distribution of tracers that do not feed back on the
ocean dynamics. Examples of such problems are the diag-
nostic tracking of water masses using passive tracers (e.g.,
Dukhovskoy et al., 2016; Zhang et al., 2021), validating the
use of isotopes or grain size distributions in marine sedimen-
tary records to infer past ocean circulation changes (e.g., Jahn
et al., 2015; Zhang et al., 2017; Gu et al., 2019; Missiaen
et al., 2020), assessing anthropogenic carbon uptake by the
ocean (e.g., Sarmiento et al., 1992; Khatiwala et al., 2009;
Wang et al., 2012), studying the evolution of marine bio-
geochemical systems (e.g., Séférian et al., 2020), or track-
ing the fate of microplastics in the ocean (e.g., Mountford
and Morales Maqueda, 2019). In many cases, the transport
of these tracers is dominated by mesoscale processes like
eddies. Typical ocean climate models use grids that are too
coarse to explicitly resolve these processes and rely on pa-
rameterizations to simulate their impact on tracer fields, but
it has become clear that these eddy-parameterized models
fail to reproduce some critical aspects of the real ocean (e.g.,
Lozier, 2010). What is more, the ocean also contains dynam-
ical features that rely on mesoscale eddies and which cannot
be reproduced by low-resolution models.

A case in point is the Argentine Basin. It is among the
most turbulent regions in the world ocean (Fu and Smith,
1996), mostly on account of the confluence of two western
boundary currents, the Brazil and Malvinas currents (e.g.,
Garzoli, 1993). A seamount in the center of the basin is asso-
ciated with a local minimum in eddy kinetic energy (Fu and
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Smith, 1996) but is surrounded by a very strong barotropic
vortex, the Zapiola Anticyclone (ZA; Saunders and King,
1995; de Miranda et al., 1999). This anticyclone is under-
stood to be driven by the intense eddy field (Dewar, 1998)
and has been shown to inhibit exchanges between the interior
of the ZA and its surroundings (Weijer et al., 2015, 2020).
Strikingly, the Argentine Basin is also a main conduit of wa-
ter mass exchange between the Atlantic and Southern oceans
(e.g., Jullion et al., 2010), so eddy-driven mixing of water
masses in the Argentine Basin may have implications for the
global thermohaline circulation.

It is clear that studying tracer transport and mixing in the
Argentine Basin requires an ocean model that resolves the
ocean’s mesoscale, not only to accurately represent the trans-
ports by narrow boundary currents and the turbulent eddy
field but also to generate the ZA in the first place. Second,
the equilibration of tracers at deeper levels may take many
decades or centuries, requiring a model capability that can
be run for such long times or that can determine equilibria
directly using iterative solvers. Third, this problem is ideally
addressed using a representation of the global ocean circu-
lation, not only so that the ocean circulation in the region
of interest is fully consistent with large-scale oceanographic
drivers but also for the practical reason that not every regional
problem would require a unique model configuration.

The cost and technical challenges of running global and
fully dynamic ocean models make it expensive and diffi-
cult at best, but often impossible, to address problems like
these. It is obvious that there is a need for simple and effi-
cient tools that solve tracer transport and distribution prob-
lems without the need to explicitly simulate ocean dynam-
ics. In the past decade or so, several transport matrix models
(TMMs) have been developed that allow for the simulation
of passive tracers in a stand-alone (offline) code, using trans-
port operators that have been diagnosed from comprehensive
ocean models (Primeau, 2005; Khatiwala et al., 2005; Khati-
wala, 2007; Bardin et al., 2014; Kvale et al., 2017; Zanna
et al., 2019; Chamberlain et al., 2019). In particular, Khati-
wala et al. (2005) pioneered the approach of empirically es-
timating an ocean model’s transport processes by diagnosing
the action of the transport (advection and diffusion) opera-
tors on simple basis functions like impulse fields. The result-
ing impulse response functions (IRFs) can straightforwardly
be converted to the desired transport matrices. This process
requires minimal intervention in the parent model.

Despite the success of these techniques, TMM models
have generally only been applied to low-resolution, non-
eddying ocean states. This makes them unsuitable to study
problems where eddies play a zeroth-order role in tracer
transport and ocean dynamics, like the Argentine Basin. To
the best of our knowledge, the capability introduced in this
paper is the first TMM model developed for and applied
to eddying ocean states, with transport operators diagnosed
from a global ocean model with nominal resolution of 0.3◦

and 100 vertical levels (∼ 108 df’s).

Our computational framework is embodied in the Fast
Equilibration of Ocean Tracers Software (FEOTS; https://
github.com/LANL/FEOTS). FEOTS is based on the method-
ology of Bardin et al. (2014) but is specifically designed
to tackle the large computational problems associated with
tracer transport in a global eddying ocean. In particular,
FEOTS is written in Object-Oriented Fortran instead of
MATLAB, which makes it straightforward to port the code
to supercomputers, to parallelize the workflow, and to ex-
pose the code to a plethora of existing solver libraries. Also,
FEOTS provides an end-to-end set of tools that streamlines
the process of building and running an offline tracer model.
It (i) uses an advanced optimization algorithm to generate an
optimal set of impulse functions, given the grid layout and
operator stencils for the parent model; (ii) transforms the re-
sulting IRFs obtained from the parent model to transport op-
erators; (iii) sets up regional or global tracer problems with
different types of tracers; (iv) runs forward simulations of the
offline tracer model; and (v) uses a Newton–Krylov solver
to determine steady tracer distributions. To date, the authors
have implemented the first four of these features, and their
implementation, validation, and verification are presented in
this paper. We plan to fully implement a Newton–Krylov
steady-state solver in future releases. The framework is ap-
plied here to the Parallel Ocean Program (POP; Smith et al.,
2010), but the design is flexible enough to be generally appli-
cable – in particular to the new generation of ocean models
with unstructured grids, like the Ocean Model for Prediction
Across Scales (MPAS-Ocean; Ringler et al., 2013). Other fu-
ture work aims to improve time-to-solution by exposing data
parallelism in forward-simulation components of FEOTS.

