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Abstract. We propose a new deep-learning architecture
HIDRA2 for sea level and storm tide modeling, which is ex-
tremely fast to train and apply and outperforms both our pre-
vious network design HIDRA1 and two state-of-the-art nu-
merical ocean models (a NEMO engine with sea level data
assimilation and a SCHISM ocean modeling system), over
all sea level bins and all forecast lead times. The architec-
ture of HIDRA2 employs novel atmospheric, tidal and sea
surface height (SSH) feature encoders as well as a novel fea-
ture fusion and SSH regression block. HIDRA2 was trained
on surface wind and pressure fields from a single member of
the European Centre for Medium-Range Weather Forecasts
(ECMWF) atmospheric ensemble and on Koper tide gauge
observations. An extensive ablation study was performed to
estimate the individual importance of input encoders and data
streams. Compared to HIDRA1, the overall mean absolute
forecast error is reduced by 13 %, while in storm events it
is lower by an even larger margin of 25 %. Consistent su-
perior performance over HIDRA1 as well as over general
circulation models is observed in both tails of the sea level
distribution: low tail forecasting is relevant for marine traffic
scheduling to ports of the northern Adriatic, while high tail
accuracy helps coastal flood response. Power spectrum anal-
ysis indicates that HIDRA2 most accurately represents the
energy density peak centered on the ground state sea surface
eigenmode (seiche) and comes a close second to SCHISM
in the energy band of the first excited eigenmode. To as-
sign model errors to specific frequency bands covering di-

urnal and semi-diurnal tides and the two lowest basin se-
iches, spectral decomposition of sea levels during several his-
toric storms is performed. HIDRA2 accurately predicts am-
plitudes and temporal phases of the Adriatic basin seiches,
which is an important forecasting benefit due to the high sen-
sitivity of the Adriatic storm tide level to the temporal lag
between peak tide and peak seiche.

1 Introduction

Global mean sea level rise, related to anthropogenic climate
change (Arias et al., 2021), is causing a worldwide increase
in coastal flooding frequency (Taherkhani et al., 2020) and
is leading to a myriad of negative consequences for coastal
communities, civil safety and economies (Ferrarin et al.,
2020). Shallow semi-enclosed coastal regional basins like
the northern Adriatic (northern–central Mediterranean Sea)
are facing growing threats of coastal inundation and ero-
sion (Ferrarin et al., 2020), seawater intrusions into fresh-
water reservoirs and worsening conditions for marine traffic.
Northern Adriatic ports like Venice, Koper and Trieste, but
also other cultural landmark towns like Chioggia or Piran,
have been – or will be – forced to take expensive preventive
measures to mitigate their exposure.

The problem of sea level forecasting on the northern Adri-
atic shelf (see Fig. 1 for the shelf location and depth) is two-
fold: (i) high sea levels lead to severe flooding of densely
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Figure 1. Topography and bathymetry of the Adriatic region. Ab-
breviations used on the map are as follows: TS – Trieste, KP –
Koper, GoT – Gulf of Trieste, VE – Venice, N Adr shelf – northern
Adriatic shelf, S Adr Pit – southern Adriatic pit, OT – Otranto Strait.
The direction of the scirocco is marked with the red arrow. The
image was created by the authors based on EMODnet bathymetry
data, available at https://portal.emodnet-bathymetry.eu/ (last ac-
cess: 8 June 2022), and the Copernicus European Digital Eleva-
tion Model, available at https://land.copernicus.eu/imagery-in-situ/
eu-dem/eu-dem-v1-0-and-derived-products/eu-dem-v1.0 (last ac-
cess: 8 June 2022).

populated coastal towns, while (ii) low sea levels may effec-
tively inhibit large marine cargo due to very shallow depths
(often below 15 m) of marine waterways on the shelf and es-
pecially in the Gulf of Trieste. Reliable forecasting of both
tails, high and low, of sea level distribution is therefore im-
perative for services like civil safety and cargo scheduling
activities in local ports.

The two distribution tails, however, represent two dynami-
cally separate problems. High sea levels always occur due to
intense pressure lows and corresponding strong winds during
cyclonic activity in the basin, while extremely low sea levels
typically occur through a combination of prolonged periods
of high atmospheric pressure and spring tides.

Equilibrium ocean response to slow changes in air pres-
sure is captured by the inverse barometer effect, while the
wind setup of the sea level occurs through the vertical mo-
mentum flux across the air–sea interface. The dominant
winds in the Adriatic basin are the southeasterly scirocco,
blowing along the major axis of the basin (see Fig. 1), and
the northeasterly cross-basin bora. Strong scirocco events
lead to severe storm surges, excitation of basin seiches (Bajo
et al., 2019) and potentially severe flooding in the north-
ern Adriatic. Adriatic along-basin seiches have eigenperiods
of 21.5 h (fundamental eigenmode) and 10.9 h (first excited

eigenmode) (see, e.g., Medvedev et al., 2020) and decay on
the timescale of days, mostly due to radiation losses through
Otranto (Cerovecki et al., 1997).

In this paper we will adhere to the terminology proposed
in Gregory et al. (2019): (i) the term sea level will denote
the total time-varying local water depth at the tide gauge in
Koper, (ii) the term sea surface height will be the height of
the sea level above (or below) the reference ellipsoid, (iii)
the term storm surge will denote the elevation or depression
of the sea surface with respect to the predicted tide during
a storm, and (iv) the term storm tide will be the sea surface
height, elevated during a storm by a storm surge.

The key difficulty of sea level forecasting in the Adriatic
basin arises from the high sensitivity of the total sea level
to the phase lag between the gravitationally generated tides
(independent of meteorological forcing) and meteorologi-
cally generated basin seiches (independent of gravitational
forcing). This sensitivity can translate reliable atmospheric
forecasts with very limited errors in the timing and trajec-
tory of the cyclone into substantial errors in the sea level
forecast. Probabilistic ensemble forecasting of sea level en-
velopes with error variance estimation (Žust et al., 2021; Fer-
rarin et al., 2020; Bernier and Thompson, 2015; Mel and
Lionello, 2014) was therefore explored to tackle this draw-
back. However, ensemble sea level forecasting is numerically
expensive, requires specialized expensive hardware, and in-
troduces delays in prediction. To avoid the high numeri-
cal cost of ensemble sea level forecasting, computationally
efficient machine-learning-based ensemble models have re-
cently been explored (Žust et al., 2021). While these models
require a substantial amount of training data to learn the com-
plex relations for reliable predictions, the inference is numer-
ically cheap. For example, single-point Koper sea level pre-
dictions from the neural network HIDRA1 ensemble (Žust
et al., 2021) are a million times faster than the full-basin op-
erational NEMO ocean (Madec, 2016) at the Slovenian Envi-
ronment Agency. It is true that HIDRA1 computes prediction
for a single variable in a single point, while ocean models
compute the 4D evolution of a broad set of oceanic prop-
erties, but in the operational environment, faster model pre-
diction times come with immediate benefits for downstream
warning issuing and civil rescue operations.

Machine learning has thus been explored by several re-
search groups for single-point sea level forecasting. The
early approaches (Imani et al., 2018) were based on clas-
sic machine learning models such as support vector ma-
chines (Sapankevych and Sankar, 2009) with radial basis
function kernels. In their work, Pashova and Popova (2011)
and Karimi et al. (2013) utilized shallow fully connected
neural networks, but due to simplistic network architectures
that did not utilize the numerical atmospheric forecast, they
could only report the desired accuracy for short temporal
horizons. Ishida et al. (2020) used long short-term memory
(LSTM) networks (Hochreiter and Schmidhuber, 1997) to-
gether with several atmospheric variables to improve 1 h pre-
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diction into the future but did not expand the prediction hori-
zon. Braakmann-Folgmann et al. (2017) predicted further in
time by applying a combination of LSTM and convolutional
neural networks but at a very coarse level. Autoregressive
neural networks were considered in Hieronymus et al. (2019)
to increase the temporal resolution and the prediction hori-
zon. Most recently, a convolutional neural network, HIDRA1
(Žust et al., 2021), with a specialized architecture to utilize
atmospheric data, sea surface heights and astronomic tides
was proposed. To the best of our knowledge, HIDRA1 is cur-
rently the most accurate machine learning sea surface height
prediction model, with a prediction horizon of several days in
length at an hourly resolution. However, while HIDRA1 per-
formed favorably in comparison to the NEMO model used in
that study, it failed to beat the NEMO setup at very high and
very low ends of sea level distributions. In other words, ex-
treme sea levels (coastal floods on the one end and very low
sea levels on the other), which interest us the most, were not
yet captured with sufficient reliability and present an open
challenge for machine learning methods.

