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Abstract. Humans play a large role in the hydrological sys-
tem, e.g. by extracting large amounts of water for irrigation,
often resulting in water stress and ecosystem degradation. By
implementing large-scale adaptation measures, such as the
construction of irrigation reservoirs, water stress and ecosys-
tem degradation can be reduced. Yet we know that many
decisions, such as the adoption of more effective irrigation
techniques or changing crop types, are made at the farm level
by a heterogeneous farmer population. While these decisions
are usually advantageous for an individual farmer or their
community, aggregate effects of those decisions can have
large effects downstream. Similarly, decisions made by other
stakeholders, such as governments, often have basin-wide
effects and affect each farmer differently. To fully compre-
hend how the human–natural water system evolves over time
and space and to explore which interventions are suitable to
reduce water stress, it is important to consider human be-
haviour and feedbacks to the hydrological system simultane-
ously at the local household and large basin scales. There-
fore, we present the Geographical, Environmental, and Be-
havioural (GEB) model, a coupled agent-based hydrological
model that simulates the behaviour and daily bidirectional in-
teraction of more than 10 million individual farm households
with the hydrological system on a personal laptop. Farm-
ers exhibit autonomous heterogeneous behaviour based on
their characteristics, assets, environment, management poli-
cies, and social network. Examples of behaviour are irriga-

tion, generation of income from selling crops, and invest-
ment in adaptation measures. Meanwhile, reservoir operators
manage the amount of water available for irrigation and river
discharge. All actions can be taken at a daily time step and in-
fluence the hydrological system directly or indirectly. GEB is
dynamically linked with the spatially distributed grid-based
hydrological model CWatM at 30′′ resolution (< 1 km at the
Equator). Because many smallholder farm fields are much
smaller than 1× 1 km, CWatM was specifically adapted to
implement dynamically sized hydrological response units
(HRUs) at the farm level, providing each agent with an in-
dependently operated hydrological environment. While the
model could be applied anywhere globally at both large and
small scales, we explore its implementation in the heavily
managed Krishna basin in India, which encompasses ∼ 8 %
of India’s land area and ∼ 12.1 million farmers.

1 Introduction

Water stress, defined as water demand exceeding water avail-
ability, is an increasing threat to human livelihood through,
for example, decreasing agricultural yields, insufficient water
for drinking and sanitation, and degrading ecosystems (Ablo
and Yekple, 2018; van Leeuwen et al., 2016; Porporato et
al., 2001; Kummu et al., 2016). A growing number of re-
gions are expected to experience severe water stress in the

Published by Copernicus Publications on behalf of the European Geosciences Union.



2438 J. A. de Bruijn et al.: GEB v0.1

future, largely driven by an increasing population and cli-
mate change (Kummu et al., 2016; Veldkamp et al., 2015).
Effective water management can help to reduce water stress,
but this requires knowledge of the current status of water re-
sources, socio-economic development, climate change, and
the effects of interventions (Ibisch et al., 2016) on upstream
and downstream water availability (Veldkamp et al., 2017).
Therefore, hydrological models, which simulate the hydro-
logical system, are a widely used tool to provide an integra-
tive vision of the system and formulate effective policies.

Humans play a large role in the hydrological system.
For example, governments and other organizations construct
reservoirs (Biggs et al., 2007) and channels for inter-basin
transfers (Gupta and van der Zaag, 2008), disrupting natural
flows. Small-scale adaptations, such as groundwater pump-
ing (Llamas and Martínez-Santos, 2005), rainwater harvest-
ing (Li et al., 2000), changing crop use (Kuil et al., 2018),
and irrigation practices (Nouri et al., 2019b; Mollinga, 2003),
are often realized at the individual or communal level. While
these measures are usually beneficial for some, adverse ef-
fects can be experienced by other water users across differ-
ent scales (Di Baldassarre et al., 2021). In addition, the costs
and benefits of water-stress-related interventions may vary
throughout a heterogeneous farmer population.

To fully comprehend how water stress develops over time
and space and to explore which interventions are suitable to
reduce water stress, it is important to understand feedbacks in
a coupled human–natural system simultaneously with local
household and large basin scales. For example, when water is
extracted upstream, water availability downstream can be re-
duced (Veldkamp et al., 2017). Farmers at the head of a com-
mand area can have access to a larger and more reliable wa-
ter supply than those at the tail end (Mollinga, 2003), which
incentivizes farmers at the head to adopt water-intensive
high-return crops, reducing water availability downstream
(Wallach, 1984). Similarly, upstream farmers that invest in
rainwater-harvesting techniques reduce the amount of water
available downstream (Bouma et al., 2011). Another example
is through increased groundwater use, where individual well
users lower the groundwater table in a larger region (Llamas
and Martínez-Santos, 2005). While some farmers have the
resources to invest in deeper wells, other farmers are driven
further into poverty (Batchelor et al., 2003).

While most hydrological models are well suited to sim-
ulate the hydrological system at a large scale, they treat
small-scale human behaviour rather simplistically and ho-
mogeneously. In these models, humans often do not learn
over time and do not change their adaptive behaviour under
changing water risk (Aerts et al., 2018). In reality, agents
adapt to changes in their environment and also respond to
each other (Wens et al., 2020). For example, a water pric-
ing tax by the government has a direct influence on house-
hold water use, and farmers might construct wells in response
to drought events. An agent-based model (ABM) appears to
be an effective tool that can be used to simulate these com-

plex heterogeneous behaviours and feedbacks. Therefore, the
research realm of “socio-hydrology” has developed models
that dynamically couple hydrological and agent-based mod-
els to better simulate the hydrological system as well as the
behaviour of individual heterogeneous agents. Using such a
coupled model allows for tracking changes in the natural sys-
tem (e.g. the effect of changes in climate) or changes in the
human system (e.g. government policies or adaptation be-
haviour) through the entire human–natural system. For ex-
ample, drought events can accelerate adaptation behaviour,
making farmers more resilient to the next drought. At the
same time, such adaptation behaviour can negatively influ-
ence water storage (e.g. increased groundwater extraction;
Streefkerk et al., 2023). Simulating such feedbacks requires
a coupled model.

