
Geosci. Model Dev., 16, 2719–2736, 2023
https://doi.org/10.5194/gmd-16-2719-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.

D
evelopm

entand
technicalpaper

Pace v0.2: a Python-based performance-portable
atmospheric model
Johann Dahm1,�, Eddie Davis1,�, Florian Deconinck1,�, Oliver Elbert1,4,�, Rhea George1,�, Jeremy McGibbon1,�,
Tobias Wicky1,�, Elynn Wu1,�, Christopher Kung2, Tal Ben-Nun3, Lucas Harris4, Linus Groner5, and
Oliver Fuhrer1,6

1Climate Modeling, Allen Institute for Artificial Intelligence, Seattle, WA, USA
2Global Modeling and Assimilation Office, Goddard Space Flight Center, NASA, Greenbelt, MD, USA
3Department of Computer Science, ETH Zurich, Zurich, Switzerland
4Weather and Climate Dynamics Division, Geophysical Fluid Dynamics Laboratory, NOAA, Princeton, NJ, USA
5Swiss National Supercomputing Centre (CSCS), ETH Zurich, Lugano, Switzerland
6Numerical Prediction, Federal Office of Meteorology and Climatology MeteoSwiss, Zurich, Switzerland
�These authors contributed equally to this work.

Correspondence: Oliver Fuhrer (oliver.fuhrer@meteoswiss.ch)

Received: 16 September 2022 – Discussion started: 28 September 2022
Revised: 21 December 2022 – Accepted: 9 February 2023 – Published: 17 May 2023

Abstract. Progress in leveraging current and emerging
high-performance computing infrastructures using tradi-
tional weather and climate models has been slow. This has
become known more broadly as the software productivity
gap. With the end of Moore’s law driving forward rapid
specialization of hardware architectures, building simulation
codes on a low-level language with hardware-specific op-
timizations is a significant risk. As a solution, we present
Pace, an implementation of the nonhydrostatic FV3 dynami-
cal core and GFDL cloud microphysics scheme which is en-
tirely Python-based. In order to achieve high performance on
a diverse set of hardware architectures, Pace is written us-
ing the GT4Py domain-specific language. We demonstrate
that with this approach we can achieve portability and per-
formance, while significantly improving the readability and
maintainability of the code as compared to the Fortran ref-
erence implementation. We show that Pace can run at scale
on leadership-class supercomputers and achieve performance
speeds 3.5–4 times faster than the Fortran code on GPU-
accelerated supercomputers. Furthermore, we demonstrate
how a Python-based simulation code facilitates existing or
enables entirely new use cases and workflows. Pace demon-
strates how a high-level language can insulate us from dis-
ruptive changes, provide a more productive development en-

vironment, and facilitate the integration with new technolo-
gies such as machine learning.

1 Introduction

Current weather and climate models are written in low-level
compiled languages such as Fortran for performance (Mén-
dez et al., 2014) and typically run on high-performance com-
puting (HPC) systems with CPUs. With the end of Moore’s
law (e.g., Theis and Wong, 2017), HPC systems are in-
creasingly relying on specialized hardware architectures such
as graphics processing units (GPUs) to increase throughput
while maintaining a reasonable power envelope (Strohmaier
et al., 2015). This has led to a number of efforts to port ex-
isting weather and climate models to run on such heteroge-
neous architectures, for example by adding OpenACC direc-
tives (Lapillonne et al., 2017; Clement et al., 2019; Gior-
getta et al., 2022). Today, there are a handful of success-
ful productive deployments of weather and climate models
(e.g., COSMO, Fuhrer et al., 2018, and Model for Prediction
Across Scales, MPAS) on GPU-accelerated supercomputers.
But porting large code bases using compiler directives comes
at a price: the maintenance cost increases significantly due

Published by Copernicus Publications on behalf of the European Geosciences Union.



2720 J. Dahm et al.: Pace

to more hardware-specific details being explicitly exposed in
the user code and due to the fact that conditional compila-
tion increases code complexity and the likelihood of intro-
ducing errors. Also, optimizations often need to be tailored
to a hardware target, which may lead to code duplication and
specialized implementations. As a result, community codes
have been slow in their adoption of novel and emerging hard-
ware architectures, and increasingly complex code bases hin-
der their further development. The term software productiv-
ity gap has been coined to describe this situation (Lawrence
et al., 2018).

Alternative approaches are being explored: the Simple
Cloud-Resolving E3SM Atmosphere Model (E3SM Project,
2021) is a global atmosphere model implemented in C++ us-
ing the Kokkos library (Trott et al., 2022), which provides
abstractions for parallel execution and data management for
a wide range of programming models and target architec-
tures using a technique called template meta-programming.
LFRic, the next-generation weather and climate modeling
system being developed by the UK Met Office (Adams
et al., 2019), is implemented using a domain-specific lan-
guage (DSL) embedded in Fortran and leverages a domain-
specific compiler named PSyclone to generate executable
parallel code. While these approaches are very promising,
they have currently not been adopted more widely in the field
of weather and climate science.

A compelling alternative approach has been extremely
successful in the trending field of machine learning: frame-
works such as PyTorch (Paszke et al., 2019) and Tensor-
Flow (Abadi et al., 2015) have accelerated the rapid and
broad adoption of machine learning methods. These frame-
works allow users to implement algorithms with an abstract
high-level implementation in Python using a syntax which is
reminiscent of doing computation using the NumPy library
(C. R. Harris et al., 2020). Different back ends allow users to
target a diverse set of hardware architectures for efficient ex-
ecution while retaining a high degree of programmer produc-
tivity. The approach has been shown to scale, and the compu-
tational effort to train such models (e.g., Brown et al., 2020)
is comparable in size to high-resolution weather and climate
simulations.

Aside from the model code itself, scientists developing
and using compiled models have increasing needs to inter-
face model code with scripting languages online. The drastic
increase in model resolution over the past decades has in-
creased the need for online diagnostic calculations to avoid
slow I/O operations. It can also simplify development of
machine learning parameterizations to be able to interface
Python code with a compiled model. This has motivated
scientists to interface Python code with models online, for
example by calling Python from Fortran (Brenowitz and
Bretherton, 2019; Partee et al., 2021a, b) and by wrapping
Fortran models to be driven by Python (Monteiro et al., 2018;
van den Oord et al., 2020; McGibbon et al., 2021).

We present Pace, an open-source performance-portable
implementation of the FV3 dynamical core (Putman and Lin,
2007; Harris et al., 2021) and GFDL microphysics (Chen and
Lin, 2013; Zhou et al., 2019) written entirely in Python. Pace
uses the GridTools for Python (GT4Py) DSL, which sepa-
rates the definition of numerical algorithms from the specific
implementation for a given hardware architecture. Optimiza-
tion details such as storage order, execution schedule, place-
ment of data in memory hierarchy, and loop bounds are not
the responsibility of the domain scientist. This allows the use
of a single unified and concise code base across hardware
back ends, which clearly presents numerical operators and
executes efficiently. The same model code can be used for
applications in the classroom inside a Jupyter Notebook as
well as deployment at scale on large high-performance com-
puting systems. Using Python as the host language enables
highly productive model development, testing, and validation
workflows. By having access to a large ecosystem of well-
maintained Python packages, entirely new workflows are en-
abled (see Sect. 6.2).

The outline of the paper is as follows. We start in Sect. 2
with an overview of the DSL structure before moving on to
Pace itself in Sect. 3. In Sect. 4 we discuss the process of
porting and validating the code from Fortran to Python in de-
tail. Section 5 highlights the performance of Pace, and Sect. 6
showcases important features of Pace, especially use cases
and the benefits of developing in Python. Section 7 docu-
ments the limitation of Pace, and finally we summarize in
Sect. 8.

2 Python-based DSL: separation of concerns

2.1 A modern DSL: requirements

The software productivity gap problem can be described
as an issue with the diverse set of skills required by cli-
mate modelers to implement a production-grade climate and
weather model, from discretizing the underlying physical
equations all the way to the optimization details of a given
hardware architecture. This process can be roughly split in
two:

1. climate and weather modeling – scientific motivation,
algorithmic design, and numerical implementation;

2. performance development – adapting the implementa-
tion to a set of given hardware architecture and opti-
mization to reach a useful simulation time.

There is overlap between these; some algorithmic designs
are better suited to certain hardware architectures, and imple-
mentation details can be changed to improve model speed,
but this breakdown is a useful heuristic for the development
of weather and climate models.

Geosci. Model Dev., 16, 2719–2736, 2023 https://doi.org/10.5194/gmd-16-2719-2023



J. Dahm et al.: Pace 2721

The design of a modern domain-specific language needs
to respond to both classes of users. For climate modelers a
DSL should

– be easy to use, complete with debugging tools and sim-
ple methods to extracting scientific results;

– allow easy ways to implement new features and or ways
to escape the DSL as new methods are developed;

– enable quick development round-trip;

– run with optimal performance;

– improve development by simplifying the implementa-
tion of common code patterns.

For the performance developers it should

– leverage a proven host language to strengthen basic de-
velopment of a compiler tool chain and work on solid
ground;

– build a maintainable and extensible set of compiler ele-
ments in order to keep up with novel and emerging hard-
ware architectures;

– ensure the presence of a lower-level interface to perform
generic or custom optimizations.

