Supplement of Geosci. Model Dev., 16, 2607-2647, 2023
https://doi.org/10.5194/gmd-16-2607-2023-supplement
© Author(s) 2023. CC BY 4.0 License.

Supplement of

The CryoGrid community model (version 1.0) — a multi-physics toolbox
for climate-driven simulations in the terrestrial cryosphere

Sebastian Westermann et al.

Correspondence to: Sebastian Westermann (sebastian.westermann @ geo.uio.no)

The copyright of individual parts of the supplement might differ from the article licence.

10

15

20

25

S1: Quick start for CryoGrid community model

Software requirements: CryoGrid is written in Matlab, version 2018 or higher is required. For parallel applications, the Matlab

parallel toolbox is required.

S1.1 Download and set up file structure

a) select or create a folder for the model code and results, e.g. “CryoGrid_git”

-download zip-file with CryoGrid source code, CryoGridCommunity_source.zip, from
https://doi.org/10.5281/zenodo.6522424 and unpack in “CryoGrid_git”.

b) download the zip-file with run files to be modified by the user, “CryoGridCommunity run.zip”, from
https://doi.org/10.5281/zen0do.6522424 and unpack unpack in “CryoGrid_git”.

€) “CryoGrid_git” should now contain the subfolders “CryoGrid_git/CryoGridCommunity_source” and “CryoGrid_git/

CryoGridCommunity_run”, and “CryoGrid_git/CryoGridCommunity_source” the subfolders “source” and “UMLS”, while
“CryoGrid_git/CryoGridCommunity_run” should contain the file “run_CG.m” (in addition to other files and folders).
d) Create a folder for parameter files and simulation results. For the default setting, create a folder

“CryoGridCommunity_results” in “CryoGrid_git”, which should look like this:

CryoGridCommunity_results
CryoGridCommunity_run

CryoGridCommunity_source

S1.2 Set up parameter files
-using existing parameter files from S4 (recommended as first step)

download and unpack the file “CryoGridCommunity_parameter_files.zip” from https://doi.org/10.5281/zen0do.6522424.

CLINN3

Copy the herein contained folders (i.e. “forcing”, “glacier”, etc.) in the folder “CryoGrid_git/CryoGridCommunity_results”
(see S1.1 above). Each of the folders represents a simulation from Sect. 3.2, with folders named according to the run names

(see Sl.4). The common model forcing is provided in the folder “forcing”.

-use automatic parameter file creator (recommended for advanced users)
a) edit and run the script “create_parameter_file_ EXCEL.m” in “CryoGrid_git/ CryoGridCommunity_run”. A list of class
names, their index and class options (for some classes) must be provided in the header of the file, as well as the folder in which

he parameter files and results are stored (in this case “../CryoGridCommunity_results”). The script generates a parameter file

https://doi.org/10.5281/zenodo.6522424
https://doi.org/10.5281/zenodo.6522424
https://doi.org/10.5281/zenodo.6522424

30

35

40

45

50

with default parameter values for each class, which the user must further edit manually. In the resulting parameter file, each
parameter is associated with an explanatory comment, and it is possible to automatically enter a default value for many of the

parameters.

S1.3 Run a CryoGrid simulation

a) edit the header of the script “run_ CG.m” in “CryoGrid_git/CryoGridCommunity_run”. When using a spreadsheet as
parameter file (as for the parameter files provided in S4), set “init format = 'EXCEL' and constant_file =
'CONSTANTS_excel'. Set the variable “run_name” to the name of the parameter file/ the folder in which it is stored (e.g.
“reference_run” to simulate the reference run from Sect. 3.2) and the variable “result_path” to the folder in which the parameter
files and results are stored (in this case “../CryoGridCommunity_results”).

b) run the script “run_CG.m”. Depending on the selected OUT class, results files in .mat-format will be written, typically as
annual output files (as for the parameter files provided in S4). Note that for the parameter files provided in S4, no output files
are written at the beginning of the simulation, i.e. during the accelerated spin-up. It generally requires a few hours of simulation

time before the first output file is written.