In general, two approaches can be differentiated where a
hydrological component is added to an agent-based model:
(i) adding a hydrological component which is also agent
based (e.g. river segments are represented as agents which
exchange water) or (ii) adding a traditional hydrological
model; thus, a fully distributed gridded model where wa-
ter flows from one grid cell to another based using a rout-
ing equation. In the first agent-based approach, all the en-
vironmental components, such as river segments, are simu-
lated as agents. For example, Becu et al. (2003) simulated
farmers, irrigation behaviour, and crop and vegetation dy-
namics. Their model uses a simple routing scheme that con-
siders water abstraction and water diversions by canal man-
agers. Another example is Huber et al. (2019), who cre-
ated a basin-scale coupled model where water flows down-
stream from a hydrological river agent to another river agent,
while other agents such as farmers or water managers can
abstract water from the river. In this approach, the hydro-
logical component is usually relatively simple, largely be-
cause authors usually build the hydrological component from
scratch. (ad. ii) The second – hydrological model – approach
is to couple an agent-based model with a more traditional
hydrological model by allowing the agents to interact with
its water storage (Streefkerk et al., 2023). For example, the
widely used MP-MAS (Schreinemachers and Berger, 2011;
Arnold et al., 2015) is coupled to WASIM-ETH (Schulla
and Jasper, 2007), a fully distributed hydrological model.
Van Oel et al. (2010) published a larger coupled grid-based
model at a 270 m resolution that simulates the irrigation be-
haviour of individual farmers in a large basin using a grid
size of 270× 270 m. This approach also benefits from on-
going methodological progress in hydrological modelling
(Bierkens, 2015). Large-scale hydrological models are run
at an increasingly higher resolution, while other advances,
such as HydroBlocks (Chaney et al., 2016), allow users to ef-
fectively combine grid cells into hydrological response units
(HRUs) while retaining the ability to accurately simulate the
hydrological system, including dynamic routing (Chaney et
al., 2021).
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Some agent-based models with a hydrological component
were released, which simulate water management decisions
by groups of people, such as sectors or villages (e.g. Huber et
al., 2019; Streefkerk et al., 2023). Other agent-based models
represent single water users, such as a person or household
(Schreinemachers and Berger, 2011; Wens et al., 2020; Becu
et al., 2003; Arnold et al., 2015). These models are better
suited to simulate individual adaptation pathways, which are
often paramount in capturing the heterogeneity of the farmer
population (Wens et al., 2020; e.g. Bert et al., 2011; Tam-
burino et al., 2020). Yet, to simulate the effect of a single
agent on the hydrological system, at least one HRU per agent
is required to properly represent system feedback at the in-
dividual level (Schreinemachers and Berger, 2011). Using a
gridded model, this means that the grid cell size cannot be
larger than the smallest farm. This requires a large computa-
tion time and computational resources, especially in regions
with smallholder farms. So far, this has limited the ability
of coupled models that capture the full heterogeneity of the
agent population to be effectively applied on a large scale.

We propose to resolve this issue by simulating hydrologi-
cal processes at the field scale using dynamically sized HRUs
within a grid cell, with each HRU representing a single farm.
Each farm-level HRU can be individually operated by an
agent. This way, each individual crop field is simulated as
a HRU in addition to other land use types. Due to their dy-
namic size (e.g. 1 unit for 50 % of the cell and 10 units each
representing 5 % of the cell), CWatM can be run at a rela-
tively coarse resolution, such as 30′′ (< 1 km at the Equator)
to simulate a large hydrological basin while allowing simula-
tion of small and individually operated farms. Because agents
can directly interact with these units (their fields), we can, for
the first time, investigate the interaction between small-scale
individual behaviour and large basin-wide hydrological pro-
cesses.

Therefore, we present the Geographical, Environmental,
and Behavioural (GEB) model, named after Geb, the Egyp-
tian god of the earth. The model is an agent-based model
(ABM) that is dynamically linked with a specifically adapted
version of the Community Water Model (CWatM; Burek et
al., 2020). GEB can simulate large-scale hydrological pro-
cesses as well as the individual behaviour of more than
10 million individual farming households one-to-one and
their bidirectional interactions with the hydrological system.
CWatM is used as a coupled model to simulate the hydro-
logical cycle at a grid resolution of 30′′ (< 1 km at the Equa-
tor). Individual farmer households (∼ 12.2 million on a nor-
mal laptop with 10 GB of free RAM) and reservoir opera-
tors are simulated as fully integrated agents that can dynam-
ically interact with (i.e. respond to and influence) the water
balance in CWatM. Through this coupling, each individual
farmer can, at a daily time step, decide to irrigate from vari-
ous sources (i.e. surface, reservoir, or groundwater). Further-
more, farmers can decide to plant and harvest crops based on
the available water in their environment, the status of their

crops, their risk aversion, crop price, water price, weather
conditions, etc. Moreover, farmers can adapt, for example,
by investing in water-saving techniques, drilling boreholes,
and changing crop type. All these decisions can be made at a
daily time step.

In this work, we describe how the open-source model
is set up, followed by an example application model in
the heavily managed Krishna basin, which encompasses
∼ 257 000 km2 or∼ 8 % of India’s land area. Here, we simu-
late the adaptive patterns to water stress of ∼ 12.1 million
farmers and show how adaptation through irrigation effi-
ciency and crop choice can influence both individual farm-
ers as well as the hydrological system through various arti-
ficial storylines. All model code is extensively documented
on https://jensdebruijn.github.io/GEB/ (last access: 2 May
2023).

2 Model description

The GEB model is an open-source coupled hydrological and
agent-based model jointly developed at the International In-
stitute for Applied Systems Analysis (IIASA) and the Insti-
tute for Environmental Studies (IVM, VU Amsterdam) and
developed in Python. The agent-based model can simulate
millions of individual farmers in addition to other agents that
interact bidirectionally with the hydrological CWatM model
(Burek et al., 2020). In this manner, GEB simulates the wa-
ter cycle and how this interacts with the individual decision-
making of farmers and water managers, such as crop man-
agement and growth, and irrigation and reservoir manage-
ment in large (or small) basins at a daily time step. The model
can be adapted to run various scenarios (Fig. 1), influenc-
ing the ABM (e.g. provision of subsidies to farmers or the
construction of additional reservoirs) or the water cycle (e.g.
varying future climate scenarios).