In this paper we propose HIDRA2, our latest attempt at
sea level forecasting using deep learning. In contrast to the
previous version, HIDRA2 presents a novel architecture with
new atmospheric, tidal and sea surface height (SSH) feature
encoders as well as a novel feature fusion and SSH regres-
sion block. An additional conceptual novelty is that HIDRA2
predicts the full SSH rather than the residual (i.e., the differ-
ence between SSH and astronomic tide), as is the case for
HIDRA1. The new model extracts relevant information from
different spatial locations in the atmosphere signal and pre-
dicts the SSH with a 3 d horizon at an unprecedented accu-
racy, outperforming HIDRA1 as well as two state-of-the-art
ocean models.

The paper is organized as follows. Section 2 introduces the
sea level and atmospheric model data and performance mea-
sures used in our analysis. Section 3 details the new HIDRA2
architecture and the numerical ocean model setup used as the
performance baseline. Section 4 reports the analysis of the
HIDRA2 architecture (including an extensive ablation study)
and provides detailed quantitative as well as qualitative com-
parisons with the state-of-the-art numerical ocean models.
Conclusions and outlook are given in Sect. 5.

2 Training and evaluation datasets

2.1 Sea level training data

SSH observations during the period 2006–2018 were
retrieved from Koper Mareographic Station (45◦33′ N,
13◦44′ E; see Fig. 2 for the location), which is maintained
by the Slovenian Environment Agency (ARSO) and is part
of the European Sea Level Network (Pérez Gómez et al.,
2022). Observations are obtained in 10 min intervals using
both a float-type sensor and an additional radar sea level sen-

sor, and they undergo subsequent quality control at ARSO
(Pérez Gómez et al., 2022). Hourly data points are extracted
to get the signal used in HIDRA2 training and evaluation.

The tidal signal in the sea level is independent of atmo-
spheric processes and can be computed by tidal analysis and
prediction models. The tidal contribution to Koper SSH con-
sidered in this study is estimated from hourly instantaneous
SSH values in 1-year segments using the UTIDE Tidal Anal-
ysis package for Python (Codiga, 2011). The total sea level
series is then decomposed into a tidal part and a residual part,
where we define the sea level residual as the arithmetic dif-
ference between the total sea level and the tidal sea level. Ac-
cording to the ARSO operational protocol, the SSH is classi-
fied as a flood if it is higher than 300 cm. Floods thus consti-
tute 0.41 % of all training data.

2.2 Atmospheric training data

Atmospheric input used for HIDRA2 training was retrieved
from the European Centre for Medium-Range Weather Fore-
casts (ECMWF) Ensemble Prediction System (Leutbecher
and Palmer, 2007). The ECMWF ensemble forecasts come
as a global atmospheric ensemble of 50 members with a
0.125 arc degree spatial resolution and a 3 h temporal reso-
lution. The training dataset used in this study consists of (i)
10 m winds and (ii) mean sea level air pressure from a single
fixed (42nd) atmospheric ensemble member during the pe-
riod 2006–2018. Number 42 was chosen randomly to the ex-
tent that it is a tribute to the ultimate answer from the Hitch-
hiker’s Guide to the Galaxy (Adams, 1979). Of course, over
multiyear time intervals, this member is completely statisti-
cally equivalent to random use of any other member of the
ECMWF ensemble prediction system. In other words, we
could use any other ensemble member – or choose a different
random member each run – without substantially affecting
the results. All ECMWF input fields were standardized and
cropped to the Adriatic basin, represented by a 57×73 spatial
grid (see Fig. 2). The forecasts were linearly interpolated to
hourly time steps to match the SSH temporal resolution. To
simplify the training protocol, a single atmospheric sequence
is constructed by concatenating the first 24 h of daily consec-
utive ECMWF forecasts into the final atmospheric sequence
used in training. HIDRA2 does not require explicit annota-
tion of whether a location point belongs to land or sea, and
thus land masks are not generated.

2.3 Evaluation data

The evaluation input dataset for both HIDRAs and NEMO
is disjoint from the training dataset (years 2006–2018) and
consists of ECMWF atmospheric predictions and Koper sea
levels between 1 June 2019 and 31 December 2020. This pe-
riod was chosen due to challenging conditions and an un-
usually high incidence of floods. We use the ECMWF daily
predictions, each containing 50 ensemble members with 3 d
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Figure 2. HIDRA2 input domain and dataset. The leftmost panel depicts the ECMWF grid (white dots) and Koper tide gauge location (red
circle). Three panels on the right depict snapshots of ECMWF atmospheric fields used during training.

prediction lead time. The data are standardized, and the di-
mensionality of the atmospheric data is reduced in the same
fashion as described in Sect. 2.2, except that for inference,
the full (i.e., containing all ensemble members) ECMWF 3 d
forecast is presented to the model. The floods represent 1.1 %
of the test dataset.

2.4 Performance measures

Standard measures, i.e., the mean absolute error (MAE), the
root mean square error (RMSE) and the model bias, are used
to evaluate prediction performance. To reflect the practical
suitability, we additionally calculate the prediction accuracy
as a ratio between the predictions which are within 10 cm of
the ground truth and all predictions. This 10 cm threshold re-
flects an acceptable deviation from the ground truth and was
determined through discussion with the operational forecast-
ing service at ARSO. The metrics are calculated globally by
considering all prediction points as well as separately only on
floods to reflect the prediction performance at these critical
rare events.

To further probe the flood event prediction capabilities, we
make use of the standard performance measures from the de-
tection literature: precision Pr, recall Re and the F1 measure
F1. Firstly, we need to define the flood event and then de-
fine the notion of the event being detected. Both of these
have been defined in discussion with operational forecasters
at ARSO. The anchor (i.e., temporal point) of a flood event
is defined as the time of the local maximum in an SSH se-
quence above 300 cm. If the predicted flood event anchor is
within a 3 h margin (before or after) from the nearest ground
truth flood event anchor, it is considered a true positive TP;
otherwise, it is a false positive FP. A flood event in the ground
truth is considered a false negative FN if there is no match-
ing flood event anchor in the predicted SSH. Like in the ac-
curacy definition, the tolerance of 10 cm is applied, meaning
that predictions below 300 cm are also considered to be TPs
when they appear within the margin of 10 cm and that false
positives with ground truth within 10 cm are ignored. The

precision and recall are then calculated as

Pr=
TP

TP+FP
, Re=

TP
TP+FN

, (1)

while the F1 measure that summarizes the detection perfor-
mance, i.e.,

F1= 2
Pr ·Re

Pr+Re
, (2)

is defined as the harmonic mean between precision and re-
call.

3 Numerical models

3.1 HIDRA2

The proposed HIDRA2 is the second generation of a deep
neural model for sea surface height prediction, with HIDRA1
(Žust et al., 2021) being the first. The new architecture
is shown in Fig. 3. The input data are encoded by three
encoders: the wind and pressure sequences for the past
72 h are processed and merged by the Atmospheric encoder
(Sect. 3.1.1), the tidal signal for the future 72 h is encoded by
the Tidal encoder, and the sea surface height measurements
coupled with the tide for the past 24 h are encoded by the
SSH encoder (Sect. 3.1.2). The outputs of all three encoders
are re-calibrated, fused with the past 72 h SSH, and regressed
into the final SSH hourly predictions for the future 72 h by
the fusion-regression block (Sect. 3.1.3). A single prediction
run of the HIDRA2 model creates a 72 h sea level time se-
ries for the Koper location. The subsections below detail the
individual blocks.

