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Abstract. Over the last century, our societies have experi-
enced a sharp increase in urban population and fossil-fuelled
transportation, turning air pollution into a critical issue. It
is therefore key to accurately characterize the spatiotempo-
ral variability of surface air pollution in order to understand
its effects upon the environment, knowledge that can then be
used to design effective pollution reduction policies. Global
atmospheric composition reanalyses offer great capabilities
towards this characterization through assimilation of satellite
measurements. However, they generally do not integrate sur-
face measurements and thus remain affected by significant
biases at ground level. In this study, we thoroughly evaluate
two global atmospheric composition reanalyses, the Coper-
nicus Atmosphere Monitoring Service (CAMSRA) and the
Modern-Era Retrospective Analysis for Research and Ap-
plications v2 (MERRA-2), between 2003 and 2020, against
independent surface measurements of O3, NO;, CO, SO,
and particulate matter (PM; both PM¢ and PM> 5) over the
European continent. Overall, both reanalyses present signif-
icant and persistent biases for almost all examined pollu-
tants. CAMSRA clearly outperforms MERRA-2 in capturing
the spatiotemporal variability of most pollutants, as shown
by generally lower biases (all pollutants except for PM s),
lower errors (all pollutants) and higher correlations (all pol-
lutants except SO2). CAMSRA also outperforms MERRA-
2 in capturing the annual trends found in all pollutants (ex-
cept for SO3). Overall, CAMSRA tends to perform best for
O3 and CO, followed by NO, and PMjy, while poorer re-
sults are typically found for SO, and PM, 5. Higher cor-

relations are generally found in autumn and/or winter for
reactive gases. Compared to MERRA-2, CAMSRA assim-
ilates a wider range of satellite products which, while en-
hancing the performance of the reanalysis in the troposphere
(as shown by other studies), has a limited impact on the sur-
face. The biases found in both reanalyses are likely explained
by a combination of factors, including errors in emission in-
ventories and/or sinks, a lack of surface data assimilation,
and their relatively coarse resolution. Our results highlight
the current limitations of reanalyses to represent surface pol-
lution, which limits their applicability for health and envi-
ronmental impact studies. When applied to reanalysis data,
bias-correction methodologies based on surface observations
should help to constrain the spatiotemporal variability of sur-
face pollution and its associated impacts.

1 Introduction

In the last 2 decades, reanalyses have become a very pow-
erful tool in modern Earth sciences, as they combine both
model- and observation-based information to provide phys-
ically consistent data of land, ocean and atmospheric vari-
ables with continuous spatial and temporal coverage. In
the field of atmospheric composition, different reanalysis
products are available at global scale, including the Coper-
nicus Atmosphere Monitoring Service reanalysis (CAM-
SRA; Inness et al., 2019), produced by the European Cen-
tre for Medium-Range Weather Forecasts (ECMWF), and the
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Modern-Era Retrospective Analysis for Research and Appli-
cations v2 (MERRA-2; Gelaro et al., 2017; Randles et al.,
2017; Buchard et al., 2017a), produced by the National Aero-
nautics and Space Administration’s (NASA) Global Mod-
eling and Assimilation Office (GMAO). Both products as-
similate a variety of space-based remote sensing observa-
tions (mostly total and tropospheric columns) obtained from
a growing fleet of satellites measuring reactive gases such
as ozone (03), nitrogen dioxide (NO») or carbon monoxide
(CO), as well as aerosol optical depth (AOD). Such an ex-
tensive data assimilation of satellite observations is crucial
for reducing the biases related to erroneous emission forc-
ings and/or overly coarse representations of the physical and
chemical processes that occur in the atmosphere. Data assim-
ilation helps to better constrain the spatiotemporal variability
and long-term trends of the most important chemical com-
pounds, providing a physically consistent view of the Earth’s
atmospheric composition.

Considering the strong interest of atmospheric composi-
tion reanalyses in a variety of applications (e.g. climatologi-
cal studies, initial and/or boundary conditions for regional-
scale modelling systems, air pollution impact assessment,
and health studies), it is crucial to characterize the strengths
and limitations of these global products, in particular at the
surface, as no in situ chemical observations are assimilated.
The most recent studies evaluating the CAMSRA and/or
MERRA-2 reanalysis at ground level are indicated in Ta-
ble 1, highlighting the limited effort that has been made so
far to evaluate and inter-compare these reanalysis products
against in situ surface measurements.

The main findings of this more recent literature are briefly
outlined here. Ryu and Min (2021) found significant and per-
sistent biases in all the pollutants examined over South Ko-
rea, with CAMSRA outperforming MERRA-2 in all cases
except for SO;. At global scale, Wagner et al. (2021) showed
that CAMSRA provides an overall accurate representation of
reactive gases over time and highlighted the key role played
by satellite data assimilation in improving atmospheric com-
position reanalysis products. Both these two previous stud-
ies analyse a wide range of aerosols and reactive gases and
cover the most extensive period possible at the time, 2003—
2018, which is limited by the start of CAMSRA in 2003.
Ma et al. (2021) found persistent negative biases in par-
ticulate matter (PMjg) concentration over mainland China
in MERRA-2 for the periods 2011-2013 and 2016-2017,
with better performance during summer. Their results also
showed a significant improvement when including nitrate
compounds. Navinya et al. (2020) found a systematic un-
derestimation of PMj 5 concentration in MERRA-2 over In-
dia for the period 2015-2018. Huijnen et al. (2020) found
limited surface O3 biases when evaluating CAMSRA over
Europe (—1.8 ppbv). Ukhov et al. (2020) evaluated surface
SO, for 2015-2016 over three cities in the Middle East and
found a large underestimation for MERRA-2, while CAM-
SRA showed both moderate negative and positive biases.
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Lastly, Ali et al. (2022) evaluated PM over the period 2014—
2020 in China and found significant over- and underestima-
tions both for CAMSRA and MERRA-2.

Our study evaluates CAMSRA and MERRA-2 against
independent surface in situ measurements over the period
2003-2020, focusing on the European continent, a region
still poorly covered by past evaluation studies (Table 1).
It considers all major pollutants with recognized harmful
effects on human health and sufficient observational data
available at the surface, namely O3, NO,, CO, SO,, PMg
and PM; 5. The motivation behind this study arose in the
context of the European Research Council (ERC) project
EARLY-ADAPT (https://early-adapt.eu/, last access: 15 De-
cember 2022), in which framework a pioneer health database
is currently being collected over Europe to investigate the
time-varying health effects of climate and air pollution, and
thus shed light onto the early adaptation response to climate
change in the field of human health. This impact will be
quantified by fitting epidemiological models on historical lo-
cal health, climate and air pollution data, which thus requires
a long-term (multi-decadal) air quality database of the most
harmful pollutants at daily scale and over the entire Euro-
pean domain. Despite their relatively coarse spatial resolu-
tion, which is the counterpart to a sufficiently long-term cov-
erage, global-scale atmospheric composition reanalyses pro-
vide highly valuable information, though remain subject to
biases and errors both in terms of spatial, seasonal and intra-
annual variability and regarding long-term trends. It is worth
mentioning here that the CAMS regional reanalysis (Marécal
et al., 2015), focused on Europe, assimilates surface in situ
observations and provides air pollution fields at a finer spa-
tial resolution than CAMSRA but only over a limited period
of time (2014-2018), for which reason we focus here on the
global reanalysis.

In Sect. 2, we introduce the data (Sect. 2.1) and provide
details on the different methods employed for their analysis
(Sect. 2.2). Results are presented and discussed in Sect. 3 and
summarized in Sect. 4.

2 Data and methodology

In this section we briefly describe our observational and re-
analysis datasets, while providing details on the different sta-
tistical methods employed for their analysis. Throughout this
work, square brackets, [], are used to indicate the concentra-
tion or mixing ratio of a chemical compound (e.g. [O3] = O3
mixing ratio, [PMj9] =PMjg concentration) measured in
parts per billion (ppbv) for reactive gases and inpgm™> for
aerosols. Nonetheless, the term concentration is used for the
sake of simplicity when reactive gases are mentioned to-
gether with aerosols.
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Table 1. Review of recent studies evaluating the CAMSRA and/or MERRA-2 reanalysis at the surface using in situ observations.

Author Region Period Reanalysis Pollutants

Ryu and Min (2021) South Korea 2003-2018 CAMSRA, MERRA-2, TCR-2 CO, NO;,, SO,, O3, PM1
Wagner et al. (2021) Global 2003-2018 CAMSRA NO,, 03, CO, HCHO
Ma et al. (2021) China 2011-2013, 2016-2017 MERRA-2 PMj

Navinya et al. (2020) India 2015-2018 MERRA-2 PM; 5

Provencal et al. (2017a)  Europe 2003-2014 MERRA-1 PM» 5, PMy
Provencgal et al. (2017b)  Israel, Taiwan  2002-2015 MERRA-1 PM; 5

Buchard et al. (2016) USA 2003-2012 MERRA-1 PM; 5

Huijnen et al. (2020) Global 2003-2015 CAMSRA, TCR O3

Ukhov et al. (2020) Middle East 2015-2016 CAMSRA, MERRA-2 SO,

Ali et al. (2022) China 2014-2020 CAMSRA, MERRA-2 PMg, PMy 5

2.1 Data

Our model data come from two global atmospheric com-
position reanalyses, CAMSRA and MERRA-2, whose main
characteristics are summarized in Table 2. The reanalyses
are evaluated against surface in situ measurements obtained
from two European Environment Agency (EEA) databases,
AirBase, for the period 2003-2012 (EEA, 2014), and AQ e-
Reporting (EEA, 2018), for the period 2012-2020. No signif-
icant inconsistencies are expected between AirBase and AQ
e-Reporting given that stations included in both databases are
obtained from the same network. Though stations may be re-
named, relocated or even removed with time, this is not ex-
pected to significantly affect our data given the large number
of stations considered and the continuous addition of new sta-
tions into the network throughout the whole period of 2003—
2020.

2.1.1 CAMSRA

Produced by ECMWEF, the CAMS global atmospheric
composition reanalysis consists of three-dimensional time-
consistent atmospheric composition fields that include chem-
ical species, aerosols and greenhouse gases (GHGs) and cur-
rently covers a temporal period extending from 2003 to mid-
2021. The reanalysis started in 2003, when space-based ob-
servational measurements, retrieved from a myriad of instru-
ments on board Envisat, Terra, Aura, MetOp and POES satel-
lites, became available. The latest CAMSRA version was
produced in cycle 42R1 of ECMWEF’s Integrated Forecasting
System (IFS) using 4DVar data assimilation of satellite mea-
surements, including O3, NO,, CO and AOD. This IFS cycle
includes the modified Carbon Bond 2005 Chemical Mech-
anism (CBO05), which serves as the tropospheric chemistry
scheme of the reanalysis (Flemming et al., 2015). Anthro-
pogenic emissions come from the MACCity inventory data
(Granier et al., 2011) for the period 2003-2010, and from
2010 onwards they are derived according to the representa-
tive concentration pathway of 8.5 Wm~2 (RCPS8.5). Biomass
burning emissions are obtained from the Global Fire Assim-
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ilation System (GFAS) v1.2 (Kaiser et al., 2012), whereas
monthly mean biogenic volatile organic compound (VOC)
emissions are computed with the Model of Emissions of
Gases and Aerosols from Nature (MEGAN) using MERRA-
2 reanalysed meteorology (Sindelarova et al., 2014). Meteo-
rological observations are assimilated as in ERAS (Hersbach
et al., 2020).