Python stands as a good candidate language to host a DSL
given its robustness, ease of use, wide adoption across a
range of research and industry groups, large ecosystem of
pre-existing tools and packages, and capacity for introspec-
tion as an interpreted language. Furthermore, in the weather
and climate community Python has established itself as the
lingua franca for analysis, visualization, and post-processing.
But Python has serious limitations in terms of execution per-
formance: designed primarily as a scripting language, Python
alone cannot achieve the performance required by workloads
running on large HPC systems.

The solution is to escape Python at runtime and lever-
age compiled code. This is a technique already heavily used
by frameworks such as Cython (Behnel et al., 2011) and
Numba (Lam et al., 2015) (see, e.g., Augier et al., 2021).
The DSL compiler is responsible for translating and compil-
ing (transpiling) code written in Python into another, more
performance-oriented language. The generated code can be
tailored and optimized to a specified hardware target via
hardware-specific compiler back ends.

2.2 Related work

For this work we use the GT4Py DSL compiler because the
DSL provides a single-source solution for portable perfor-
mance with the correct abstractions for weather and climate
models. There are, however, other approaches using Python
at different levels of abstraction that are worth discussing.

Cython (Behnel et al., 2011) is an optimizing static com-
piler based on Python and the Pyrex language. It is a powerful
tool for accelerating Python code, but it lacks the portabil-
ity and high-level abstractions we seek. Other packages pro-
vide portability but still lack the domain-level abstractions
to simplify the language for climate scientists. An example
of such a package is Numba (Lam et al., 2015), which is
a just-in-time (JIT) compiler for Python and NumPy code.
JAX (Bradbury et al., 2018) similarly lacks the weather and
climate abstractions we desire in the front-end DSL language
but brings with it convenient features such as adjoint capabil-
ity. Other application-building frameworks such as Exasim
(Vila-Pérez et al., 2022), FEniCS (Alnaes et al., 2015), and
Dedalus (Burns et al., 2020) mostly operate on the partial-
differential-equation (PDE) level, which allows for more au-
tomated model development at the expense of flexibility in
the discretization. In order to faithfully reproduce all aspects
of the FV3 dynamical core and GFDL cloud microphysics,
we required greater flexibility than these frameworks pro-
vided. Thus, the DSL we are targeting works at a lower level
on the mathematical representation after the PDE has been
discretized.

2.3 GT4Py: a Python-based DSL

Our implementation of the domain-specific language de-
scribed above is called GridTools for Python, or GT4Py. De-
veloped in partnership with the Swiss National Supercom-
puting Centre (CSCS), it defines a DSL on top of Python.
The code is analyzed and compiled into a C++ or CUDA ex-
ecutable that is bound back to the original Python, creat-
ing a seamless experience for the modelers but enabling fast
and optimized execution (Fig. 1). On top of those perfor-
mance back ends, GT4Py also provides a back end to gen-
erate NumPy code, which is useful for debugging and quick
development as no compilation is required. One GT4Py back
end leverages the DaCe (Ben-Nun et al., 2019) framework to
be able to also include regular Python code in between DSL
code in the translation.

GT4Py operates through the use of stencils: inside a
GT4Py stencil each grid cell in an array is modified ac-
cording to neighboring cells based on a fixed pattern. In nu-
merical modeling of weather and climate two major com-
putational patterns emerge due to the reliance on three-
dimensional structured or unstructured grids: computations
with dependencies on the local horizontal neighborhood of
a grid cell and vertical solvers with column dependencies as
shown in Fig. 2. These two stencil computational patterns
therefore form the basis of GT4Py’s design.

GT4Py stencils treat the horizontal dimensions differ-
ently from the vertical: they always execute in parallel
over the entire horizontal domain. In the vertical dimen-
sion the order of execution may be specified with the
computation keyword, and the vertical range is set with
interval. A horizontal stencil can be written with

https://doi.org/10.5194/gmd-16-2719-2023 Geosci. Model Dev., 16, 2719–2736, 2023



2722 J. Dahm et al.: Pace

Figure 1. Workflow pipeline of GT4Py (left) and GT4Py combined with DaCe (right). User code is analyzed, optimized, and translated into
hardware-target-specific optimized code. In the case of DaCe, the Python code in between GT4Py stencils (control flow) is also included in
the translation. This can lead to significant performance improvements.

Figure 2. Two typical computational patterns in weather and climate models: on the left is a horizontal stencil, and on the right is a vertical
solver. Figure from Ben-Nun et al. (2022).

computation(PARALLEL) to parallelize over the verti-
cal domain as well if there are no vertical loop-carried depen-
dencies. A column-based stencil that calculates up or down
the k dimension, on the other hand, can be implemented
sequentially in k with computation(FORWARD) or
BACKWARD, respectively. Each stencil can also have mul-
tiple computation and interval blocks for flow
control. Because stencils are applied to each point in
a 3D grid, all indexation within a stencil is relative to
the current computed grid point; i.e., Array[0,0,0] -
Array[1,0,0] takes each array element and subtracts
the array element immediately to its right along the x axis.
This method of indexing three-dimensional arrays allows the
modelers to use the same indexing convention (I, J, K), irre-
spective of the actual storage layout in memory.

GT4Py also allows zero-cost function calls, enabling more
readable and reusable code within models. Extents of the
computation are automatically determined by the DSL, in-
cluding through these function calls. Figure 1 shows an ex-
ample stencil function that executes in parallel over the en-
tire vertical dimension. The domain of dependence for in-
termediate variables (advected_u and advected_v) is
automatically determined by GT4Py. In this example, the
advection helper functions take a horizontal difference of
the u and v contravariant velocity components ub_contra
and vb_contra, respectively. As a result, the interpolation

function which computes these values is applied on a larger
domain than the final operation in the stencil.

In order to implement the FV3 dynamical core we had to
extend the stencil concept multiple times, enabling four- and
two-dimensional arrays, loops over the k axis, and special-
ized handling of horizontal subdomains. Because GT4Py is
written in Python, those extensions were easy to develop and
they will be discussed further in Sects. 4 and 5.

GT4Py is able to optimize the performance of stencils;
however, some Python overhead remains in the code linking
the stencil operations together. In order to resolve this and
optimize the entire Pace model we have incorporated DaCe
(Ben-Nun et al., 2019) as a back end for Pace. Using this
framework both GT4Py stencils and raw Python code are ex-
posed to optimization and transpilation to high-performance
C++ or CUDA executables, removing all Python overhead
seamlessly for the modelers. Section 5 contains more infor-
mation on code optimizations, while Ben-Nun et al. (2022)
details the performance optimizations more thoroughly.

3 Pace

Pace is a GT4Py implementation of the nonhydrostatic FV3
dynamical core and GFDL microphysics (Putman and Lin,
2007; Harris et al., 2021; Chen and Lin, 2013; Zhou et al.,
2019). It is based on the same version of the National

Geosci. Model Dev., 16, 2719–2736, 2023 https://doi.org/10.5194/gmd-16-2719-2023



J. Dahm et al.: Pace 2723

Listing 1. An example stencil definition function that computes the kinetic energy on cell corners. The functions advect_v_along_y,
advect_u_along_x, and all_corners_ke are defined outside the stencil and the DSL compiler inlines the relevant code. FloatField
and FloatFieldIJ are GT4Py-specific data types for three-dimensional and two-dimensional fields, respectively. FloatField is a type which is
used to declare three-dimensional fields of configurable floating-point precision.

Oceanic and Atmospheric Administration (NOAA) Unified
Forecast System (UFS) model as McGibbon et al. (2021),
forked from the UFS repository v1 in December 2019 (Zhou
et al., 2019), and is nearly identical to the dynamical core
used in SHiELD (L. Harris et al., 2020). At present Pace
only supports nonhydrostatic, uniform-resolution simula-
tions, with a restricted set of subgrid reconstruction schemes
(hord and kord values). Pace has the ability to read ini-
tial conditions generated by the Fortran model and other
saved outputs and can also generate initial conditions for an-
alytic test cases. Currently Pace supports six-tile gnomonic
cubed-sphere grids and single-tile orthogonal, doubly peri-
odic grids, though only at uniform resolution. Future devel-
opment will enable nested and stretched grids as described
in Harris and Lin (2013) and will integrate the rest of the
physics parameterizations (Zhou et al., 2019). Pace is MPI-
enabled, allowing it to run in parallel, but can also run using
a serial communicator, running each rank in serial and saving
data files to mock MPI communication.