3.1.1 Atmospheric encoder

The atmospheric data for the Adriatic basin at a given time
step are represented by a 57× 73 spatial grid, i.e., an im-
age. HIDRA2 assumes that the coarse spatial resolution of
the atmospheric data contains enough information to provide
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Figure 3. The HIDRA2 architecture. The Atmospheric encoder embeds the wind and pressure sequences with learnable temporal subsam-
pling and pattern prototype matching to extract relevant features from different geographic locations and fuse them temporally into a single
feature embedding. The Tidal and SSH encoders encode the future tide evolution and the past SSH and tide observations, respectively. All
features are re-calibrated, fused with the past 72 h SSH, and regressed into the final SSH predictions by the fusion-regression block. Notation
a:b indicates hourly data points from the interval (a,b], while the prediction point is at index 0.

satisfactory results, so it first downsamples the atmospheric
data to a 9× 12 grid by an average pooling operation.

The Atmospheric encoder is composed of two stages. In
the first stage (shown in Fig. 4), the sequences of the wind
and pressure images are independently processed by their re-
spective encoding blocks, which use the same architecture.
The wind image sequence of 96 h (the past 24 and future
72 h) is divided into 24 groups of 4 consecutive hours, which
are processed independently. The spatial and temporal di-
mension of each group is reduced by a learnable 2D convolu-
tional layer with a 3× 3 kernel, stride 2 and 64 output chan-
nels1. A ReLU activation and dropout layers are applied, fol-
lowed by a convolutional layer with 512 4×5 kernels, which
are by size equal to the input, meaning that convolution is
essentially a dot product between each kernel and the input.
The operation yields a higher value if the kernel is similar
to the input, so we refer to it as a prototype matching layer.
It extracts features from different spatial positions, thus pro-
ducing a 512D feature vector per group, i.e., 24 temporal vec-
tors of size 512. The same processing architecture is applied
to the pressure image sequence to produce 24 vectors of size
512. The two outputs are then concatenated to form a mixed
set of 24 wind–pressure features of size 1024.

The second stage of the Atmospheric encoder (Fig. 5)
extracts the temporal atmospheric features by considering
the consecutive wind–pressure features extracted by the first
stage. A 1D convolutional layer with kernel temporal dimen-
sion size 5 and with 256 output channels2 is applied, entan-
gling the information from temporal segments equivalent to

1Note that the number of output channels is equal to the number
of different kernels used in the layer.

2Note that the sizes of the kernels in the 1D convolutional layer
are 1024× 5, but with the first dimension matching the size of the
input features, the convolution displacements are only along the sec-

Figure 4. The first stage of the Atmospheric encoder. The input
are 4 consecutive hours with two wind channels (this case) or pres-
sure. 3×3 convolution is applied, followed by a prototype matching
layer, outputting a single vector of size 512. Note that 24 indepen-
dent passes are performed in parallel for the entire atmospheric in-
put sequence. The variables k and n denote the kernel size and the
number of output channels, respectively.

20 h in length. Note that because we are using a convolu-
tional layer instead of the fully connected layer, the number
of learnable parameters of the entire Atmospheric encoder is
independent of the forecast horizon. Each of the obtained 20
features3 is then independently processed by a network con-
taining two blocks of residual connections, each involving
1D convolution with kernel temporal dimension size 1 (i.e.,
1×256 kernels), a SELU activation (Klambauer et al., 2017)
and a dropout layer. Finally, each of the obtained 20 256D
features are convolved by 32 1× 256 kernels to reduce their
dimensionality to 20× 32.

ond dimension, hence the 1D convolutional direction implied by the
layer’s name.

3The fact that the number of output segments is equal to the 20 h
timespan is coincidental.
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Figure 5. The second stage of the Atmospheric encoder. Features
from all time points and both wind and pressure are processed with a
1D convolution, followed by two blocks with residual connections.
The last convolution reduces feature dimensionality. The variables
k and n denote the kernel size and the number of output channels,
respectively.

Figure 6. The SSH encoder encodes a concatenation of the past
SSH and tide by a 1D convolution, followed by two blocks
with residual connections, max-pooling temporal reduction and
convolution-based feature reduction. The variables k and n denote
the kernel size and the number of output channels, respectively.

3.1.2 Tidal and SSH encoders

Both the tidal and SSH encoders use the same architecture,
the only difference being the size of the encoders’ input. Fig-
ure 6 depicts the SSH encoder, which takes as input the past
72 h of SSH measurements and the tide concatenated into a
72× 2 input tensor and processes them in a similar fashion
to the second stage of the Atmospheric encoder: the input is
processed by convolution with 256 3× 2 kernels, which is
followed by two consecutive residual blocks, a subsampling
max-pooling layer and a final convolutional layer to reduce
the dimensionality of the features to 17× 16. The Tidal en-
coder follows the same architecture, the only difference be-
ing that the input is the tide forecast for the next 72 h.

3.1.3 Fusion-regression block

The Atmospheric, Tide and SSH encoders produce temporal
features of different importance and size. To account for that,
the features are re-calibrated by normalization with means
and variances of the features calculated during training and
then denormalized with learned weights and biases. The form
of normalization follows the batch normalization layer (Ioffe

and Szegedy, 2015), which applies a 0.9 momentum for up-
dating the running means and variances during training. The
normalized features are then concatenated and mixed by a
fully connected layer, reducing their final dimension from
1184 to 512 (left part of Fig. 7). The obtained 512D do-
main context feature vector thus contains rich atmospheric
and SSH information from all time points and all parts of the
input domain.

While the encoding and mixing operations extract the do-
main context, the explicit surface height information might
not be well retained in the extracted feature vector. To re-
inject this information, the obtained domain context feature
vector is concatenated with the time series of past observed
SSH before passing to the final regression block. The latter
is composed of two fully connected layers with 584 units,
SELU activations and residual connections, followed by a
fully connected layer with 72 outputs for the 72 h prediction
horizon (see Fig. 7).

3.1.4 The network training

HIDRA2 is trained end to end using mean squared error
(MSE) loss between the predictions and the ground truth. We
train the model using the AdamW optimizer (Loshchilov and
Hutter, 2017) with standard parameter values (learning rate
1× 10−4 and running average damping parameters β1 = 0.9
and β2 = 0.999) and apply the cosine annealing (Loshchilov
and Hutter, 2016) learning schedule to gradually reduce the
learning rate during training to 1× 10−5. The training batch
size is set to 512 data samples, and the model is trained for
40 epochs. Training takes approximately 1.5 h on a single
computer with an NVIDIA Geforce RTX 2080 TI graphics
card, while the inference of a single 72 h prediction for one
member of the atmospheric ensemble takes only 4 ms.

3.1.5 Summary of differences to HIDRA1

While there are many differences between HIDRA2 and
HIDRA1, we summarize only the major conceptual ones for
a clearer exposition of the contributions. HIDRA1 uses wind,
pressure and 2 m temperature from ECMWF predictions,
while our preliminary study showed that the new HIDRA2
architecture does not benefit from the temperature, and thus
only wind and pressure are considered. HIDRA1 concate-
nates all atmospheric inputs at a time step and encodes them
by Resnet (He et al., 2016) blocks. While Resnet excels in
computer vision tasks that rely on high-level semantic fea-
ture abstraction, we argue that tailored shallower encoders
are more appropriate for the extraction of meaningful atmo-
spheric patterns. HIDRA2 thus separately encodes the wind
and pressure by shallow encoders, which apply spatial pat-
tern feature extraction, and then mixes the features from
the two atmospheric variables by extracting temporal pat-
terns. While this allows HIDRA2 to extract multiple spatial
patterns in the data, only a single set of spatial weights is
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Figure 7. The fusion-regression block firstly re-calibrates the features (the C symbol), and then concatenated features are passed to a dense
layer, which fuses features and reduces their dimensionality. Undistorted SSH is appended and processed with two residual blocks. The final
dense layer outputs the predictions. The variable n denotes the number of output channels.

used to fuse the atmospheric features at a given time step
in HIDRA1, consequently reducing its expressive power.
HIDRA1 first averages 4 h atmospheric input data to tem-
porally subsample the input, while HIDRA2 considers per-
hour inputs and learns the appropriate spatiotemporal sub-
sampling to maximize its predictive power. Another advan-
tage of HIDRA2 is that it encodes the SSH input and mixes it
with the atmospheric features early in the network to create
a domain context feature vector before the final regression,
while HIDRA1 considers only the atmospheric data for the
context vector. Finally, HIDRA1 predicts the SSH residual
(i.e., the difference between SSH and the astronomic tide),
while HIDRA2 directly predicts the full SSH.