CAMSRA has a horizontal resolution of approximately
80 km (similar to a regular 0.75° x 0.75° latitude—longitude
grid), with atmospheric composition fields being available
only in grid-point space. Its vertical resolution consists of
60 hybrid sigma/pressure model levels, with the top of the
first level at 10 m above ground and the top level located
at 0.1 hPa. CAMSRA products are available at a temporal
resolution of 3 h, including 3-hourly analysis fields and 3-
hourly forecast fields. The biases present in the different at-
mospheric composition satellite-retrieved datasets employed
to build CAMSRA are corrected through a variational bias-
correction scheme (Dee and Uppala, 2008). For a more thor-
ough and detailed description of CAMSRA we direct the
reader to Inness et al. (2019) and Wagner et al. (2021).

In CAMSRA, both PMjg and PM, 5 are directly avail-
able and do not require to be reconstructed from its separate
aerosol compounds, which include black carbon (BC), or-
ganic carbon (OC), organic matter (OM), sulfate (SO4), sea
salt and dust. Both PM fields were downloaded directly with-
out any reconstruction or modification, though they are orig-
inally reconstructed from the following formulas:

[SS2]

PMjp] = 551 DD1 DD2
[ 10]—/)(?4'?4‘[ 1+1 ]

+0.4[DD3] + [OM1] + [OM2] + [SU1]

+[BC1] +[BC2)), (1a)

(s [SS2]
[PMz'S]_p< 13 19973

4+0.4[DD3] 4 0.7[0M1] + 0.7[OM2]

+0.7[SU1] + [BC1] + [BC2)), (1b)

+ [DD1] + [DD2]
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where p is the air density; SS1 and SS2 the sea salt; DDI,
DD2 and DD3 the dust; OM1 and OM2 the organic matter;
BC1 and BC2 the black carbon; and SU1 the aerosol sul-
fate mass mixing ratios (with 1/2/3 referring to the aerosol
bins, from smallest to largest). The factor 4.3 is applied to
convert the model sea salts, expressed at 80 % relative hu-
midity in the model (see Reddy et al., 2005), into dry mass
mixing ratios. However, it is worth mentioning that to the
best of our knowledge, this correction might need to be re-
visited in the future to also account for the change of size
of the sea salt particles (as mentioned on the CAMS scien-
tific user forum: https://confluence.ecmwf.int/display/CUSF/
PM10+and+PM25+global+products, last access: 25 Novem-
ber 2022). Notably, aerosol nitrates are, at this time, not in-
cluded in the reanalysis, which could in principle lead to sig-
nificant underestimations in regions where nitrates represent
an important part of total aerosol concentration. Although
in practice, the assimilation of AOD observations (that ev-
idently integrate all the aerosol compounds) is expected to
reduce these biases. Within OM, secondary organic aerosols
(SOAs) of anthropogenic origin are parameterized according
to Spracklen et al. (2011), based on MACCity CO emissions.
A detailed description of the aerosol scheme employed in
CAMSRA can be found in Morcrette et al. (2009).

2.1.2 MERRA-2

Developed by NASA’s GMAO, the MERRA-2 atmospheric
composition reanalysis is based on the Goddard Earth Ob-
serving System v5 (GEOS-5) atmospheric model. It is im-
portant to note at this stage that, in contrast with CAM-
SRA, which aims to simulate all major chemical compounds
present in the atmosphere, the MERRA-2 reanalysis, de-
spite being the first atmospheric composition reanalysis that
couples chemistry to global atmospheric circulation, focuses
mainly on aerosols. Therefore, aside from meteorological
data, only AOD observations and O3 columns are assimi-
lated in MERRA-2, based on both measurements from Terra,
Aura, MetOp and POES satellites, and — unlike in CAM-
SRA — surface-based observations from the Aerosol Robotic
Network (AERONET). Anthropogenic sulfate, black car-
bon (BC) and primary organic matter (POM) emissions are
obtained from AEROsol COMparisons between Observa-
tions and Models (AeroCom) Phase II (HCAO vl1; Diehl
et al., 2012). Anthropogenic SO, emissions are taken from
the Emissions Database for Global Atmospheric Research
(EDGAR) v4.2, developed by the European Commission
(Janssens-Maenhout et al., 2011; Janssens-Maenhout, 2011),
whereas volcanic SO, is retrieved from AeroCom Phase
IT (HCAO v2; Diehl et al., 2012). CO is simulated by the
GEOS-5 modelling system. Sea salt and dust emissions, both
composed of five non-interacting size bins, are wind-driven.
Aerosol chemistry is reproduced with a version of the God-
dard Chemistry Aerosol Radiation and Transport (GOCART;
Chin et al., 2002, Colarco et al., 2010) model, which simu-
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lates the processes, interactions, sources and sinks of the dif-
ferent chemical compounds included in MERRA-2, with the
exception of O3 and CO.

MERRA-2 currently covers a temporal period extending
from 1980 to mid-2021. The reanalysis was produced using
3DVar data assimilation of AOD and several other meteoro-
logical fields. MERRA-2 uses cubed-sphere horizontal dis-
cretization, which serves to mitigate grid spacing singulari-
ties that appear in regular Gaussian grids, at an approximate
resolution of 0.5° x 0.625° (~50km) and has 72 hybrid-
eta model levels from the surface, with the first level reach-
ing 58 m above ground to the top at 0.01 hPa. MERRA-2 in-
cludes 1-hourly and 3-hourly analysis fields for its aerosol
diagnostics and meteorological data. For a more thorough
and detailed description of MERRA-2 we direct the reader
to Gelaro et al. (2017) and Randles et al. (2017).

Designed primarily for research focused on aerosols, the
MERRA-2 reanalysis dataset also provides data of the most
important trace gases, including Oz, CO and SO, (with only
NO; being unavailable). In MERRA-2, both PM g and PM3 5
need to be reconstructed from the available aerosol chemical
compounds, which include organic carbon (OC), black car-
bon (BC), dust (DS), sea salt (SS) and sulfate (SOy4). In this
study, the PMg and PMj 5 concentrations are computed as
follows:

[PMjo] = 1.375[SO4] + 1.8[OC] + [BC] + [DS] + [SS], (2a)
[PM> 5] = 1.375[SO4] + 1.8[OC] + [BC] + [DS; 5]

+[SS25]. (2b)

The 1.375 factor applied to [SO4] is used here to convert sul-
fate into ammonium sulfate (assuming full neutralization).
The 1.8 factor applied to [OC] accounts for other organic
compounds found in organic matter (OM). In recent litera-
ture, Eq. (2a) and (2b) are the most frequently used to re-
construct the PM fields. Equation (2a) is used by Provencal
et al. (2017b) and also by Ma et al. (2021), though with
an additional term to account for aerosol nitrates in the lat-
ter. Equation (2b) is used by Provengal et al. (2017a, b)
and by Ryu and Min (2021), where it is also employed to
reconstruct [PMjg] by multiplying it with a measurement-
based [PM0]/[PM3; 5] ratio of 1.75 (computed over the pe-
riod 2003-2018). Note also that there are large uncertain-
ties in the [OM]/[OC] ratio, as it varies in time and space,
and other studies have chosen a different value (e.g. 1.4 in
Buchard et al., 2016 and Buchard et al., 2017b) for this fac-
tor. Notably, nitrates are currently not available in MERRA-
2, even though they can make up a considerable portion of
total [PM] Aldabe et al. (2011). To overcome this limitation,
some authors such as Ma et al. (2021) have introduced an
additional term partly based on observations.

In our study aerosol nitrates are not included in the PMg
and PM, 5 concentration fields, neither in MERRA-2 nor in
CAMSRA. The potential underestimation due to the absence
of nitrates is at least partially compensated by the fact that
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Table 2. Summary of reanalysis products.
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Reanalysis

CAMSRA

MERRA-2

Available pollutants

03, NO,, CO, SO, PM0, PM; 5

03, CO, SOz, PMjg, PM; 5

Coverage period

2003—present

1980—-present

Spatial resolution

~ 80 km (roughly 0.75° x 0.75°)

0.5° x 0.625°

Assimilation system

4DVar

3DVar Gridpoint Statistical Interpolation (GSI)

Meteorology

IES Cycle 42r1 (Hersbach et al., 2020)

GEOS-5 (Rienecker et al., 2008, Molod et al., 2012)

Chemistry

IFS (CBO0S5) (Flemming et al., 2015)

GOCART (Chin et al., 2002, Colarco et al., 2010)

Anthropogenic emissions

MACCity (Granier et al., 2011)

AeroCom Phase II (HCAO v1; Diehl et al., 2012)
EDGARv4.2 (Janssens-Maenhout et al., 2011;
Maenhout, 2011)

Janssens-

Biomass burning emissions

GFAS v1.2 (Kaiser et al., 2012)

RETRO v2 (Duncan et al., 2003),
GFEDv3.1 (Randerson et al., 2006),
QFED 2.4-r6 (Darmenov and da Silva, 2015)

Biogenic emissions

MEGAN (Sindelarova et al., 2014)

NVOC (Guenther et al., 1995)

Volcanic emissions

AeroCom Phase II (HCAO v2; Diehl et al., 2012)

Assimilated O3 products

SCIAMACHY, MIPAS, MLS
OMI, GOME-2, SBUV/2

MLS, OMI, SBUYV, SBUV/2

Assimilated NO, products

SCIAMACHY, OMI, GOME-2

Assimilated CO products

MOPITT

Assimilated SO, products

Assimilated aerosol products ~AATSR, MODIS

AVHRR, AERONET, MISR, MODIS

both reanalyses assimilate total AOD observations, which
corrects all PM chemical compounds proportionally and thus
minimizes the biases due to the absence of aerosol nitrates.

2.1.3 Air quality observations and GHOST

The EEA observations are accessed from the Globally
Harmonised Observational Surface Treatment (GHOST)
initiative, a Barcelona Supercomputing Center (BSC)
in-house project dedicated to the harmonization of global
air pollution surface observations and its metadata, with the
purpose of facilitating a greater quality of observational/-
model comparison in the atmospheric chemistry community.
Besides the chemical concentration data originally available
in the EEA databases, GHOST provides an extended set
of metadata, including a variety of quality assurance (QA)
flags, which is used here to eliminate doubtful, non-physical
or other faulty data (see Appendix D for a detailed de-
scription of the QA filters applied here). To ensure a good
temporal representativeness, only daily averages based on
at least 18 hourly values (75 % threshold) are retained in
our study. Given the relatively coarse spatial resolution of
both reanalyses, only rural, rural-regional and rural-remote
background stations of larger spatial representativeness

https://doi.org/10.5194/gmd-16-2689-2023

are considered in the evaluation, thus excluding urban and
suburban background stations. Traffic and industrial point
source stations have also been discarded, being generally
located in areas with limited air flow and close to local
emission sources, which causes their pollution concentration
levels to be overly driven by day-to-day variability. For
information purpose, evaluation results obtained consid-
ering only urban and suburban background stations will
also be briefly discussed. More information on the station
classification can be found on the EEA website (https:
/Iwww.eea.europa.eu/themes/air/air-quality-concentrations/
classification-of-monitoring-stations-and, last  access:
15 December 2022).