S1.4 Quick look at selected simulation output

The script “read_output_and_display.m” provided in “CryoGrid_git/CryoGridCommunity_run” provides a simple possibility
to display the depth- and time-resolved field of important model variables, such as temperature and volumetric contents of
water and ice. The script must be run in sections: after the first section is run to set the internal paths to the model source code,
the user must manually load the desired output mat-file (stored as annual time slices in the parameter files provided in S4).
Then the rest of the script can be run, which results in five plots: temperature “T”, volumetric water plus ice content “waterlce”,
volumetric water content “water” and volumetric ice content “ice”, as well as the running number of the stratigraphy class
used for a certain domain, with class 1 being the lowermost stratigraphy class. Users can adjust the displayed domain, ranging
from a user-defined height above the ground surface (in order to display the seasonal snow cover), to a user-defined depth

below the surface.

55

60

65

70

75

80

S2: Description of CryoGrid classes
S2.1 RUN_INFO

RUN_1D_ STANDARD: This is a “do-nothing” RUN_INFO class, which initializes and runs a single TILE class and has no
other functionality. It basically serves as a “wrapper” around the TILE class and should be used for initial testing of
applications, as well as for developing new stratigraphy classes.

RUN_1D_SPINUP: This class sequentially runs several TILE classes. It can be used for model spin-up, consecutively
initializing the following TILE class with information on the ground thermal state computed by the previous TILE class (see
below for options of TILE_BUILDER classes). RUN_1D_SPINUP can also be used to sequentially run several independent
TILE classes, e.g. each for different input data sets or model parameters.

RUN_3D_STANDARD: Initializes and runs multi-tile simulations in a parallel computing environment, which can be used to

run several independent TILE classes in parallel, e.g. each for different input data sets or model parameters.

S22 TILE, TILE_BUILDER and INIT_STEADY_STATE

TILE_1D_standard: initalizes and runs a CryoGrid stratigraphy. For initialization, different TILE_BUILDER classes can be
used, which is a parameter in TILE_1D_standard and used to select the way the initial temperature profile is calculated.
Depending on the choice of the TILE_BUILDER class, different sets of parameters must be defined by the user. The
TILE_BUILDER new_init performs initialization using the information provided in the STRATIGRAPHY_STATVAR
classes from the parameter files; new_init_steady state computes a steady-state temperature profile taking the thermal
conductivity of each grid cell, the lower boundary heat flux and a near-surface temperature at defined depth. These values can
be either provided by the user, calculated with an INIT_STEADY_STATE class. INIT_TTOP_from_forcing applies the TTOP
approach to the air temperatures provided by the model forcing, while INIT_TTOP_from_out uses the output of a previous
TILE class stored by the OUT class OUT_TDD_FDD. This TILE_BUILDER class is used for the accelerated model spin-up
procedure. The next TILE_BUILDER class, update_forcing_out, uses the last model state of the previous TILE (i.e. the
stratigraphy will have the same stratigraphy classes), but overwrite the FORCING and OUT classes. This TILE_BUILDER
class is used for the accelerated model spin-up procedure. restart OUT _last_timestep reads a file written by the OUT class
OUT last_timestep (which saves the full model state either at defined time intervals or the very end) and continues the run
from the point saved.

TILE_1D_standard2: same as TILE_1D_standard, but several OUT classes can be used instead of only a single OUT class,
as in TILE_1D_standard. This is useful if one wants to not only store model output for the simulation period itself, but also
the final state that can be used to restart a new TILE (with TILE_BUILDER restart OUT _last_timestep, see above).

85

90

95

100

105

110

S2.3 FORCING

FORCING_seb: simple model forcing for stratigraphy classes computing the surface energy balance (keyword “seb”). The
data must be stored in a Matlab “.mat” file with a struct FORCING with field “data”, which contains the time series of the
actual forcing data, e.g. FORCING.data.Tair contains the time series of air temperatures. Have a look at the existing forcing
files in the folder “forcing” and prepare new forcing files in the same way. The mandatory forcing variables are air temperature
(Tair, in °C), incoming long-wave radiation (Lin, in W/m2), incoming short-wave radiation (Sin, in W/m2), specific humidity
(9, in kg water vapor / kg moist air), wind speed (wind, in m/sec), rainfall (rainfall, in mm/day), snowfall (snowfall, in mm/day)
and timestamp (t_span, in Matlab time - increment 1 corresponds to one day). IMPORTANT POINT: the time series must be
equally spaced in time, and this must be really exact. When reading the timestamps from an existing data set (e.g. an Excel
file), rounding errors can result in small differences in the forcing timestep, often less than a second off. In this case, it is better
to manually compile a new, equally spaced timestep in Matlab.

