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Abstract. Climate modelling requires spending an extensive
amount of time programming, which means reading, learn-
ing, testing, and evaluating source code. Fortunately, many
climate models have been developed within the past decades,
making it easier for climate studies to be conducted on a
global scale. However, some climate models have millions of
code lines, making the introduction of new parameterizations
a laborious task that demands teamwork. While it is true that
the high-complexity models perform realistic climate sim-
ulations, some researchers perform their studies using sim-
plified climate models in the preliminary test phases. This
realization motivated the development of Daily INSOLation
(DINSOL-v1.0), a robust computer program to support the
simplified climate models, performing solar radiation calcu-
lations while considering Milankovitch cycles and offering
various simulation options for its users. DINSOL was in-
tended to function as a program that supplies data (e.g. daily
insolation, instantaneous solar radiation, orbital parameters
of the Earth, and calendar dates), such as the Paleoclimate
Modelling Intercomparison Project (PMIP). While preparing
the boundary conditions of solar radiation for climate mod-
els, it was realized that the DINSOL model could also be
a helpful tool for use in classrooms. Thus, it was decided
that an intuitive graphical user interface would be required
to cater to this educational purpose. The model was written
in the Fortran 90 language, while its graphical user interface
would be built using PyGTK, a Python application program-
ming interface (API) based on GIMP ToolKit (GTK). Fur-
thermore, the R language would also be used to generate a
panel containing contour fields and sketches of the orbital
parameters to support the graphical execution. The model
evaluation made use of data from PMIP and other tools, and
the data analysis was performed through statistical methods.

Once all tests were concluded, an insignificant difference be-
tween the DINSOL-obtained results and the results obtained
from other models validated the viability of DINSOL as a
dependable tool.

1 Introduction

In paleoclimatology, greenhouse gases (GHGs) and other cli-
mate features, such as air temperature, can be estimated us-
ing indirect methods (e.g. ice cores, speleothems, tree rings,
lake and marine sediments, glacier fluctuations) (Klippel
et al., 2020). Paleoclimatology also investigates the effect
that changes in the orbit of the Earth has on the incoming
solar radiation (ISR). GHGs are vital because they affect the
net radiation by increasing or decreasing the heat trapped in
the atmosphere. Therefore, fluctuations in ISR or GHGs af-
fect the global energy balance, meaning that they are factors
in global climate change (Menviel et al., 2019; Lhardy et al.,
2021). Berger (2021) details how a century ago, Milutin Mi-
lankovitch proposed a revolutionary approach to explaining
the quasi-periodic occurrence of ice ages from caloric sea-
son measurements. It was because of his contributions that
he has been considered to be the father of paleoclimate mod-
elling. Thus, the conceptual climate model developed and
adopted by Milankovitch assumed that ISR changes hap-
pened due to cyclic oscillations of the Earth’s orbital param-
eters (EOPs): obliquity, eccentricity, and precession of the
equinox. From Puetz et al. (2016), the initial Milankovitch
theory was treated with scepticism due to previous theories
on what causes ice ages, theories relating to the ejection of
volcanic dust content in the atmosphere, as well as the cyclic
changes in the magnetic field of the Earth.
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Berger (2021) states that the most important books pub-
lished by Milankovitch are Théorie mathématique (1920)
and Kanon der Erdbestrahlung (1941). In these books and
other literature, Milankovitch used EOP data previously cal-
culated, adopting Stockwell–Pilgrim values from the theoret-
ical investigations on ISR and ice ages. In accordance with
Crucifix et al. (2009), besides Milankovitch, other authors
investigated the relationship between ice ages and ISR, the
most distinguished being André Berger, who developed a
practical method to calculate the EOPs from trigonometric
series. He also adopts the caloric seasons to investigate the
past climate as a function of the EOPs. In the 1970s, Berger
published papers (e.g. Berger, 1976, 1977, 1978a, b) that
consolidated the modern concepts of ISR modelling. Since
then, novel solutions for Earth’s orbit cycles have been de-
veloped (e.g. Laskar, 1988; Berger and Loutre, 1991; Laskar
et al., 1993, 2004, 2011).