In this paper we present validation and verification results
for the FEOTS offline tracer solver in a regional forward-
simulation configuration focused on the Argentine Basin.
Specifically, we will show that uniform tracer fields are pre-
served within 0.01% after 5 years of offline model integra-
tion, and we will present a comparison of the offline regional
tracer simulation using 5 d averaged transport operators with
an online tracer simulation using the parent model. Finally,
we comment on the compute costs for running offline simu-
lations with FEOTS.

2 Methodology

Our work builds on the methodologies of Bardin et al. (2014)
to create FEOTS. FEOTS comes with tools to generate im-
pulse fields, translate impulse response fields to sparse ma-
trices corresponding to advection and lateral diffusion, create
vertical diffusion operators from eddy diffusivities reported
by the parent model, and execute offline regional transient
tracer simulations. In Sect. 2.1 we discuss the parent model
POP, which is used for this study. In Sect. 2.2 we present the
governing equations for a non-interacting passive tracer sys-
tem and outline the methodology for capturing transport op-

Geosci. Model Dev., 16, 2795–2809, 2023 https://doi.org/10.5194/gmd-16-2795-2023

https://github.com/LANL/FEOTS
https://github.com/LANL/FEOTS


J. Schoonover et al.: FEOTS 2797

erators from a comprehensive ocean model in Sect. 2.3. The
challenge of using a flux-limited advection scheme is dis-
cussed in Sect. 2.4. The offline forward-stepping algorithm
and treatment of vertical mixing is presented in Sect. 2.5.
Last, the constant preservation test problem is defined in
Sect. 2.6, and the Argentine Basin test problem is defined
in Sect. 2.7.

2.1 Parent model

FEOTS is used for offline tracer simulations using transport
operators diagnosed from a comprehensive ocean model, the
“parent model”. Here we apply FEOTS to the Parallel Ocean
Program, in the framework of the E3SMv0-HiLAT climate
model (Hecht et al., 2019). Our specific configuration is de-
scribed in Zhang et al. (2019) and is referred to as E3SMv0-
HiLAT03. E3SMv0-HiLAT03 has a tripole grid with nomi-
nal 0.3◦ spatial resolution. The grid has 1200×800 grid cells
and 100 levels in the vertical. The grid has a “seam” in the
Arctic that connects the poles in Siberia and Canada. Al-
though technically not eddy-resolving in most of the world
ocean (Hallberg, 2013), this configuration has a vigorous
eddy field (Zhang et al., 2019) and a realistic representa-
tion of the eddy-driven Zapiola Anticyclone in the Argentine
Basin (Weijer et al., 2020).

WithO(108) df’s, and an eddying field that requires trans-
port operators at high temporal frequency (e.g., 5-daily aver-
ages), the data volume of the diagnosed IRFs can become un-
manageable quickly. It is therefore critical to keep the num-
ber of IRFs to an absolute minimum. This means that we
need to choose advection and diffusion treatments that have
the most compact stencils. Typically high-resolution ocean
models use a bi-harmonic mixing scheme to dampen out
the dispersive errors caused by the advection operator (e.g.,
Hecht et al., 2008). Bi-harmonic mixing is clearly undesir-
able for our application, given its huge stencil. Of the three
advection schemes currently implemented in POP (Smith
et al., 2010), the centered and third-order upwind schemes
require explicit diffusion to manage the dispersion error. The
flux-limited Lax–Wendroff scheme does not, making this the
only reasonable choice for our application, even though its
stencil is quite large (27 grid points, 3× 3× 3) compared
with the other two (7 grid points for centered, 13 for the third-
order upwind scheme). This choice requires 53 impulse func-
tions to capture the advection operator (compared to 34 im-
pulse functions for the third-order upwind scheme) but elim-
inates the need for explicit diffusion.

The model is forced by the normal-year Coordinated
Ocean-Ice Reference Experiments version 2 (CORE-II;
Griffies et al., 2012) climatology, which has been a widely
used framework to force ocean and/or sea ice models
for hindcast simulations. With a time step of 7 min the
model typically yields maximum CFL values of O(10−1) or
smaller. Although the model was run for 186 years, we di-
agnosed the transport operators for the 5-year period starting

at simulation year 64. Even though 63 years of spin-up is
not sufficient to fully equilibrate the stratification in the deep
ocean, the main circulation features (e.g., boundary currents,
the eddy field, the Zapiola Anticyclone) are well established
by then, making this an appropriate data set to demonstrate
the capability of FEOTS. We refer to Weijer et al. (2020) for
evaluation of the hydrography and circulation in the Argen-
tine Basin in a companion simulation.

2.2 Governing equations

We model a passive dye tracer as a concentration field that is
subjected to advection and diffusion,

∂

∂t
[(1+ v)c]+∇ · (uc−K∇c)= 0, (1)

where v is the fluid volume anomaly, c is the tracer concen-
tration, t is time, u is the ocean velocity field, and K is the
diffusivity tensor that models unresolved eddy activity. The
fluid volume anomaly is a unitless quantity that is a measure
of the relative change of the fluid volume due to movement of
the free surface. This formulation is chosen so that the total
tracer is conserved and so that the offline model is consistent
with the parent model (Smith et al., 2010).

In practice, the fluid volume anomaly is defined as the ratio
of the free-surface height to the uppermost grid cell; only in
the uppermost grid cell

v =
η

dz1
δk,1, (2)

where η is the free-surface height, dz1 is the grid cell thick-
ness in the uppermost grid cell, and δk,1 is the Kronecker
delta function.