3.1 A modular model

Pace is designed to be modular; each model component of
Pace (e.g., dynamics, microphysics, utilities, DSL integra-
tion) exists as a separate package. Computationally focused
packages like the dynamics contain hierarchies of component
modules (Fig. 3). These components provide clear bound-
aries to document and change model behavior. For example,

the horizontal transport scheme used by FV3 (Putman and
Lin, 2007; Lin and Rood, 1996) takes any one-dimensional
finite-volume subgrid reconstruction scheme satisfying cer-
tain numerical conditions and can extend it to two dimen-
sions. Within Pace, one-dimensional subgrid reconstruction
code is contained in the XPPM and YPPM modules (X and
Y piecewise parabolic methods, respectively). These mod-
ules take in scalar grid-cell-mean values and Courant num-
bers (speed as a fraction of grid-cell width) defined on trans-
port interfaces and return the average value of the scalar
within the section of grid cell to be advected through the cell
interface. The FiniteVolumeTransport class extends these
one-dimensional subgrid reconstruction schemes to produce
two-dimensional horizontal fluxes. This allows a scientist to
modify the behavior of the dynamics by replacing only the
XPPM and YPPM components, for example with a cubic
reconstruction scheme or a subgrid reconstruction scheme
based on machine learning.

To maintain simplicity of the code and facilitate the sep-
aration of compile time and runtime, Pace uses a simple
object-oriented framework that expresses nearly all of the in-
ternal computational components as initializable functions,
as shown in Listing 2. Each of these functions is defined
as a Python class with an initialization method and a call
method. Initialization performs the necessary setup including
memory allocation and compilation of DSL code. Each com-
ponent’s initialization code defines the component’s tempo-
rary variables, compiles or loads its stencils, and recursively

https://doi.org/10.5194/gmd-16-2719-2023 Geosci. Model Dev., 16, 2719–2736, 2023



2724 J. Dahm et al.: Pace

Figure 3. Internal structure of the Pace dynamical core. To reduce instabilities from the Lagrangian vertical coordinate the acoustic dynamics,
tracer advection, and vertical remapping are sub-stepped, executing K times during a model time step. The acoustic dynamics are additionally
sub-stepped to ensure numerical stability with respect to sound waves.

initializes subcomponents. Once initialized, the component
may be called the same as any other Python function. This
is similar to Fortran model structures where computational
code is paired with initialize and finalize subroutines.

Stencils are compiled when components are initialized,
using only explicitly passed configuration data. Pace uses
the factory pattern (through the stencil_factory ar-
gument) to reduce compilation-specific logic as much as
possible within computational components. The stencil fac-
tory class implements the code responsible for allocat-
ing and compiling stencils, allowing model code to in-
stead focus on computational motifs. In lines 8–18 of
Listing 2 we can see this factory at work compiling the
compute_kinetic_energy stencil shown in Fig. 1.
The from_dims_halomethod takes a stencil function and
a set of dimensions (either cell centers or cell interfaces)
to execute over and returns a compiled stencil that writes

its outputs over the compute domain, in this case on cell
corners (x and y interfaces). Output can be extended into
the computational halos with an optional compute_halos
argument indicating how many halo points to write (not
shown). We also see how compile-time constants are passed
as externals to the compilation method. These constants
can be set by the model configuration, extracted from the do-
main decomposition, or passed as arguments to the initial-
ization method, and they have the benefit of being treated
as compile-time constants. Because configuration settings
such as domain-decomposition and namelist settings are now
known at compile time, they also provide further avenues for
the DSL back end to optimize performance.

The factory pattern used here is incredibly powerful when
debugging the model. For example, if a model developer
finds that at some point a variable air_pressure used by
many routines has gone negative in the model, that developer

Geosci. Model Dev., 16, 2719–2736, 2023 https://doi.org/10.5194/gmd-16-2719-2023



J. Dahm et al.: Pace 2725

Listing 2. A class that compiles and runs the stencil defined in Fig. 1. The __init__method initializes the compute_kinetic_energy
stencil using the stencil definition function defined in Fig. 1, an output domain, and the constants used by the stencil, and the __call__
method executes the stencil when the resulting object is invoked at runtime.

can temporarily insert code to immediately raise an excep-
tion if any stencil writes a negative value to a variable named
air_pressure. Or that model developer could alter every
stencil to write its inputs and outputs to a netCDF file when
executed, while only having to modify the code used for the
stencil factory.

3.2 Powerful testing

The introspection power of Python is used to great effect in
the testing code for Pace. For example, we would like to en-
sure that Python array allocation only happens when initial-
izing our model and not at all when it is called. To do this,
we write a test which initializes the model and then replaces
the storage allocation routines of GT4Py with routines which
raise an exception if called before finally calling the model.
If any arrays were allocated at call time, an exception would
be raised and the test would fail.

We also want to ensure that the Pace model components
are not stateful. The dynamical core, for example, has many
temporary storage arrays assigned to it whose initial value
should not matter when calling the model. However, a user
could easily fail to initialize an array with zeros when they

mean to, causing a bug in the model. We have a test which
calls the dynamical core with the same state either once or
twice and compares the value of all temporary data in the
model between these two cases. It does this by dynamically
crawling the Python object structure and comparing all array
data. If any data differ between those two cases, it not only
tells us that there is a bug but also exactly which temporary
field has a bug – the one which is accessed first out of the
ones which differ. Without such a test, it could take days,
weeks, or months for a scientist to find the source of such an
error, assuming they notice the presence of the bug.

4 Porting the model

Atmospheric models are large computational codes, making
it difficult to determine the source of a bug given errors in
model outputs. In order to port FV3 and the physics param-
eterizations we first segment the Fortran code into smaller
units of code which can be ported and tested independently.
Typically each unit encompasses a particular Fortran subrou-
tine, but larger or more complicated subroutines may be bro-
ken down further to ease validation. We use the Serialbox

https://doi.org/10.5194/gmd-16-2719-2023 Geosci. Model Dev., 16, 2719–2736, 2023



2726 J. Dahm et al.: Pace

library to extract the inputs and outputs from each of these
Fortran units. We place Serialbox compiler directives before
each unit of code to serialize the inputs to that unit, and we
similarly insert directives after each unit to extract its out-
puts. For a given test case we can then run the Fortran model
to generate test data for that case and model configuration.

GT4Py stencils calculate over 3D volumes, so in our port-
ing process we initially wrote each individual stencil to repli-
cate a Fortran “do loop” over the i, j , and k spatial dimen-
sions. A ported unit of code may use multiple stencils if there
are computations over different horizontal domains or to in-
crease readability of the code. In order to minimize GPU ker-
nel launches we subsequently merged stencils that executed
over the same spatial extents where possible.

4.1 Extending the DSL

In the process of writing Pace we needed to extend GT4Py
in order to express the Fortran code in the DSL. FV3 dis-
cretizes the Earth into a gnomonic cubed sphere (Putman
and Lin, 2007). GT4Py could only apply the same opera-
tions uniformly across the horizontal domain of a stencil. We
added the ability to execute code on stencil subdomains to
the GT4Py DSL language in order to perform special han-
dling required near the corners and edges of the cubed-sphere
tiles. Specifically, we included horizontal and region
as stencil control keywords (similar to computation and
interval) as shown in Fig. 5. with horizontal spec-
ifies a horizontally restricted block of code, and region
specifies the extent of that subdomain through NumPy-like
array slicing in the I and J dimensions. Though it does vio-
late the GridTools concept of a stencil, this allows us to fully
port the dynamical core and combine stencils to reproduce a
natural amount of Fortran code. This also has the benefit of
increasing the readability of the code: in Fortran the corner
and edge computations are handled by the common pattern
of if-conditionals inside of nested “for loops”, while in Pace
the horizontal regions are used almost exclusively for this
purpose.

Another example is in the vertical remapping component
of the model. The FV3 dynamical core uses a Lagrangian
vertical coordinate which is regularly remapped to its origi-
nal Eulerian grid using the piecewise parabolic method (Lin,
2004). The remapping process requires a double k loop over
the vertical dimension: an inner loop over the deformed ver-
tical levels to sum their contributions to an Eulerian level
and an outer loop over those Eulerian levels. When we ini-
tially ported the remapping code GT4Py did not support “for
loops” or “while loops” inside of stencils, so we wrote the in-
ner loop as a stencil over the deformed k levels and the outer
loop in plain Python. While this implementation worked al-
gorithmically, calling a stencil inside of a “for loop” has
a large penalty in model speed due to the repeated kernel
launches and the removal of the loop structure from the DSL
optimization path. To resolve this we added “while loops” to

GT4Py stencils. This allows us to consolidate the remapping
code into one stencil over the Eulerian k levels, remove the
Python “for loop”, and expose the entire remapping scheme
to the DSL compiler. This reduced the runtime of the remap-
ping step by over an order of magnitude.

GT4Py is able to cover a large number of algorithmic
motifs used in weather and climate models. This section il-
lustrated two examples where the DSL has been extended
in order to express motifs which were present in FV3GFS.
There is also an ongoing effort to extend GT4Py to unstruc-
tured grid computations. Nevertheless, any DSL will natu-
rally be restricted from covering some algorithmic motifs.
For GT4Py these include reductions (e.g., computing hori-
zonal integrals over a field), interpolation (e.g., for multi-
grid), and search patterns (e.g., looking for a neighboring
grid cell with certain properties). Whether these patterns
should fall into the scope of the GT4Py DSL or another
framework is a design decision, which can be weighed for
example against compiling these patterns with DaCe.