FORCING_seb _slope: same as FORCING_seb, but adjusts incoming short- and long-wave radiation to different aspects and

slopes

S2.40UT

OUT _all: makes an identical copy of all stratigraphy classes at each output timestep, stored in a cell array in the variable
STRATIGRAPHY. As the raw model state including parameters and temporary variables is stored, processing is required in
order to analyze and display the output.

OUT _all _lateral: identical to OUT _all, but also stores the state variables of the lateral interaction classes (in the cell array
LATERAL). This can in particular be used to obtain runoff curves if a lateral interaction classes for the water balance are used.
OUT_TDD_FDD: accumulates and stores depth profiles of thawing and freezing degree days over the entire simulation period.
The resulting output file can e.g. be used by the INIT_STEADY_STATE class INIT_TTOP_from_out to initialize a steady-
state temperature profile for a subsequent TILE class; used in the accelerated spin-up procedure.

OUT last _timestep: stores the CryoGrid stratigraphy after defined time intervals, or the final state after the simulation has
terminated. The output file is used to initialize a new TILE class with TILE_BUILDER restart_ OUT _last_timestep, so that
the simulation continues from the stored state. This is not only useful for troubleshooting model code, but also to perform
ensemble simulations (e.g. for different future climate scenarios) starting from a common final state (e.g. from a historic
simulation).

OUT_do_nothing: stores no output, generally used during model spin-up.

115

120

125

130

135

S2.5GRID

GRID_user_defined: allows the user to define the model grid as layers with constant grid cell size, e.g. 0.05m in the uppermost

two meters, then 0.1m to 5m depth, etc.

S52.6 STRATIGRAPHY_CLASSES

Note: the class type STRATIGRAPHY _CLASSES is not to be confused with stratigraphy classes, i.e. the classes that make
up the CryoGrid stratigraphy (see below). Instead, it provides the information which stratigraphy classes are to be used for
which depth layers, i.e. the “stratigraphy of stratigraphy classes”.

STRAT _classes: provides information on the initial stratigraphy of stratigraphy classes, as well as other stratigraphy classes
that are (potentially) needed during the run. The initial stratigraphy of stratigraphy classes is provided as a matrix with depth
(i.e. the upper depth below the subsurface for each class - the last class extends to the bottom of the model domain) in the first
column, the class name in the second and the class index in the third column. Sleeping classes are stratigraphy classes that are
not part of the initial stratigraphy, but become added by a trigger of another stratigraphy class during the run. An example is a
LAKE class that gets added above a GROUND class when enough surface water has accumulated. The SNOW class to be
used by the run is selected in the fields snow_classname and snow_class_index. If no SNOW class is used, these fields can be
left empty. NOTE: each stratigraphy class listed in STRAT _classes must be initialized separately in the parameter file (see

stratigraphy classes).

S2.7 STRATIGRAPHY_STATVAR

STRAT _layers: used to initialize the initial depth profile of model state variable as layers with constant values. In the matrix,
the variable names (that must match variable names in the stratigraphy classes) must be inserted in first line. The first row
provides the start depth of each layer, and the last layer extends to the bottom of the model domain. NOTE: the state variables
are in general provided in “human-readable” units. In the automatic initialization procedure, they are converted to the true unit
of the state variable used in the simulations.

STRAT _linear: same as STRAT_layers, but values of the state variable for certain depths are provided. Between these depths,

values are linearly interpolated.

140

145

150

155

160

165

170

S2.8 Stratigraphy classes - GROUND

These classes describe ground material consisting of mineral, organic, water, ice and air fractions. To enable the dynamic
build-up of a seasonal snow cover by coupling to a SNOW class, each of the described classes has a twin called
“CLASSNAME_show” (e.g. GROUND_freeW_seb snow”) which must be used instead. During the snow-free period, their
behavior is identical to the class without the “..._snow” ending.

The compatibility of pairs of classes in the CryoGrid stratigraphy (ensured by interaction classes, Sect. 2.1.2) can be checked
with the function “get_IA_class (above_class, below_class)” located in the folder (assuming he folder structure suggested in
S1) CryoGrid_git/CryoGrid /source/TIER_2_full_classes/INTERACTION. Here, above_class is the name of the stratigraphy
class located on above below_class in the CryoGrid stratigraphy. If this returns an interaction class (and not zero), the classes
are compatible, e.g. get_IA_class('SNOW_simple_bucketW_seb’, 'GROUND_freeW_seb_snow") returns the interaction class
IA_ HEAT11 WATER10, while get_IA class('SNOW_simple_bucketW_seb’, 'GROUND_freeW_seb) returns 0.