Presently, the Paleoclimate Modelling Intercomparison
Project (PMIP) represents the best efforts of the scientific
community in paleoclimate reconstructions. PMIP is in its
fourth phase (PMIP4), with some studies ongoing and oth-
ers already been published (e.g. Jungclaus et al., 2017; Otto-
Bliesner et al., 2017; Kageyama et al., 2018; Menviel et al.,
2019). For instance, according to Brierley et al. (2020), PMIP
simulations suggest that during the mid-Holocene, the most
pronounced and robust monsoonal changes occurred over
northern Africa and the Indian subcontinent, where the sim-
ulated rain rate was 10 % greater than the pre-industrial
era (1850 CE). Therefore, climate reconstructions are cru-
cial to enhancing the hold on understanding of natural forc-
ings. Moreover, the Coupled Model Intercomparison Project
(CMIP) is capable of handling various scenarios, consider-
ing natural and anthropogenic forcings, and reducing the un-
certainties in climate projections (Eyring et al., 2016). Fur-
ther, the Intergovernmental Panel on Climate Change (IPCC)
is responsible for announcing the CMIP scenarios through
assessment reports, focusing mainly on providing readable
summaries for policymakers (Fischer et al., 2020).

In recent years, useful tools to aid in calculating the EOPs
and insolation were developed, tools like PALINSOL, an
R package written by Michel Crucifix that adopts Berger
(1978b), Berger and Loutre (1991), and Laskar et al. (2004)
solutions. Another tool is the Earth Orbit v2.1, a MATLAB
program created by Kostadinov and Gilb (2014) to calcu-
late the EOPs according to the Berger (1978b) and Laskar
et al. (2004) methodologies. PALINSOL and other simi-
lar Fortran programs written by André Berger are avail-
able to download by the Université Catholique de Louvain
(UCLouvain) through the Earth and Life Institute web page
(https://www.elic.ucl.ac.be/modx/index.php?id=83, last ac-
cess: 21 January 2023).

Even though we have pre-existing programs to calculate
the ISR following the Milankovitch cycle theory, they were
developed to cater to different purposes and kinds of users.
For instance, the PALINSOL package assumes that users al-

ready know how to program in the R language, which could
be an obstacle for students at the beginner level. Thus, Earth
Orbit v2.1 could be an alternative to get around the program-
ming skill requirement as it can be executed using a user-
friendly graphical user interface (GUI). Even still, it is ex-
pected that the Earth Orbit v2.1 users buy a MATLAB li-
cence, which could be prohibitive to disadvantaged groups.
Furthermore, none of these programs were idealized to be ex-
ecuted from only one command line or clique and, from that,
prepare the boundary conditions of simplified climate mod-
els. Therefore, it would be helpful to have another software
option that works similarly to the pre-existent tools, but, ad-
ditionally, it should be free and not require any programming
language skills to execute simple tasks, such as computing
the daily insolation globally for a given year.

To achieve this goal, the Daily INSOLation (DINSOL-
v1.0) program was developed, intended to be an intuitive
and versatile tool ideal for paleoclimate simulations, such
as those performed on PMIP, and still helpful for educa-
tion purposes. From DINSOL, users can prepare solar radi-
ation as a boundary condition for simplified climate mod-
els quickly and flexibly. Moreover, the DINSOL source code
brings many comments, allowing advanced users to modify
and adapt it more intuitively than other tools. For instance,
introducing a new calendar option to compute the annual
daily insolation for an exoplanet is a simple task. Still, a stan-
dard execution offers users various input choices to run their
DINSOL simulations (e.g. year, solar constant, calendar, lat-
itudinal and longitudinal number points). It also includes a
GUI, with the GUI written in PyGTK, a Python program that
adopts the GIMP ToolKit (GTK) library. Basically, the DIN-
SOL source code is mostly a Fortran program because all its
important processes (e.g. data reading, taking decisions, cal-
culation, and writing results) were written using the Fortran
90 language. Besides PyGTK and Fortran 90, the model also
contains some script templates written in the R language to
assist its users in accessing computed solar radiation data.
The program has a GNU GPL v3.0 licence, which allows
users to modify, share, and improve it. For instance, DIN-
SOL was adapted to prepare ISR data for an energy balance
model used by Oliveira and Fernandez (2020).