The initial and boundary conditions are set to be

c(t = 0)= c0(z,θ,φ) (3)

and

c = cb(z,θ,φ, t), (4)

where z is depth (measured positive downward), θ is longi-
tude, and φ is latitude. The semi-discrete form of Eq. (1) can
be written as

∂

∂t
[(1+ v)c]+ (A+Dh+Dv)c = 0, (5)

where c is a vector of the discrete values of the tracer, A is
the advection matrix, Dh is the horizontal diffusion matrix,
and Dv is the vertical diffusion matrix. In the examples pre-
sented in this paper, the advection matrix corresponds to the
flux-limited Lax–Wendroff advection scheme on an Arakawa
B grid; this scheme is chosen in the parent model configura-
tion. Since we do not enable explicit lateral tracer diffusion
in the parent model in this study, all elements of Dh are zero.
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To create the vertical diffusion matrix, we diagnose diffusiv-
ity coefficients, which are generated from the KPP parame-
terization, and create a vertical mixing operator offline using
centered differencing with no-flux conditions applied at the
ocean free surface and at the seafloor.

2.3 Graph-coloring approach to operator diagnosis

The purpose of capturing the impulse response functions is
to diagnose sparse matrices that are consistent with the ad-
vection discretization in the parent model. To illustrate this
procedure, suppose that the parent model has N grid cells
and thatN impulse fields are set as the Kronecker delta func-
tions:

[c(i)]Ni=1 = [δj,i]
N
i=1. (6)

In this setup, impulse function i is zero at all grid cells except
for grid cell i where the impulse function has a value of one.
Application of the transport matrix to each of the c(i) returns
column i of A,

Ac(i) =

N∑
j=1

Am,j δj,i = Am,i for m= 1,2,3, . . .,N. (7)

While using a set of Kronecker delta functions will com-
pletely diagnose all of the elements of the transport matrix,
this strategy is computationally expensive. For each time step
this strategy requires computing the advective tendency for
N tracer fields, where N is the number of grid cells. For
example, coarse-resolution models at O(1◦) resolution have
roughly 106 grid cells. Storing 106 impulse and impulse re-
sponse functions would require approximately 3 TB of mem-
ory at double precision.

To reduce the number of required impulse functions to
fully diagnose the transport matrices, we can take advantage
of the fact that the advection scheme results in a sparse ma-
trix. Equivalently, the domain of influence of the advection
operator is limited to nearby grid cells. The parent model
employed in Bardin et al. (2014) used a third-order upwind
scheme, where the impulse response is guaranteed to extend
no further than two grid cells in each spatial dimension, giv-
ing a 5×5×5 brick for the domain of influence. Because of
this, the authors used a set of 125 tracer fields,

c(i,j,k;i0,j0,k0)= δi0,i(mod 5)δj0,j (mod 5)δk0,k(mod 5)

for i0 = 1, . . .,5;j0 = 1, . . .,5;k0 = 1, . . .,5. (8)

FEOTS offers a unique capability to generate a minimal
set of impulse functions by posing the problem as a graph-
coloring problem. A graph G(V,E) is defined by a set of
vertices V and edges E that connect the vertices. Two ver-
tices connected by an edge are said to be adjacent. A valid
graph coloring of G(V,E) assigns colors to each vertex so
that no two adjacent vertices have the same color. To cal-
culate impulse functions that can be used to diagnose trans-
port operators, FEOTS offers functionality to express a POP

mesh and an advection stencil into an equivalent graph that
is colored with a greedy algorithm. This formulation has the
benefit that it can be generalized to parent models based on
unstructured grids, and it takes into account irregular bound-
aries from variable bathymetry.

In FEOTS, graph vertices V correspond to each ocean grid
cell, centered on tracer points, in the POP mesh. Two ver-
tices are adjacent if their impulse response functions overlap.
Because a valid coloring results in adjacent vertices having
distinct colors, vertices with the same color can safely be as-
signed to the same impulse function. Consequently, the chro-
matic number of the graph corresponds to the number of im-
pulse functions used for model diagnosis. For this work the
parent model uses a 0.3◦ periodic tripole mesh and the third-
order flux-limited Lax–Wendroff advection scheme. This ap-
proach results in 53 impulse functions required to uniquely
diagnose the transport operators.

The transport operators in Eq. (5) are diagnosed empir-
ically from the parent model, using the methodology used
by Bardin et al. (2014) and pioneered by Khatiwala et al.
(2005). This process involves diagnosing and time averag-
ing the impulse response functions corresponding to each of
the 53 impulse fields in the passive tracer equations in POP.
Modifications are made in POP to initialize the passive trac-
ers to the impulse functions at the beginning of each time
step. The impulse response function is set equal to the ad-
vective tendency as diagnosed in POP. After diagnosing the
IRF in each time step, the tracer field is reset to the impulse
field so that the IRF at the next time step is saved. The IRFs
are time-averaged over a configurable averaging period and
written out to file.

For each time-averaged IRF, we create a sparse matrix rep-
resentation of the advection operator in POP. Modeling the
advection operator as a matrix–vector multiplication, Eq. (7)
shows that passing an impulse at grid point i through the
advection operator returns column i of the matrix that cor-
responds to the advection. We use this to construct a sparse
matrix in compressed-row-storage format that corresponds to
the advection operator.

For our test problems, we diagnosed the 5 d averaged IRFs
and vertical diffusivities for the 5-year analysis period of the
parent model. We repeated the simulation for 105 d, diagnos-
ing 1 d averaged IRFs. With this methodology and the 7 min
time step, the 1 d averaged operators are each an average of
1440 IRF snapshots, and the 5 d averaged operators are each
an average of 7200 IRF snapshots. The data volume of the
global parent model’s 5 years’ worth of 5 d averaged opera-
tors (365 IRFs and diffusivities) is about 9 TB. Once trans-
formed to transport operators, the data volume is 4 TB.

2.4 Flux-limited advection

The parent model uses a non-linear flux-limited Lax–
Wendroff advection scheme; the flux limiter is equivalent to
the ULTIMATE flux limiter described in Leonard (1991) and
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Hundsdorfer and Trompert (1994). Because FEOTS treats of-
fline advection as a linear operation, online advection with
the parent model, in this case, can not be equivalent. In what
follows, we illustrate how the impulse functions result in the
diagnosis of a more diffusive advection scheme than Lax–
Wendroff.