4.2 Model validation

Each unit of code is validated by running it with the input
data serialized from runs of the Fortran model, and compar-
ing the outputs of our code to the serialized Fortran outputs.
If a ported unit is particularly large (e.g., vertical remapping,
grid generation) we serialize data from components of the
larger unit and test the equivalent Pace components to re-
duce the complexity of each test. We use two sets of initial
atmospheric conditions as our test cases, each with a cor-
responding configuration namelist. Our “standard” test case
is generated from NCEP reanalysis data from 00:00:00Z on
1 August 2016 (as in McGibbon et al., 2021), and the other is
the baroclinic instability test case described in Jablonowski
and Williamson (2006). Initial versions of the DSL code were
tested on the standard case run on six MPI ranks (one per tile)
and a 12 by 12 horizontal grid on each tile face with 79 ver-
tical levels. We also test with a 54-rank domain decomposi-
tion, as this gives each tile face a rank for each corner and
edge as well as a central rank with no edges. Our tests thus
cover the range of edge and corner handling required of a
given rank from no corners or edges to all eight corners and
edges.

In many cases the Pace outputs can be brought near round-
off error to the Fortran outputs. However, there are some in-
stances where changes to the order of operations or the use of
transcendental functions makes such reproducibility impos-
sible, so we must choose a validation threshold for our code.
We do this by perturbing the inputs to the Fortran code by
small, floating-point differences and comparing the outputs.
This leads us to adopt relative differences of 10−14 as our de-
fault validation threshold. If we find validation errors greater
than our default, we test the components of the offending
code to see what operations introduce discrepancies between
Pace and Fortran. Often these differences are due to errors in-

Geosci. Model Dev., 16, 2719–2736, 2023 https://doi.org/10.5194/gmd-16-2719-2023



J. Dahm et al.: Pace 2727

Figure 4. Schematic of our porting strategy: we port small units of code, test that they validate against the original Fortran, and then assemble
them into larger model components we then validate, building up to a full model port.

Figure 5. Example illustration of how horizontal regions in GT4Py can be used to specialize computations in certain sections of the com-
putational domain: the first region assigns 1.0 to the first row of the array, the second region assigns 2.0 to the second row, and the third
assigns 3.0 to the third row.

troduced during porting and we can reconcile Pace with the
Fortran code. If these differences are instead due to algorith-
mic changes (reordering, etc.) we set the error tolerance for
that piece of code based on the underlying Fortran–Python
difference. For example, in the vertical remapping scheme
FV3 makes use of multiple goto statements for its control
flow. These are not available in GT4Py, and so some code has
been rearranged to replicate the original algorithm, introduc-
ing small deviations from the Fortran outputs.

When we are confident that each component of the model
accurately reproduces the Fortran version, we test larger
combinations of these units to ensure the implementation of
these larger modules also matches Fortran, as illustrated in

Fig. 4. For example, after validating the cubic-spline verti-
cal interpolation code and the code that calculates the con-
tributions from deformed, Lagrangian pressure levels to the
remapped Eulerian levels, we then validate the code to verti-
cally remap a single variable from Lagrangian to Eulerian
pressure levels. When this code validates, along with the
tracer remapping, saturation adjustment, and moist potential
temperature adjustment code, we can then validate the en-
tire vertical remapping scheme. In this way we hierarchically
assemble and validate Pace against the Fortran code. These
validation tests are incorporated into our suite of continuous
integration tests to ensure that future developments and code
changes do not affect model validity.

https://doi.org/10.5194/gmd-16-2719-2023 Geosci. Model Dev., 16, 2719–2736, 2023



2728 J. Dahm et al.: Pace

Figure 6. Detail of 850 mbar temperature of the baroclinic instabil-
ity simulated with the Pace (a) and Fortran (b) dynamical cores on
day 9 at 10 km resolution. These results can be compared to Fig. 6 of
Jablonowski and Williamson (2006) and show how well our model
replicates the original Fortran.

Once the full Pace dynamical core passes these unit tests,
we run the Jablonowski and Williamson (2006) baroclinic
instability test case for 9 model days and compare the re-
sults against the same test run in Fortran. In this test case, the
dynamical core is initialized with zonally symmetric steady-
state winds, on top of which a Gaussian perturbation of the
zonal wind is superimposed in the northern mid-latitudes,
triggering the evolution of a baroclinic wave. In Fig. 6 we
show the region of interest in a 10 km resolution simula-
tion (960 × 960 × 80 grid cells per tile, run on 150 MPI
ranks) of the same instability from Pace and the reference
Fortran model. We see that the model behavior is consis-
tent with the reference Fortran model and replicates the re-
sults from the highest horizontal resolution in Jablonowski
and Williamson (2006) well. Figure 7 shows the difference
in 850 mbar temperature between Pace and Fortran running
the test case at 200 km (48 × 48 × 80 grid cells per tile) res-
olution. Both models were run with six MPI ranks. The Pace
dycore matches the Fortran code closely early on, with ran-
dom errors on the order of 10−11 after 3 model days of inte-
gration. Due to the nature of the baroclinic instability these
small errors do eventually grow to the order of 10−1 after
9 simulation days (3888 time steps), but even on day 6 the
errors are only on the order of 10−5. Based on these results
we are confident that Pace accurately reproduces the Fortran
model code.

Pace has only been validated using double-precision
floating-point arithmetic and values. All performance results
shown in the next section have been measured using double
precision.

5 Model performance

All experiments were conducted on the Piz Daint supercom-
puter at CSCS. Piz Daint contains 5704 Cray XC50 nodes,
with an Intel Xeon E5-2690 v3 12-core CPU, one NVIDIA
Tesla P100 GPU (16 GB RAM), and 64 GB of host RAM on
each node. The nodes are connected via the Cray Aries inter-

connect. We are using Python 3.8.2 with Pace revision 0.2.
The generated code was compiled with CUDA 11.2 and GCC
9.3.0. To expose the full node architecture to the DSL opti-
mization scheme we run Pace with one MPI rank per node for
both CPU and GPU back ends. The reference Fortran model
was compiled with Intel IFORT version 19.1.3.304. We run
the Fortran code in its optimal configuration of six ranks per
node and four threads per rank, fully utilizing all 24 virtual
cores available with hyperthreading.

Table 1 shows our model performance and strong scaling
results, comparing the absolute runtime of the Pace dynami-
cal core on both CPU and GPU architectures with the original
Fortran implementation. Figure 9 presents these data graphi-
cally. We show our weak-scaling results in Fig. 8. The micro-
physics implementation in Pace takes a negligible amount of
time (. 1 %), so we focus our discussion on the dynamical
core.

Our weak-scaling results (Fig. 8) demonstrate a speedup
of 3.6× against Fortran that is nearly constant across simu-
lation scales. The slight decrease in runtime at higher scales
is due to the heavier computational load on the limited case
of six MPI ranks; when running on six MPI ranks (one rank
per tile face) FV3’s corner and edge handling has to be com-
puted on every rank, while at higher scales that computa-
tional load is better spread across MPI ranks. Section 5.3 dis-
cusses this in more detail. Overall we see that Pace exhibits
perfect weak scaling, which validates the capacity of a GPU-
running model to simulate at kilometer-scale resolutions in
an efficient way.

Since we observe perfect weak scalability, meaning an in-
crease in compute nodes working on a problem does not af-
fect the total time, we can determine that the total time only
scales with the work per node. Since the work is increasing
linearly with the number of grid points per node, we show a
detailed analysis of the scalability of Pace with varying work
per node.

The domain size scaling experiments shown in Fig. 9 show
increasing performance gains on GPU as larger domains are
simulated on each compute node. This is expected, as GPUs
are well fitted to high domain sizes since they are capable of
higher throughput than CPUs when optimized accordingly.
As is well known and described for example in Fuhrer et al.
(2018), offloading computation to GPUs comes with a non-
insignificant startup cost that only starts to pay off if enough
work is done on accelerators. Pace is no exception to this
rule. We can see a regime where not enough work is done to
justify the startup cost.

A detailed view of the scaling numbers for the most rel-
evant region is summarized in Table 1. When we maximize
the amount of data on each node – shortly before we run out
of memory on the GPU – Pace achieves a speedup of 3.2× in
comparison to Fortran. The CPU version, on the other hand,
is 0.2× the speed of the Fortran code. This is due to a com-
bination of two factors:

Geosci. Model Dev., 16, 2719–2736, 2023 https://doi.org/10.5194/gmd-16-2719-2023



J. Dahm et al.: Pace 2729

Figure 7. The 850 mbar temperature difference between Pace and baseline Fortran simulations of a baroclinic instability at 200 km resolution
after 1, 3, 6, and 9 model days, showing a good match between the two models.

Table 1. Performance metrics comparing the Pace dynamical core with the Fortran reference code. The size (in number of grid points) of
each face (tile) of the cubed sphere grid is increased from row to row. Each of the configurations is run on six compute nodes, one compute
node per face of the cubed-sphere grid. Essentially this corresponds to global simulations of decreasing grid spacing of 96, 72, and 48 km,
respectively. The time measurements are the execution time of one invocation of the dynamical core (see Fig. 3).