3.2 Ocean models

In this section we briefly describe two different numerical
ocean modeling setups used for benchmarking HIDRA2. The
two setups differ in several important respects. One is based
on the NEMO ocean engine (Madec, 2016) and the other
on the SCHISM (Zhang et al., 2016) modeling environment.
The NEMO setup is described in more detail in Sect. 3.2.1,
and it is a forecasting setup. The SCHISM setup is described
in Sect. 3.2.2, and it is a reanalysis setup (Toomey et al.,
2022). For brevity we will refer to the two setups presented
below simply as NEMO or SCHISM.

3.2.1 NEMO ocean model

The Copernicus Marine Environment Mon-
itoring Service (CMEMS) product MED-
SEA_ANALYSISFORECAST_PHY_006_013 (see
Clementi et al., 2021) was used as one of two numeri-
cal baselines for HIDRA2. This product is based on a
Mediterranean basin configuration of the NEMO ocean
model (Madec, 2016) and provides daily ocean forecasts
for sea surface height above the geoid, temperature, salinity,
circulation and mixed layer depth. The model domain spans
the entire Mediterranean basin with a (1/24)◦ resolution and
has 141 unevenly spaced vertical levels. The model solutions
are operationally constrained to near-real-time observations

using a 3D variational assimilation scheme of temperature,
salinity and along-track satellite sea level anomaly obser-
vations. The atmospheric forcing to the CMEMS model is
provided by the ECMWF. Further details about the modeling
setup can be found in Clementi et al. (2021). In this study, an
SSH time series at the closest point to the Koper tide gauge
was extracted from the Mediterranean ocean model forecast.

3.2.2 SCHISM ocean model

A barotropic setup of the SCHISM storm surge and wind–
wave modeling environment (Toomey et al., 2022) was used
as a second numerical baseline for HIDRA2. In this study,
a single SSH time series from SCHISM reanalysis (Toomey
et al., 2022) at the closest point to the Koper tide gauge was
extracted and used for comparisons to the HIDRA models.
SCHISM runs on an unstructured mesh covering the entire
Mediterranean basin and extending into the Atlantic Ocean
in the west. Its lateral boundary is forced by an equilibrium-
inverted barometer ocean response to atmospheric pressure,
while its surface forcing consists of ERA5 surface fields. The
SCHISM unstructured grid allows for very high coastal res-
olutions, reaching some 200 m close to the coast.

3.2.3 Ocean model offset adjustment

Both NEMO and SCHISM sea levels, denoted here jointly as
ymodel, at any given location reflect departures from the local
geoid and hence do not represent the absolute local depth
of the water. The latter is furthermore also driven by low-
frequency processes on the scales of many weeks or months,
which are often difficult to capture for regional basin models
on synoptic timescales. Prior to benchmarking, model results
therefore have to be offset-adjusted to obtain total sea levels
(required by port authorities and civil rescue) as follows. A
time-averaged model (NEMO or SCHISM) SSH offset εn on
the nth hour of the forecast day is defined as

εn = n
−1

n∑
k=1

[
ymodel(tk)− y

kp(tk)
]
, (3)

where ykp(t) is the observed Koper sea level.
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Each day, the value of ε12 is subtracted from ymodel(t) to
ensure a zero bias for the first 12 h of the model day. Note
that, despite this adjustment, the complete 72 h modeled time
series may still exhibit a non-zero bias. Similar offset adjust-
ment is not required for the HIDRAs, since they predict the
full SSH and learn to appropriately adjust for the offset auto-
matically.

4 Results and discussion

4.1 HIDRA2 architecture analysis

As noted in Sect. 2, HIDRA2 was trained on the period
2006–2018 and evaluated on the period between 1 June 2019
and 31 December 2020. For evaluation, a single prediction is
obtained by averaging predictions over all 50 ECMWF en-
semble members. In the following we analyze the architec-
tural choices of HIDRA2. The prediction of full SSH is justi-
fied in Sect. 4.1.1, while Sect. 4.1.2 reports an ablation study
that aims to determine the role of specific encoders and types
of input data. The results of all experiments are collected in
Table 1.

4.1.1 Predicting the full SSH vs. the residual

A valid hypothesis can be made that predicting the residual
(i.e., the difference between the full SSH and the tide) might
be more beneficial than predicting the full SSH, since the net-
work parameters might be better utilized by focusing only on
the part of SSH not affected by the astronomic tide. In fact,
HIDRA1 (Žust et al., 2021) does exactly this – it accepts and
forecasts the residual. To explore this hypothesis, HIDRA2
was modified to predict only the residual (HIDRA2res) by re-
placing the SSH input in the SSH encoder with the residual
as well as in the fusion-regression block. Results in Table 1
indicate a similar overall performance when only the resid-
uals are considered in HIDRA2. However, considering only
stormy periods, we observe a substantial increase in the pre-
diction error (+17.4 % MAE). This means that full SSH pre-
diction is very beneficial for predicting floods while incurring
only a small drop in the overall performance.

A possible explanation for this somewhat surprising be-
havior could perhaps be related to nonlinear interactions
between tides and storm surges: both tides and storm
surges modify local water depth, which impacts their own
barotropic wave propagation speeds and topographic amplifi-
cations, which ultimately define the onset time and the ampli-
tude of any coastal flood in Koper. Such interactions are neg-
ligible during calm conditions, but they do play a role dur-
ing stormy periods (Ferrarin et al., 2022). Perhaps HIDRA2
is able to anticipate certain aspects of nonlinear tide–surge
couplings. This explanation is also consistent with the fact,
detailed in Sect. 4.1.2, that among all atmospherically driven
models the de-tided version HIDRA2res shows the worst per-

formance during storm tide events, while versions incorpo-
rating tides come closest to HIDRA2 (see Fig. 8).

4.1.2 Ablation study: the importance of encoders and
input data

An ablation study was executed to evaluate the importance of
individual encoders and input data types. To estimate encoder
importance, we removed each of the encoders in a separate
experiment (and withheld all of their input data; see Fig. 3)
and retrained the thus obtained ablated network. Ablation
training and evaluation were conducted on identical datasets
as with HIDRA2: years 2006–2018 represented the training
set, and the time window between 1 June 2019 and 31 De-
cember 2020 served as an independent validation set. Note
that, regardless of the encoder input, HIDRA2 always re-
ceives unencoded SSH data directly into its fusion-regression
block (bottom dataflow branch in Fig. 3).

The following encoder ablations were performed.

1. Removal of the Atmospheric encoder (HIDRA2\atmE).
Network HIDRA2\atmE obtained no atmospheric input
data, but it did receive SSH and tidal data.

2. Removal of the Tidal encoder (HIDRA2\tidE). Network
HIDRA2\tidE obtained no tidal input data for tidal en-
coding, but it did receive SSH and tidal data through the
SSH encoder and atmospheric data through the Atmo-
spheric encoder.

3. Removal of the SSH encoder (HIDRA2\sshE). Net-
work HIDRA2\sshE received atmospheric and tidal data
through the Atmospheric and Tidal encoders, but it did
not receive any SSH input via the SSH encoder.

The results in Table 1 show that MAE increases with each
modification, particularly during storm events. Removal of
the Atmospheric encoder results in the most significant per-
formance drop, indicating that the atmospheric features con-
vey by far the most relevant predictive information. A signif-
icant performance drop is observed as well when removing
the Tidal encoder. The SSH encoder has the smallest impact
on overall performance yet still importantly contributes to the
prediction accuracy during storms.