In POP, the tracer equations are discretized using a finite
volume approximation on an Arakawa B grid. The non-linear
flux-limited Lax–Wendroff scheme is applied in three dimen-
sions using a dimensional splitting technique, the details of
which can be found in Chap. 6 of Smith et al. (2010). For
the purpose of this discussion, it is sufficient to consider the
one-dimensional problem of calculating the advective flux at
a tracer cell face. The advective flux at a tracer cell face can
be written as

Ff = uf [cu+9(r)(cd− cu)] , (9)

where Ff is the advective flux at a tracer cell face, uf is the
normal velocity at a tracer cell face, cu corresponds to the
tracer concentration in the upwind direction, cd corresponds
to the tracer concentration in the downwind direction, and
9(r) is the limiter function where r is a measure of the
monotonicity of c. The monotonicity in this method is de-
fined as

r =
cu− cu−1

cd− cu
, (10)

where cu−1 is the tracer concentration one cell further in
the upstream direction. When r < 0, the tracer concentration
has a local maximum or minimum centered around cu. For
the ULTIMATE flux limiter, 9(r)= 0 when r < 0, in which
case the flux evaluates to the upwind flux.

The impulse functions used in this study all have a local
maximum centered at the impulse locations. At the impulse
locations r < 0, and therefore the diagnosed flux is the more
diffusive upwind flux. This behavior will be apparent and
quantified when comparing the online and offline simulations
in Sect. 3.2.

2.5 Time integration

Forward integration of the offline tracer model uses a back-
ward Euler method for vertical mixing and can use forward
Euler, Adams–Bashforth second order, or Adams–Bashforth
third-order methods for transport. As in Bardin et al. (2014),
we forward step an equation for the volume anomaly using a
forward Euler method. Volume anomalies arise due to diver-
gence in the transport field at the uppermost z level that are
associated with fluctuations of the free surface.

In general, the time integration scheme can be written as

vn+1
= vn+1tAni, (11)

(I+Vn+1
+Dv)cn+1

= (I+Vn)cn+1t(A+Dh)c∗, (12)

where v is the volume anomaly, i is a constant vector whose
elements are all set to one, c∗ depends on the time integration

Table 1. Optional values for c∗ in Eq. (12), based on the choice
of the time integration scheme. The third-order Adams–Bashforth
method is used for the Argentine Basin test problem presented in
this paper.

Method c∗

Forward Euler cn

Adams–Bashforth second order 3cn−cn−1

2
Adams–Bashforth third order 23cn−16cn−1

+5cn−2

12

scheme that is used (Table 1), and Vn+1 is a diagonal matrix
whose diagonal elements are the volume anomalies.

In ocean models, advection and horizontal diffusion op-
erators have a compact stencil, enabling the use of the IRF
approach described in the previous section to “capture” these
advection and diffusion operators. However, vertical diffu-
sion is usually treated differently, by solving a tridiagonal
system that touches the entire water column. The reason is
that high values of vertical diffusivity are applied where the
water column is unstable, and these values easily render any
explicit scheme unstable. Consequently, as the region of in-
fluence of the vertical diffusion operator is the entire water
column, the IRF approach would demand a separate IRF field
for each vertical level of the model grid, which is prohibitive
for finely resolved grids. Instead, FEOTS treats the vertical
solve similarly as the parent model, so rather than IRFs, the
vertical diffusivities are diagnosed, saved, and used to recre-
ate the vertical diffusion operators offline.

Forward-stepping FEOTS requires inverting a tridiagonal
system of equations, given by Eq. (12), for the tracer con-
centration in order to incorporate vertical mixing. To solve
this system, we use the preconditioned conjugate gradient al-
gorithm (Shewchuk, 1994) with a diagonal preconditioner.
The initial solution guess for the vertical mixing solver is set
as the tracer concentration that is predicted without vertical
mixing,

cn+1
0 = (I+Vn+1)−1((I+Vn)cn+1t(A+Dh)c∗). (13)

For the results presented in this paper, we use the third-
order Adams–Bashforth time integrator, and the conjugate
gradient solver is stopped when the residual magnitude, rela-
tive to the initial solution guess magnitude, is less than 10−6.
We use a 15 min time step, and a typical maximum CFL
value, obtained by eigenvalue analysis of the transport op-
erators, is O(0.1).

2.6 Constant preservation test problem

We now show that constant preservation is expected in the
discrete system. This provides the foundation for a test case
that we use to verify the FEOTS implementation. From
Eqs. (11) and (12), we start by assuming that there is no lat-
eral or vertical diffusion, and the initial tracer field is a con-
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stant value of 1 (c0
= i). The discrete system at the initial

time step is then

v1
= v0
+1tAi, (14a)

(I+V1)c1
= (I+V0)i+1tAi. (14b)

Note that we can write these equations using indicial no-
tation, which makes it easier to obtain the result for c1:

v1
j = v

0
j +1t

∑
k

Aj,k, (15a)

c1
j + v

1
j c

1
j = 1+ v0

j +1t
∑
k

Aj,k. (15b)

Substituting Eq. (15a) into (15b) gives(
1+ v0

j +1t
∑
k

Aj,k]

)
c1
j = 1+ v0

j +1t
∑
k

Aj,k. (16)

The only solution to Eq. (16) is c1
j = 1 for each j , im-

plying that the discrete solution remains a constant. If we
progress to the next time step using a forward Euler method,
the same result is obtained. If instead we switch to a second-
order Adams–Bashforth method for the next time step, we
have

c∗k =
3c1
k − c

0
k

2
= 1. (17)

Using this for c∗ results in(
1+ v2

j +1t
∑
k

Aj,k

)
c2
j = 1+ v1

j +1t
∑
k

Aj,k, (18)

which again implies that c2
= i. This result also holds for the

third-order Adams–Bashforth method in this case, since

c∗k =
23c2
− 16c1

+ 5c0

12
= 1 (19)

when c2
= c1
= c0
= i.