GROUND_TTOP_simple2: equilibrium TTOP approach (Sect. 2.2.2). Not compatible with lateral interaction classes (52.12).
GROUND_freeW_ubtf: temperature boundary condition (Sect. 2.2.2), free water freezing characteristic (Sect. 2.2.3), no flow

water balance (Sect. 2.2.4). Not compatible with lateral interaction classes (52.12).

GROUND _freeW _seb: surface energy balance with scheme 2 for evapotranspiration (Sect. 2.2.2), free water freezing
characteristic (Sect. 2.2.3), no flow water balance (Sect. 2.2.4). Compatible with lateral interaction class LAT_HEAT (S2.12).
GROUND _freeW_bucketW _seb: surface energy balance with scheme 3 for evapotranspiration (Sect. 2.2.2), free water freezing
characteristic (Sect. 2.2.3), bucket scheme water balance (Sect. 2.2.4). Compatible with lateral interaction classes LAT_HEAT,
LAT_REMOVE_SURFACE_WATER, LAT_SEEPAGE_FACE, LAT_WATER_RESERVOIR (S2.12).

GROUND _freezeC_seb: surface energy balance with scheme 2 for evapotranspiration (Sect. 2.2.2), Painter and Karra (2014)
freezing characteristic (Sect. 2.2.3), no flow water balance (Sect. 2.2.4). Compatible with lateral interaction class LAT _HEAT
(S2.12).

GROUND _freezeC _bucketW _seb: surface energy balance with scheme 3 for evapotranspiration (Sect. 2.2.2), Painter and
Karra (2014) freezing characteristic (Sect. 2.2.3), bucket scheme water balance (Sect. 2.2.4). Compatible with lateral
interaction classes LAT_HEAT, LAT_REMOVE_SURFACE_WATER, LAT_SEEPAGE_FACE, LAT_WATER_RESERVOIR
(52.12).

GROUND _freezeC_bucketW_seb_Xice: surface energy balance with scheme 3 for evapotranspiration (Sect. 2.2.2), Painter and

Karra (2014) freezing characteristic (Sect. 2.2.3), excess ice representation (Sect. 2.2.5), bucket scheme water balance with

175

180

185

190

195

200

representation of standing surface water (Sects. 2.2.4, 2.2.5). Compatible with lateral interaction classes LAT_HEAT,
LAT_REMOVE_SURFACE_WATER, LAT_OVERLAND_ FLOW, LAT SEEPAGE_FACE, LAT_WATER_RESERVOIR
(S2.12).

GROUND _freezeC_RichardsEqW_seb: surface energy balance with scheme 4 for evapotranspiration (Sect. 2.2.2), Painter and
Karra (2014) freezing characteristic (Sect. 2.2.3), Richards equation water balance (Sect. 2.2.4). Compatible with lateral
interaction classes LAT_HEAT, LAT_REMOVE_SURFACE_WATER, LAT_SEEPAGE_FACE, LAT_WATER_RESERVOIR
(S2.12).

S2.9 Stratigraphy classes - LAKE and GLACIER

These classes describe subsurface domains consisting of water and/or ice. To enable the dynamic build-up of a seasonal snow
cover by coupling to a SNOW class, each of the described classes has a twin called “CLASSNAME_snow” (e.g.
GLACIER_freeW_seb_snow”) which must be used instead. See S2.8 for compatibility of pairs of stratigraphy classes.
LAKE_simple_bucketW_seb: surface energy balance with scheme 1 for evapotranspiration (Sect. 2.2.2), free water freezing
characteristic (Sect. 2.2.3), simple water body scheme with dynamic changes of water table (Sect. 2.2.7). Compatible with
lateral interaction classes LAT_HEAT, LAT_SEEPAGE_FACE, LAT_WATER_RESERVOIR (S52.12).

GLACIER_freeW_seb: surface energy balance with scheme 1 for evapotranspiration (Sect. 2.2.2), free water freezing
characteristic (Sect. 2.2.3), glacier mass balance scheme with surface meltwater automatically removed (Sect. 2.2.8).
Compatible with lateral interaction class LAT_REMOVE_SURFACE_WATER (S2.12).