Two further ablations were then performed regarding the
data types of the sea level input data (the SSH and the tide;
see Fig. 3) which are considered in the SSH encoder. We
retained HIDRA2 with all three of its encoders but provided
the SSH encoder with limited sea level input.

1. Removal of the tidal input to the SSH encoder
(HIDRA2\tidI). In this case the SSH encoder received
as input only the total sea level.

2. Removal of the SSH input (HIDRA2\sshI). In this case
the SSH encoder received as input only the tidal sea
level.

Geosci. Model Dev., 16, 271–288, 2023 https://doi.org/10.5194/gmd-16-271-2023



M. Rus et al.: Deep-learning storm tide modeling 279

Table 1. Performance of ablated HIDRA2 designs evaluated over all sea level bins (the Overall column) and only on storm tide events
(Storm tide events column). The evaluation period spans 1 June 2019–31 December 2020, which is completely independent of the training
data. Row (a) shows the performance of HIDRA2 in predicting the residual, row (b) shows the performances of encoder ablations, and row
(c) corresponds to SSH input ablations and re-calibration. The final row (d) corresponds to the final version of HIDRA2. The best scores are
formatted in bold.

Overall Storm tide events

MAE RMSE Bias Acc MAE RMSE Bias Acc Re Pr F1
Modification (cm) (cm) (cm) (%) (cm) (cm) (cm) (%) (%) (%) (%)

(a) HIDRA2res 4.11 5.84 −0.69 92.77 11.47 15.52 −9.13 57.20 76.16 91.27 83.03

(b) HIDRA2\atmE 7.54 11.40 −0.53 75.75 27.86 34.28 −26.21 23.01 41.72 91.30 57.27
HIDRA2\tidE 4.60 6.37 −0.02 90.66 10.57 14.82 −7.74 61.94 78.81 92.25 85.00
HIDRA2\sshE 4.24 5.97 −0.37 92.45 10.80 15.01 −8.09 61.08 80.13 93.80 86.43

(c) HIDRA2\tidI 4.24 5.96 −0.47 92.28 10.65 14.74 −7.63 58.92 80.13 93.08 86.12
HIDRA2\sshI 4.23 5.93 −0.36 92.59 11.04 15.14 −7.99 58.49 82.78 91.24 86.81
HIDRA2\norm 4.14 5.85 −0.03 92.72 10.38 14.35 −7.48 60.43 81.46 92.48 86.62

(d) HIDRA2 4.12 5.82 0.21 92.89 9.77 14.07 −5.99 64.52 84.11 91.37 87.59

The results in Table 1 show that the removal of each leads
to a consistent but moderate increase in the errors overall.
However, the errors increase substantially during storms, in-
dicating the importance of using both types of inputs.

We observe a similar situation when removing the atmo-
spheric and SSH/tide feature re-calibration in the fusion-
regression block (HIDRA2\norm). Results in Table 1 indi-
cate that feature normalization does not affect performance
in normal conditions, but it substantially contributes to the
prediction accuracy of storm tides. A closer inspection of
HIDRA2\norm showed that the scale of the tidal features is
4 times larger than the scale of the atmospheric features. In-
clusion of the re-calibration blocks, however, remedies this
by making the scales of all features (atmospheric, SSH and
tidal) approximately the same.

Figure 8 depicts performances of ablated HIDRA2 ver-
sions across all sea level bins. Even though most global per-
formance metrics of HIDRA2 (depicted in Table 1) are the
best, Fig. 8 indicates that, for low sea levels, HIDRA2res
exhibits slightly lower errors. HIDRA2, however, performs
substantially better in the flooding regime above 300 cm.
This further substantiates our final choice of HIDRA2 archi-
tecture.

4.2 Comparison with the state-of-the-art numerical
ocean models

HIDRA2 is compared with HIDRA1 (Žust et al., 2021),
which is currently the state of the art in machine learning
SSH prediction (Sonnewald et al., 2021) and with state-of-
the-art numerical ocean modeling setups NEMO (Madec,
2016) and SCHISM (Toomey et al., 2022). The methods are
evaluated on an independent time window (1 June 2019–
30 December 2020) and with respect to different SSH val-
ues (see Sect. 4.2.1), Sect. 4.2.2 reports performance with

respect to the lead times, while spectral analysis is reported
in Sect. 4.2.3. The last two sections discuss performances on
historical storm surge events (Sect. 4.2.4) and the forecast
spectral decomposition of these events (Sect. 4.2.5).

4.2.1 SSH forecast performance

The overall prediction performance and the performance re-
stricted to storm events are shown in Table 2. HIDRA2 out-
performs HIDRA1, NEMO and SCHISM overall as well as
during storms, yielding a lower MAE/RMSE and higher ac-
curacy. While HIDRA1 achieves a lower bias, its RMSE
and MAE are substantially higher – HIDRA2 outperforms
HIDRA1 in MAE by 12.7 % overall and by 24.6 % during
the storm tide events. NEMO achieves the highest precision
of flood detection (Pr= 100 %), meaning that all detected
floods are true positives. However, while all NEMO’s pre-
dicted floods were true, not all floods were predicted, result-
ing in its low recall of Re= 63.58 %. A similar situation is
observed for HIDRA1. The recalls for these two methods
(NEMO: 63.58 % and HIDRA1: 74.17 %) are substantially
lower than that of HIDRA2 (Re= 84.11 %), which detects
many more floods with fewer false negatives. The excellent
trade-off between the precision and recall of HIDRA2 is re-
flected in its F1 score (87.59 %), which is substantially higher
than that of NEMO (77.73 %), HIDRA1 (82.96 %) or the
next best SCHISM (83.80 %).

For detailed analysis, we visualize the MAE values of the
tested methods with respect to the sea level heights in Fig. 9.
HIDRA2 consistently shows the lowest errors at all sea
level bins. During storm tides, NEMO outperforms HIDRA1,
while HIDRA2 and SCHISM outperform both HIDRA1 and
NEMO by several centimeters. Solid HIDRA2 performance
at the low end of the sea level distribution is particularly im-
portant to note because of its potentially high significance to
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Figure 8. Mean absolute error (MAE) of ablated HIDRA2 designs evaluated over all sea level bins. Vertical red line indicates the flooding
threshold in Piran. Performances of all the models were evaluated on a 1 June 2019–31 December 2020 dataset, which is completely
independent of the training data.

Table 2. Performance of HIDRA1, HIDRA2, NEMO and SCHISM over all sea level bins (the Overall column) and only during storm tide
events (Storm tide events column). Tidal forecast is included for reference. The evaluation period spans 1 June 2019–31 December 2020,
which is completely independent of the training data. The best scores are formatted in bold.

Overall Storm tide events

MAE RMSE Bias Acc MAE RMSE Bias Acc Re Pr F1
(cm) (cm) (cm) (%) (cm) (cm) (cm) (%) (%) (%) (%)

Tide 13.82 18.86 −5.13 47.45 55.75 59.45 −55.75 0.00 0.00 / /
NEMO 6.54 8.52 −1.23 79.14 13.03 17.09 −11.24 49.68 63.58 100.00 77.73
SCHISM 5.57 7.50 0.20 85.06 11.04 14.70 −6.19 57.63 78.81 89.47 83.80
HIDRA1 4.72 6.73 −0.26 90.04 12.95 17.65 −10.66 53.76 74.17 94.12 82.96
HIDRA2 4.12 5.82 0.21 92.89 9.77 14.07 −5.99 64.52 84.11 91.37 87.59

marine traffic scheduling in the very shallow seas surround-
ing the port of Koper, which is currently restricted to periods
of high tides. In summary, HIDRA2 outperforms all state-
of-the-art methods for all sea level heights, thus displaying a
solid prediction skill in moderate as well as extreme values
of the sea surface height.