When vertical mixing is introduced, the solution obtained
in Eq. (16) serves as an initial guess to the conjugate gradient
solver. If the initial guess for the solver is a constant tracer
field,

Dvc = 0. (20)

This result in Eq. (20) is due to the use of a finite volume dis-
cretization for the vertical diffusion with no-flux conditions
at the ocean surface and at the seafloor. In exact arithmetic,
we would therefore expect the tracer field to remain a con-
stant.

This analysis shows that a constant tracer field remains a
constant tracer field under the discretizations employed in
FEOTS. Finite precision arithmetic, however, can produce
slight deviations from a constant field, and the results pre-
sented in Sect. 3.1 characterize the behavior of round-off er-
rors for a constant tracer field, both with and without vertical
mixing.

2.7 The Argentine Basin test problem

As discussed in the introduction, the Argentine Basin is an
ideal region for testing a tracer transport capability in an ed-
dying ocean model. In this paper we compare online and
offline simulations of dye tracers that are initialized at the
boundaries of the Argentine Basin, here chosen as (52.18◦ S,
28.06◦ S) × (70.25◦W, 24.90◦W). In all simulations, the
only source of tracers comes from the model boundary con-
ditions applied along the southern, eastern, and northern
boundaries.

We want to distinguish between water masses that origi-
nate from each of the domain boundaries and above and be-
low 1000 m depth. This is accomplished by simulating six
passive tracer fields Di with boundary conditions:

D1 : c
1
b =H(1000− z) when φ = 52.18◦ S, (21a)

D2 : c
2
b =H(z− 1000) when φ = 52.18◦ S, (21b)

D3 : c
3
b =H(1000− z) when θ = 24.90◦W, (21c)

D4 : c
4
b =H(z− 1000) when θ = 24.90◦W, (21d)

D5 : c
5
b =H(1000− z) when φ = 28.06◦ S, (21e)

D6 : c
6
b =H(z− 1000) when φ = 28.06◦ S, (21f)

where H(x) is the Heaviside step function. With this con-
figuration, tracers D1, D3, and D5 are released in the upper
1000 m on the southern, eastern, and northern boundaries,
respectively; while tracers D2, D4, and D6 are released be-
low 1000 m. Note that maximum mixed-layer depths in the
Argentine Basin in winter are around 500 m in this model,
so deep convection should not play a role in the transport of
these tracers across the 1000 m depth horizon.

3 Results

In this section, we present results of an offline regional
study focused on the Argentine Basin. We first present ver-
ification of the constant preservation property (Sect. 3.1).
Then we present a comparison of the tracer simulation re-
sults in the parent model (online) and the offline model us-
ing 5 d averaged transport operators (Sect. 3.2), followed by
a comparison between 1 and 5 d averaged transport opera-
tors (Sect. 3.3). Finally, we discuss the computational per-
formance of the code (Sect. 3.4) on the systems where our
simulations were conducted.

3.1 Constant preservation

The parent model uses a finite volume discretization that
guarantees the preservation of constant tracer fields. To ver-
ify that FEOTS accurately diagnoses transport operators that
are representative of the parent model, our first simulation in-
volves verifying that a constant tracer field remains constant
under the action of the diagnosed transport operators.
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Figure 1. Vertical profile of the max volume anomaly after 5 d
(gray) and after 5 years (black). In the exact form of the equations,
the volume anomaly should only exist in the first vertical layer at the
ocean surface. Non-zero values in the volume beneath the surface
layer arise due to round-off errors.

In all of our simulations, we have opted to use single pre-
cision arithmetic and have enabled aggressive compiler op-
timizations (compiler option -Ofast with GCC 9.2.0). These
choices were made to minimize data storage costs for the
transport operators and post-processing output and to op-
timize the time-to-solution for the offline simulations. Al-
though analytically we expect that the FEOTS algorithm
should preserve constant tracer fields, errors from floating
point arithmetic are expected to be the main source of con-
stant preservation errors.

To better understand the spatial distribution and the rel-
ative impact of round-off errors, we configure a simulation
where the initial tracer field is set to c0 = 1, and there is no
external source or sink of tracer. Since ∇c0 = 0 and ∇ ·u= 0
under the discretizations used in the parent model, we expect
that ct = 0 and c = c0 = 1 for all time, as demonstrated in
Sect. 2.6.

Figure 1 shows the maximum volume anomaly in the do-
main as a function of depth after 5 d and 5 years of integra-
tion. Analytically, the volume anomaly is expected to be zero
in all cells except the topmost layer. At the surface layer, fluc-
tuations in the free-surface height are associated with non-
zero fluid divergences that contribute to changes in the fluid
volume. Beneath the surface layer, the fluid velocity field is
expected to be divergence free. In general, larger errors in the
volume anomaly are observed above 1000 m depth. After 5 d,
errors in the deep ocean are O(10−5), and after 5 years, the
deep ocean volume anomaly errors have grown by an order
of magnitude to O(10−4). Larger errors are observed above
1000 m, reaching O(10−3) after 5 years. Note that the vol-
ume anomaly field is identical for all choices of the time
integrator for the dye tracer and is independent of vertical
mixing.

Errors in the volume anomaly lead to spurious values for
predicted tracer concentrations. For this simulation, any devi-
ation of the tracer concentration from its initial uniform value
is erroneous. Figure 2 shows the max error in the dye tracer as
a function of depth after 5 d and 5 years of integration, with
and without mixing. After 5 years of integration, the maxi-
mum relative error with mixing is about 0.05%, and without
mixing it is about 0.01%. At depth, the errors in the tracer
are comparable with and without mixing. However, above
1000 m, particularly in the mixed layer, the inclusion of mix-
ing results in an accumulation of round-off errors.

3.2 The Argentine Basin test case: offline vs. online
comparison

In addition to quantifying errors for the constant tracer sce-
nario, a practical concern is in the comparison between the
online and offline tracer simulations. Do the tracer distri-
butions simulated by FEOTS using transport operators di-
agnosed from the parent model E3SMv0-HiLAT03 (offline)
faithfully represent the tracer distributions simulated by the
parent model itself (online)? The time averaging of the trans-
port operators will introduce differences between the online
and offline simulations, as will the flux-corrected advection
operator. Our aim is to quantify and qualitatively describe the
differences between a tracer simulation conducted directly in
the online parent model and the offline model. We do this for
our example problem, namely determining the source waters
of the Zapiola Anticyclone.