$2.10 Stratigraphy classes — SNOW

These stratigraphy classes are created by triggers in e.g. GROUND stratigraphy classes. For this to work, stratigraphy classes
ending with “... snow” must be used, e.g. GROUND_freeW_seb_snow. See S2.8 for compatibility of pairs of stratigraphy
classes.

SNOW _simple_ubtf_mf: Constant snow density, temperature boundary condition and degree-day based melt model (scheme
a, Sect. 2.2.6). Not compatible with lateral interaction classes (S2.12).

SNOW _simple_bucketW_seh: Constant snow density, surface energy balance and bucket scheme snow hydrology (scheme b,
Sect. 2.2.6), meltwater automatically removed if it pools up above the snow surface. Compatible with lateral interaction classes
LAT_REMOVE_SURFACE_WATER, LAT_SEEPAGE_FACE, LAT_WATER_RESERVOIR (S2.12).

SNOW _crocus_bucketW_seb: Snow microphysics, surface energy balance and bucket scheme snow hydrology (scheme c,
Sect. 2.2.6), meltwater automatically removed if it pools up above the snow surface. Compatible with lateral interaction classes
LAT_REMOVE_SURFACE_WATER, LAT_SEEPAGE_FACE, LAT_WATER_RESERVOIR (S2.12).

7

205

210

215

220

225

230

SNOW _crocus2_bucketW_seb: Snow microphysics, surface energy balance and bucket scheme snow hydrology (scheme c,
Sect. 2.2.6), meltwater retained and allowed to pool up above the snow surface. This class is designed to be used with
GROUND _freezeC_bucketW _seb_Xice which snowmelt water pooling above the surface transferred to the surface water pool
after completion of snowmelt. Compatible with lateral interaction classes LAT _REMOVE_SURFACE_WATER,
LAT_OVERLAND_FLOW, LAT_SEEPAGE_FACE, LAT_WATER_RESERVOIR (52.12).

S2.11 LATERAL

LATERAL _1D: This lateral class is used to simulate interactions of a one-dimensional model domain with external
environments/reservoirs (Sect. 2.3) in the TILE class “TILE_1D_standard”. It must be used together with any of the lateral
interaction classes described in S2.12. Note that LATERAL_1D must be set in TILE_1D_standard, even if there is no lateral
interaction class selected.

S2.12 LATERAL INTERACTION

LAT_HEAT: lateral coupling to heat reservoir (Sect. 2.3.1).
LAT_REMOVE_SURFACE_WATER: surface water removal (Sect. 2.3.2).
LAT_OVERLAND_FLOW: overland flow (Sect. 2.3.2).
LAT_SEEPAGE_FACE_WATER: seepage face (Sect. 2.3.2).
LAT_WATER_RESERVOIR: water reservoir (Sect. 2.3.2).

S2.13 PROVIDER

The role of provider classes PROVIDER class is to organize the interactions between user input in e.g. parameter files and the
RUN_INFO class. PROVIDER classes contain instructions to read the classes and their associated parameters from the
parameter file and organize it in a standardized fashion, so that it becomes accessible for the RUN_INFO class. The
PROVIDER class is selected by the variable init_format in run_CG.m. Three main initialization methods exist 1. init_format
= ‘EXCEL’ and init format = EXCEL3D’ use spreadhseet-based parameter files, using the PROVIDER classes
PROVIDER_EXCEL and PROVIDER_EXCEL3D, respectively (3D is used to initialize multi-tile 3D simulations with e.g.
RUN_3D_STANDARD); 2. init_format = Y AML’ uses text files in yml-format as parameter files with the PROVIDER class
PROVIDER_YAML,; init_format = ‘MAT’ reads an already existing (typically created earlier through either 1 or 2 and stored
in a file) PROVIDER classes from a mat-file with the class PROVIDER_MAT.

S3: Ancillary simulations for water redistribution during freezing

235 Here, we provide two additional benchmark simulations for the Mizoguchi (1990) experiment, using Richards equation to

simulate the water balance. See Sect. 3.1.3.