Figure 2 shows further detail on the main model interlink-
ages between the human and hydrological components. The
model consists of two dynamically integrated parts, which
run synchronized at a daily time step: a field-scale hydrolog-
ical model (blue; see Sect. 2.1 for details) and an agent-based
model that simulates crop farmers and reservoir managers
(orange; see Sect. 2.2 for details).

During each time step, the model is forced by a daily set
of meteorological data, considering the distribution of land
use and crops. Potential evapotranspiration is determined for
both cropland and non-cropland, which is followed by the de-
termination of both the water availability and potential de-
mand. Potential irrigation demand for non-paddy irrigation
is computed as the difference between current soil moisture
content and the soil moisture content at field capacity in the
root zone, limited by the infiltration capacity. The potential
irrigation demand for paddy-irrigated land is computed as the
difference between the current water level in the paddies and
the targeted water level. Here, reservoir operators can release
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Figure 1. GEB: high-level interaction between CWatM and the agent-based model. © OpenStreetMap contributors 2022. Distributed under
the Open Data Commons Open Database License (ODbL) v1.0.

Figure 2. A schematic overview of GEB.

water from their reservoir based on considerations such as
current demand and water levels. Then, after water consump-
tion by industrial, domestic, and livestock sectors, farmers
can abstract irrigation water.

Here, the calculation of water consumption is removed
from CWatM and is instead calculated in the agent-based
model, addressing irrigation behaviour, selection of crop
types, and assets and characteristics of individual agents.

These factors are not necessarily static over time, as agents
can invest in management options such as irrigation wells,
drip irrigation, or change crop types. Moreover, external bod-
ies such as governments and non-governmental organizations
(NGOs) can influence the behaviour of farmers and reservoir
operators by imposing regulations, providing knowledge to
the farmer population or investing in the wider availability
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of assets (e.g. create an irrigation reservoir). Knowledge can
also be obtained from other (neighbouring) agents.

After the application of irrigation water, CWatM simulates
infiltration, capillary rise within soils, groundwater recharge,
surface routing, and groundwater flow (using MODFLOW;
Langevin et al., 2017). Here, CWatM again communicates
with the reservoir operator agents to determine the amount
of water released downstream. Then, as a new time step is
initiated, each farmer can decide to plant or harvest crops
based on experience, assets, characteristics, knowledge, and
regulations. The land use classes in CWatM are then updated
accordingly. Finally, the next time step is initiated, starting
with meteorological forcing, as described above.

The model is implemented in Python 3, with all computa-
tionally intensive parts written in compiled Python libraries
such as NumPy (Harris et al., 2020) and Numba (Lam et
al., 2015), and it includes optional GPU vectorization of soil
components through CuPy. The model can be run on all ma-
jor platforms (i.e. Linux, Windows, and Mac). An optional
model interface is extended from Mesa (Kazil et al., 2020;
Fig. 3). A high-level description of the technical model in-
tegration can be found in Appendix A, while further details
can be found in the model documentation.

Simulating hydrological processes at the field scale

Most hydrological models implement several different land
use types (e.g. Burek et al., 2020; Sutanudjaja et al., 2018;
Müller Schmied et al., 2021). In these models, soil processes
in all land use types are simulated individually. Runoff and
several other hydrological fluxes are then computed by ag-
gregating to the grid cell level while considering the rela-
tive size of each land use type in a grid cell. In other words,
each land use type within a grid cell is simulated as a HRU
(Flügel, 1997; Chaney et al., 2016). Farmers usually occupy
cropland land use types such as non-irrigated land, paddy-
irrigated land, and non-paddy irrigated land (Burek et al.,
2020; Sutanudjaja et al., 2018; Hanasaki et al., 2018; Alcamo
et al., 2003). When a single land use type within a grid cell
is occupied by multiple farmers, these farmers share a HRU
(i.e. hydrological environment) and are thus simulated as a
single unit (of multiple farmers).

This introduces an issue for agent-based models that focus
on the implementation of heterogeneous decision-making at
the field scale. For example, when two farmers share a HRU
and farmer no. 1 decides to irrigate while farmer no. 2 does
not, the soil moisture in the field of farmer no. 1 should in-
crease relative to the soil moisture in the field of farmer no. 2.
However, when both farmers share a HRU, the soil moisture
in their field cannot be separately simulated in the model.

The most straightforward solution is to run the model at a
higher resolution, such that the smallest field is simulated as
a single grid cell while larger fields are simulated as multiple
grid cells. However, as small farms of less than 1 ha make
up 72 % of global farms (Lowder et al., 2016), this solution

requires the use of grid cells that are less than 100× 100 m,
which would use an enormous amount of computational re-
sources, making the approach unfeasible in larger basins.

As a solution, we simulate the field of each farmer as a
single HRU and adapt CWatM to be able to work with these
HRUs (Fig. 4). In this concept, cropland land use types are
further subdivided into dynamically sized HRUs based on
the land ownership (or rent) of the agent (e.g. a farmer).
These HRUs can be independently operated by agents in the
ABM, such as farmers. In this manner, the land manage-
ment decisions (e.g. crop planting date and irrigation) and
soil processes (e.g. percolation, capillary rise, and evapora-
tion) are independently simulated in a HRU for each farmer,
thus allowing for simulation of multiple independently op-
erated farms within a single grid cell. These HRUs can also
be split, allowing, for example, for farmland expansion into
other land use types and the sale of (part of) a farmer’s land.

Each crop farm that is owned by a farmer is thus an in-
dividual HRU. An exception is when a crop farm is spread
across multiple grid cells, in which case it is represented by
multiple HRUs across those grid cells. However, as these
split HRUs are owned by a single farmer, management de-
cisions still affect all HRUs and thus the entire farm. In addi-
tion, each land use type that is not operated by crop farmers
in a grid cell is a separate HRU, thus operating independently
from other land use types, such as water areas, grasslands,
and forests.