Figure 3 compares the tracer fields obtained with the on-
line and offline method, at the end of the 5-year analysis pe-
riod. The dye tracers shown are those that are released in the
upper 1000 m at each of the three domain boundaries. Visual
inspection shows that the online simulation has sharper gra-
dients compared to the offline simulation, even though the
same dynamical features are visible. This is a result of the
non-linear advection operator that is more diffusive when ap-
plied to impulse functions than to a smooth tracer field, as
explained in Sect. 2.4.

The advective errors also affect integrated quantities of
dye tracers within the Zapiola Anticyclone. Figure 4 shows
the vertical distribution of tracer concentrations averaged
over the Zapiola Anticyclone, while Fig. 5 shows the total
tracer stock.

Dye tracer D1, sourced at the southern boundary in the
upper 1000 m, reaches the ZA after about 45 d in the on-
line simulation (Fig. 4, upper row). Concentrations in the
upper 1000 m rise steadily in the first 2 years, then become
mostly steady, indicating saturation is reached (Fig. 5a, black
dashed). Just below the surface, concentrations in the final
3 years average about 0.76, suggesting that 76 % of the sur-
face waters within the ZA may be derived from the South-
ern Ocean through the Malvinas Current. At 984 m this frac-
tion is 0.45. Tracer stock below 1000 m increases slowly and
contains 17 % of the column stock after 5 years (Fig. 5a,
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Figure 2. Vertical profile of the max error in the dye tracer after 5 d (gray) and after 5 years (black) for simulations with mixing (a) and
without mixing (b). Errors that arise from integrating a uniform tracer field arise from round-off errors in volume anomaly. When mixing is
enabled, vertical mixing redistributes errors, resulting in elevated errors in the upper layers in the simulation.

black dotted). The offline simulation reproduces this behav-
ior qualitatively but with significant quantitative differences.
D1 reaches the ZA about 5 d earlier and increases faster than
the online simulation, but upper-layer stock plateaus at a
slightly lower level (Fig. 5a, gray dashed). Tracer fraction
reaches 0.74 just below the surface, close to the online sim-
ulation, but the saturation value of 0.37 at 1000 m depth is
significantly lower. Figure 4 (upper row) shows that this is
due to a significant vertical redistribution of tracers by verti-
cal diffusion that depletes tracers from the upper 1000 m and
increases concentrations below. Indeed, the inventory below
1000 m accounts for 30 % of the column stock after 5 years.

The story is similar for dye tracer D2, which is sourced
at the southern boundary below 1000 m. It arrives in the ZA
after 87 d in the online simulation. The stock below 1000 m
(Fig. 5b, black dotted) rises quickly through the first 2 years,
followed by a more gradual (linear) rise after that. Tracer
concentrations at 1049 m level out at 0.20 after 3 years. The
total contribution of Southern Ocean waters (D1+D2) is
about 59 % at 1000 m depth. The offline simulation repro-
duces this behavior quite well but displays higher inventories
in the upper 1000 m that increase the overall column stock
by 9 % after 5 years. The vertical profiles again clearly show
the impact of vertical diffusion that depletes tracers in the
1000–3000 m depth range and increases concentrations be-
low and above (Fig. 4, second row). The D2 concentration at
1049 m depth levels out at 0.21, with a total Southern Ocean
contribution at 1000 m of 56 %.

The next-largest contribution to the ZA tracer inventory
is coming from the north through dye tracers D5 (upper
1000 m) and D6 (below 1000 m). It takes about 110 d for D5
to arrive at the ZA, and the surface concentration saturates at
about 0.18 after 550 d (as does the upper-layer tracer stock;
Fig. 5e, black dashed, overlain by solid). This suggests that
the Brazil Current may contribute about 20 % of the surface
waters in the ZA. At 984 m, however, this fraction is still
only 0.015 after 5 years, and rising, probably reflecting the

strongly sheared character of the Brazil Current and the long
transit time from the northern domain boundary to the ZA.
Notable concentrations of D6 reach the ZA after 2 years, but
trace quantities already arrive after about 270 d, having been
mixed upward into the upper layer and transported southward
in the Brazil Current. The offline simulations display quali-
tatively similar behavior, but D5 inventories are significantly
higher (+40%), with again significant sequestration below
1000 m. D6 stock is slightly lower (−7%) than in the online
simulations, despite higher values above 1000 m.

Dye tracers D3 and D4, released at the eastern domain
boundary, take much longer to reach the ZA due to very low
westward flow velocities in the interior part of the basin. Of-
fline stock of D3 in the upper 1000 m is about 50 % smaller
than in the online simulation, a deficiency that can only be
partly explained by sequestration below 1000 m. D4 stock is
65 % too high, with enhanced stock both below and above
1000 m depth.

Based on the propagation speed of the diffusion front of
D1 in the offline simulation (Fig. 4a, center column), we
can make a rough estimate of the artificial vertical diffusiv-
ity that is introduced by the advection issue. We are able to
model the depth of the diffusion front below z0 =−1000 m
and after t0 = 132 d as z= z0−

√
4D(t − t0), when D =

1.74×10−2 m2 s−1. This is 2 to 3 orders of magnitude larger
than typical values for background diffusivity used in ocean
models.

3.3 The Argentine Basin test case: the role of temporal
averaging

The parent model is capable of producing velocity fields that
have a wide range of scales of spatial and temporal variabil-
ity. The shortest temporal periods are on the order of a few
time steps, and the longest period is the duration of the sim-
ulation. In general, higher-resolution models introduce more
variability on shorter length and time scales, and some con-
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Figure 3. Online and offline tracer concentrations – and their difference – at 204 m depth and at the end of the full 5-year period for which
operators were diagnosed at 5-daily averages. Shown are dye tracers (a) D1 (sourced at the southern boundary), (b) D3 (eastern boundary),
and (c) D5 (northern boundary), all sourced in the upper 1000 m. Gray contour indicates the location of the Zapiola Anticyclone.

sideration is needed when selecting an averaging period for
the transport operator diagnosis. For storage reasons, it is not
practical to store snapshots of the transport operators at ev-
ery time step. Conversely, representing the ocean transport
with long time averages may exclude the effects of important
variability. The choice of the time-averaging period for the
transport operators can impact the evolution of tracers cal-

culated in FEOTS, and an appropriate balance of practicality
and accuracy should be struck.