Tile size Scaling Fortran Pace CPU Pace GPU

Time [s] Scaling Time [s] Scaling Speedup Time [s] Scaling Speedup

108 × 108 × 80 – 3.58 – 16.00 – 0.22 1.98 – 1.81
128 × 128 × 80 × 1.40 4.66 1.30 22.25 1.39 0.21 2.34 1.18 1.99
192 × 192 × 80 × 2.25 12.74 3.56 48.07 3.00 0.27 3.98 2.01 3.20

– the Fortran model we ported is itself highly optimized
for CPU;

– the optimization effort was geared toward demonstrat-
ing the viability of the Python DSL for GPU usage.

Despite focusing on GPU optimization, some of the opti-
mization methods also improved CPU performance, and the
functional CPU back end does demonstrate portability. While
outside the scope of this paper, work to improve CPU perfor-
mance is now underway.

Model performance is a core motivation for GPU acceler-
ation and for adopting a DSL, and it is encouraging to see a
significant speedup between Pace GPU and Fortran versions.
While the CPU performance has not been our focus to date, it

is the next priority for Pace development. We discuss our op-
timization strategies and explain how model performance in-
fluenced our decision process in porting the model in the fol-
lowing subsections. More detailed performance results and
a thorough analysis are available in Ben-Nun et al. (2022).
The version of the model code and supporting framework for
Ben-Nun et al. (2022) is slightly earlier, hence a slight differ-
ence in absolute numbers, but the methodology remains the
same.

5.1 Optimizations

Because GT4Py has multiple back ends for various target ar-
chitectures there is no one performance number that captures
the entirety of our approach. Nonetheless, the aggregate per-

https://doi.org/10.5194/gmd-16-2719-2023 Geosci. Model Dev., 16, 2719–2736, 2023



2730 J. Dahm et al.: Pace

Figure 8. Weak-scaling analysis from Ben-Nun et al. (2022): exe-
cution time for one invocation of the dynamical core (see Fig. 3)
is shown as a function of an increasing number of compute nodes
(each with one GPU). In this setup Pace is run with one MPI rank
per node, while the Fortran code is run with six MPI ranks per node
and four threads per rank. In this weak-scaling experiment, the num-
ber of grid points per GPU are kept constant at 192 × 192 × 79. As
more nodes are added, the resolution of these global simulations
increases. The average grid spacing is indicated in text, and a max-
imum of 4 km is achieved when running on 864 nodes.

Figure 9. Dynamical core runtime for varying domain sizes, ex-
panded from Table 1. The time measurements indicate the execution
time of one invocation of the dynamical core (see Fig. 3).

formance across back ends indicates the power of the DSL
paradigm through performance portability. With the capabil-
ity of code generating for specific hardware targets, we are
not limited to single, catch-all solutions in our user-facing
code. Instead we can generate optimized code for each type
of hardware individually through back-end logic, allowing
user code to focus on numerical details. As an example, on
CPU architectures it usually pays off to use coarse-grained
parallelism such that threads are assigned to different subdo-
mains, while on GPUs the parallelization strategy involves
having blocks of threads execute subdomains.

Weather and climate models are written with large con-
figuration files, namelists, to allow for flexible use. In order
to support all the possible configurations, standard models
use many conditionals that can not be resolved at compile
time, such as which subgrid reconstruction to use for tracer
advection. This limits how aggressively the low-level com-
piler can optimize the model. Code generation from a DSL
allows us to generate code and compile the model for a spe-
cific namelist configuration to circumvent this problem.

Furthermore the DSL compiler is able to apply domain-
specific optimizations under certain conditions on a per-
stencil level before generating code at all. These include the
following.

1. Reduce main memory accesses. Replace 3D temporary
fields used for intermediate results that are stored in
global memory with smaller buffers that allow for more
reuse and faster access.

2. Inlining. Fully inline both function calls as well
as nested conditionals, replacing function calls and
branching conditionals with the relevant code at com-
pile time and removing the performance overhead of
these code patterns.

3. Pruning. Analyze the code based on all the compile-
time constants provided and prune unreachable
branches of code.

4. Fusion. Fuse numerical operators defined in separate
functions and contexts into single kernel calls, as long
as that does not create race conditions. This optimizes
performance by reducing the amount of synchronization
needed as well as giving the underlying general purpose
compiler more flexibility.

5.2 DaCe

In order to achieve good performance in a Python-driven en-
vironment it is crucial to minimize the overhead moving from
the driver language to the compiled language executable.
Since our implementation of the model is a series of com-
piled stencils called from Python, the performance overhead
linked to calling the compiled stencils from Python scales
with the number of stencils called. A secondary issue is that
with the fragmentation into individual stencils we limit the
optimization potential of the DSL, as it is limited to the scope
of a single stencil for the optimizations described above.

We leverage DaCe (Ben-Nun et al., 2019) to address those
shortcomings, providing a full-program optimization frame-
work. With our DaCe back end in GT4Py we are able to
compile the entire loop over time steps into a single exe-
cutable called from Python, thus completely removing all
Python to C call overhead during our simulation. With DaCe
as our back end we are able to leverage custom optimiza-
tion for our code, including improving the computational lay-
out, improving where and how memory allocation happens,

Geosci. Model Dev., 16, 2719–2736, 2023 https://doi.org/10.5194/gmd-16-2719-2023



J. Dahm et al.: Pace 2731

scheduling computation to improve parallelism as well as in-
creasing data locality, and improving the pressure on global
memory. A detailed explanation of our approach and how it
affected performance can be found in Ben-Nun et al. (2022).

5.3 Corner and edge handling

As discussed in Sect. 4.1, the cubed-sphere discretization
of FV3 (Putman and Lin, 2007) requires special finite-
difference stencils applied near edges and corners to account
for the grid geometry. We added the ability to execute stencils
on horizontal subdomains to enable these motifs in GT4Py,
which unfortunately has negative performance implications
for Pace.

FV3 parallelized the vertical plane K instead of the hor-
izontal IJ ones. Flipping this order of parallelization in-
creases the parallelism manyfold, which is necessary for high
throughput on GPUs and other massively parallel architec-
tures. FV3 parallelizes in this way because it is advantageous
for their target architectures, which are CPUs with branch
prediction and large caches. On CPU architectures instruc-
tion divergence inside the tight loops due to FV3’s corner and
edge handling is not an issue, but there is a limit to what can
be done in a single-instruction, multiple-data (SIMD) GPU
kernel. Because of their data dependencies these corner and
edge operations cannot be executed in parallel with the rest of
the code, requiring a separate kernel launch for each of them.
This breaks what could be one large and optimized stencil
into separate stencils separated by such corner calculations,
though there are certain conditions under which we can fuse
these operations into the same kernel.

This example shows how algorithmic choices have large
impacts on performance. The choice of specialized corner
and edge handling made for FV3 fits a CPU architecture well
but is suboptimal for GPU architectures. Changes to the algo-
rithm can be made to alleviate this problem, such as a duo-
grid approach demonstrated in Chen (2021). Since Pace is
intended to be a one-to-one port of FV3 in its current state,
this is not a development we are focused on at the moment,
though it could be a fruitful direction for other DSL models.

6 Pace in action

6.1 Driving the model

The driver code in Listing 3 showcases the power of Python
as an API language for configuring, compiling, and running
computational codes. The command_line entry function
reads all information needed to run the model from disk and
directly defines the behavior of the driver class. Within the
driver class (not shown), the dynamical core and physics
components only have access to the configuration and vari-
ables they use, which makes it much easier for a new devel-
oper of the model to understand what the code does. This is

true all the way down through its components, as described
in Sect. 3.1.

This example also showcases the advantage of working in
a widely used language with a vibrant open-source package
ecosystem. Python has powerful tools available for defining
command-line interfaces. Taking a yaml configuration file
and mapping it onto a nested configuration class is as sim-
ple as using pyyaml and dacite, which provide this function-
ality. Python’s built-in datetime and timedelta types make it
easy to manage model execution time, and external packages
such as cftime provide support for a wide range of calen-
dars. Diagnostics storage makes use of the xarray and zarr
packages to greatly simplify the code we need to write. This
well-established ecosystem of tools maintained by scientists
and engineers from a range of disciplines and sectors is in-
credibly helpful when developing an atmospheric model.

And in turn, having a model written in Python means the
tools we have written can be used by anyone who uses the
language. This is particularly important given the popularity
of Python as a language for scientific analysis. When pro-
cessing the output of Pace, a scientist has direct access to the
tools and numerical code used by the model itself.

6.2 Use cases

One of the advantages of Python is the ecosystem surround-
ing it. For example, packages such as NumPy and SciPy
make it easy to perform common mathematical and numeri-
cal operations and manipulate data; Matplotlib enables inter-
active visualization and creates static or animated images;
a Jupyter Notebook allows users to create and share their
computational documents; TensorFlow provides end-to-end
libraries for machine learning and artificial intelligence ap-
plications. With Pace, we can leverage all these tools to make
running, processing, and visualizing climate model output all
in one Python script.

Pace also enables novel workflows through the use of
Jupyter Notebooks. The Pace repository contains an example
notebook running one component of Pace. We first initialize
a cubed-sphere grid and an idealized atmospheric state, and
then we run the tracer advection operation and visualize the
results. In this case the analytic zonal wind profile should
advect the tracer mass once around the Earth in 12 model
days, and any deviation from this indicates a problem with
the advection code. This workflow is meant to mimic how a
model developer could develop, implement, and debug a new
advection scheme. We take advantage of the fact that each
component in Pace is modular and skip over running the en-
tire model, which enables rapid prototyping without leaving
the Python ecosystem. Beyond development, this capability
is useful for teaching, allowing students to inspect elements
of the model individually.