2.2 Methodology

Our domain of study extends from 25° W to 45° E in longi-
tude and from 27 to 72°N in latitude, thus covering all of
continental Europe, as well as the Canary Islands, Iceland,
western/European Russia, North Africa, and the westernmost
regions of the Middle East and the Caucasus. For conve-
nience, both CAMSRA and MERRA-2 are regridded over
this domain on a common regular longitude-latitude grid at
a resolution of 0.2° x 0.2° (roughly 20 km) through bilinear

Geosci. Model Dev., 16, 2689-2718, 2023
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interpolation. The (pointwise) observations are also gridded
to this same resolution by averaging (at daily scale) all the
stations available within a given grid cell. Compared to a
pointwise-to-gridded comparison, this is expected to partly
overcome the issues of spatial representativeness and spatial
heterogeneity, although we acknowledge here that more so-
phisticated methods such as those proposed by Souri et al.
(2022) (which employ geostatistical approaches by making
use of semivariograms and kriging) might be worth imple-
menting in the future. However, when considering only ru-
ral, rural-regional and rural-remote background stations, the
proportion of gridded daily observations based on one single
daily observation (two daily observations) is 96.1 % (3.5 %)
for NO3, 95.4% (4.4 %) for Oz, 96.7% (3.2 %) for SO,
97.9 % (1.9 %) for CO, 91.0 % (8.5 %) for PMjp and 92.5 %
(7.4 %) for (7.4 %) for PM> s; these high percentages are ex-
plained by the presence of numerous missing values through-
out the period of study. Table 3 and Fig. 1 provide some in-
formation on the observations available over our European
domain during 2003-2020, in terms of both pointwise and
gridded observations (the total number of observations is
typically reduced by a 2-3 factor after the gridding opera-
tion). Unfortunately, in situ observations from GHOST are
not available for several countries falling within the domain
considered in this study, located in North Africa (e.g. Mo-
rocco, Algeria, Tunis, Libya, Egypt), Eastern Europe (e.g.
Russia, Belarus, Ukraine) and the Middle East (e.g. Israel,
Lebanon, Jordan, Syria), thus somewhat limiting the scope
of the evaluation, particularly in terms of spatial variability
and pollution hotspots.

The evaluation is performed on a set of metrics including
the (normalized) mean bias ((n)MB), the (normalized) root
mean square error ((n)RMSE) and the Pearson correlation
coefficient (PCC), defined as follows:

1 N
MB == (m; —0i), (3a)
i=1
MB
o
N 2
RMSE = le:l(m—’ol)’ (3¢)
N
RMSE
nRMSE = —— x 100%, (3d)
pec— | i (m; — 1) (0; — ) 30)
CON—1¢4 00, ’

i=l

where m; and o; are the predicted and observed concentra-
tions, m and o are their means, o,, and o, are their stan-
dard deviations, and N is the number of points employed
to compute the statistics (i.e. number of daily values across
all stations). The index i accumulates over time (e.g. daily,
monthly) at each station (i.e. gridded cell with available
observations). The final value for each statistic is obtained
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by taking the median across all stations. The overlines in
Eq. (3a)—(3e) indicate a time-averaged variable.

In this study, metrics have been calculated and presented
following two different approaches: (1) with a so-called
“time-and-space” approach where metrics are calculated in
one step, based on all reanalysis—observation pairs available
both across the entire domain (or a given country) and over
the entire period 2003-2020 or (2) with a so-called “time-
then-space” approach where metrics are first calculated at
each station before being combined by taking the median
across all stations. In this work framework, time-and-space
PCC values do not correspond to spatial or temporal correla-
tions but rather to overall spatiotemporal correlations, while
time-then-space PCC values do correspond to temporal cor-
relations, though spatially averaged.

Annual trends, based on monthly averages over the en-
tire domain (considering only cells and days with available
observations to allow for fair comparisons) and reported
in Sect. 3, have been computed using seasonal Theil-Sen
estimators, which account for seasonal variability. Statisti-
cal significance has been analysed through correlated sea-
sonal Mann—Kendall trend tests, considering both season-
ality and autocorrelation. For more detailed information on
how the annual trends are computed we refer the reader to
Appendix C. It is worth noting that trends are here com-
puted essentially to evaluate the consistency of the reanal-
yses against observational data but should not be taken as
a reliable estimate of real pollutant trends due to the num-
ber of stations not being constant but generally increasing
throughout the period of study. Moreover, even if a station
has available data over the entire period, its location can also
be subject to changes over time.

3 Results and discussion

The evaluation results, alongside its analysis and discussion,
are presented in this section. Overall statistics obtained over
the European continent during 2003-2020 are provided in
Table 4 (time-and-space approach). Annual trends are re-
ported in Table 5 for the different pollutants.

Different aspects of the evaluation results are provided for
each pollutant in Figs. 2-7, including (1) monthly time se-
ries of concentrations and evaluation statistics, (2) bar plots
of country-scale statistics, and (3) maps of mean concen-
trations (and differences between both reanalyses) over the
domain. Each point in the monthly time series corresponds
to the median of the monthly mean values across all in-
dividual cells with available observations over the domain.
In order to highlight potential spatial differences in pollu-
tion patterns across the European continent, country-scale
statistics computed over the entire time period and coun-
try area are provided for 37 European countries which ei-
ther are part of or report data to the EEA, namely Alba-
nia (AL), Austria (AT), Bosnia and Herzegovina (BA), Bel-
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Table 3. Number of EEA background stations (S), number of gridded stations (G) and number of overall points (i.e. daily values) (N) over

the period 2003-2020.

Pollutant ~ EEA stations  Sryral  Grural points 106) Surban  Gurban  Npoints ( 106)
O3 5701 1511 728 3.04 4190 1278 5.13
NO, 8381 1460 609 2.10 6921 1461 5.52
CO 2584 200 89 0.16 2384 553 1.13
SO, 5424 1050 443 0.77 4374 1147 2.34
PMio 9500 1475 542 1.83 8025 1566 5.84
PM> 5 3874 632 291 0.75 3242 907 2.35
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Figure 1. Monthly number of rural gridded cells with available observational data for O3, NO,, CO, SO;, PM; and PM; 5 over the period

2003-2020.

gium (BE), Bulgaria (BG), Switzerland (CH), Cyprus (CY),
Czech Republic (CZ), Germany (DE), Denmark (DK), Es-
tonia (EE), Greece (EL), Spain (ES), Finland (FI), France
(FR), Hungary (HR), Ireland (IE), Iceland (IS), Italy (IT),
Lithuania (LT), Luxembourg (LU), Latvia (LV), Montene-
gro (ME), North Macedonia (MK), Malta (MT), the Nether-
lands (NL), Norway (NO), Poland (PL), Romania (RO), Ser-
bia (RS), Sweden (SE), Slovenia (SI), Slovakia (SK), Turkey
(TR), and the United Kingdom (UK). Additional results are
provided in Appendix A, including seasonal-scale statistics
(Tables A1-A6) and mean monthly profiles (Figs. A1-A2)
for rural (RUR) and urban (URB) background stations. Fur-
ther additional results can be found in the Supplement, in-
cluding overall statistics for all EEA member countries, fig-
ures such as Figs. 2-7 but for urban background stations and
a visualization of different methods employed by other stud-
ies to reconstruct the PM o concentration field in MERRA-2.

https://doi.org/10.5194/gmd-16-2689-2023

3.1 Ozone (03)

Overall, CAMSRA reproduces the observed [O3] fairly well,
with limited negative bias (—12 %) and reasonable error
and correlation (36 % and 0.61, respectively). In compari-
son, MERRA-2 systematically overestimates [O3] (434 %)
and shows poorer error and correlation (48 % and 0.53, re-
spectively). On average, observed O3 mixing ratios reach a
minimum between late autumn and early winter then peak
in spring and are followed by persistently high but slowly
decreasing O3 levels until reaching a sharp drop in late
summer (Fig. Al in the Appendix). CAMSRA captures the
seasonality of O3 reasonably well, although with negative
bias during winter and early spring. Conversely, MERRA-2
substantially underestimates the seasonal amplitude (around
15 ppbv, against more than 20ppbv in observations and
CAMSRA).

Geosci. Model Dev., 16, 2689-2718, 2023
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Table 4. Overall statistics obtained over the period 2003-2020 across Europe for CAMSRA (subscript C) and MERRA-2 (subscript M).
Statistics are shown both on a daily scale (over all cells and days in the period 2003—2020) and on a monthly scale (weight averaged by N
over all median monthly values). OBS and MOD stand for observational and model concentration, respectively. Reactive gas mixing ratios
are expressed in ppbv, aerosol concentrations in pg m~3 and normalized statistics in %.

Scale Pollutant OBS MODc MODyn nMBe nMBy nRMSEc nRMSEy,  PCCe PCCy N
Daily O3 31.0 272 417 —124 342 35.7 48.4 0.61 0.53  3.04 x 100
NO, 55 6.9 - 26.1 - 79.2 - 0.60 - 2.10x10°
CcO 216.3 190.2 1242  —12.0 —42.6 85.0 95.0 0.28 022 0.16 x 10°
SO, 1.6 1.7 22 9.5 39.5 142.6 144.6 0.33 035 0.77 x 100
PMj 18.3 20.9 23.7 13.9 29.0 81.3 129.1 0.45 022 1.83x 10°
PM, 5 11.8 135 10.8 14.3 -9.1 96.2 97.5 0.43 029 0.75 x 100
Monthly O3 30.3 26.6 417 -10.0 41.9 30.0 49.5 0.53 0.23 216
NO, 4.7 6.9 - 41.4 - 69.6 - 0.48 - 216
CcO 182.0 188.2 118.9 1.8 =312 339 41.6 0.53 0.55 216
SO, 1.3 1.3 22 —-0.2 74.5 69.7 108.4 0.28 0.31 216
PMj 17.0 20.5 20.6 18.6 32.6 59.5 86.8 0.51 0.29 216
PM> 5 10.3 12.9 10.4 25.1 3.7 67.7 60.5 0.51 0.48 216

Table 5. Annual trends (seasonal Theil-Sen estimators, b) over the period 2003-2020 across Europe for rural observations (subscript O),
CAMSRA (subscript C) and MERRA-2 (subscript M) together with corresponding 99 % confidence intervals (e_, €4.). Statistically signifi-

cant annual trends are highlighted in bold. Trends and uncertainty ranges are expressed in ppbv yr™

Land ug m—3 yr_l for reactive gases and

aerosols, respectively. Relative trends (normalized by the mean concentration over 2003—2020) are also indicated in parenthesis.