0 0 ‘ 0 — 0 ;
Oh 12h / 24 h (50 h /
E 1 ’///ﬁ +,/ —‘
E 0.05 0.05 ’ 0.05 7 0.05} ‘f
, — J
3 | i]
o
b /
S 01 0.1 ‘ 0.1 ‘ \ 0.1 i
E ' —
o | .
E
8 1 (
c 0.15 ’ 0.15 0.15) 0151 ‘
0]
E + k) +
o i ' i
N ewi ‘| 9wi | eW| l 9W|
0.2 . . 0.2 : : 0.2 — : 0.2 : :
0.3 0.4 0.3 04 0.3 0.4 03 0.4

Fig S1: Simulated sum of volumetric water and ice content (blue lines) vs. measurements (crosses, digitized from Hansson et
240 al., 2004) for the Mizoguchi (1990) experiment for experiment for 0, 12, 24 and 50 hours freezing time; linear heat transfer

scenario, ice impedance factor calculated with Q = 5.

0h ’ 12n | | 24n . 50n | .

i R [N
0.05 0.05 r 0.05 |7 { oost
| + /, .

+
0.1 0.1 \ 01t \ 01 /.

distance from cooled end/ m
o
&
e
o
o
gt
o
o
+ +
o
&
. b+

0.2 ‘ 0.2 0.2 0.2
0.3 0.4 0.3 0.4 0.3 0.4 0.3 0.4

Fig S2: Simulated sum of volumetric water and ice content (blue lines) vs. measurements (crosses, digitized from Hansson et
245 al., 2004) for the Mizoguchi (1990) experiment for 0, 12, 24 and 50 hours freezing time; nonlinear heat transfer scenario, ice

impedance factor calculated with Q = 7.

250

255

260

265

270

275

S4: Parameter files and model forcing

For all the simulations in Sect. 3.2, we provide parameter files in spreadsheet format (as well as the model forcing) in the file

“CryoGridCommunity_parameter_files.zip on https://doi.org/10.5281/zen0d0.6522424. The parameter files are organized in

the folder structure suggested in S1, so that the simulations can be directly started when following the steps outlined in S1.
After unpacking “CryoGridCommunity_parameter_files.zip”, all subfolders (i.e. “forcing”, “glacier”, etc.) must be copied to
the folder “CryoGridCommunity results” (see S1). To start a particular simulation, the variable “run_name” must be set in
“run_CG.m” located in the folder in “CryoGridCommunity run”. In the following, the run names employed to create the
simulations evaluated for the figures in Sect. 3.2 are provided in italics:

Figure 10. Black line: reference_run_snowfall_100_percent; broken blue line: reference_run_snowfall_90 percent; solid
blue line: reference_run

Figures 11-13. reference_run

Figure 14. Blue: reference_run.xlsx; green: reference_run_sand; red: reference_run_free_water_freezing

Figure 15. Blue, solid line: reference_run; blue, dashed line: reference_run_overland_flow; green:
reference_run_no_drainage; red: reference_run_inflow_of water

Figure 16. reference_run_overland_flow

Figure 17. Blue: reference_run; green: reference_run_water_balance_constant; red:
reference_run_water_balance_Richards_equation

Figure 18. Left: reference_run; middle: reference_run_water_balance_constant; right:
reference_run_water_balance_Richards_equation

Figure 19. reference_run_water_balance_Richards_equation

Figure 20. Blue: reference_run; green solid: reference_run_constant_density _snow_250 kgm-3; green dashed:
reference_run_constant_density_snow_ 275 kgm-3; red solid: reference_run_crocus_snow_normal; red dashed:
reference_run_crocus_snow_arctic

Figure 21. Blue: reference_run; red: reference_run_temperature_boundary_condition; green dashed: TTOP_entire_period;
green solid: TTOP_two_year_periods; green dotted: TTOP_as_upper_boundary

Figure 22. Blue: reference_run; red: water_body; green: glacier

Figure 23. water_body

Figure 24. glacier

10

https://doi.org/10.5281/zenodo.6522424

References

280 Hansson, K., Stmunek, J., Mizoguchi, M., Lundin, L.-C., and Van Genuchten, M. T.: Water flow and heat transport in frozen
soil: Numerical solution and freeze—thaw applications, Vadose Zone Journal, 3, 693-704, https://doi.org/10.2113/3.2.693,
2004.

Mizoguchi, M.: Water, heat and salt transport in freezing soil, Ph.D. thesis, University of Tokyo, 1990.
Painter, S. L. and Karra, S.: Constitutive model for unfrozen water content in subfreezing unsaturated soils, Vadose Zone

285 Journal, 13, https://doi.org/10.2136/vzj2013.04.0071, 2014.

11