While most primarily vertical hydrological fluxes (e.g. in-
filtration, percolation) occur within HRUs, river discharge
and groundwater flow are simulated at the grid cell level.
To this extent, conversion of fluxes between HRUs and grid
cells is required. Figure 5 shows how this works in practice,
similar to hydrological models that simulate multiple land
use types in a single grid cell, such as CWatM and PCR-
GLOBWB (Sutanudjaja et al., 2018). Runoff is first deter-
mined per HRU and then aggregated to the grid cell level
while considering the relative size of each HRU. Aggregated
runoff is then added to discharge, followed by solving the
kinematic wave equation at the grid cell level.

For the implementation in the Krishna basin, we selected
the region basin for the study using the globally available
MERIT Hydro elevation map (Yamazaki et al., 2019), which
was upscaled to 30′′ by using the iterative hydrography up-
scaling method (Eilander et al., 2021) and by subsequently
selecting all upstream cells of the Krishna River outlet. Other
routing maps, such as river slope and width, were obtained
similarly (Eilander et al., 2020). Reservoir and lake foot-
prints were obtained from the HydroLAKES dataset (Mes-
sager et al., 2016). If available, flood cushions and reservoir
volumes were obtained from the Andhra Pradesh WRIMS
(https://apwrims.ap.gov.in/, last access: 7 September 2021)
database. If not available, flood cushions were assumed to
be zero, while reservoir volumes were taken from the origi-
nal HydroLAKES data. Reservoir command areas were ob-
tained from the India Water Resources Information Sys-
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Figure 3. Optional model interface. The model can be run for one more time step, and one can show all model variables on a map. Here, the
land use type is shown. The red dots represent farmer agents. Optional line charts can be added to show variables like discharge and mean
groundwater level over time. For visualization purposes only, a small subbasin northwest of Pune (Maharashtra) is shown here. Land use
map is derived from Jun et al. (2014).

Figure 4. In this figure, 3× 3 grid cells are shown, delineated by horizontal and vertical black lines (30′′ resolution). Panel (a) displays
various land use types at 20 times higher subgrid resolution, panel (b) shows the crop farms owned by agents, and panel (c) shows the
resulting HRUs. Each contiguous area of one colour in panel (b) represents a farm, while each contiguous area of one colour in panel (c)
represents a HRU. One exception is non-crop HRUs of the same land use type within a grid cell, which belong to one HRU (e.g. all rivers
within a grid cell are 1 HRU). Crop farms owned by one farmer that cross grid cell boundaries are represented by multiple HRUs; see, for
example, the crop farm in the centre of the red circle. Land use map is derived from Jun et al. (2014).

tem (India-WRIS, https://indiawris.gov.in/wris/, last access:
7 September 2021) and manually linked to the previously
obtained reservoir using satellite imagery. Reservoir opera-
tor agents are assumed to release a maximum fraction of the
current reservoir volume for irrigation, limited by the irriga-

tion demand in the command area. Land use was obtained
at 30 m resolution from GlobeLand30, downscaled to 1.5′′

and mapped to CWatM land use types. Pixels that were clas-
sified as “waterbody” in GlobeLand30 and all cells with at
least 100 km2 upstream area were classified as “water cov-
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Figure 5. Schematic overview of the implementation of farm-level
HRUs. Here, a grid cell consists of four HRUs: one water-covered
area, two crop farms, and one grass-covered area (see coloured
land use types). Runoff is determined per HRU and then aggregated
by considering the relative size of the HRUs to compute runoff for
the entire grid cell.

ered area” in CWatM. All other input data were obtained
from CWatM input maps at 5′ resolution and downscaled to
30′′ for CWatM input. The groundwater MODFLOW model
is defined by an orthogonal grid at a 1000 m resolution. Only
one homogeneous unconfined aquifer layer is considered.
One pumping well is set up in each MODFLOW cell to sat-
isfy the water demand from farmers and other sectors.

Water demand and consumption for industrial, domestic,
and livestock sectors are estimated using the approach de-
veloped by Wada et al. (2011) and are then downscaled to
the size of the HRUs by distributing the demands over cells
with relevant land uses: grassland for livestock demands and
sealed area for industrial and domestic demands. The model
was forced with GSWP3 (Dirmeyer et al., 2006), provided as
part of ISIMIP3a (Warszawski et al., 2014).

3 Model application

Here, we show the application of the model in the heavily
managed Krishna basin in India, simulating the behaviour of
more than 12 million farmers and the water system. With a

size of roughly 8 % of India’s land area, the Krishna basin
in India (Fig. 6) is a complex socio-ecological system ex-
periencing several sustainability and equity challenges par-
ticularly related to water resources management. For exam-
ple, some farmers have access to large amounts of irrigation
water, leading to dropping groundwater tables in the entire
region, affecting small farmers without a (deep) well dis-
proportionately. The basin is important for agricultural pro-
duction while being exposed to floods, droughts, and drop-
ping groundwater tables (Surinaidu et al., 2013). A large
number of reservoirs with a total volume of approximately
42×109 m3 (∼ 20 % of annual rainfall) were built primar-
ily for irrigation purposes. Farmers in a reservoir command
area can access the reservoir water that is distributed through
a system of canals. In addition, following the Indian Agri-
culture Census (http://agcensus.dacnet.nic.in/, last access: 7
October 2022), approximately 8 % of farmers have access to
groundwater through a well, depending on the farm size and
location. The mean farm size is ∼ 1.5 ha. Soils largely con-
sist of clay, silt, and sand. The predominant rock type found
in the Western Ghats is basalt.

3.1 Agents

The ABM has farmer (Sect. 3.1.1) and reservoir opera-
tor agents (Sect. 3.1.2), which can make autonomous de-
cisions affecting the hydrological system as well as each
other. Farmers and reservoir operators directly interact with
CWatM.