Pollutant bo €0_ €0, bc €c_ €c, bm eM_ €M,
03 4+0.03 (40.11%yr ') =026 4022 4023 (+09%yr~!)  4+0.01 4046  —0.06(—0.15%yr"") —022  40.11
NO, —0.11(-23%yr™ )  —0.17 —0.07 —017(-25%yr")) 023  —0.12 - - -
Cco —347(-19%yr™ 1)  —515 243 —456(—24%yr"!) —626 340 —044(-037%yr"') —0.88  —0.07
SO, —0.034 (—27%yr" ")  —0.042 —0.029 —0.078(—62%yr"!) —0.082 —0.071 —0.033(—1.5%yr"!) —0.052 —0.017
PMo —0.36 (—2.1%yr™!)  —046 —028 —070(—33%yr ) —084 —0.60 —0.02(=0.10%yr ) —0.18  40.06
PM 5 —0.10 (=091 %yr~ ") =015 —0.02 —023(-1.7%yr") —034 —0.17 —0.002(—=0.02%yr"!) —0.079 +0.045

Throughout the entire period, the median monthly scale
nMB in CAMSRA remains below —20 %, with larger under-
estimations through the beginning of the period and better
results during the last years. The bias displays a clear sea-
sonal pattern, with an important winter and spring deterio-
ration (—21 % and —16 %, respectively) but very limited bi-
ases in summer and autumn (—4 % and —1 %, respectively).
Such oscillating biases have also been reported by Huijnen
et al. (2020) over Europe. Regarding the other metrics, me-
dian monthly scale nRMSE in CAMSRA reaches its worst
values in winter (36 %) when the PCC is conversely the best
(0.71), whereas an opposite behaviour with low nRMSE and
poor PCC can be observed in summer (26 % and 0.40, re-
spectively). A strong seasonal variability is also found in
MERRA-2 statistics, although limited to nMB and nRMSE,
which are worst in autumn (461 % and 467 %, respectively).
While the reasonable PCC obtained over the entire dataset
(0.53) is likely driven by the good ability of MERRA-2 to
capture the O3 seasonality, the much lower monthly PCC
values (oscillating around 0.25) suggest that MERRA-2 rep-
resents the intra-monthly variability of daily O3 mixing ra-
tios very poorly over a large part of the domain. Nonethe-

Geosci. Model Dev., 16, 2689-2718, 2023

less, MERRA-2 is able to reproduce the spring peak fol-
lowed by a slow decrease in [O3] typically seen in European
observations during summer. In contrast, CAMSRA com-
pletely misses this mid-spring O3 peak, as shown in Fig. Al.
Over 2003-2020, no statistically significant annual trend (es-
timated as a seasonal Theil-Sen slope) of mean [O3] is ob-
served over Europe, neither in MERRA-2 nor in the obser-
vations. However, a significant though low positive increase
of 4+0.23 ppbv yr~! is found in CAMSRA (Table 5), at least
partly due to the aforementioned stronger underestimation of
O3 during the first years of the period.

The country-level evaluation highlights how CAMSRA
outperforms MERRA-2 in every single country across the
European continent for every computed statistic, with the
greatest differences appearing in Belgium (BE) and the
Netherlands (NL) and the smallest ones in Spain (ES) and
Portugal (PT). In CAMSRA the nMB remains generally neg-
ative, at around —10 %, with several countries showing vir-
tually no bias (e.g. the Netherlands (NL), Turkey (TR) and
Sweden (SE)), while MERRA-2 displays values in the range
of +30%-70%. As for the nRMSE, in CAMSRA it re-
mains constrained between 30 % and 50 % for all evaluated

https://doi.org/10.5194/gmd-16-2689-2023
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Figure 2. Evaluation of O3 over Europe depicting (a) monthly time series of [O3], nMB, nRMSE and PCC over the period 2003-2020;
(b) spatially averaged [O3], nMB, nRMSE, and PCC for countries with at least five cells with observations; (¢) mean [O3] climatology in
CAMSRA; (d) mean [O3] climatology in MERRA-2; and (e) differences in mean [O3] climatology between CAMSRA and MERRA-2.
Black, green and blue colours in (a) and (b) indicate observations, CAMSRA and MERRA-2, respectively. Numbers between parentheses
in (b) indicate the cells with available observations. Only PCC values in the range 01 are displayed in (b). Statistically significant trends,
at a 99 % confidence level, are displayed in (a). Dotted areas in (e) indicate where the differences are not statistically significant at a 99 %
confidence level, whereas the dashed black contour stands for a zero difference in concentration between reanalyses.

countries, whereas in MERRA-2 it generally remains close
to 50 %, even surpassing this value for several countries,
such as the Netherlands (NL), Poland (PL), Belgium (BE)
and Turkey (TR). In most countries the PCC does not dif-
fer considerably between reanalyses, remaining in the range
0.4-0.7 and slightly higher values for CAMSRA. Despite
its greater original resolution, MERRA-2 fails to capture
the spatial variability of the [O3] field, with highly homo-
geneous mixing ratio values over land, ranging from 35 to
45 ppbv (Fig. 2d), likely a result of the lack of accurate ozone

https://doi.org/10.5194/gmd-16-2689-2023

sources in the parameterized chemistry and limited sensitiv-
ity of OMI measurements to lower tropospheric ozone (note
that neither MLS nor OMI provide ozone profile information
in the troposphere). A wider range of assimilated products,
as seen in Table 2, and more detailed gas-phase chemistry
likely accounts for CAMSRA’s better overall performance
and greater spatial variability. Nevertheless, we expect the
MERRA-2 ozone profile product to be useful for scientific
studies that focus on the upper troposphere and the strato-
sphere, given the high correlations found by Bosilovich et al.

Geosci. Model Dev., 16, 2689-2718, 2023
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(2015) against independent ozonesonde data at these alti-
tudes.

Inness et al. (2019) evaluated surface O3 against the World
Meteorological Office’s (WMO) Global Atmosphere Watch
(GAW) background stations and noticed slightly higher neg-
ative biases in winter (with modified nMB down to —40 %),
though based on a different and smaller set of stations
(45 GAW stations against 1511 EEA rural background sta-
tions gridded into 728 cells here). Over 2003-2018, Wag-
ner et al. (2021) evaluated CAMSRA surface O3 mixing ra-
tios against the European Monitoring and Evaluation Pro-
gramme’s (EMEP) observations, finding typically negative
modified normalized mean biases (MNMBs) within —30 %
in winter (driven by underestimated Oz mostly at midlati-
tudes) but positive ones in summer and autumn up to 415 %.
Such an oscillating bias is in good agreement with our results
over the European continent. Although satellite O3 measure-
ments are extensively assimilated in CAMSRA (11 space-
based O3 products included), Wagner et al. (2021) already
demonstrated their minor impact on surface O3. This may be
at least partly due to the relatively low sensitivity of space-
borne instruments to lowermost tropospheric O3 (e.g. Cuesta
et al., 2013). All in all, likely due to a more detailed rep-
resentation of the tropospheric chemistry, CAMSRA clearly
outperforms MERRA-2 in simulating surface O3 mixing ra-
tios.

When considering urban background stations (Table B1)
the overall nMB in CAMSRA, though shifted in sign, re-
mains very limited (48 %), whereas MERRA-2 presents an
overestimation (464 %), which nearly doubles the one found
in the rural subset. Such an evolution of the statistics at least
partly reflects the intrinsic difficulty of coarse reanalyses in
representing Oj3 titration in urban areas. For CAMSRA, the
nRMSE shows no significant variation (434 %), though a
slight improvement is found for the PCC (0.72), which repre-
sents the best overall correlation across all station subsets and
pollutants. Compared to the rural subset, MERRA-2 presents
a very similar PCC (0.54), though an important deterioration
in the nRMSE is found (475 %). The overall averaged [O3]
is 5.7 ppbv smaller than in the rural station subset.

3.2 Nitrogen dioxide (NO;)

CAMSRA systematically overestimates the mixing ratio of
NO, (Fig. 3a) throughout the entire period of study, with an
overall moderate positive bias of +26 % (Table 4), although
the seasonal variability of NO, is well captured. In contrast,
over 2003-2016 Inness et al. (2019) reported mostly lim-
ited negative biases but based on a very small set of regional
background stations (4 GAW stations) against 1460 EEA sta-
tions gridded into 609 cells in the present study. Overall,
CAMSRA shows a relatively large overall nRMSE (79 %)
and reasonable PCC (0.60).

At median monthly scale, biases increase from +12 %
in winter to +42 % in summer (Table A2). Monthly scale

Geosci. Model Dev., 16, 2689-2718, 2023
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nRMSE and PCC values show substantial seasonal varia-
tions, with better performance in winter (nRMSE and PCC
of 70 % and 0.60, respectively) and a notable deterioration in
summer (92 % and 0.45).

In terms of long-term trends, the significant decrease in
[NO,] observed over 2003-2020 (—0.11 ppbv yr~!) is mod-
erately overestimated by the reanalysis (—0.17 ppbvyr—!,
i.e. differing by a 1.5 factor). In relative terms, these decreas-
ing mixing ratio trends found for NO; in the observations
and CAMSRA (—2.3 % yr~! and —2.5 % yr~!, respectively)
are close to the —2.0 % yr~! NO, emission trend reported by
the EEA over the period 1990-2019 in its emission inventory
report (Pinterits et al., 2021).

Although it has been demonstrated that the COVID-19
pandemic reduced the NO; levels over Europe in 2020
(Bauwens et al., 2020; Virghileanu et al., 2020; Petetin et al.,
2020; Barré et al., 2021), the observed [NO;] time series only
shows a limited reduction, given that only rural background
stations are retained for the evaluation, and NO; is a predom-
inantly urban pollutant. The change in CAMSRA appears
less pronounced, potentially due to the coarse resolution of
the reanalysis but most likely due to CAMSRA following the
RCP8.5 for emissions after 2010 (Granier et al., 2011).

At a country level (considering only countries with more
than five cells containing observations), most nMBs fall
roughly between 410 % and +60 %, with the notable ex-
ception of Finland (FI) and Turkey (TR), where a moderate
underestimation (—15 % and —25 %, respectively) is found.
The nRMSE ranges from around 60 % to over 150 %, de-
pending on the country considered. The PCC remains gener-
ally around 0.5, though countries with fewer measuring sta-
tions available tend to present lower PCC values (Fig. 3b).
Interestingly, virtually no bias is found in the Netherlands
(NL), which also displays the lowest error and highest corre-
lation amongst all the countries examined.

The spatial variability of the [NO2] field across the Euro-
pean continent is consistent with the location of dense urban
areas (e.g. Paris, Moscow, Barcelona, Oslo, Algiers), highly
industrialized regions (e.g. Po River basin, Rhine-Riihr Val-
ley, Silesia) and busy shipping lanes (e.g. Mediterranean, En-
glish Channel, Portuguese coastline). In sparsely populated
areas, less industrialized regions and the open sea’s [NO>]
levels remain below 3 or even 1.5 ppbv (Fig. 3c¢).

When considering urban background stations, CAMSRA
systematically underestimates [NO;] across the European
continent (Table B1), with an overall strong negative bias
(—40 %, Table B1), which can be related in all likelihood
to its overly coarse spatial resolution that intrinsically pre-
vents a correct representation of urban NO;, hotspots, as
well as to the short chemical lifetime of NO;. By evaluat-
ing NO» tropospheric columns against satellite-based obser-
vations, Inness et al. (2019) and Wagner et al. (2021) also
reported negative biases over Europe, especially during win-
tertime. Although this contrasts with the numbers obtained
for rural background stations, it is in good agreement with
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Figure 3. Evaluation of NO; over Europe depicting (a) monthly time series of [NO,], nMB, nRMSE, and PCC over the period 2003-2020;
(b) spatially averaged [NO; ], nMB, nRMSE, and PCC for countries with at least five cells with observations; and (¢) mean [NO; ] climatology
in CAMSRA. Black and green colours in (a) and (b) indicate observations and CAMSRA, respectively. Numbers between parentheses in (b)
indicate the cells with available observations. Statistically significant trends, at a 99 % confidence level, are displayed in (a).

our results for the urban subset, though biases are signifi-
cantly larger here (evaluated against 6921 EEA urban back-
ground stations, gridded into 1461 cells). The underestima-
tion becomes more critical in winter (—45 %, Table A2) and
slightly improves in summer (—33 %). Note that Ryu and
Min (2021) also found a large underestimation of NO> in
winter over South Korea (around —10 ppbv against —2 ppbv
in summer). CAMSRA also displays a large nRMSE and
moderate PCC (68 % and 0.56, respectively). The seasonal-
ity and intra-annual variability of the NO, mixing ratio fields
are both well captured by CAMSRA.