4.2.2 Performance with regard to forecast lead time

We next analyzed how the prediction lead time affects the
prediction errors. Figure 10 shows the MAE scores with re-
spect to the prediction lead time for the values between 1
and 72 h. The MAE of the prediction gradually increases
with the lead time for all the tested methods. While overall a
solid performer with a MAE well below 10 cm, NEMO ex-
hibits the highest MAE and also the highest MAE variance.
Clear signals are observed with 12 and 24 h periods in the
NEMO MAE. Since NEMO includes tides, we suspect this
periodicity stems mostly from the errors in either amplitude
or phase of the tidal part of the NEMO sea level signal, but
further research would be necessary to properly substantiate
this claim. SCHISM shows better performance (lower MAE)

Figure 9. HIDRA, NEMO and SCHISM performances with regard
to sea level bins (grey histogram in the bottom layer). The coastal
flood threshold is marked with a vertical red line. Performance of
all the models was evaluated on a 1 June 2019–31 December 2020
dataset, which is completely independent of the training data.
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Figure 10. MAE score of the HIDRA, NEMO, and SCHISM mod-
els with regard to prediction lead time (between 1 and 72 h). Perfor-
mance of all the models was evaluated on a 1 June 2019–31 Decem-
ber 2020 dataset, which is completely independent of the training
data.

than NEMO but exhibits a similar periodicity in errors. Inter-
estingly, while HIDRA2 consistently outperforms HIDRA1
for all lead times, the shapes of the MAE curves show a re-
semblance. While the 12 h period does not seem to be present
in the MAE curves of these two models, their 24 h period is
clearly present. Further research would, however, be required
to substantiate and explain the observed MAE curve behav-
ior.

4.2.3 Spectral analysis

To investigate the spectral properties of the modeled and ob-
served SSH time series, we computed spectral densities of
the HIDRA2, HIDRA1, NEMO and SCHISM predictions.
Unless otherwise stated, all time series analyzed in this sec-
tion were obtained by concatenating (in time) the first 24 h of
each daily HIDRA2, HIDRA1 and NEMO 3 d forecast. Spec-
tral densities (shown in Fig. 11) were then computed as ab-
solute values of a 1D fast Fourier transform of the respective
series over a fixed frequency domain of (1 h)−1–(72 h)−1.

Figure 11 indicates that all methods adequately represent
the tidal dynamics in Koper. The energy content around the
two lowest basin eigenmodes is, however, more discrimina-
tory: NEMO (Fig. 11a) clearly underestimates the spectral
density both around the ground state seiche (at the 21.5 h
period) and around the first excited state (10.9 h period).
Similar behavior was noticed in our previous work with
an independent configuration of NEMO (Žust et al., 2021).
SCHISM, on the other hand, overestimates the energy in the
ground state seiche band but reproduces the first excited state
energy very well (Fig. 11b). HIDRA1 underestimates the en-
ergy of this part of the signal as well but nevertheless does
a bit better by packing more energy density into these two
bands. Predictions of HIDRA2 are clearly the closest to the

observations in the ground state seiche band but come a close
second to SCHISM around the 10.9 h period.

It appears that HIDRA2 is capable of generating seiche-
like behavior in its predictions. Spectral density, however,
discards the temporal component of the signal, and adequate
spectral density in the (21.5 h)−1 and (10.9 h)−1 frequency
bands says little about whether Adriatic seiches are gener-
ated by HIDRA2 at the appropriate times, namely, during
the storms. To inspect this aspect of HIDRA2 behavior, we
now proceed to analyze the predictions during several his-
toric storm tides.

4.2.4 Performance during historic storms

Historic Adriatic storm tide events are used to qualitatively
compare the HIDRA2 performance with the state of the art.
The storm tides in question occurred during November and
December 2019 and were of historic proportions by any cri-
terion. The Slovenian coast was flooded over 10 times in
a single month, and sea levels in Venice were among the
highest ever observed. Furthermore, the events in Novem-
ber 2019 turned out to be difficult to model due to the for-
mation of a transient and very localized low pressure over
the Gulf of Venice, which went unresolved in most mod-
els (Cavaleri et al., 2020). These events, along with those
from December 2019, therefore represent a highly challeng-
ing benchmark for any atmospheric model and even more for
any downstream SSH prediction method.

Figure 12 shows HIDRA2, HIDRA1, NEMO and
SCHISM SSH forecasts for the Adriatic storm tide of
November 2019. None of the models successfully predicted
the first and highest sea level peak on 12 November 2019,
but HIDRA2, NEMO and SCHISM all give a better forecast
than HIDRA1, whose mean sea level does not even surpass
the flooding threshold. As noted in Cavaleri et al. (2020),
this peak was difficult to forecast due to the delicate tim-
ing between the peak of the winds and the peak of the full
moon tide combined with the formation of an unresolved lo-
cal pressure disturbance over the western coast of the north-
ern Adriatic. The relative timing of these influences turned
out to be a sine qua non for a successful prediction – neither
the winds nor pressure were, in themselves, in any way ex-
traordinary. It is further shown in Cavaleri et al. (2020) that
this particular storm tide could have been up to 25 cm higher
had this scenario evolved 12 h earlier, when tidal peaks were
themselves higher.

The peak on 13 November is slightly better predicted by
maximum members of both HIDRAs than by NEMO or
SCHISM, with HIDRA2 exhibiting a somewhat lower fore-
cast spread than HIDRA1. Apart from this peak, all the mod-
els captured the sea level variability quite well, which is in
itself an implicit testament to the high skills of ECMWF at-
mospheric products.

The floods of December 2019 are another example of
HIDRA2’s superior performance over HIDRA1 and both
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Figure 11. Spectral density of SSH time series from the Koper tide gauge, HIDRA2, and HIDRA1 compared with NEMO (a) and SCHISM
(b) during independent cross-validation time windows between 1 June 2019 and 31 December 2020. Sharp peaks at (roughly) 12 and 24 h
indicate the presence of tides, while the two dashed vertical red lines mark the periods of the two lowest Adriatic sea level eigenmodes. For
clarity, all plotted spectral densities were filtered using a third-order Savitzky–Golay 24-point window filter.

Figure 12. Comparison of the HIDRA2 ensemble (a), HIDRA1 ensemble (b), NEMO forecast run (c) and SCHISM reanalysis run (d) during
the November 2019 flooding sequence in the northern Adriatic. Semi-transparent regions in (a) and (b) depict the minimum–maximum
envelope of each HIDRA ensemble.

ocean models in Koper. SSH observations and predictions in
Koper during this period are depicted in Fig. 13. Several con-
clusions about HIDRA2’s behavior may be reached with re-
gard to this particular flood. The HIDRA2 ensemble appears
to be closest to the observations and exhibits a substantially
lower forecasting spread than the HIDRA1 ensemble. Low
forecasting spread is acceptable when in conjunction with a
well-behaved ensemble mean. In this case, the HIDRA2 en-
semble mean is in excellent agreement with the observations.

The same could be said for HIDRA1, albeit to a lesser de-
gree. NEMO, however, completely misses the first two peaks
between 15 and 17 December, slightly underestimates (like
HIDRA1) the highest peak on 23 December, and overall un-
derestimates the minimum–maximum range of the sea level
variations, corresponding to poorly predicted ebb levels after
23 December. SCHISM predicts the first two peaks but un-
derestimates the peaks after 23 December. The vertical sea
level range is much better captured by both HIDRAs, espe-
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Figure 13. Same as Fig. 12 but for December 2019.

Figure 14. Comparison of the HIDRA2 ensemble spread on forecast days 1 (a), 2 (b) and 3 (c) during December 2020 in Koper. Semi-
transparent regions in the plots depict the minimum–maximum range of the HIDRA2 ensemble.

cially by HIDRA2. This result is consistent with our demon-
stration that HIDRA2 exhibits the lowest error in both the
high and low tails of sea level distributions (Fig. 11).