3.1.1 Farmers

Farmer initialization

First, an initial agent population needs to be generated with
heterogeneous characteristics similar to the real population
living in the basin. As with most agent-based models, and in
particular large-scale models, we do not have specific infor-
mation for every person. Therefore, we generate a synthetic
population of farmers which has statistically similar proper-
ties to the real population (income, irrigation type, household
size, etc). These statistics are based on available survey data
combined with regional marginal statistics using the iterative
proportional fitting algorithm (IPF; Fig. 7). For the imple-
mentation in the Krishna basin, the IPF algorithm reweights
survey data from the India Human Development Survey
(IHDS; Desai et al., 2005) such that the overall distribution
of the adjusted survey data fits the marginal distributions of
farm sizes and crop types at subdistrict-level based on the In-
dian Agriculture Census (https://agcensus.dacnet.nic.in/, last
access: 7 October 2022). Here, we consider all crops that
are grown by at least 2 % of the farmer population. Because
farmers with multiple crop types throughout the year are
counted multiple times in the census, an adjusted version of
IPF is used (Appendix B). In this manner, a heterogeneous
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Figure 6. Outline of the Krishna basin in India. © OpenStreetMap contributors 2022. Distributed under the Open Data Commons Open
Database License (ODbL) v1.0.

Figure 7. Schematic overview of the iterative proportional fitting (IPF) algorithm.

population of 12.2 million farmers is generated with the fol-
lowing characteristics: household size; crop type in kharif,
rabi, and summer seasons; irrigation type; daily non-farm in-
come; and daily consumption per capita.

Next, the farmer population is randomly distributed within
their subdistrict on farmland as specified in GlobeLand30
(Jun et al., 2014), at a 1.5′′ resolution (i.e. 20 times higher
resolution than the CWatM grid;< 50 m at the Equator). The
smallest field size is thus approximately 0.25 ha.

Cropping

The generated farmer agents grow the following crops: pearl
millet, groundnut, sorghum, paddy rice, sugar cane, wheat,
cotton, chickpea, maize, green gram, finger millet, sunflower
and red gram. Each crop has four growth stages (d1, . . .,d4).
The crop factor (Kc) is then calculated based on the follow-
ing equation (Fischer et al., 2021):
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Kct =
Kc1, t < d1
Kc1+ (t − d1)× Kc2−Kc1

d2 , d1 ≤ t < d2
Kc2, d2 ≤ t < d3
Kc2+ (t − (d1+ d2+ d3))× Kc3−Kc2

d4 , otherwise;

(1)

where t is the number of days after the crop has been planted,
and d1 to d4 represent the length of each crop stage. At the
harvest stage, actual yield (Ya) is calculated using a refer-
ence yield (Yr; Siebert and Döll, 2010), the water-stress re-
duction factor (KyT), and the ratio of actual evapotranspi-
ration (AET) to potential evapotranspiration (PET) over the
entire growing period (Fischer et al., 2021).

Ya = Yr×

(
1−KyT×

(
1−

∑t=h
t=0AETt∑t=h
t=0PETt

))
(2)

All crop-specific factors used in Eqs. (1) and (2) can be found
in Table C1.

Farmer income and expenses

After harvesting, it is assumed that farmers sell their crops
for the state-wise market price for that month. Historic
monthly market prices are obtained from Agmarknet (https:
//agmarknet.gov.in/, last access: 27 July 2022) for all crops
except sugar cane. For sugar cane, which is brought directly
to sugar cane mills, it is assumed that farmers receive the
yearly indexed fair and remunerative price (FRP). These
prices are fixed by the government. Yearly cultivation costs
(e.g. purchasing seeds, manure, labour cost, annual deprecia-
tion) per hectare per crop type are obtained from the Ministry
of Agriculture and Farmers Welfare (https://eands.dacnet.
nic.in/Cost_of_Cultivation.htm, last access: 15 July 2022).
Additional farmer income is obtained (e.g. from non-farming
work) from the IHDS survey data. Similarly, living expenses
are calculated from the daily consumption per capita in each
household and household size, both available from the IHDS
survey. Finally, disposable income is calculated by subtract-
ing income and expenses.

Irrigation

During the model run, when a farmer F has irrigation equip-
ment and is cultivating a crop, they irrigate the HRUs they
own (Fig. 8).

Agents are allowed to abstract water first on a first-come,
first-served principle, starting with upstream agents as deter-
mined by their elevation. As agents have no incentive to con-
sider environmental flow conditions, these are not enforced.
Farmer irrigation demand (dem) is determined by the differ-
ence between field capacity (FC) and soil moisture (SM) and
is limited by infiltration capacity (IC). If farmers have ac-
cess to the right equipment for surface (Fsw), reservoir (Fres),
and groundwater irrigation (Fgw), irrigation demand (dem)

is then satisfied (Eq. 3), first from surface water (Eq. 4), then
from reservoirs (Eq. 5), and finally from groundwater (Eq. 6).
All sources are limited to current water availability from the
streamflow (availsw) in grid cell G, reservoirs (availres) that
supply the command area of grid cell G, and groundwater in
grid cell G. In addition, farmers only have access to water
resources if they have the relevant irrigation equipment.

demHRU =min(FCHRU−SMHRU, ICHRU); (3)
irrHRU,sw ={

0, Fsw = False
min

(
demHRU, availsw,G

)
, Fsw = True; (4)

irrHRU,res ={
0, Fres = False
min

(
demHRU− irrHRU,sw, availres

)
, Fres = True; (5)

irrHRU,gw ={
0, Fgw = False
min

(
demHRU− irrHRU,sw− irrHRU,res, availgw,G

)
, Fgw = True; (6)

When a farmer decides to irrigate, the water is subtracted
from the relevant sources in CWatM and then applied to the
land in the relevant HRU.

The planting and harvesting dates are dependent on crop
type and growing pattern. Once the farmer decides to har-
vest their crop, the respective HRU is set to “barren land”
in CWatM. Then, as the farmer decides to plant a new crop,
the land use type is changed accordingly in CWatM (e.g. to
“irrigated”).