3.3 Carbon monoxide (CO)

As shown in Fig. 4a, MERRA-2 systematically underesti-
mates the mixing ratio of CO (overall nMB of —43 %), while
CAMSRA reproduces the observed mixing ratio well, with
an overall limited mean bias (—12 %). MERRA-2 dramati-
cally fails at reproducing the seasonal variability of CO, with
the strongest negative biases in winter (—51 %). Conversely,
CAMSRA captures the seasonal cycle well, although neg-
ative biases are also somewhat stronger in winter (—15 %).
Note that Ryu and Min (2021), in their evaluation over
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South Korea, also reported a severe winter underestimation
in CAMSRA together with an absence of variability in sur-
face CO over the period 2003-2018 in MERRA-2. Interest-
ingly, CAMSRA displays a lack of nMB seasonality, with an
almost constant value throughout summer, autumn and win-
ter. A likely explanation for this is the good ability of CAM-
SRA to capture the intra-annual variability of [CO] through-
out the year. The overall nRMSE is high in both reanalyses
(85 % and 95 %, respectively), with again a lower winter per-
formance in MERRA-2 and an overall absence of seasonality
in CAMSRA. Wagner et al. (2021) evaluated CO in Europe
against data from GAW stations over the period 2003-2018,
reporting a persistent underestimation (modified nMB rang-
ing from —10 % to —20 %) of surface CO, in agreement with
our results. In contrast, Inness et al. (2019) reported an over-
all overestimation of around 10 ppbv for the period 2003—
2017, which again could be due to the different set of stations
taken into account (15 GAW stations, most of them regional
and several of them located at high altitudes).

At monthly scale, the median [CO], nMB and nRMSE in
CAMSRA partially capture the seasonality, showing a bet-
ter performance in autumn (0 %) and summer (31 %) and a
moderate springtime (+9 %) and wintertime (39 %) deterio-

Geosci. Model Dev., 16, 2689-2718, 2023
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Figure 4. Similar to Fig. 2 but for CO.

ration, respectively. As seen for O3, the PCC follows the op-
posite behaviour, with better performance in DJF (0.58) and a
late springtime deterioration (0.46). In contrast to CAMSRA,
MERRA-2 is unable to reproduce the seasonal variability
of surface [CO], despite the nMB and nRMSE displaying
significant variability throughout the different seasons. A
surprisingly large increase in [CO] is found in MERRA-2
throughout 2020. It is unclear what stands behind such a sig-
nificant increase, but this abrupt change affects mostly spe-
cific pollution hotspots in the European continent, including
the Rhine-Riihr valley and the Paris and London metropolitan
areas, as well as the Po River basin. This [CO] surge is also
found in the raw version (i.e. non-regridded) of the reanal-
ysis. The strong statistically significant decrease in CO ob-
served across Europe over 2003-2020 (—3.47 ppbvyr~!) is
moderately overestimated in CAMSRA (—4.56 ppbvyr™1),

Geosci. Model Dev., 16, 2689-2718, 2023

1.0

although less dramatically than in MERRA-2, where CO
remains roughly constant over all of the study period, dis-
playing a small negative trend (—0.44 ppbvyr—!). In Pinter-
its et al. (2021) the EEA reports a CO emission trend of
—2.3% yr~! over 1990-2019, relatively close to the mixing
ratio trends found in CAMSRA, —2.4%yr‘1, and the ob-
servations, —1.9 % yr~!. In 2020, MERRA-2 shows a very
large increase in [CO] across most of Europe, in contrast to
both CAMSRA and the observations. The overall PCC in
MERRA-2 and CAMSRA is poor (0.22 and 0.28, respec-
tively), although better PCC values (~0.40) are found at
monthly scale (0.53 and 0.55, respectively).

This CO underestimation typically spreads over the whole
European continent, with strong differences across countries.
As CO is not assimilated in MERRA-2 but simulated by
the GEOS-5 modelling system, this underestimation likely

https://doi.org/10.5194/gmd-16-2689-2023



A. Lacima et al.: Evaluation of surface air pollution over Europe 2701

comes from a poor representation of CO emissions and/or ex-
cessively large CO sinks. In both reanalyses, the best scores
in terms of bias, PCC and nRMSE are found in Germany
(DE) and to a lesser extent in the Netherlands (NL). Con-
versely, far poorer results are obtained in Poland (PL) and
Romania (RO). Although different, the nMB and nRMSE in
both reanalyses typically show comparable variations from
one country to another. Both CAMSRA and MERRA-2 show
CO hotspots over large urban areas and/or highly industrial-
ized regions (e.g. Moscow, Po River basin). However, com-
pared to CAMSRA, MERRA-2 highlights some additional
hotspots, for instance on the Vatnajokull ice cap, located in
Iceland, a region well known for its sub-glacial volcanoes
(e.g. Grimsvotn) which experience frequent degassing. An-
other significant hotspot is found in the Donets Basin (east-
ern Ukraine), an important coal mining region. Two other CO
hotspots can be seen south and north of Moscow, correspond-
ing to the cities of Voronezh and Yaroslavl, respectively, but
it is unlikely that CO levels comparable to those of Moscow
are found in these intermediate-sized cities (Fig. 4c, d).

The reanalyses also differ in the locations where [CO] is
higher across Europe (Po River basin in CAMSRA; Rhine-
Riihr Valley in MERRA-2). CAMSRA highlights the highest
CO mixing ratios in Europe in the Po River basin and dis-
plays moderate mixing ratio values in the Rhine-Riihr area,
which suggests a longer CO lifetime in the former given
that Pinterits et al. (2021) reports the highest CO emissions,
over the whole period of 1990-2019, in Germany. There-
fore, in sharp contrast to CAMSRA, MERRA-2 obviously
fails to capture the chemistry processes of surface CO, with
a likely underestimation of emission sources and/or too large
CO sinks, thus being unable to reproduce the spatiotemporal
variability of surface CO observed over Europe.

From Table B1 it immediately becomes apparent that the
main difference between the urban and rural subsets, aside
from the large variation in baseline mixing ratios, comes
from CAMSRA largely underestimating the observed [CO]
in urban cells, with the nMB (—46 %) nearly quadrupling
when compared to the rural evaluation. For MERRA-2 the
nMB also suffers from a deterioration (—64 %) but more
limited due to an already large bias in the rural subset. For
both CAMSRA and MERRA-2, the overall nRMSE (91 %
and 105 %, respectively) and PCC (0.39 and 0.19, respec-
tively) remain close to the rural values, with no significant
variations. The seasonal behaviour of both reanalyses also
remains unchanged, with MERRA-2 completely missing the
amplitude of the seasonal cycle. This large amplitude is also
the reason why CAMSRA loses its ability to reproduce the
observed CO mixing ratio.

3.4 Sulfur dioxide (SO3)
When computed over the entire dataset (Table 4), the statis-

tics of CAMSRA and MERRA-2 show very poor nRMSE
and PCC (around 143 % and 0.33-0.35, respectively) but
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better performance in terms of bias for CAMSRA (+10 %)
than for MERRA-2 (+40 %). On average, the overestima-
tion of MERRA-2 is much higher in winter, meaning the am-
plitude of the SO, seasonal cycle is strongly overestimated
(Fig. Al).

At monthly scale (Fig. 5a), the median nMB in MERRA-
2 severely deteriorates (475 %) and increases throughout
time, with the worst performance peaking in SON (+94 %)
and a slight springtime improvement (+57 %). The me-
dian monthly scale nMB in CAMSRA tends to improve be-
tween late spring and early summer, reaching values close
to 0%, though it oscillates throughout the year, dropping
to —12 % in winter and peaking at +11 % in autumn. Note
that Ryu and Min (2021), though finding a larger [SO;]
overestimation over South Korea, greater than the under-
estimation shown here for Europe, found a similar nMB
seasonality, with nMB improving (~ 42 ppbv) and wors-
ening (~ 46 ppbv) in warm and cold months, respectively.
In MERRA-2 the median nMB oscillates roughly around
469 % (with a £3 % range), though it suffers from an impor-
tant increase (with significant intra-annual variability) from
2013 onwards due to a decrease in observed [SO;]. A similar
increase is also observed in the nRMSE. The monthly scale
nRMSE and PCC remain roughly constant (when averaged
across all months) throughout all seasons, both in CAM-
SRA (around 70 % and 0.28, respectively) and in MERRA-
2 (around 108 % and 0.31, respectively), though the latter
displays much stronger seasonal variability. Note also the
large difference between the monthly scale nRMSE (70 %—
108 %) and the overall nRMSE (around 143 %). The sta-
tistically significant negative trend found in observed SO;
mixing ratios (—0.034 ppbvyr—!) is largely overestimated
by CAMSRA (—0.078 ppbvyr~') and well reproduced by
MERRA-2 (—0.033 ppbvyr~!) (Fig. 5). In Pinterits et al.
(2021) the EEA reports a SO, anthropogenic emission trend
of —3.2% yr~! over 1990-2019, falling between the mix-
ing ratio trend found in CAMSRA, —6.2%yr‘1, and the
one found in the observations, —2.7 % yr‘l, and MERRA-
2, —1.5%yr L.

The country-level evaluation for SO, shows very het-
erogeneous results across countries, differing substantially
from the observed behaviour in previously examined reac-
tive gases. The nMB presents a wide range of variation, with
certain countries showing very reduced biases for at least
one of the reanalyses (e.g. Portugal, Czech Republic, Aus-
tria, Belgium) and others presenting biases well over +50 %
(e.g. the United Kingdom, France, Romania, Switzerland).
Both the nRMSE and PCC display a poor performance, rang-
ing roughly within 100 %—150 % and 0.10-0.50, respectively
(Fig. 5b). Upon a first examination of the SO, spatial dis-
tribution, it may appear as if the mixing ratio values in the
time series should be larger for CAMSRA, though this is
actually misleading, as the evaluation is performed only in
cells with available observations. Therefore, regions with a
higher station density contribute more towards the final mix-

Geosci. Model Dev., 16, 2689-2718, 2023



2702

A. Lacima et al.: Evaluation of surface air pollution over Europe

Concentration (ppbv)
- N w IS

o

[ppbv]

N
o
o

NM/A\M\
X

VoV

8

6

APVALU A A A A
2 W N NYVTWETMV TN
0

A\ °N
N ARSI AA N |

A0 08108208 30 VN0 00 3P0

(b)

[ppbv]

AT (42)

BE (18)
CH (5)
CZ (34)
DE (80)
ES (63)
FI(5)
FR (28)
IT (40)
NL (20)
PL (27)
PT (17)
RO (9)

TR (13)

UK (6)

[ppbv]

0 2 4 =50 0 50 0 50 100 150 0.5
Concentration (ppbv) nMB (%) NRMSE (%) pPCC

Figure 5. Similar to Fig. 2 but for SO,.

ing ratio value. From Fig. 5e it can be immediately seen
that MERRA-2 presents higher SO, mixing ratios in sev-
eral countries which have an overall larger number of stations
(e.g. Germany, the Netherlands, France, Italy).