Ultimately, the following sections describe the program
source code, giving a detailed explanation of the astronomi-
cal equations, ISR and EOP parameterizations, and input and
output data. The “Model evaluation: a short statistical anal-
ysis” section adopts PMIP and other data sources as a refer-
ence.

2 Astronomical aspects and model description

This section details the astronomical fundamentals required
to understand the DINSOL source code. The variables, con-
stants, and mathematical relations are explained in the sub-
sequent subsections.
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Figure 1. Heliocentrical coordinate sketch based on Berger (1978b)
and Berger et al. (2010). The orbital elements are denominated
Earth, E; Sun, S; the semi-major axis of the Earth’s orbit, a; perihe-
lion, P ; aphelion, A; vernal point, γ ; spring equinox, SE; summer
solstice, SS; autumn equinox, AE; winter solstice, WS; longitude of
the perihelion, $ ; longitude of the perigee, ω; true solar longitude,
λ; true anomaly, ν; and obliquity, ε. The SQ is perpendicular to the
ecliptic, and N is the north pole.

2.1 Main orbital elements and some formulas

The DINSOL model utilizes heliocentric coordinates, such
as in Berger (1978b) and Berger et al. (2010), and the most
important information on the Earth’s orbit is shown in Fig. 1.
From the first figure, we have some orbital elements and con-
stants for present day:

S0 = 1366 Wm−2

T = 365.2422 dyr−1

a v 150× 106 km
e = 0.016724
ε = 23.446◦

$ = 282.04◦

ω = 102.04◦ ,

where S0 is the solar constant, T is the tropical year, a is
the semi-major axis, and e is the eccentricity of the Earth’s
elliptical orbit. The longitude of the perihelion, $ , is kept
unchanged and is given from the vernal point (21 March) un-
til the perihelion day, and the longitude of the perigee, ω, is
$ added to 180◦. As shown in Fig. 1, the Earth’s orbital rev-
olution occurs anti-clockwise, while the equinox precession
occurs clockwise.

Regarding Fig. 1, the Earth’s obliquity representing the
equatorial plane, ε, is given by a cone perpendicular to the
ecliptic plane; the Earth–Sun distance, r , is measured in units

of the semi-major axis; and a is given by the ellipse equation:

ρ =
r

a
=

1− e2

1+ ecosν
, (1)

where the relative Earth–Sun distance, ρ, provides values for
an annual calendar, such as Fig. 2. The true anomaly, ν, is
measured anti-clockwise from the perihelion and given by
the equation ν = λ−$ , where λ represents the true solar
longitude. Equation (1) is given in Beutler (2005, p. 127).

The DINSOL model implements the methodology from
Berger (1978b), which solves λ in a few steps assuming that
the start day is the vernal equinox (21 March), where λ= 0.
Thus, we first need to find the mean longitude λm; however,
it is first necessary to calculate the λm0 using Eq. (2), where
β =

2√1+ e2, and e is the eccentricity.

λm0 = λ− 2
[(

1
2
e+

1
8
e3
)
(1+β)sin(λ−$)

−
1
4
e2
(

1
2
+β

)
sin2(λ−$)

+
1
8
e3
(

1
3
+β

)
sin3(λ−$)

]
(2)

Finally, λ is calculated using Eq. (3), implementing a loop
that solves λ over 1 year. However, for the first day (first it-
eration), the model requires the λm0 value obtained previ-
ously from Eq. (2), where we assume λm = λm0, to be em-
ployed. Hence, in the proceeding days, λm must be calcu-
lated from a simple increment equation given by the formula
λm(i) = λm(i−1)+ 360/Nd, where Nd represents the number
of days within 1 year. In DINSOL, two annual calendars are
available, a 365 and 360 d calendar.