Investing in irrigation wells

On the first day of each year, farmers can choose to invest
in an irrigation well to improve their ability to irrigate their
land. Here, we use the expected utility theory (e.g. Schrieks
et al., 2021) to assess whether farmers make such an invest-
ment. Due to the strong social network effects (e.g. Tripathi
and Mishra, 2017), we consider that farmers assess the poten-
tial benefit of installing an irrigation well based on the profit
of neighbouring farmers with an identical cropping pattern
but with an existing irrigation well. More specifically, we
first calculate the farmer “profit ratio” (rown) [0–1], defined
by the ratio of actual profit to potential profit given abun-
dant water (i.e. actual evapotranspiration is equal to potential
evapotranspiration). Each farmer without an irrigation well
compares their profit ratio to the profit ratio of 10 nearby
farmers with an identical cropping pattern but no irrigation
well (rneighbours). The benefit of installing an irrigation well
is then calculated by multiplying the difference by the cur-
rent crop price (P ) and reference yield (Yr). Similarly, costs
for well installation are calculated by considering the costs of
a loan for that amount (Yr), considering loan duration in years
(n), the current interest rate (i), and yearly upkeep cost (U ).
Finally, incremental profit (1π ) is determined by subtracting
costs and benefits. If1π is positive, the farmer invests in the
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Figure 8. Farmer irrigation procedure; see also Eqs. (3)–(6).

irrigation well.

1π = P ×Yr ×
(
rneighbours− rown

)
−

(
C

n
+C× i+U

)
The interest rate is set to the lending interest rate in India
for that year (https://data.worldbank.org/indicator/FR.INR.
LEND?locations=IN, last access: 3 January 2023); tube well
installation and maintenance costs for the year 2008 are set
at INR 146 000 and 3000 per hectare, respectively (Sharma
et al., 2008), and corrected for inflation for other years. Loan
duration is set to 10 years, following offerings of several
major agricultural banks in India. Finally, it is determined
whether current disposable income is sufficient to pay for the
loan. All installed wells are assumed to be 30 m deep.

3.1.2 Reservoir operators

The reservoir operator agents communicate with farmer
agents in their reservoir command area on a daily basis and
release the requested water for irrigation purposed, maxi-
mized by a maximum percentage of the current reservoir wa-
ter volume. As upstream farmers get to abstract water first,
this can lead to limited access to reservoir water for farmers
at the tail end of command areas. The amount of water re-
leased for other purposes (e.g. maintaining outflow, reducing
water level) depends on the rating curve of the reservoir and
relevant flood cushions (Burek et al., 2020).

3.2 Calibration and validation

The model is calibrated based on daily river discharge from
the India Water Resources Information System (WRIS) for
the Wadenepally station in the Krishna River, nearby the
river outlet, roughly 60 km upstream of Vijayawada. Cali-
bration is performed based on several hydrological param-

eters (Burek et al., 2020), as well as the maximum amount
of water released from a reservoir for irrigation purposes on
a given day, the normal reservoir outflow, and the irrigation
return fraction. Using the NSGA-II genetic algorithm (Deb
et al., 2002), as implemented in DEAP (Fortin et al., 2012),
the calibration procedure optimizes the modified version of
the Kling–Gupta efficiency score (KGE; Eq. 5; Kling et al.,
2012):

KGE′ = 1−
√
(r − 1)2+ (β − 1)2+ (γ − 1)2, (7)

where r is the correlation coefficient between monthly sim-
ulated and observed discharge, β = µs

µo
is the bias ratio, and

γ = CVs
CVo
=

σs/µs
σo/µo

is the variability ratio; r , β, and γ are all
optimal at 1.

The period 2004–2006 is used as a spin-up period, the pe-
riod 2006–2012 is used for calibration, and the period 2012–
2019 is used for validation. The genetic calibration algorithm
first generates 60 parameter sets within a predefined range
of plausible options (i.e. “the population”), and the model is
subsequently run for each parameter set (i.e. “individual”).
The 10 most optimal parameter sets are then combined (i.e.
“mated”) with a probability of 0.7 or altered (i.e. “mutated”)
with a probability of 0.3 to create 12 new parameter sets for
which the model is also run. This procedure is repeated for
10 iterations (i.e. “generations”), and the most optimal pa-
rameter set is selected. This set is then re-run until the year
2019, and the KGE score is calculated for 2013–2019 for
validation.

4 Results and discussion

Figure 9 shows observed versus simulated discharge (in
m3 s−1) for the calibration model. The KGE during the cali-
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Figure 9. Observed versus simulated discharge for the calibrated
model.

bration period is 0.810, while the KGE during the test period
is 0.834 (1 is optimal), showing a good calibration perfor-
mance for the model during both periods.

Figure 10 shows irrigation from channels, reservoirs, and
groundwater for all agents for the Krishna basin. The insets
show the detailed heterogeneous quantities at the field scale
for a small portion of the basin. Yet, on the larger scale, it
is clearly visible that farmers along rivers and within reser-
voir command areas have better access to water for irrigation.
Differences in irrigation quantities from various sources are
explained due to the location of farmers (and hence access to
water from various irrigation sources), crop types, irrigation
equipment, etc. For example, farmers without an irrigation
well cannot access the groundwater and thus can irrigate less,
while farmers with sugar cane are expected to irrigate more
than other farmers.

In Fig. 11, we show how several variables change over
time for specific scenarios, with the aim of showing how the
model behaves. In the baseline scenario, farmers that have
access to a reliable irrigation well have a 20 % probability
of switching to sugar cane, a crop that generally ensures a
higher income but also uses a lot of water. Here, we define a
reliable irrigation well as a well that has not fallen dry in the
last 3 years. The resulting mean annual discharge is shown
in panel (a), while the number of farmers with sugar cane in
each state gradually increases over time, as shown in panel
(b). Similarly, the number of wells increases over time (panel
c), due to investment in irrigation wells (see Sect. “Irriga-
tion”). Panels (d) and (e) show the amount of irrigation from
the groundwater and total irrigation from all sources. Be-
cause of the increasing number of irrigation wells, as well
as other factors, groundwater abstraction generally outpaces
recharge, and thus the groundwater table decreases in all four
states. The mean reservoir storage also decreases over time.
However, profit, when adjusted for inflation, decreases over
time (panel h) as less water is available for farmers and prices

increase for crops at the market (e.g. 83 % increase in aver-
age price at the crop market for the analysed crops for Maha-
rashtra, while general prices are 122 % higher). Finally, pan-
els (i) and (j) show how the number of irrigation wells and
profit change for farmers practicing small- and larger-scale
farming. Here, smallholder farmers are the 50 % of farmers
with the smallest fields, while farmers practicing large-scale
farming are those with the 50 % largest fields. It is clear that
smallholder farmers have less irrigation wells (panel i) at the
beginning of the run but also can invest less in irrigation wells
due to their limited income compared with farmers practicing
large-scale farming (Sect. “Irrigation”). This is also reflected
in the profits. The relative increase in profits is approximately
2 % higher for large farms over the entire simulation timeline.