In both reanalyses, the heterogeneous distribution of [SO» ]
is consistent with the location of highly industrialized ar-
eas (e.g. Po River basin, Rhine-Riihr Valley) and coal min-
ing regions (e.g. Silesia, Donets Basin, Balkans). To a mi-
nor extent, there are also significant SO, mixing ratios in
dense urban areas and along shipping lanes. Surprisingly,
the aforementioned CO hotspot found in MERRA-2 over the
Icelandic Vatnajokull ice cap does not come with an asso-
ciated SO, hotspot, which contrasts with the fact that SO,
emissions represent a large fraction of volcanic gases. The
reanalyses show sharp differences in the regions where the
highest mixing ratios of SO, are present, with CAMSRA

Geosci. Model Dev., 16, 2689-2718, 2023
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favouring coal mining regions and dense urban areas and
MERRA-2 showing a more balanced distribution between
them (Fig. 5c, d, e). Overall, both reanalysis products present
distinct although substantial deficiencies in their representa-
tion of SO, mixing ratios, with the increasing overestima-
tion of MERRA-2 probably being the most critical issue.
Anthropogenic SO; emissions in MERRA-2 are obtained
from AeroCom Phase II (Diehl et al., 2012) and EDGAR
v4.2 (Janssens-Maenhout et al., 2011; Janssens-Maenhout,
2011) inventories, with emissions fixed to those of the last
year available in each inventory (Randles et al., 2017). Thus,
the progressive deterioration of the bias in MERRA-2, par-
ticularly notorious from 2013 onwards, likely arises due to
an emission overestimation which propagates throughout the
time period where no updated SO, emissions are available.

https://doi.org/10.5194/gmd-16-2689-2023
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Figure 6. Similar to Fig. 2 but for PM .

When considering urban background stations, both CAM-
SRA and MERRA-2 shift towards a moderate negative nMB
(=29 % and —26 %, respectively), far from the positive bias
found in the rural subset. Overall, both the nRMSE (247 %
and 251 %, respectively) and PCC (0.18 and 0.08, respec-
tively) are extremely poor (see Table B1). The mixing ra-
tio in CAMSRA presents significant intra-annual variabil-
ity and thus fails to correctly reproduce the observed sea-
sonal behaviour. MERRA-2 shows a much better ability to
capture the seasonality of [SO»], though it still suffers from
the increasing overestimation previously highlighted for ru-
ral background stations.
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3.5 Coarse particulate matter (PMyg)

Overall, CAMSRA and MERRA-2 reanalyses represent sur-
face PM g concentrations over Europe (Table 4) moderately
well, with a limited positive nMB (+14 %) for CAMSRA
and moderate bias for MERRA-2 (429 %) but poor nRMSE
(81 % and 129 %, respectively) and PCC (0.45 and 0.22, re-
spectively).

At monthly scale, the median nMB in CAMSRA presents
a strong seasonality, with an important deterioration dur-
ing spring (+36 %) and better performance in DJF (45 %),
while the nRMSE and PCC show a strong and complex
intra-annual variability without a clear seasonal pattern (re-
maining in the range of 53 %—-65 % and 0.48-0.54, respec-
tively). In comparison, nRMSE and PCC in MERRA-2 fol-
low a clear seasonal behaviour, with strongly deteriorated re-
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sults during winter (105 % and 0.11, respectively) but bet-
ter summertime performance (71 % and 0.41, respectively).
Surprisingly, the median nMB in MERRA-2 also peaks in
JJA (+38 %), with a small bias reduction in SON and a win-
tertime low (+24 %). Ryu and Min (2021) found a slightly
positive PM ¢ bias for CAMSRA in South Korea over 2003—
2018, while for MERRA-2 their findings suggest a clear un-
derestimation that worsens significantly in winter, the for-
mer being in good agreement with our results over Europe.
The statistically significant negative trend present in the ob-
servations (—0.36 uygm 3 yr~!) is strongly overestimated by
CAMSRA (—0.70 ugm~3 yr~!) and severely underestimated
by MERRA-2 (—0.02 uygm 3 yr— 1), with the latter not being
statistically significant (at a 99 % confidence level). In Pin-
terits et al. (2021) the EEA reports a PMjg emission trend
of —1.7% yr_1 over 2000-2019, far from the concentration
trend of CAMSRA, —3.3 % yr’l, but closer to the one found
in the observations, —2.1 % yr’l.

At a country level, CAMSRA tends to outperform
MERRA-2 in most countries, with lower nRMSE (50 %—
100 % and 75 %—-150 %, respectively) and higher PCC values
(0.3-0.6 against 0.1-0.4, respectively). The nMB presents
a wide range of variation in both reanalyses, with certain
countries showing virtually no bias for MERRA-2 (e.g. Aus-
tria), for CAMSRA (e.g. Spain, the Netherlands, Portugal) or
for both reanalyses (e.g. Poland, Hungary, Slovakia). Other
countries present biases well over 25 % (e.g. Turkey, Ger-
many, Ireland, the United Kingdom). Though MERRA-2
presents lower nMB values than CAMSRA in several coun-
tries (e.g. Iceland, Germany, Czech Republic, Belgium), both
the nRMSE and PCC point towards a greater performance by
CAMSRA in all cases (Fig. 6b).

Again, despite its finer resolution, MERRA-2 displays a
more homogeneous concentration over land in which the
multiple PMj¢ hotspots found in CAMSRA - in industrial-
ized regions (e.g. Po River basin, Silesia) and in certain urban
areas (e.g. Paris, Moscow, Madrid) — are missing. In addi-
tion, it also shows much higher PM ¢ concentrations over the
open seas and North Africa, where sea salt and dust sources
are predominant. It thus seems that Eq. (2a) severely over-
estimates the surface concentrations of PMjg, as shown in
Fig. 6d), with MERRA-2 displaying differences of more than
a 100 ugm™3, particularly over desert areas. This overesti-
mation is likely related to sea salt and dust concentrations in
the model being overestimated, as shown in the Supplement.
Overall, CAMSRA unambiguously outperforms MERRA-2
in capturing the spatiotemporal variability of PM;( surface
concentrations over Europe.

As shown in Table B1, both CAMSRA and MERRA-
2 present limited negative nMB (—20 and —8 %, respec-
tively) for the urban subset, which contrasts with the positive
bias found for rural stations. For both reanalyses, the over-
all nRMSE (85 % and 112 %, respectively) and PCC (0.36
and 0.19, respectively) remain close to their rural counter-
parts, with no significant variations. The observed PM;( con-
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centration is characterized by strong intra-annual variability,
though certain seasonality is still present.

3.6 Fine particulate matter (PM3 s)

MERRA-2 reproduces surface PMj 5 concentrations over
Europe (Table 4) moderately well, with a low negative nMB
(=9%) but poor nRMSE and PCC (98 % and 0.29, re-
spectively), while CAMSRA presents an overall worst nMB
(+14 %), similar nRMSE (96 %) and slightly better but still
moderate PCC (0.43).

The median monthly scale nMB in CAMSRA presents
a clear seasonal pattern, with the bias heavily deteriorating
in MAM and JJA (441 %) but virtually vanishing in DJF
(+1 %). MERRA-2 also shows a clear seasonality, with the
largest over- and underestimations occurring during summer
(421 %) and winter (—17 %), respectively. Interestingly, the
MERRA-2 and CAMSRA nMB time series, while initially
displaying an absolute difference of ~ 50 %, converge from
2017 onwards. Similarly to the behaviour observed for PM |,
the median nRMSE and PCC in CAMSRA show a strong
intra-annual variability without a clear seasonal pattern (re-
maining in the range of 61 %—74 % and 0.48-0.53, respec-
tively). As for MERRA-2, both the nRMSE and the PCC
present significant seasonal variability, with better perfor-
mance in summer (50 % and 0.58, respectively) and a sharp
wintertime deterioration (74 % and 0.36, respectively). Simi-
lar results are reported by Provencal et al. (2017a) when eval-
uating MERRA-1 over Europe, with an overall limited nega-
tive bias and a deterioration in winter. Note also that Navinya
et al. (2020) evaluated PM> 5 in MERRA-2 against 20 back-
ground stations in India, finding a moderate negative nMB
(=34 %; —27pgm3) and a larger wintertime underestima-
tion, in agreement with our results over Europe. The neg-
ative trend present in the observations (—0.10 uygm =3 yr—!)
has been found to not be statistically significant, though it
is strongly overestimated by CAMSRA (—0.23 ugm=3 yr—!)
and completely missed by MERRA-2. As a consequence,
though the nMB time series of CAMSRA and MERRA-2
differ by more than 30 % in 2003, they end up converg-
ing progressively along the period 2003-2020. In Pinterits
et al. (2021) the EEA reports a PM> 5 emission trend of
—1.9 % yr~! over 2000-2019 which, while not directly com-
parable to a concentration trend as previously mentioned, is
close to the trend found in CAMSRA, —1.7 % yr‘l, but far
from the one found in the observations, —0.9 % yr~!.

At a country level (Fig. 7b), the differences in PMj 5 be-
tween CAMSRA and MERRA-2 are less pronounced than
for PMjy, especially for the PCC (with most values in the
range 0.3-0.6), and to a lesser extent for the nRMSE (with
most values in the range of 60 %—100 %). The nMB presents
a similar behaviour to the one observed for PMg, with cer-
tain countries showing virtually no bias for CAMSRA (e.g.
the Netherlands) or MERRA-2 (e.g. the United Kingdom,
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Figure 7. Similar to Fig. 2 but for PM» 5.

France, Germany, Belgium) and other countries presenting
important negative/positive biases (e.g. Turkey, Sweden).

The spatial variability of the PM» 5 concentration remains
close to the one obtained for PMj¢ in all regions and in both
reanalyses, except over the open seas, where MERRA-2 no
longer shows exceedingly large sea salt levels (which thus
prevail mostly in the coarse mode). The surface pollution
hotspots present in Fig. 7 are essentially the same ones that
appear in Fig. 6, though a notable exception is observed in
MERRA-2 over Iceland. A large PM; 5 concentration peak,
also visible for PMjq, can be spotted in Iceland’s time se-
ries during 2010, surpassing 100 uygm—3, likely due to the
Eyjafjallajokull volcanic eruption, which emitted very large
amounts of volcanic ash (Thorsteinsson et al., 2012).

As for urban background stations, CAMSRA presents an
overall small negative nMB (—13 %), while MERRA-2 dis-
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plays a larger but limited negative bias (—30 %). In terms
of nRMSE and PCC, both CAMSRA and MERRA-2 per-
form rather poorly, with large errors (86 % and 96 %, respec-
tively) and low correlations (0.41 and 0.24, respectively).
Similarly to PMyg, the observed PM> 5 concentration shows
strong intra-annual variability, though a seasonal pattern is
also visible.