λ= λm+

(
2e−

1
4
e3
)

sin(λm−$)+
5
4
e2 sin2(λm−$)

+
13
12
e3 sin3(λm−$) (3)

Figure 2 represents the annual variation in Earth–Sun dis-
tance, ρ, for the present day. Furthermore, the data used to
plot ρ were simulated using DINSOL, solving Eqs. (1) to (3).
A calendar conversion was initialized with a starting date of
1 January instead of 21 March. The subsequent section con-
tains all the details of the calendar conversions in the source
code.

2.2 Defining the calendar dates

The daily insolation algorithm used in Berger (1978b) uses
classical astronomical equations, where the year is initial-
ized from spring equinoxes, like the solar Hijri calendar,
also known as the Persian or Iranian calendar. The Per-
sian calendar accurately calculates the length of a season
due to the use of the true solar longitude, λ, which works
on elliptical coordinates, like in Kepler’s laws. Although
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Figure 2. Relative Earth–Sun distance, ρ, over 1 year in astronom-
ical units (AU) for current days.

Berger (1978b) assumed 21 March to be the fixed date for
spring equinoxes, season dates oscillate over the years. For
instance, in Borkowski (1996), in the second half of the
21st century, the spring equinoxes will occur on 19 and
20 March. An online program offered by NASA can accu-
rately calculate the date of astronomical events using the Gre-
gorian calendar (https://data.giss.nasa.gov/modelE/ar5plots/
srvernal.html, last access: 21 January 2023). The Gregorian
calendar is lunisolar and assumes the temporal definition of
months and seasons, where the astronomical dates change
slowly (Joussaume and Braconnot, 1997). For instance, con-
sidering λ, the assumption is that seasons stay 90◦ from
one another along an elliptical orbit. Furthermore, a com-
mon challenge for paleoclimate simulations is the compari-
son of past and present climates, considering the differences
between calendars.

From Bartlein and Shafer (2019a), the number of days in
a month are not constant, which means that the first day of
each month might occur in a different position relative to
the current Gregorian calendar. For instance, in Joussaume
and Braconnot (1997), during the Eemian periods, the month
of January should have 34 d and start on 25 December rel-
ative to present days, which would be equivalent to 1 Jan-
uary. PMIP assumes the vernal equinox to be the time refer-
ence, keeping the current format of the Gregorian calendar
for any period, which allows variations in season length, as
well as changes in the aphelion and perihelion dates. From
this method, the models can compare the results of paleocli-
mate simulations by using the same calendar structure, as-
suming a standard format. A typical PMIP experiment as-
sumes a 365 d calendar, while intermediate-complexity cli-
mate models commonly work with a 360 d calendar.

The astronomical event dates (seasons, perigee, and
apogee) are functions of the changes in two orbital parame-
ters: eccentricity and precession of equinoxes. Furthermore,
it must be noted that DINSOL supports a 365 and 360 d cal-
endar. Consequently, it must be considered that the vernal

equinox (21 March) always occurs on the 80th day of a 365 d
calendar and on the 81st day of a 360 d calendar. Thus, a
modified version of Eq. (2) must be implemented assum-
ing a simple calendar conversion (solar to Gregorian calen-
dar), where estimation of the perihelion and aphelion dates is
made using Eq. (4).

Pd =−$ − 2
[(

1
2
e+

1
8
e3
)
(1+β)sin(−$)

−
1
4
e2
(

1
2
+β

)
sin2(−$)

+
1
8
e3
(

1
3
+β

)
sin3(−$)

]
, (4)

where Pd represents the perihelion day in a solar calendar,
and Pd can be converted for a day in the Gregorian calendar
if Eq. (5) is used. Still, the vernal point (21 March) is called
M21, which accepts the values 80 or 81 in concordance with
the chosen calendar, Nd = 365 or Nd = 360, respectively.