To our knowledge, there is currently no definitive guid-
ance on choosing the averaging period for velocity fields in
an offline tracer simulation; the averaging period should be
chosen so that variability in the underlying advection field is
well resolved. Here, the impact of temporal averaging is in-
vestigated by comparing simulations with 1 and 5 d averaged
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Figure 4. Hovmüller plots of the concentrations of the six dye tracers, averaged over the Zapiola Anticyclone, for the online (left column)
and offline (center) simulations and their difference (right). The 1000 m level is indicated by the light gray line.

operators. To that end, we ran another online simulation for
which we saved 1 d averaged IRFs. This simulation was run
for 105 d, producing 105 operator sets. The offline simula-
tions were run for 365 d hence cycling through the operator
set almost 3.5 times.

The online simulations that produced the 1 and 5 d aver-
aged operators were not bit-for-bit identical, as we inadver-
tently specified different processor counts. A positive conse-
quence of this oversight is that we have two different realiza-
tions of the same chaotic system, allowing us to assess how
the tracer advection error compares to trajectory divergence,
in terms of their impact on tracer stock. Figure 6 shows
that averaging 1 d averaged operators to 5 d averages has a
very small impact on the tracer stock (light gray); the impact

on spatial distributions is similarly small (not shown). This
shows that 5 d averaged operators are sufficient to accurately
reproduce tracer distributions. Comparison of the black and
dark gray lines shows that the impact of trajectory divergence
on tracer stock (dark gray) is of similar magnitude as the im-
pact of the advection error (black), at least for the first year
of simulations.

3.4 Computational performance

One goal of FEOTS is to perform tracer calculations at a
lower computational cost than the parent model. Addition-
ally, FEOTS allows researchers to take advantage of transport
operators produced by state-of-the-art climate simulations to
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Figure 5. Total stock (1015 kg) of the six dye tracers in the Zapiola Anticyclone for the online (black) and offline (gray) simulations. Dashed
and dotted lines are the stock above and below 1000 m, respectively.

conduct regional offline simulations. This provides flexibil-
ity in studying ocean transport phenomena and increases the
value of online produced model data while considerably re-
ducing the computational expense for researchers solely in-
terested in studies involving passive tracers. Here we evaluate
the computational performance of a regional FEOTS config-
uration and compare it with the global parent model.

The total cost of using FEOTS is associated with the fol-
lowing steps:

1. impulse functions are generated from the model grid,

2. an online simulation is done with POP that reads in the
impulse functions and outputs IRFs averaged over the
desired averaging interval (e.g., 1, 5 d),

3. the diagnosed IRFs are translated from gridded output
to a sparse matrix format, and

4. offline passive tracer simulations are run.

The first three steps are one-time costs that are necessary to
generate the transport operator database. In our experience,
impulse function generation introduces a negligible cost, re-
quiring only a few minutes to run in serial. Simulation of the
passive tracers with the parent model to generate the impulse
response functions requires about a factor of six more CPU
hours than when running without tracers. This is the most
significant up-front cost in generating the transport operator
database. Diagnosis of the sparse matrices introduces a small
cost; for the parent model presented here, about 15 min of
wall time on a single core is needed per transport operator.
The expense of the offline passive tracer simulation depends
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Figure 6. Comparison of stock (1012 kg) of dye tracers D1 and D2
in the Zapiola Anticyclone for the original simulation with 5 d aver-
aged operators and the alternate simulation with 1 d averaged oper-
ators. Shown are the differences between the offline simulation us-
ing 5 d averaged operators and the corresponding online simulation
(black), the offline simulation using 5 d averaged operators and the
alternate offline simulation with 1 d averaged operators averaged to
5 d (dark gray), and the alternate offline simulations with 1 d aver-
aged operators averaged to 5 d and the 1 d averaged operators (light
gray). Note that the alternative simulation is a different realization
of this chaotic system and hence diverges from the original simula-
tion after initialization.

on the specific use case. Below, we provide an example based
on the Argentine Basin test problem and a simple global sim-
ulation.

Table 2 summarizes a comparison of the computational ex-
pense and compute platform size requirements between POP
and FEOTS. We ran the 0.3◦ ocean/sea ice configuration of
E3SM-HiLAT on the Los Alamos National Laboratory’s In-
stitutional Computing clusters. A typical simulation with six
dye tracers costs 9020 CPU h per simulated year, using 2432
cores on 76 nodes. The throughput is 6.5 simulated years
per wall-clock day. The simulation with 53 IRFs (in addition
to the six dye tracers) typically costs 45 000 CPU h, with a
throughput of 1.60 simulated years per day when using 2912
cores.

In contrast, a 1-year offline FEOTS simulation of the
Argentine Basin problem with six tracers takes roughly
47 CPU h and a throughput of 3 simulated years per day on
six cores. Table 3 shows the five most expensive routines
in FEOTS and the percentage of the total wall time spent
executing those routines. The iterative treatment of vertical
mixing is most expensive; a 1-year simulation without ver-
tical mixing costs 6.8 CPU h and provides a throughput of
20 simulated years per day on six cores. All of these rou-
tines execute sparse matrix–vector multiplication in order to
compute advective and diffusive tendencies, suggesting fu-
ture improvements to sparse matrix–vector multiplication in
FEOTS would be beneficial.