In another hypothetical scenario called drip (see Fig. 11),
the state of Maharashtra, one of the upstream states, provides
subsidies to farmers, making 20 % of farmers switch to drip
irrigation each year, corresponding with a 90 % irrigation ef-
ficiency (Brouwer and Heibloem, 1986). Here, yearly dis-
charge (at the basin outlet) increases slightly in some years
(here: 2016 only), likely because most additional water is
used downstream due to the large number of reservoirs and
reservoir command areas downstream of Maharashtra. The
mean combined reservoir storage is slightly higher in this
scenario (panel g). Interestingly, the number of installed ir-
rigation wells (panel c) also goes up in Maharashtra, Kar-
nataka, and Telangana, likely because fewer wells fall dry.
This means that the benefit of having an irrigation well in-
creases (mostly Maharashtra), and the means to invest in an
irrigation well also increase due to higher water availability
and thus higher yield (mostly Maharashtra and Karnataka).
In Karnataka and Telangana, this even leads to a slight de-
crease in the water table.

While some adaptation options are considered here, addi-
tional adaptation options could be considered at a later stage
such as crop switching and rainwater harvesting (Tamburino
et al., 2020). Moreover, other factors can be included, such
as threat appraisal (e.g. perception of drought risk), the cop-
ing appraisal of individual farmers (e.g. knowledge, infor-
mation, and financial resources; Wens et al., 2020; Schrieks
et al., 2021; Streefkerk et al., 2023), an extension of farmer
networks (Wens et al., 2020), and collective adaptation be-
haviour by farmer cooperatives. In addition, model param-
eterization could benefit from the automatic delineation of
smallholder fields using machine learning (Waldner and Di-
akogiannis, 2020) and the recognition of crop types at the
field scale (Gumma et al., 2020) when such datasets become
freely available in the future.

5 Conclusions

Here, we present a coupled agent-based hydrological model
which for the first time allows for simulation of millions
of individual households and their bidirectional interactions
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Figure 10. Average daily irrigation from channels, reservoirs, and groundwater.

Figure 11. Yearly simulation results for baseline scenario and scenario with investment in drip irrigation.

with the hydrological system while assessing large-scale hy-
drological processes. By combining survey data and aggre-
gate statistics at the subdistrict level, the model uses a statisti-
cally representative population, considering the heterogene-
ity of the population and the spatial variability. The open-
source model is developed in Python, simulating more than
12 million farmers on an computer with 16 GB of RAM. By
adopting a fully distributed hydrological model with dynam-
ically sized field-scale hydrological response units (HRUs),
the model can effectively represent subsistence farmers, en-
suring that they can individually interact with the hydrologi-
cal model while keeping computational demands reasonable.

Using the model, we quantitatively show how farmer be-
haviour and the hydrological system are intricately woven
across both small and large scales. Changes in behaviour or
investment in irrigation measures affect hydrology and other
farmers locally, but they also affect river discharge and other
farmers further downstream. Effects are visible both in hy-

drological variables as well as farmer behaviour and profit.
Using a scenario where drip irrigation is promoted in an up-
stream state, we show how the effect of policies can be as-
sessed on local and large-scale processes across both the hy-
drological and human domains. This provides opportunities
to study large- and small-scale socio-hydrological processes
simultaneously in large river basins worldwide. Moreover,
capturing the full heterogeneity of the farmer populations al-
lows for investigation of equity issues, particularly related to
distributional justice.

The agent-based model can be separately coupled to other
hydrological models, assuming the hydrological model fa-
cilitates simulation of field-scale hydrological processes. Al-
ternatively, at the price of losing the ability to fully capture
heterogeneity of human processes, the ABM can be adapted
to simulate aggregated agents within a grid cell, facilitating
coupling to other hydrological models that do not support
field-scale hydrological simulation. Similarly, the adapted
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version of CWatM, which now simulates field-scale hydro-
logical processes, can be coupled to other ABMs.

Future studies could include additional adaptation mea-
sures to make the model more realistic and further in-
vestigate how policies and infrastructural projects, such as
through reservoir construction and management, water/elec-
tricity pricing (Parween et al., 2021), water rights (Nouri et
al., 2019a), and enforcing specific crop types (Wallach, 1984)
can affect the human–natural system. As humans play a key
role in the environment, the human component of GEB can
also be central in coupling further models, e.g. to economic
models or land use change models (Dou et al., 2020), allow-
ing us to investigate the land–water–food use nexus. In addi-
tion, coupling GEB to a hydrodynamic model such as DIM
(Farrag et al., 2021) would allow us to investigate the inter-
actions between human behaviour and flood and drought risk
(Ward et al., 2020). Finally, the integration of future scenar-
ios such as climate change, population growth, and exoge-
nous land use can be used to project how the coupled human–
natural system changes in the future.

Computational requirements

The model for the entire Krishna basin can be run on a com-
puter with 16 GB of RAM. Model run time was ∼ 10 s per
daily time step (i.e. ∼ 1 h for 1 year) using a single core on
an AMD EPYC 7302 while requiring no more than 7 GB
of RAM and an 8 GB RTX1070 GPU. Without GPU, the
run time was ∼ 30 s per time step while requiring 12 GB of
RAM. Model run time and requirements scale near-linearly
with basin size, assuming identical farm sizes. Larger farm
sizes reduce the requirements, while smaller farms increase
the requirements. In the implementation in the Krishna basin
as shown here, the average farm size is 1.6 ha.