Another benefit of Pace is that it facilitates incorporating
novel applications and approaches into the model, such as
machine learning emulation. Oftentimes machine learning in

https://doi.org/10.5194/gmd-16-2719-2023 Geosci. Model Dev., 16, 2719–2736, 2023



2732 J. Dahm et al.: Pace

Listing 3. The driver function to run Pace from the command line. The command_line function is able to gather the configuration and set
logging behavior and run the model.

Listing 4. Pseudo-code outlining how a machine-learned microphysics emulation scheme could be incorporated as a model component in
Pace.

climate models requires complicated workflows such as call-
ing Fortran from Python (McGibbon et al., 2021) or calling
Python from Fortran. Because Pace is written in Python, we
can train and execute an machine learning (ML) model di-
rectly, bypassing difficult infrastructure to pass variables be-
tween languages. In Listing 4 we show Pace’s ability to re-
place a stencil-based microphysics scheme with a pre-trained
TensorFlow-based microphysics emulator. Taking advantage
of the modularity and separation of initialization and call
time of the individual module, we simply load the Tensor-
Flow model during the initialization of the Physics class and
replace the call signature of microphysics. Figure 10 shows
an example of the emulator applied to the baroclinic instabil-
ity test case.

Figure 10. Microphysics emulation results: liquid water column
sum of a baroclinic instability simulation on day 10 at 200 km reso-
lution.

Geosci. Model Dev., 16, 2719–2736, 2023 https://doi.org/10.5194/gmd-16-2719-2023



J. Dahm et al.: Pace 2733

7 Limitations

Our research has focused on porting a subset of NOAA’s
FV3GFS model so as to limit the porting effort and focus on
framework development. In particular, the nesting capabili-
ties of FV3 were not ported. Likewise, we forked the model
code early in the project and did not pull any updates added
to the original Fortran code by NOAA’s team. Despite this
limiting choice, we believe the two namelist configurations
we ported cover a wide range of applications to show that
any model code can be effectively ported.

While this paper presents our port of the dynamical core
and microphysics, we are actively working on integrating and
validating GT4Py ports of the full GFS physics suite. Our
results integrating the GFDL microphysics scheme (Chen
and Lin, 2013) into Pace not only show validation and com-
petitive performance, but also demonstrate the feasibility
of implementing physics parameterizations using the same
strategy deployed for the dynamical core. We have written
GT4Py implementations of the remaining physics schemes
(PBL, turbulence, shallow convection, sea ice, land surface,
and radiation), and work is ongoing to optimize and integrate
them into the Pace model.

Only the baroclinic wave test case was tested at the larger
150-rank configuration described in Sect. 4.2. A subset of an
earlier version of the code was run on 2400 GPU nodes (Ben-
Nun et al., 2022) before achieving full validation, alleviating
concerns about distributed performance.

Lastly, as explained in Sect. 5, we have only focused on
GPU performance optimization thus far, leaving CPU perfor-
mance suboptimal. We are confident that CPU optimization
is achievable within the boundary of the current framework
and only requires careful engineering.

8 Conclusions

We have presented Pace, an open-source performance-
portable implementation of the FV3 dynamical core and
GFDL cloud microphysics written in Python using the
GT4Py domain-specific language. The DSL implementation
allows Pace to run on both CPU and GPU architectures,
where it achieves high performance. The use of Python as
a front-end language lets us write Pace in a modular, produc-
tive style and gives us access to Python’s powerful testing
tools, which allows us to debug and validate Pace.

We have demonstrated our method of porting code from
Fortran to Python, building Pace hierarchically from small
units of ported code that validate regularly against their For-
tran equivalents. Fully porting Pace was a combination of
porting the code to the DSL and extending the DSL to cover
new algorithmic motifs required by the model, such as “while
loops” inside stencils and allowing computations to occur
on horizontal subdomains. Our testing strategy ensures that
our code remains equivalent to the Fortran model throughout

our development, including front-end and back-end changes.
Our approach can be adopted to reimplementing other model
codes and provides a good template for porting weather and
climate models between languages.

We have shown the performance implications of the DSL
design and implementation, leading to a ∼ 3.3× speedup for
Pace’s GPU back end over the Fortran reference. One advan-
tage of Python is the blending of compile time and runtime
allows us to compile the model for a specific runtime config-
uration. Increasing the amount of code exposed to the DSL
compiler had a strong impact on our model performance and
drove us to adopt DaCe to leverage full-program optimiza-
tions. Algorithmic changes such as the duo-grid implemen-
tation can drive further optimization.

Pace takes great advantage of the Python ecosystem.
Pace has full access to Python packages such as NumPy
(C. R. Harris et al., 2020) and Matplotlib (Hunter, 2007). We
can run the model, or just a model component, in a Jupyter
Notebook, opening new avenues for model exploration and
debugging. The Python front end also allows Pace to eas-
ily incorporate and couple to machine-learned model com-
ponents, such as physics parameterizations. We have also il-
lustrated the relative ease of debugging Pace, both through
Python’s developer tools and through the ability to imple-
ment novel tests like subtracting two dycores to determine
whether temporary variables are properly reset between time
steps.

As supercomputer heterogeneity increases, Pace stands as
both a useful atmospheric model and a strong proof of con-
cept for the DSL approach to performance portability. We
have shown the advantages of an atmospheric model written
in a high-level language such as Python, with further devel-
opment still to come. We hope to see this approach adopted
more broadly in the modeling community.

Code and data availability. Code releases for Pace (George et al.,
2022, https://doi.org/10.5281/zenodo.7464843) and GT4Py (Dahm
et al., 2022, https://doi.org/10.5281/zenodo.7080260) are available
on Zenodo.

Author contributions. JD, ED, FD, OE, RG, JM, TW, and EW:
equal contributions to methodology, software, validation, and writ-
ing. CK: software and validation. TBN and LG: methodology,
software, and validation. LH: validation, writing, and supervision.
OF: conceptualization, methodology, writing, project administra-
tion, supervision, and funding acquisition.

Competing interests. The contact author has declared that none of
the authors has any competing interests.

https://doi.org/10.5194/gmd-16-2719-2023 Geosci. Model Dev., 16, 2719–2736, 2023

https://doi.org/10.5281/zenodo.7464843
https://doi.org/10.5281/zenodo.7080260


2734 J. Dahm et al.: Pace

Disclaimer. Publisher’s note: Copernicus Publications remains
neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Acknowledgements. We acknowledge the contributions of
Mark Cheeseman, Yannick Niedermayr, and Mikael Stellio to the
Pace code base, domain partitioning code, and the port of the mi-
crophysics, respectively. We thank Rusty Benson (NOAA/GFDL)
for insightful discussions. Further, we acknowledge contributions
from the whole GT4Py team, specifically Hannes Vogt (CSCS)
and Enrique Gonzalez (CSCS), for their help in implementing
a validating version of FV3 using GT4Py. We also thank two
anonymous reviewers for their constructive suggestions.

Financial support. This work was supported by a grant from the
Swiss National Supercomputing Centre (CSCS) under project ID
s1053. We thank Vulcan Inc., the Allen Institute for Artificial
Intelligence (AI2), the Geophysical Fluid Dynamics Laboratory
(GFDL) of NOAA, and the Global Modeling and Assimilation Of-
fice (GMAO) of NASA for supporting this work. Tal Ben-Nun is
supported by the Swiss National Science Foundation (Ambizione
project no. 185778).

Review statement. This paper was edited by Travis O’Brien and re-
viewed by two anonymous referees.

References

Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro,
C., Corrado, G. S., Davis, A., Dean, J., Devin, M., Ghemawat, S.,
Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefow-
icz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga,
R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J.,
Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V.,
Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg,
M., Wicke, M., Yu, Y., and Zheng, X.: TensorFlow: Large-Scale
Machine Learning on Heterogeneous Systems, Zenodo [soft-
ware], https://doi.org/10.5281/zenodo.4724125, 2015.

Adams, S., Ford, R., Hambley, M., Hobson, J., Kavčič, I., May-
nard, C., Melvin, T., Müller, E., Mullerworth, S., Porter, A.,
Rezny, M., Shipway, B., and Wong, R.: LFRic: Meeting the
challenges of scalability and performance portability in Weather
and Climate models, J. Parallel Distr. Com., 132, 383–396,
https://doi.org/10.1016/j.jpdc.2019.02.007, 2019.

Alnaes, M. S., Blechta, J., Hake, J., Johansson, A., Kehlet, B., Logg,
A., Richardson, C., Ring, J., and Rognes, M. E., and Wells, G. N.:
The FEniCS Project Version 1.5, Archive of Numerical Software
[software], https://doi.org/10.11588/ans.2015.100.20553, 2015.

Augier, P., Bolz-Tereick, C. F., Guelton, S., and Mohanan, A. V.:
Reducing the ecological impact of computing through educa-
tion and Python compilers, Nature Astronomy, 5, 334–335,
https://doi.org/10.1038/s41550-021-01342-y, 2021.