4 Summary and conclusions

In this work we have performed a long-term (2003-2020)
multi-pollutant evaluation of CAMSRA and MERRA-2
global atmospheric composition reanalyses against in situ
surface measurements over the European continent. In con-
trast to past evaluation studies, we have included a more ex-
tended set of rural background stations, from several hundred
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to a few thousand depending on the pollutant considered (Ta-
ble 3), quality assured using GHOST metadata and gridded
in order to limit, to some extent, representativeness issues.
Results obtained against urban background stations have also
been briefly discussed.

As a summary, CAMSRA unambiguously outperforms
MERRA-2 in representing surface pollutant concentrations
across Europe. Differences are particularly clear for Oz and
CO but also persist for PMg and PM; 5. CAMSRA clearly
achieves the best results for O3, while statistics for the other
pollutants show more mixed results: substantial overestima-
tion, moderate error but reasonable correlation for NO;, low
biases, poor error and moderate correlation for PMjo and
PM, 5, and low biases but poor errors and correlations for
CO and SO;. With MERRA-2 being designed mainly for re-
search on aerosols, the reanalysis indeed provides statistics
on PM o and PM> 5 in line with CAMSRA, but the latter still
gives slightly better results over Europe, especially for PMj,
with overall lower biases and a better characterization of its
spatial variability.

Compared to CAMSRA, MERRA-2 benefits from a
slightly finer spatial resolution but assimilates a much less
diversified set of satellite products. However, recent evalua-
tions of CAMSRA have noticed that this assimilation only
partially improves the representation of pollutant concen-
trations at the surface, despite a clear improvement being
found in the entire troposphere. Although at least partly due
to the still coarse spatial resolution of CAMSRA, a large
if not dominant part of the model-versus-observation differ-
ences found here at the surface are likely explained by errors
in emissions and/or sinks. Therefore these global reanalysis
datasets need to be carefully bias corrected with surface ob-
servations in order to be used in long-term air pollution and
impact studies.

Geosci. Model Dev., 16, 2689-2718, 2023

The surface pollution evaluation carried out in this work
can serve as a milestone for future air quality and other
pollution-related studies. In that regard, further advance-
ments in the field could focus on developing new statisti-
cal approaches to merge surface observations with reanaly-
sis data. As global atmospheric composition reanalyses do
not assimilate data at the surface, ground-level measurements
can be employed, through different statistical methods, to
bias correct and to improve raw model output statistics, thus
leading to more robust reanalysis products. This improved
characterization of the spatiotemporal variability of surface
air pollution would open the door to improved health impact
and air quality assessments, while also helping design and
implement more effective air pollution reduction policies.

Eventually, if reanalyses are to be used in long-term health
impact studies, consistent statistical approaches to combine
observational data with reanalysis data need to be further de-
veloped.
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Appendix A: Seasonal cycle

Seasonal-scale statistics (Tables A1-A6) and mean monthly
profiles (Figs. A1-A2) are shown here for rural and urban
background stations.
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Figure Al. Seasonal variability of [O3], [NO;], [CO], [SOz], [PM;g] and [PMj 5] over the period 2003-2020 across Europe evaluated
against rural background stations. For each pollutant the panels show, from top to bottom, concentration, nMB, nRMSE and PCC. The black,
green and blue lines represent observations, CAMSRA and MERRA-2, respectively. Shaded contours indicate the 25th (bottom) and 75th
(top) percentiles. All monthly values are weighted by the number of points, N, over the period 2003-2020.
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Figure A2. The same as Fig. Al but for urban background stations.
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Table Al. O3 seasonal statistics over the period 2003-2020 across Europe for CAMSRA (subscript C) and MERRA-2 (subscript M).
Statistics are shown both on a daily scale (d; over all cells and days in the period 2003—-2020) and on a monthly scale (mm; weight averaged
over all median monthly values). Reactive gas concentrations are expressed in ppbv and normalized statistics in %.

Type  Scale Season OBS MODc MODy nMBec nMBpy nRMSEc nRMSEy, PCCe  PCCy N
RUR  Daily MAM 37.1 31.0 46.5 -—164 25.2 324 37.0 0.38 024  0.77 x 10°
JJA 37.0 349 45.6 -5.5 23.3 30.5 38.1 0.40 033  0.78 x 100
SON 252 239 37.8 —4.9 49.9 38.0 64.5 0.57 038 0.76 x 10°
DJF 24.5 18.3 365 —25.1 49.2 46.1 65.0 0.55 0.26  0.74 x 10°
RUR Monthly MAM 36.7 30.8 46.6 —15.5 26.4 27.0 332 0.43 0.15 54
A 36.3 34.5 458 -39 26.4 25.5 35.6 0.40 0.21 54
SON 24.0 22.8 37.7 —0.8 60.5 31.8 67.3 0.61 0.26 54
DJF 23.9 17.7 36.6  —20.5 55.0 36.1 62.6 0.71 0.32 54
URB  Daily MAM 31.1 30.9 46.4 —-0.6 49.3 28.0 57.8 0.52 024 1.30x 100
JJA 329 35.1 45.6 6.8 38.7 29.5 49.4 0.46 022  1.31x10°
SON 19.4 243 37.6 25.2 93.9 453 105.6 0.71 031 1.28x 10°
DJF 17.5 18.6 36.3 6.6 107.5 42.1 121.0 0.70 021 1.25x 10°
URB Monthly MAM 309 30.6 46.5 -1.0 51.4 239 56.5 0.55 0.17 54
JIA 323 344 45.7 6.0 41.4 244 47.7 0.45 0.21 54
SON 18.3 22.9 37.6 27.9 115.8 41.5 121.7 0.67 0.24 54
DJF 17.1 18.0 36.4 7.4 118.4 37.1 126.8 0.77 0.27 54
Table A2. The same as Table A1 but for NO,.
Type  Scale Season OBS MODc MODpy nMBc nMBp nRMSEc nRMSEy, PCCc PCCy N
RUR  Daily MAM 5.0 6.7 - 35.0 - 83.6 - 0.56 -~ 0.53x10°
JJIA 37 52 - 41.6 - 924 - 0.45 — 0.51x10°
SON 5.6 7.1 - 27.2 - 75.2 - 0.59 - 0.53x10°
DJF 7.5 8.4 - 12.1 - 70.4 - 0.60 - 0.53x10°
RUR Monthly MAM 42 6.6 - 49.2 - 74.3 - 0.46 - 54
JJA 3.1 5.0 - 55.7 - 78.6 - 0.39 - 54
SON 49 7.2 - 38.9 - 67.2 - 0.49 - 54
DJF 6.4 8.5 - 22.4 - 58.7 - 0.57 - 54
URB  Daily MAM 10.4 6.5 - -38.0 - 66.0 - 0.53 - 1.39x10°
JJA 7.8 5.2 - -33.7 - 66.5 - 0.41 - 1.38x10°
SON 115 6.8 ~ -409 - 64.8 - 051 - 1.38x 10°
DJF 14.6 8.1 - -44.8 - 66.4 - 0.57 - 1.37x10°
URB Monthly MAM 9.8 6.3 - -36.2 - 52.1 - 0.54 - 54
JJA 7.1 4.9 - -32.0 - 50.1 - 0.49 - 54
SON 10.8 6.7 - -39.1 - 51.7 - 0.55 - 54
DJF 13.8 8.2 - -43.2 - 54.8 - 0.61 - 54
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Table A3. The same as Table A1 but for CO.
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Type  Scale Season OBS MODc MODy; nMBc aMBy nRMSEc nRMSEy, PCCc PCCy N
RUR  Daily MAM  208.5 199.5 120.3 —43 —423 82.6 91.5 0.18 0.19  0.04 x 10°
JJA 169.1 145.3 116.0 —14.1 —31.4 84.8 88.4 0.14 0.16  0.04 x 10°
SON 208.4 178.6 1249 —-143  —40.1 86.1 93.6 0.21 0.20  0.04 x 10°
DJF 273.4 232.8 1344 —148 —50.8 82.8 96.4 0.27 022 0.04 x 10°
RUR Monthly MAM  179.7 196.1 1144 92 342 32.0 414 0.46 0.51 54
JJA 138.5 145.8 111.7 27 —197 30.7 33.6 0.53 0.56 54
SON 173.9 177.4 119.1 02 =290 34.0 40.3 0.53 0.57 54
DJF 229.4 227.7 129.2 —40 —405 38.5 50.1 0.58 0.56 54
URB Daily MAM  308.4 197.4 1205 —-36.0 —60.9 71.1 88.5 0.35 0.19  0.28 x 100
JJA 234.0 148.2 1187 =367 —493 79.5 85.7 0.15 0.10  0.27 x 10°
SON 351.8 182.2 1262 —482 —64.1 88.4 100.7 0.35 0.16  0.28 x 10°
DJF 498.4 232.8 1373 =533 =725 94.4 109.0 0.33 0.13  0.29 x 100
URB Monthly MAM  277.1 193.2 1158 =279 —-559 443 64.1 0.50 0.34 54
JJA 206.8 146.7 116.0 —293  —430 44.7 53.6 0.47 0.42 54
SON 309.8 180.4 1216 —406  —58.7 53.7 68.1 0.56 0.38 54
DJF 425.1 227.9 1332  —458 —68.0 58.2 77.3 0.59 0.37 54
Table A4. The same as Table A1 but for SO,.
Type  Scale Season OBS MODc MODyy nMBc nMBpy nRMSEc nRMSEy PCCc PCCy N
RUR  Daily MAM 1.5 1.6 1.9 7.4 28.0 124.1 118.7 0.35 0.40 0.20 x 10°
JJA 1.3 1.6 1.7 23.6 32.8 153.2 140.2 0.26 027 0.18 x 10°
SON 1.5 1.9 2.3 26.8 56.9 149.0 153.5 0.33 031  0.19 x 10°
DJF 2.0 1.8 2.8 —-8.7 40.1 140.3 150.0 0.36 035 0.21 x 10°
RUR Monthly MAM 1.3 1.2 1.9 -35 57.2 66.5 91.7 0.32 0.36 54
JJA 1.1 1.2 1.7 6.5 61.7 69.4 91.7 0.27 0.29 54
SON 1.2 1.3 23 11.4 93.8 72.3 126.6 0.27 0.28 54
DJF 1.5 1.3 28 —124 85.8 70.9 123.4 0.28 0.30 54
URB  Daily MAM 29 2.1 20 271 284 228.0 230.6 0.16 0.07  0.60 x 10°
JJA 2.1 2.1 1.9 3.1 =75 218.2 216.5 0.17 0.06 0.52 x 10°
SON 2.8 24 25 —-127 —11.6 245.4 249.0 0.18 0.05 0.57 x 10°
DJF 4.7 23 29 =509 384 238.4 2434 0.21 0.05 0.65x 10°
URB Monthly MAM 1.8 14 19 —18.6 4.8 65.4 75.7 0.29 0.29 54
JJA 1.5 1.4 1.7 —3.8 17.0 68.4 78.6 0.21 0.21 54
SON 1.7 1.6 2.2 —8.0 26.2 67.0 86.1 0.26 0.24 54
DJF 2.3 1.6 26 357 9.1 68.0 84.3 0.32 0.27 54
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Table AS. The same as Table A1 but for PM (. Aerosol concentrations are expressed in pug m~3.
Type  Scale Season OBS MODc MODp nMBc nMBpy nRMSEc nRMSEy  PCCe  PCCy N
RUR  Daily MAM 18.8 24.5 25.8 30.2 37.2 79.7 127.0 0.51 031  0.46 x 10°
JJA 16.6 19.8 23.3 19.6 40.4 84.0 103.7 0.33 0.40  0.46 x 10°
SON 17.6 18.5 22.7 5.0 28.7 77.5 122.5 0.44 023 0.46 x 10°
DJF 20.4 20.7 22.8 1.3 11.5 82.9 149.0 0.51 0.10 0.44 x 10°
RUR Monthly MAM 17.9 24.4 23.4 35.9 37.7 65.1 87.3 0.54 0.35 54
JJA 15.7 20.0 204 254 37.8 56.7 70.5 0.48 041 54
SON 16.4 17.9 19.9 7.1 304 533 85.3 0.53 0.26 54
DJF 18.3 19.7 18.7 53 23.7 62.9 104.5 0.48 0.11 54
URB Daily MAM 25.9 25.1 27.3 -3.0 5.7 71.8 106.2 0.43 032 1.48x 10°
JJA 21.1 20.1 24.0 —4.6 14.0 71.0 82.7 0.30 041 1.46 x 10°
SON 26.4 19.0 237 =280 —10.3 82.8 104.1 0.37 0.19  1.46 x 10°
DJF 33.6 21.2 23.8 —-36.8 292 95.5 125.8 0.39 0.07 1.45x 10°
URB Monthly MAM 229 24.4 24.5 7.7 8.1 52.8 72.0 0.51 0.31 54
JJA 18.8 19.9 20.8 6.8 15.1 48.3 554 0.45 0.39 54
SON 22.1 18.1 209 —18.7 -73 49.2 68.5 0.54 0.21 54
DJF 27.2 19.9 20.1 =265 =277 58.3 85.0 0.53 0.03 54
Table A6. The same as Table AS but for PM; 5.
Type  Scale Season OBS MODc MODpy nMBc nMBy nRMSEc  nRMSEy PCCc PCCy N
RUR  Daily MAM 11.9 15.8 11.7 32.6 —-1.7 88.8 83.8 0.51 040 0.19 x 10°
JJA 9.6 13.1 11.2 36.6 17.1 106.9 82.7 0.34 037 0.19 x 10°
SON 11.2 12.1 10.4 7.7 =75 95.6 92.7 0.41 033  0.19 x 10°
DJF 14.8 13.1 9.7 —11.1 —343 93.0 110.8 0.52 0.26 0.18 x 10°
RUR Monthly MAM 11.0 15.4 11.5 41.3 6.2 73.6 58.2 0.53 0.51 54
JJA 9.0 13.0 10.9 40.9 20.9 68.6 50.1 0.50 0.58 54
SON 9.6 11.3 10.0 16.0 3.7 60.9 60.4 0.53 0.48 54
DJF 11.7 11.9 9.4 09 —172 67.9 73.8 0.48 0.36 54
URB  Daily MAM 15.1 16.1 12.2 6.7 —194 78.4 82.4 0.45 036 0.59 x 10°
JJA 11.0 133 114 21.2 34 69.7 614 0.42 041 0.59 x 10°
SON 15.2 12.1 10.7 =204  -30.1 77.2 85.1 0.44 030  0.59 x 10°
DJF 222 134 103 —-39.7 533 91.8 107.4 0.47 0.19 0.58 x 10°
URB Monthly MAM 14.1 15.8 12.0 148 —126 57.3 544 0.54 0.49 54
JJA 10.6 13.2 11.2 25.0 5.5 54.4 424 0.49 0.54 54
SON 13.3 11.5 103  —13.1 214 52.9 57.4 0.56 0.43 54
DJF 18.2 12.4 99 315 —454 64.2 76.7 0.53 0.30 54
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Appendix B: Urban background stations