Currently, offline global simulations at eddy-resolving res-
olutions are slow and require a large amount of memory
per core. For our global model, about 15 GB of memory
is needed for the offline simulation at single precision and
30 GB at double precision. At the time of this study, our focus
was on proving the transient simulation capabilities, which
could be done at a low computational cost in regional sim-
ulations; we did not obtain direct measurements of FEOTS’
runtime for global transient simulations. However, we are in-
terested in understanding whether this methodology is poten-
tially computationally competitive in comparison to online
tracer simulations in the parent model.

To develop an estimate for a global offline simulation with
FEOTS, we assume that the CPU hours scale linearly with
the number of grid cells. This is reasonable, since the major-
ity of FEOTS’ runtime is spent in sparse matrix–vector mul-
tiplication, which scales linearly with the number of rows.
The Argentine Basin simulation has 1.02× 106 grid cells,
whereas a global configuration has about 45 times more grid
cells. Thus, an offline simulation with FEOTS is expected
to cost about 2115 CPU h per simulation year in the current
version, 77 % less CPU hours than the parent model. How-
ever, the expected throughput for an offline global simula-
tion is estimated as 1 model year for every 15 d. Although
FEOTS is currently expected to take longer to produce global
transient simulations, it is probable that exposing parallelism
in FEOTS will provide comparable runtimes to the parent
model at a reduced computational expense. Though this is
not a definitive result, it is a reasonable estimate that moti-
vates future work in exposing parallelism in FEOTS.

4 Discussion

Based on this work, we posit that offline tracer simulations
provide a viable modeling capability at a significantly re-
duced computational expense compared to online models.
With the reduction in computational expense, however, we
have shown that the offline simulations can produce tracer
distributions consistent with a more diffusive ocean circu-
lation than online models. A potential approach to mitigate
this problem, when using non-linear flux-limiting advection
schemes, is to replace the impulse fields with smoother basis
functions, as discussed by Khatiwala et al. (2005).

When using impulse fields with sharp discontinuities, the
third-order flux-limited Lax–Wendroff advection scheme re-
duces effectively to a first-order upwind scheme. By lever-
aging smoother basis functions for the impulse fields with
this scheme, a less diffusive advection operator can be di-
agnosed. Using a smoother basis function, however, is ex-
pected to introduce additional complications for diagnosing
transport operators. In general, the process of diagnosing the
transport operators can be thought of as a matrix projection
problem,
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Table 2. The computational costs, model throughput, and computational hardware requirements are compared for the online parent model
(POP), a regional configuration of FEOTS, and the estimated expenses for a global offline FEOTS simulation.

Metric/model POP global FEOTS regional FEOTS global (est.)

CPU hours per sim. year 9020 47 2115
Hours per sim. year 3.7 7.8 352.5
Sim. years per day 6.5 3 0.06
Cores required 2432 6 6

Table 3. Flat profile of FEOTS showing the top five most expensive
routines for an offline regional simulation.

Name Percent time

VerticalMixingAction 29.73
VerticalMixingPrecondition 27.49
VerticalMixing_POP_FEOTS 18.62
CalculateTendency_TracerStorage 12.28
DotProduct_POP_FEOTS 11.19

AF= R, (22)

where A is the transport operator we want to diagnose, F is
a matrix whose columns are the impulse fields, and R is a
matrix whose columns are the impulse response fields. The
advection operator is obtained by multiplying Eq. (22) by the
right inverse of F:

A= RF−1. (23)

Ideally, the basis function we choose should be smooth
enough to retain higher-order terms in the third-order flux-
limited Lax–Wendroff advection scheme. For computational
purposes, the basis functions would ideally be mutually or-
thonormal so that the inverse is easy to calculate:

F−1
= FT . (24)

This approach, along with experimentation with other advec-
tion schemes, is planned for future work.

With regard to performance, FEOTS can provide offline
tracer modeling capabilities at a significantly reduced com-
putational expense (CPU hours) and with practical runtimes
for regional simulations. Projected computational resource
requirements (CPU hours) were shown to be about 77 % less
than the online parent model. Estimated runtimes for global
simulations, however, indicate that parallelism in FEOTS
needs to be exposed before it is practical for this use case.
Addressing the slow runtime for global offline simulations
is critical for working towards a framework that allows for
the calculation of steady-state solutions within a practical
amount of time. Currently, our plan for reducing runtime is to
leverage open-source toolkits, like PSBLAS (Filippone and
Colajanni, 2000), to handle sparse matrix operations in par-
allel.

5 Conclusions

In this paper we introduced the Fast Equilibration of Ocean
Tracers Software (FEOTS), which is an end-to-end set of
tools to efficiently calculate tracer distributions on a global
or regional sub-domain. Key features currently implemented
in FEOTS and discussed in this paper include impulse field
generation through graph coloring, impulse response func-
tion translation into a sparse matrix representation of trans-
port operators (advection), regional sub-domain transport op-
erator generation from global transport operators, and of-
fline forward simulation with the diagnosed operators. These
are key components for calculating equilibrium tracer fields,
which we aim to implement in future releases. In our exam-
ple problem we diagnose transport operators from a global
eddy-permitting configuration of the POP ocean model and
calculate the distribution of passive dye tracers in the Argen-
tine Basin for a 5-year period. The offline simulations are
shown to produce more diffuse tracer distributions than the
online parent model simulations. This demonstration shows
the feasibility of this approach, while at the same time high-
lighting the challenges of the impulse response functions ap-
proach.

Code and data availability. The current version of
FEOTS (v0.0.0) is available from the project website:
https://github.com/FluidNumerics/FEOTS/ under the 3-Clause
BSD License. The exact version of the model used to pro-
duce the results used in this paper is archived on Zenodo
(https://doi.org/10.5281/zenodo.5576912, Schoonover et al., 2021).
The input data and scripts to run the model and produce the plots
for all the simulations presented in this paper are also archived
on Zenodo (https://doi.org/10.5281/zenodo.6250938, Schoonover
et al., 2022). A codelab tutorial to walk through running the Argen-
tine Basin simulations is available online at https://fluidnumerics.
github.io/FEOTS/codelabs/feots-on-google-cloud/#0 (last access:
22 May 2023).
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