Behnel, S., Bradshaw, R., Citro, C., Dalcin, L., Seljebotn, D. S., and
Smith, K.: Cython: The Best of Both Worlds, Comput. Sci. Eng.,
13, 31–39, https://doi.org/10.1109/MCSE.2010.118, 2011.

Ben-Nun, T., de Fine Licht, J., Ziogas, A. N., Schneider,
T., and Hoefler, T.: Stateful Dataflow Multigraphs: A Data-
Centric Model for Performance Portability on Heterogeneous
Architectures, in: Proceedings of the International Confer-
ence for High Performance Computing, Networking, Stor-
age and Analysis, SC ’19, Association for Computing Ma-
chinery, New York, NY, USA, November 2019, 81, 1–14,
https://doi.org/10.1145/3295500.3356173, 2019.

Ben-Nun, T., Groner, L., Deconinck, F., Wicky, T., Davis, E., Dahm,
J., Elbert, O. D., George, R., McGibbon, J., Trümper, L., Wu,
E., Fuhrer, O., Schulthess, T., and Hoefler, T.: Productive Per-
formance Engineering for Weather and Climate Modeling with
Python, arXiv, https://doi.org/10.48550/ARXIV.2205.04148,
2022.

Bradbury, J., Frostig, R., Hawkins, P., Johnson, M. J., Leary,
C., Maclaurin, D., Necula, G., Paszke, A., VanderPlas, J.,
Wanderman-Milne, S., and Zhang, Q.: JAX: composable trans-
formations of Python+NumPy programs, http://github.com/
google/jax (last access: September 2022), 2018.

Brenowitz, N. D. and Bretherton, C. S.: Spatially extended tests
of a neural network parametrization trained by coarse-graining,
J. Adv. Model. Earth Sy., 11, 2728–2744, 2019.

Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D.,
Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell,
A., Agarwal, S., Herbert-Voss, A., Krueger, G., Henighan, T.,
Child, R., Ramesh, A., Ziegler, D., Wu, J., Winter, C., Hesse,
C., Chen, M., Sigler, E., Litwin, M., Gray, S., Chess, B.,
Clark, J., Berner, C., McCandlish, S., Radford, A., Sutskever,
I., and Amodei, D.: Language Models are Few-Shot Learn-
ers, in: Advances in Neural Information Processing Systems,
edited by: Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M.,
and Lin, H., vol. 33, pp. 1877–1901, Curran Associates, Inc.,
https://doi.org/10.48550/arXiv.2005.14165, 2020.

Burns, K. J., Vasil, G. M., Oishi, J. S., Lecoanet, D., and Brown,
B. P.: Dedalus: A flexible framework for numerical simula-
tions with spectral methods, Phys. Rev. Research, 2, 023068,
https://doi.org/10.1103/PhysRevResearch.2.023068, 2020.

Chen, J.-H. and Lin, S.-J.: Seasonal predictions of tropical cyclones
using a 25-km-resolution general circulation model, J. Climate,
26, 380–398, 2013.

Chen, X.: The LMARS Based Shallow-Water Dynami-
cal Core on Generic Gnomonic Cubed-Sphere Geom-
etry, J. Adv. Model. Earth Sy., 13, e2020MS002280,
https://doi.org/10.1029/2020MS002280, 2021.

Clement, V., Marti, P., Lapillonne, X., Fuhrer, O., and Sawyer,
W.: Automatic Port to OpenACC/OpenMP for Physical Param-
eterization in Climate and Weather Code Using the CLAW
Compiler, Supercomputing Frontiers and Innovations, 6, 51–63,
https://doi.org/10.14529/jsfi190303, 2019.

Dahm, J., Groner, L., Paredes, E. G., Thaler, F., Vogt,
H., Davis, E., Haeuselmann, R., Ehrengruber, T., Ub-
biali, S., Wicky, T., Deconinck, F., Ben-Nun, T., and
George, R.: ai2cm/gt4py: v0.1.0 GMD release, Zenodo [code],
https://doi.org/10.5281/zenodo.7080260, 2022.

E3SM Project, DOE: Energy Exascale Earth System
Model v2.0, Computer Software, GitHub [software],
https://doi.org/10.11578/E3SM/dc.20210927.1, 2021.

Fuhrer, O., Chadha, T., Hoefler, T., Kwasniewski, G., Lapil-
lonne, X., Leutwyler, D., Lüthi, D., Osuna, C., Schär, C.,

Geosci. Model Dev., 16, 2719–2736, 2023 https://doi.org/10.5194/gmd-16-2719-2023

https://doi.org/10.5281/zenodo.4724125
https://doi.org/10.1016/j.jpdc.2019.02.007
https://doi.org/10.11588/ans.2015.100.20553
https://doi.org/10.1038/s41550-021-01342-y
https://doi.org/10.1109/MCSE.2010.118
https://doi.org/10.1145/3295500.3356173
https://doi.org/10.48550/ARXIV.2205.04148
http://github.com/google/jax
http://github.com/google/jax
https://doi.org/10.48550/arXiv.2005.14165
https://doi.org/10.1103/PhysRevResearch.2.023068
https://doi.org/10.1029/2020MS002280
https://doi.org/10.14529/jsfi190303
https://doi.org/10.5281/zenodo.7080260
https://doi.org/10.11578/E3SM/dc.20210927.1


J. Dahm et al.: Pace 2735

Schulthess, T. C., and Vogt, H.: Near-global climate simula-
tion at 1 km resolution: establishing a performance baseline on
4888 GPUs with COSMO 5.0, Geosci. Model Dev., 11, 1665–
1681, https://doi.org/10.5194/gmd-11-1665-2018, 2018.

George, R., Wu, E., McGibbon, J., Dahm, J., Davis, E., Wicky,
T., Deconinck, F., Kung, C., Fuhrer, O., Elbert, O., Savarin, A.,
Brenowitz, N. D., Cheeseman, M., Henn, B., Clark, S., and Nie-
dermayr, Y.: ai2cm/pace: v0.2.0, Zenodo [code and data set],
https://doi.org/10.5281/zenodo.7464843, 2022.

Giorgetta, M. A., Sawyer, W., Lapillonne, X., Adamidis, P., Alex-
eev, D., Clément, V., Dietlicher, R., Engels, J. F., Esch, M.,
Franke, H., Frauen, C., Hannah, W. M., Hillman, B. R., Ko-
rnblueh, L., Marti, P., Norman, M. R., Pincus, R., Rast, S.,
Reinert, D., Schnur, R., Schulzweida, U., and Stevens, B.: The
ICON-A model for direct QBO simulations on GPUs (ver-
sion icon-cscs:baf28a514), Geosci. Model Dev., 15, 6985–7016,
https://doi.org/10.5194/gmd-15-6985-2022, 2022.

Harris, C. R., Millman, K. J., van der Walt, S. J., Gommers, R., Vir-
tanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith,
N. J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M. H., Brett,
M., Haldane, A., del Río, J. F., Wiebe, M., Peterson, P., Gérard-
Marchant, P., Sheppard, K., Reddy, T., Weckesser, W., Abbasi,
H., Gohlke, C., and Oliphant, T. E.: Array programming with
NumPy, Nature, 585, 357–362, https://doi.org/10.1038/s41586-
020-2649-2, 2020.

Harris, L., Zhou, L., Lin, S.-J., Chen, J.-H., Chen, X., Gao, K.,
Morin, M., Rees, S., Sun, Y., Tong, M., Xiang, B., Bender,
M., Benson, R., Cheng, K.-Y., Clark, S., Elbert, O. D., Hazel-
ton, A., Huff, J. J., Kaltenbaugh, A., Liang, Z., Marchok, T.,
Shin, H. H., and Stern, W.: GFDL SHiELD: A Unified System
for Weather-to-Seasonal Prediction, J. Adv. Model. Earth Sy.,
12, e2020MS002223, https://doi.org/10.1029/2020MS002223,
2020.

Harris, L., Chen, X., Putman, W., Zhou, L., and Chen, J.-
H.: A Scientific Description of the GFDL Finite-Volume
Cubed-Sphere Dynamical Core, technical Memorandum,
https://repository.library.noaa.gov/view/noaa/30725 (last access:
September 2022), 2021.

Harris, L. M. and Lin, S.-J.: A Two-Way Nested Global-
Regional Dynamical Core on the Cubed-Sphere Grid, Mon.
Weather Rev., 141, 283–306, https://doi.org/10.1175/MWR-D-
11-00201.1, 2013.

Hunter, J. D.: Matplotlib: A 2D graphics environment, Comput. Sci.
Eng., 9, 90–95, https://doi.org/10.1109/MCSE.2007.55, 2007.

Jablonowski, C. and Williamson, D. L.: A baroclinic instability test
case for atmospheric model dynamical cores, Q. J. Roy. Meteor.
Soc., 132, 2943–2975, https://doi.org/10.1256/qj.06.12, 2006.

Lam, S. K., Pitrou, A., and Seibert, S.: Numba: A LLVM-Based
Python JIT Compiler, in: Proceedings of the Second Workshop
on the LLVM Compiler Infrastructure in HPC, LLVM ’15, Asso-
ciation for Computing Machinery, New York, NY, USA, Novem-
ber 2015, 7, 1–6, https://doi.org/10.1145/2833157.2833162,
2015.