The statistics found in Table 4 and in Table 5 are presented
here for the subset of urban background stations.

Table B1. The same as Table 4 but for urban background stations.

Scale Pollutant OBS MODc MODyy nMBe nMBy  nRMSE: nRMSEy PCCc PCCy N
Daily 03 25.3 27.3 41.5 8.0 64.1 343 75.2 0.72 0.54 5.13x 100
NO, 11.1 6.6 - =402 - 67.5 - 0.56 - 552x10°
CcO 350.8 191.0 1258 —45.6 —64.1 91.0 105.2 0.39 0.19 1.13x 100
SO, 32 2.2 23 =293 258 246.8 250.8 0.18 0.08 2.34 x 10°
PMj 26.7 214 247 =200 =75 85.1 112.2 0.36 0.19 5.84 x 10°
PM, 5 15.8 13.7 1.1 —133 =296 86.2 96.1 0.41 0.24 2.35x 100
Monthly O3 24.8 26.6 41.6 10.0 81.3 31.6 87.6 0.61 0.22 216
NO, 104 6.5 - =376 - 522 - 0.54 - 216
CcO 307.7 188.1 1219 =362 —56.8 50.5 66.1 0.53 0.38 216
SO, 1.9 1.5 21 =178 13.8 67.2 81.3 0.28 0.25 216
PMj 22.7 20.6 21.5 —7.6 -29 52.1 70.2 0.51 0.24 216
PM; 5 14.0 132 10.9 -1.1 —18.3 57.1 57.7 0.53 0.44 216

Table B2. The same as Table 5 but for urban background stations. Statistically significant annual trends are highlighted in bold.

Pollutant bo €0_ €0, bc €c_ €c, bm EM_ €M,
03 +0.12 (+049 %yr—1)  —0.17 4033 4024 (+0.92%yr" ) 4002 4047 —0.06(=0.13%yr" )  —023  40.11
NO, —025(—23%yr) =036 —0.17 —017(-2.6%yr")) —023 —0.13 - - -
co —585(—19%yr~!) —88 272 —419(-22%yr ) —6.00 —3.09 —0.72(-0.59%yr ) —098  —0.27
SO, —0.040 (—2.1%yr™!)  —0.051 —0.029 —0.070(—4.6%yr"!) —0.074 —0.064 —0.031(—1.5%yr"}) —0.046 —0.015
PMq —038(—1.7%yr™!)  —052 —023 —0.68(-32%yr")) —082 —059 —0.05(=024%yr"!) —020 +0.034
PM; 5 —023(—1.6%yr™") —035 —0.13 —053(=35%yr ) —0.65 —047 —0.04(=033%yr ) —0.11  +0.01
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Appendix C: Trends

Given that our monthly time series does not contain tied or
missing values, the seasonal Mann—Kendall statistic, S’, and
its variance, Var[S'], can be obtained as follows:

n—1 n

=Z =Z Z sgn(xjg — Xig), (Cla)

Var[S]_Za +Zagh_ [n(n—1)2n +3)]

n

+3 [th+4ZRJgRJh—"(n+1) 1, (C1b)
j=1
n—1 n
Kan = Zzsgn[(xjg — Xig) (Xjn — Xin)], (Clc)

i=1j=1

where n and m are the number of years and seasons (i.e.
here monthly values), respectively; S, is the Mann—Kendall
statistic for each gth season; R, and Rj are Spearman’s cor-
relation coefficients for seasons g and k, respectively; and
sgn(x) is the sign function. Seasonal Theil-Sen slopes (i.e.
annual trends) are then derived from S’ (Hussain and Mah-
mud, 2019; McCuen, 1995; Hirsch and Slack, 1984). The
confidence intervals, derived from Var[S’], are computed ac-
counting for seasonality but not for autocorrelation, mainly
due to the detection of a potential bug in the function corre-
lated_multivariate_test from the Python library pyMannK-
endall (Hussain and Mahmud, 2019), which at the date of
this work’s submission remained unresolved.

Appendix D: QA flags

Using the metadata available in GHOST, a quality assurance
screening is applied by removing all air quality observations
associated with a set of flags detailed in Table D1. In addi-
tion, we detected a few very low CO concentrations in spe-
cific regions during specific time periods, which we suspect
originate from errors in units when the member state reported
its observations to the EEA. Therefore, as a precautionary
measure, all CO hourly observations below 1 ppbv were dis-
carded in this study.

https://doi.org/10.5194/gmd-16-2689-2023
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Table D1. Description of the GHOST quality assurance flags used on the EEA air quality observational dataset.

Flag  Description

0 Measurement is missing (i.e. —).

1 Value is infinite — occurs when data values are outside of the range that the float32 data type can handle (—3.4 x 1038
to 4+3.4 x 1038).

2 Measurement is negative in absolute terms.

3 Measurement is equal to zero.

6 Measurements are associated with data quality flags given by the data provider which have been decreed by the GHOST
project architects as being associated with substantial uncertainty/bias.

8 After screening by key QA flags, no valid data remain to average in the temporal window.

10 The measurement methodology used has not yet been mapped to standardized dictionaries of measurement methodolo-
gies.

18 The specific name of the measurement method is unknown.

20 The primary sampling is not appropriate to prepare the specific parameter for subsequent measurement.

21 The sample preparation is not appropriate to prepare the specific parameter for subsequent measurement.

22 The measurement methodology used is not known to be able to measure the specific parameter.

23 The specific measurement methodology has been decreed not to conform to QA standards, as the method is not suffi-
ciently proven/subject to substantial biases/uncertainty.

72 Measurement is below or equal to the preferential lower limit of detection.

75 Measurement is above or equal to the preferential upper limit of detection.

82 The preferential resolution for the measurement is coarser than a set limit (variable by measured parameter).

83 The resolution of the measurement is analysed month by month. If the minimum difference between observations is
coarser than a set limit (variable by measured parameter), measurements are flagged.

90 Check for persistently recurring values. Check is done by using a moving window of nine measurements. If 5 out of 6
(i.e. 83.33 %) values in the window are the same then the entire window is flagged.

91 Check for persistently recurring values. Check is done by using a moving window of 12 measurements. If 9 out of 12
(i.e. 75 %) values in the window are the same, then the entire window is flagged.

92 Check for persistently recurring values. Check is done by using a moving window of 24 measurements. If 16 out of 24

(i.e. 66.66 %) values in the window are the same, then the entire window is flagged.

110 The measured value is below or greater than scientifically feasible lower/upper limits (400, 600, 30 000 and 3000 ppbv
for O3, NO,, CO and SO, and 50 000 pg m~3 for PMj( and PMj 5).

111  The median of the measurements in a month is greater than a scientifically feasible limit (120, 200, 7500 and 750 ppbv
for O3, NO,, CO and SO3 and 5000 pg m—3 for PMj( and PMj 5).

112 Data have been reported to be an outlier through data flags by the network data reporters (and not manually checked
and verified as valid).

113 Data have been found and decreed manually to be an outlier.

131 Two out of three months’ distributions are classed as Zone 6 or higher, suggesting there are potentially systematic
reasons for the inconsistent distributions across the three months.

132 Four out of six months’ distributions are classed as Zone 6 or higher, suggesting there are potentially systematic reasons
for the inconsistent distributions across the six months.

133 In total 8 out of 12 months’ distributions are classed as Zone 6 or higher, suggesting there are potentially systematic
reasons for the inconsistent distributions across the 12 months.

Geosci. Model Dev., 16, 2689-2718, 2023 https://doi.org/10.5194/gmd-16-2689-2023
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