To inspect the behavior of the ensemble forecast spread,
three time series were created from daily (72 h long)
forecasts during the evaluation time window between
1 June 2019 and 31 December 2020. The first time series

was constructed by concatenating each first day (i.e., 1–24 h
of forecast) from each of the daily forecasts, thus containing
predictions with lead times of 1–24 h on each respective day
in the evaluation time window. The second and third time se-
ries were constructed by concatenating 25–48 h (49–72 h) of
forecast on each respective day in the evaluation time win-
dow. All three time series for the December 2020 floods are
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Figure 15. Comparison of total Koper SSH observations and forecasts (a) and their band-pass-filtered signals (b–e) over four bands, centered
around four geophysically relevant periods (semi-diurnal and diurnal tides and the two lowest along-axis basin eigenmodes). The time
window of the SSH signal spans from 7 November 2019 to 19 November 2019. Note the different vertical scale in (e).

shown in Fig. 14. As expected, from the growing ensemble
spread in the atmospheric forcing, HIDRA2 spread is grow-
ing with forecast lead time as well. As we draw closer to a
particular flooding event, the forecast spread drops, indicat-
ing an increased prediction certainty.

4.2.5 Spectral decomposition of forecasts during
storms

To investigate the performance in geophysically relevant en-
ergy bands, we band-pass-filtered the observed and predicted
SSH signals in energy bands, centered around four important

periods: semi-diurnal tide (12 h period), diurnal tide (24 h pe-
riod), fundamental basin along-axis eigenmode (21.5 h pe-
riod) and first excited along-axis eigenmode (10.9 h period).

Although incomplete, this SSH decomposition allows
qualitative estimation of the excitation intensity of the basin
eigenmodes during a particular storm and also helps to quali-
tatively assign forecasting errors to specific frequency bands.
However, since the amplitudes of the filtered signals in
Fig. 15 directly depend on the filter bandwidths, they should
not be interpreted as direct contributions to the sea level due
to respective geophysical phenomena (i.e., two tidal signals,
two eigenmodes). They should rather be read strictly as an
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Figure 16. Same as Fig. 15 but for the December 2019 coastal floods.

additional insight into the model performance within a spe-
cific band with reference to filtered observations in the same
band.

We applied a fifth-order Butterworth band-pass filter with
a sampling rate of (1 h)−1. Low and high cutoff frequencies,
which define the semi-diurnal filtering band 1ω12, were set
to 1ω12 = [(12.5h)−1, (11.5h)−1

]. Similarly, diurnal cutoff
frequencies were set to 1ω24 = [(24.5h)−1, (23.5h)]−1. A
fundamental seiche filtering band was estimated from Fig. 11
to be 1ω21.5 = [(20h)−1, (24h)−1

], which is also consis-
tent with the seiche window used in Vilibić (2006). Finally,
the first excited eigenmode band is defined as 1ω10.9 =

[(11.4h)−1, (10.5h)−1
]. An example of this decomposition

for November 2019 is shown in Fig. 15. For brevity, we only

show results for the NEMO model in the main body of the
paper.

Identical analysis and related figures for the SCHISM
model are available in the Supplement to this paper. They il-
lustrate that SCHISM exhibits very solid performance in the
seiche energy bands.

All the models exhibit an underestimation of the amplitude
but are otherwise in phase with the observations in the 1ω12
band. In 1ω24, NEMO seems to be performing very well,
with HIDRA2 slightly underestimating the range of the sig-
nal in this band. In the band 1ω21.5 NEMO is again closest
to filtered observations, while both HIDRA models overpre-
dict the vertical range of the observed signal. Band 1ω10.9
is underpredicted in all the models but seems best (or rather
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least poorly) resolved by HIDRAs, with NEMO additionally
exhibiting a substantial phase shift in the signal.

In any case, since both tidal bands and the ground state se-
iche are reliably predicted by all the models, the reason for
the forecasting errors must lie in the higher-frequency bands
with periods below 10.9 h. This seems consistent with the oc-
currence of highly transient and localized low pressure over
Venice mentioned in Cavaleri et al. (2020) and will be the
subject of further research.

Similar remarks can be made regarding the Decem-
ber 2019 coastal flooding depicted in Fig. 16. This event
marked a suboptimal performance of NEMO, which is sys-
tematically underestimating SSH peaks and the overall ver-
tical range of the SSH variability during this time window
(Fig. 16a). This caused NEMO to miss four floods out of
eight. HIDRA models perform better, with HIDRA2 most
reliably predicting all the flood peaks, most notably those on
15, 16 and 23 December 2019.

Figure 16b and c demonstrate that all the models are reli-
able in the diurnal tidal band1ω24 but that HIDRA2 overes-
timates the signal in 1ω12. Since the overall performance of
HIDRA2 is the best of all three models, it is unclear whether
overshoots in 1ω12 could be interpreted as compensations
for the underestimations in the nearby 1ω10.9 band. Fig-
ure 16d and e, however, indicate that some of the modeling
errors stem from their underestimation of the basin seiches.

In the 1ω21.5 band, the HIDRA2 predictions most closely
resemble the observations, followed by HIDRA1 and then
NEMO (which is most severely underestimating this part
of the signal). HIDRA2 is also the most reliable method in
1ω10.9 – but it nevertheless systematically underestimates
the observations. HIDRA1 and NEMO performances are
significantly worse, reaching one-half of the amplitude of
HIDRA2 and one-third that of the observations. Poor perfor-
mances of HIDRA1 and NEMO in the 1ω21.5 and 1ω10.9
bands are simply another reflection of the fact depicted in
Fig. 11, namely, that both of these models struggle to gener-
ate an appropriate amount of energy in the bands around free
oscillation eigenmodes.

5 Conclusions

This study presents a deep-learning-based sea level model,
HIDRA2, suitable for operational sea level ensemble model-
ing due to its speed and accuracy. This work is a conceptual
continuation of our previous attempt at sea level forecast-
ing (Žust et al., 2021) and represents a substantial advance-
ment over the first version (HIDRA1), setting a new state of
the art in machine learning SSH forecasting. The new archi-
tecture is validated by extensive ablation studies. The per-
formance is benchmarked against the current state-of-the-art
Mediterranean forecasting setup of the NEMO ocean model
(available as part of the Copernicus Marine Service) and
against a multi-decadal reanalysis run of the SCHISM model

(Toomey et al., 2022) on an unstructured grid with very
high coastal resolution. We demonstrate that HIDRA2 out-
performs HIDRA1 as well as numerical ocean models across
all sea level bins. We further show that HIDRA2 very accu-
rately represents the energy contents in the bands around the
relevant geophysical periods (diurnal and semi-diurnal tides
and the lowest two free oscillation basin eigenmodes).

Performance is analyzed during several historic storms.
Spectral decomposition of the total sea level signal into bands
centered around tides and basin seiches is carried out to as-
sign modeling errors to specific energy bands of the predicted
sea levels. HIDRA2 consistently exhibits high skill in excit-
ing the ground state Adriatic basin seiche at the appropriate
time and with the appropriate phase and amplitude.

HIDRA2 is a good example of how the entanglement of
deep learning and geophysics may lead to reliable and nu-
merically cheap models that are able to mimic complex phys-
ical phenomena on the level of the best numerical physical
models. Nevertheless, several extensions could be addition-
ally explored. One possible extension is data ingestion from
several tide gauges along the Adriatic coast and verification
of whether the prediction accuracy at individual locations im-
proves in such a multi-point prediction setup. Another exten-
sion is the inclusion of real-time in situ measurements such
as synoptic observations and satellite scatterometer and wind
measurements. It would be interesting to migrate HIDRA2 to
other Mediterranean locations or other semi-enclosed basins
like the Baltic Sea, the Red Sea or the Chesapeake Bay to in-
vestigate its generalization properties. These will be the ob-
jects of our future research.

Code and data availability. Implementation of HIDRA2 and the
code to train and evaluate the model are available in the GitHub
repository: https://github.com/rusmarko/HIDRA2 (last access: 9
November 2022). We also include HIDRA2 weights pretrained on
2006–2018 and predictions for all 50 ensembles in June 2019–
December 2020. The persistent version of our GitHub reposi-
tory containing code is available at https://doi.org/10.5281/zenodo.
7307365 (Rus et al., 2022a). We publish our training and evalua-
tion datasets at https://doi.org/10.5281/zenodo.7304086 (Rus et al.,
2022c). Sea level datasets employed in this paper are available at
https://doi.org/10.5281/zenodo.7277108 (Rus et al., 2022b).