Lapillonne, X., Osterried, K., and Fuhrer, O.: Chapter 13 – Us-
ing OpenACC to port large legacy climate and weather mod-
eling code to GPUs, in: Parallel Programming with OpenACC,
edited by: Farber, R., pp. 267–290, Morgan Kaufmann, Boston,
https://doi.org/10.1016/B978-0-12-410397-9.00013-5, 2017.

Lawrence, B. N., Rezny, M., Budich, R., Bauer, P., Behrens, J.,
Carter, M., Deconinck, W., Ford, R., Maynard, C., Mullerworth,
S., Osuna, C., Porter, A., Serradell, K., Valcke, S., Wedi, N.,
and Wilson, S.: Crossing the chasm: how to develop weather
and climate models for next generation computers?, Geosci.
Model Dev., 11, 1799–1821, https://doi.org/10.5194/gmd-11-
1799-2018, 2018.

Lin, S.-J.: A “Vertically Lagrangian” Finite-Volume Dy-
namical Core for Global Models, Mon. Weather
Rev., 132, 2293–2307, https://doi.org/10.1175/1520-
0493(2004)132<2293:AVLFDC>2.0.CO;2, 2004.

Lin, S.-J. and Rood, R. B.: Multidimensional Flux-Form
Semi-Lagrangian Transport Schemes, Mon. Weather
Rev., 124, 2046–2070, https://doi.org/10.1175/1520-
0493(1996)124<2046:mffslt>2.0.co;2, 1996.

McGibbon, J., Brenowitz, N. D., Cheeseman, M., Clark, S. K.,
Dahm, J. P. S., Davis, E. C., Elbert, O. D., George, R. C., Har-
ris, L. M., Henn, B., Kwa, A., Perkins, W. A., Watt-Meyer, O.,
Wicky, T. F., Bretherton, C. S., and Fuhrer, O.: fv3gfs-wrapper:
a Python wrapper of the FV3GFS atmospheric model, Geosci.
Model Dev., 14, 4401–4409, https://doi.org/10.5194/gmd-14-
4401-2021, 2021.

Méndez, M., Tinetti, F. G., and Overbey, J. L.: Climate Mod-
els: Challenges for Fortran Development Tools, in: 2014 Sec-
ond International Workshop on Software Engineering for High
Performance Computing in Computational Science and Engi-
neering, New Orleans, LA, USA, 21 November 2014, 6–12,
https://doi.org/10.1109/SE-HPCCSE.2014.7, 2014.

Monteiro, J. M., McGibbon, J., and Caballero, R.: sympl (v. 0.4.0)
and climt (v. 0.15.3) – towards a flexible framework for build-
ing model hierarchies in Python, Geosci. Model Dev., 11, 3781–
3794, https://doi.org/10.5194/gmd-11-3781-2018, 2018.

Partee, S., Ellis, M., Rigazzi, A., Bachman, S., Marques,
G., and Shao, A.: SmartSim: Online Analytics and Ma-
chine Learning for HPC Simulations, Zenodo [code],
https://doi.org/10.5281/zenodo.4986182, 2021a.

Partee, S., Ellis, M., Rigazzi, A., Bachman, S., Marques, G., Shao,
A., and Robbins, B.: Using Machine Learning at Scale in HPC
Simulations with SmartSim: An Application to Ocean Climate
Modeling, arXiv, https://doi.org/10.48550/ARXIV.2104.09355,
2021b.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan,
G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison,
A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chil-
amkurthy, S., Steiner, B., Fang, L., Bai, J., and Chintala, S.:
PyTorch: An Imperative Style, High-Performance Deep Learn-
ing Library, in: Advances in Neural Information Processing Sys-
tems 32, edited by: Wallach, H., Larochelle, H., Beygelzimer,
A., d’Alché-Buc, F., Fox, E., and Garnett, R., Curran Associates,
Inc., https://doi.org/10.48550/arXiv.1912.01703, pp. 8024–8035,
2019.

Putman, W. M. and Lin, S.-J.: Finite-volume transport on
various cubed-sphere grids, J. Comput. Phys., 227, 55–78,
https://doi.org/10.1016/j.jcp.2007.07.022, 2007.

Strohmaier, E., Meuer, H. W., Dongarra, J., and Simon, H. D.:
The TOP500 List and Progress in High-Performance Comput-
ing, Computer, 48, 42–49, https://doi.org/10.1109/MC.2015.338,
2015.

https://doi.org/10.5194/gmd-16-2719-2023 Geosci. Model Dev., 16, 2719–2736, 2023

https://doi.org/10.5194/gmd-11-1665-2018
https://doi.org/10.5281/zenodo.7464843
https://doi.org/10.5194/gmd-15-6985-2022
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1029/2020MS002223
https://repository.library.noaa.gov/view/noaa/30725
https://doi.org/10.1175/MWR-D-11-00201.1
https://doi.org/10.1175/MWR-D-11-00201.1
https://doi.org/10.1109/MCSE.2007.55
https://doi.org/10.1256/qj.06.12
https://doi.org/10.1145/2833157.2833162
https://doi.org/10.1016/B978-0-12-410397-9.00013-5
https://doi.org/10.5194/gmd-11-1799-2018
https://doi.org/10.5194/gmd-11-1799-2018
https://doi.org/10.1175/1520-0493(2004)132<2293:AVLFDC>2.0.CO;2
https://doi.org/10.1175/1520-0493(2004)132<2293:AVLFDC>2.0.CO;2
https://doi.org/10.1175/1520-0493(1996)124<2046:mffslt>2.0.co;2
https://doi.org/10.1175/1520-0493(1996)124<2046:mffslt>2.0.co;2
https://doi.org/10.5194/gmd-14-4401-2021
https://doi.org/10.5194/gmd-14-4401-2021
https://doi.org/10.1109/SE-HPCCSE.2014.7
https://doi.org/10.5194/gmd-11-3781-2018
https://doi.org/10.5281/zenodo.4986182
https://doi.org/10.48550/ARXIV.2104.09355
https://doi.org/10.48550/arXiv.1912.01703
https://doi.org/10.1016/j.jcp.2007.07.022
https://doi.org/10.1109/MC.2015.338


2736 J. Dahm et al.: Pace

Theis, T. N. and Wong, H.-S. P.: The End of Moore’s Law: A New
Beginning for Information Technology, Comput. Sci. Eng., 19,
41–50, https://doi.org/10.1109/MCSE.2017.29, 2017.

Trott, C. R., Lebrun-Grandié, D., Arndt, D., Ciesko, J., Dang,
V., Ellingwood, N., Gayatri, R., Harvey, E., Hollman, D. S.,
Ibanez, D., Liber, N., Madsen, J., Miles, J., Poliakoff, D., Pow-
ell, A., Rajamanickam, S., Simberg, M., Sunderland, D., Tur-
cksin, B., and Wilke, J.: Kokkos 3: Programming Model Exten-
sions for the Exascale Era, IEEE T. Parall. Distr., 33, 805–817,
https://doi.org/10.1109/TPDS.2021.3097283, 2022.

van den Oord, G., Jansson, F., Pelupessy, I., Chertova, M., Grön-
qvist, J. H., Siebesma, P., and Crommelin, D.: A Python interface
to the Dutch atmospheric large-eddy simulation, SoftwareX, 12,
100608, https://doi.org/10.1016/j.softx.2020.100608, 2020.

Vila-Pérez, J., Van Heyningen, R. L., Nguyen, N.-C., and
Peraire, J.: Exasim: Generating discontinuous Galerkin
codes for numerical solutions of partial differential equa-
tions on graphics processors, SoftwareX, 20, 101212,
https://doi.org/10.1016/j.softx.2022.101212, 2022.

Zhou, L., Lin, S.-J., Chen, J.-H., Harris, L. M., Chen, X., and Rees,
S. L.: Toward Convective-Scale Prediction within the Next Gen-
eration Global Prediction System, B. Am. Meteorol. Soc., 100,
1225–1243, https://doi.org/10.1175/BAMS-D-17-0246.1, 2019.

Geosci. Model Dev., 16, 2719–2736, 2023 https://doi.org/10.5194/gmd-16-2719-2023

https://doi.org/10.1109/MCSE.2017.29
https://doi.org/10.1109/TPDS.2021.3097283
https://doi.org/10.1016/j.softx.2020.100608
https://doi.org/10.1016/j.softx.2022.101212
https://doi.org/10.1175/BAMS-D-17-0246.1

	Abstract
	Introduction
	Python-based DSL: separation of concerns
	A modern DSL: requirements
	Related work
	GT4Py: a Python-based DSL

	Pace
	A modular model
	Powerful testing

	Porting the model
	Extending the DSL
	Model validation

	Model performance
	Optimizations
	DaCe
	Corner and edge handling

	Pace in action
	Driving the model
	Use cases

	Limitations
	Conclusions
	Code and data availability
	Author contributions
	Competing interests
	Disclaimer
	Acknowledgements
	Financial support
	Review statement
	References