Appendix A

This section discusses the coupling between the ABM and
hydrological model, serving as both an explanation to how
the coupling has been performed in GEB and, if required, al-
lowing the reader to couple their hydrological model to the
ABM or the ABM to their hydrological model. The ABM
can be found in the GEB repository (https://github.com/
jensdebruijn/GEB, last access: 14 February 2023), while the
adapted version of CWatM (see Sect. 2.1) can be found in
the ABCWatM repository (https://github.com/jensdebruijn/
ABCWatM, last access: 14 February 2023). Because both
models are written in Python, the coupling is performed by
creating a Python class, which subclasses both models while
synchronizing their time steps. By subclassing both models,
both models can access variables from the other model, and
functions can be adapted, allowing the models to communi-
cate during each time step.

The model class first loads the configuration file (de-
fault: “GEB.yml”) which contains configuration parameters
for both models, such as the start and end dates of the sim-
ulation. Then, the shared data class (“self.data”) is loaded,
which contains all data that are shared between the models.
The data class loads the study area and automatically creates
the grid and HRUs using the given land use and farm map
(see Sect. 2). This class also contains convenience functions
to convert data between the grid and HRUs (e.g. adding up
runoff for individual HRUs to the grid level). An example is
given in Fig. A1.

Then, the agent-based model is initialized with agent at-
tributes (see Sect. 2). For farmers, this consists of a raster
map that indicates the area that is managed by a specific
farmer, the locations of the farms (e.g. the centre point of
the each farmers field), and other attributes, such as crop
type, cropping schedule, and irrigation status. Subsequently,
CWatM is initialized as per Burek et al. (2020) while loading
initial land use and crop parameters from the ABM.

After initialization, the (daily) time steps of the ABM
and the hydrological model are synchronized. First, farm-
ers make decisions based on the current conditions (e.g.
planting, harvesting, investing), followed by the hydrologi-
cal model which simulates hydrological processes, includ-
ing water demand. For all sectors excluding crop farming,
water demand is simulated as exogenous input. However,
for crop water, demand and consumption are determined by
the ABM. To this extent, CWatM calls a function (i.e. “ab-
stract_water()”) in the ABM that determines these demand
and consumption rates using current soil moisture content;
available water from surface, reservoir, and groundwater;
and farmer characteristics such as irrigation equipment, crop
type, and location.

Appendix B

The iterative proportional fitting (IPF) algorithm reweights
the sample weights from survey data in such a way that the
aggregate statistics of the reweighted survey data match those
of the marginal distributions. To do so, it is required that be-
fore initialization of the algorithm the sum of initial weights
matches the marginal distribution (e.g. when there are 500
women and 500 men in the marginal distribution, the sum
of the initial weights must be 1000). However, here one of
the statistics we use is crop type. In the synthetic population,
we require crop type per agricultural season (i.e. kharif, rabi,
and summer). In the IHDS, this is specified accordingly but
not in the Indian Agricultural Census. Here, only the total
area per crop is specified. If a farmer uses different crops per
season, the area is counted twice. In the IPF procedure, it is
thus required to combine the crops from the survey data and
then fit the combined crops to the census data, which means
that the total number of crops is higher than the total number
of farmers (assuming at least one farmer is multi-cropping
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Figure A1. A simplified code example of the conversion between hydrological response units (HRUs) and the grid.

in the region. To this extent, we adapt the IPF procedure in
three ways to ensure correct fitting:

1. Entries in the survey data are reweighted based on the
mean target for all crops within that entry. For exam-
ple, to obtain the correct values at the tehsil level, sugar
cane needs to be multiplied by 2.0, while rice needs to
be multiplied by 0.8. In that case, the weight attributed
to a farmer who grows both sugar cane and rice is multi-
plied by 1.6 (i.e. 2.0× 0.8), while the weight attributed
to another farmer who only grows rice is multiplied by
0.8.

2. A learning rate is introduced, meaning that the reweight-
ing is not done at once, but changes are gradual follow-
ing the learning rate. Here we set the learning rate to
0.1.

3. After reweighting all farmers, the entire survey is
reweighted to ensure that the total number of farmers
is still identical to the initial number of farmers.

Appendix C

Table C1 displays the crop growth stages, crop factors, and
water-stress reduction factors for all crops included in the
implementation in the Krishna basin.

Table C1. Crop growth stages, crop factors, and water-stress reduc-
tion factors.

Crop d1 d2 d3 d4 Kc1 Kc2 Kc3 KyT Yr

Pearl millet 10 25 40 25 0.3 1 0.3 0.9 800
Groundnut 20 30 30 20 0.4 1.15 0.6 0.7 850
Sorghum 10 25 40 25 0.3 1.05 0.55 0.9 1500
Paddy 15 20 45 20 1.05 1.2 0.9 2 1200
Sugarcane 9 15 47 29 0.4 1.25 0.75 1.2 15 000
Wheat 15 25 40 20 0.3 1.1 0.3 1.15 1000
Cotton 15 25 50 10 0.35 1.15 0.7 0.85 550
Chickpea 20 30 30 20 0.4 1.05 0.35 1.15 600
Maize 15 30 40 15 0.3 1.2 0.35 1.25 2400
Green gram 20 30 30 20 0.4 1.05 0.35 1.15 600
Finger millet 10 25 40 25 0.3 1 0.3 0.9 800
Sunflower 15 30 40 15 0.35 1.05 0.35 0.95 400
Red gram 20 30 30 20 0.4 1.05 0.35 1.15 600

Code availability. All model code is available for the cou-
pled model (https://github.com/jensdebruijn/GEB, last access:
14 February 2023, https://doi.org/10.5281/zenodo.7820962;
de Brujin, 2023a), for the adapted version of CWatM
(https://github.com/jensdebruijn/ABCWatM, last access: 14
February 2023, https://doi.org/10.5281/zenodo.6817569; de
Brujin, 2023b), and for the agent-based modelling environment
(https://github.com/VU-IVM/honeybees, last access: 14 February
2023, https://doi.org/10.5281/zenodo.7820973; de Brujin, 2023c).

Data availability. All input data for GEB can be obtained from the
original data source as described in the documentation. Scripts for
downloading and processing data are provided in the “preprocess-
ing” folder. Data for CWatM are similarly described in the docu-
mentation and can also be obtained from the IIASA FTP server.
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