Supplement. The supplement related to this article is available on-
line at: https://doi.org/10.5194/gmd-16-271-2023-supplement.
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vadori, G.: Venice as a paradigm of coastal flooding un-
der multiple compound drivers, Scientific Reports, 12, 5754,
https://doi.org/10.1038/s41598-022-09652-5, 2022.

Gregory, J., S.M., G., Hughes, C., Lowe, J. A., Church, J. A., Fuki-
mori, I., Gomez, N., Kopp, R. E., Landerer, F., Le Cozannet, G.,
Ponte, R. M., Stammer, D., Tamisiea, M. E., and van de Wal,
R. S. W.: Concepts and Terminology for Sea Level: Mean, Vari-

https://doi.org/10.5194/gmd-16-271-2023 Geosci. Model Dev., 16, 271–288, 2023

https://www.ipcc.ch/report/ar6/wg1/downloads/report/IPCC_AR6_WGI_TS.pdf
https://www.ipcc.ch/report/ar6/wg1/downloads/report/IPCC_AR6_WGI_TS.pdf
https://doi.org/10.1002/qj.3544
https://doi.org/10.1016/j.ocemod.2014.12.002
https://doi.org/10.48550/arXiv.1710.07099
https://doi.org/10.5670/oceanog.2020.105
https://doi.org/10.1016/s0967-0637(97)00056-3
https://doi.org/10.1016/s0967-0637(97)00056-3
https://doi.org/10.25423/cmcc/medsea_analysis_forecast_phy_006_013_eas4
https://doi.org/10.25423/cmcc/medsea_analysis_forecast_phy_006_013_eas4
https://github.com/wesleybowman/UTide
https://doi.org/10.5194/nhess-20-73-2020
https://doi.org/10.1038/s41598-022-09652-5


288 M. Rus et al.: Deep-learning storm tide modeling

ability and Change, Both Local and Global, Surv. Geophys., 40,
1251–1289, https://doi.org/10.1007/s10712-019-09525-z, 2019.

He, K., Zhang, X., Ren, S., and Sun, J.: Deep Residual Learning
for Image Recognition, in: 2016 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), Las Vegas, Nevada, 27–
30 June 2016, 770–778, https://doi.org/10.1109/CVPR.2016.90,
2016.

Hieronymus, M., Hieronymus, J., and Hieronymus, F.: On the appli-
cation of machine learning techniques to regression problems in
sea level studies, J. Atmos. Ocean. Tech., 36, 1889–1902, 2019.

Hochreiter, S. and Schmidhuber, J.: Long short-term memory, Neu-
ral Comput., 9, 1735–1780, 1997.

Imani, M., Kao, H.-C., Lan, W.-H., and Kuo, C.-Y.: Daily sea level
prediction at Chiayi coast, Taiwan using extreme learning ma-
chine and relevance vector machine, Global Planet. Change, 161,
211–221, 2018.

Ioffe, S. and Szegedy, C.: Batch Normalization: Accelerating Deep
Network Training by Reducing Internal Covariate Shift, in:
Proceedings of the 32nd International Conference on Machine
Learning, Lille, France, 7–9 July 2015, edited by: Bach, F. and
Blei, D., PMLR, 37, 448–456, http://proceedings.mlr.press/v37/
ioffe15.pdf (last access: 14 November 2022), 2015.

Ishida, K., Tsujimoto, G., Ercan, A., Tu, T., Kiyama, M.,
and Amagasaki, M.: Hourly-scale coastal sea level mod-
eling in a changing climate using long short-term mem-
ory neural network, Sci. Total Environ., 720, 137613,
https://doi.org/10.1016/j.scitotenv.2020.137613, 2020.

Karimi, S., Kisi, O., Shiri, J., and Makarynskyy, O.: Neuro-fuzzy
and neural network techniques for forecasting sea level in Dar-
win Harbor, Australia, Comput. Geosci., 52, 50–59, 2013.

Klambauer, G., Unterthiner, T., Mayr, A., and Hochreiter, S.: Self-
normalizing neural networks, Adv. Neur. In., 30, 971–980, 2017.

Leutbecher, M. and Palmer, T.: Ensemble forecasting, Tech. Rep.,
ECMWF, https://doi.org/10.21957/c0hq4yg78, 2007.

Loshchilov, I. and Hutter, F.: Sgdr: Stochastic gra-
dient descent with warm restarts, arXiv [preprint],
https://doi.org/10.48550/arXiv.1608.03983, 13 August 2016.

Loshchilov, I. and Hutter, F.: Decoupled
weight decay regularization, arXiv [preprint],
https://doi.org/10.48550/arXiv.1711.05101, 14 November 2017.

Madec, G.: NEMO ocean engine, Note du Pôle de modélisa-
tion, Institut Pierre-Simon Laplace (IPSL), France, No. 27,
ISSN No 1288-1619, https://www.nemo-ocean.eu/wp-content/
uploads/NEMO_book.pdf (last access: 14 November 2022),
2016.
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Testut, L., Fraboul, C., Marcos, M., Abdellaoui, H., Álvarez Fan-
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1.0: deep-learning-based ensemble sea level forecasting in
the northern Adriatic, Geosci. Model Dev., 14, 2057–2074,
https://doi.org/10.5194/gmd-14-2057-2021, 2021.

Geosci. Model Dev., 16, 271–288, 2023 https://doi.org/10.5194/gmd-16-271-2023

https://doi.org/10.1007/s10712-019-09525-z
https://doi.org/10.1109/CVPR.2016.90
http://proceedings.mlr.press/v37/ioffe15.pdf
http://proceedings.mlr.press/v37/ioffe15.pdf
https://doi.org/10.1016/j.scitotenv.2020.137613
https://doi.org/10.21957/c0hq4yg78
https://doi.org/10.48550/arXiv.1608.03983
https://doi.org/10.48550/arXiv.1711.05101
https://www.nemo-ocean.eu/wp-content/uploads/NEMO_book.pdf
https://www.nemo-ocean.eu/wp-content/uploads/NEMO_book.pdf
https://doi.org/10.1029/2020JC016168
https://doi.org/10.1175/WAF-D-13-00117.1
https://doi.org/10.5194/os-18-997-2022
https://doi.org/10.5281/zenodo.7307365
https://doi.org/10.5281/zenodo.7277108
https://doi.org/10.5281/zenodo.7304086
https://doi.org/10.1109/MCI.2009.932254
https://doi.org/10.1088/1748-9326/ac0eb0
https://doi.org/10.1088/1748-9326/ac0eb0
https://doi.org/10.1038/s41598-020-62188-4
https://doi.org/10.3389/fmars.2022.991504
https://doi.org/10.1016/j.csr.2005.11.001
https://doi.org/10.1016/j.ocemod.2016.05.002
https://doi.org/10.5194/gmd-14-2057-2021

	Abstract
	Introduction
	Training and evaluation datasets
	Sea level training data
	Atmospheric training data
	Evaluation data
	Performance measures

	Numerical models
	HIDRA2
	Atmospheric encoder
	Tidal and SSH encoders
	Fusion-regression block
	The network training
	Summary of differences to HIDRA1

	Ocean models
	NEMO ocean model
	SCHISM ocean model
	Ocean model offset adjustment


	Results and discussion
	HIDRA2 architecture analysis
	Predicting the full SSH vs. the residual
	Ablation study: the importance of encoders and input data

	Comparison with the state-of-the-art numerical ocean models
	SSH forecast performance
	Performance with regard to forecast lead time
	Spectral analysis
	Performance during historic storms
	Spectral decomposition of forecasts during storms


	Conclusions
	Code and data availability
	Supplement
	Author contributions
	Competing interests
	Disclaimer
	Acknowledgements
	Financial support
	Review statement
	References