Pd =M21+ |Pd|
Nd

360
(5)

After obtaining Pd for a day of the year in the Gregorian
calendar, the aphelion day, Ad, can be determined by adopt-
ing Eq. (6):

Ad = Pd+
Nd

2
. (6)

The DINSOL model has a subroutine that converts the day
of the year to its correspondent month and day. Moreover,
beyond perihelion and aphelion dates, the start date of a sea-
son can be determined. A fixed date for the spring equinox
(21 March) must be assumed, λ= 0◦. Then, using the true so-
lar longitude, λ, the summer, autumn, and winter start dates
are known, at λ= 90◦, λ= 180◦, and λ= 270◦, respectively.
Hence, as is discussed in Sect. 2.1, λ must be solved using a
loop to determine the iterations corresponding to λ equal to
90, 180, and 270◦. Furthermore, the DINSOL model uses a
two-decimal precision, like in the PMIPII project. The calen-
dar function evaluation is provided in Sect. 3.2.

2.3 Modelling the solar irradiance at the top of the
atmosphere

In Fu (2006, p. 116), the incoming solar radiation (ISR) at the
top of the atmosphere, S0, is estimated by the solar flux den-
sity (I0), which assumes an isotropic concentric emittance
from the Sun. The total solar emittance, ES, must be con-
stant, regardless of the size of the sphere area. The flux den-
sity adheres to the inverse square law, meaning that energy
per area must diminish when the distance from the energy
source increases, as shown in Fig. 3.

Therefore, ES can be estimated by multiplying the so-
lar sphere area by the solar emission in a 1 m square, the
emission being calculated using the Stefan–Boltzmann law,
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Figure 3. Sketch of the solar flux density (I0) as a function of the
distance to the Sun’s core.

Figure 4. The incoming solar radiation as a parallel beam and its
global average, S0.

Eb = σT
4, assuming the photosphere temperature and the

solar radius to be T = 6000 K and r = 6.96× 108 m, respec-
tively (Hartmann, 2016, p. 29). The flux density at the Earth’s
orbital position, S0, can be estimated using a hypothetical so-
lar sphere of radius a = 150×109 m, the Earth–Sun distance.
The solar constant is thus S0 ≈ 1366 W m−2.

During simplified climate analysis, the global ISR average
is S0, and because of the large Earth–Sun distance, the so-
lar radiation is assumed to be a parallel and uniform beam
(Hartmann, 2016, p. 31). Thus, to estimate S0, the total ISR
inside of the disc area, the cross-section, must be divided by
the Earth sphere area (Fig. 4), resulting in S0 ≈ 340 W m−2.

Although simplified climate approaches in zero-
dimensional models are viable in classrooms, complex
climate investigations require providing a realistic ISR.
This way, the DINSOL model implements two different
methods to calculate the ISR in the outer atmosphere.
The first method is daily insolation (Q0), and the second
is instantaneous solar radiation (QI). Thus, using this
information, the methods can now be elaborated on.

2.3.1 Daily insolation

To calculate the ISR, aspects of ISR incidence on spherical
surfaces must be considered (e.g. solar zenith angle, Z; hour
angle, H ; solar declination, δ; latitude, φ; and the relative
Earth–Sun distance, ρ). Thus, In Liou (2002, p. 51), a re-
alistic model of the daily insolation can be generated using
Eq. (7):

Q0 = S0

(a
r

)2
cosZ , (7)

where S0 is the solar constant, and (a/r)2 represents the in-
verse square of the relative Earth–Sun distance, 1/ρ2. The
steps to calculate ρ are listed in Sect. 2.1. The solar zenith an-
gle, Z, is obtained from the spherical law of cosines, shown
in Eq. (8):

cosZ = sinφ sinδ+ cosφ cosδ cosh, (8)

where h is the hour angle for a small time interval. To ob-
tain the daily insolation, the total ISR at any latitude for a
given day requires calculating daily ISR from sunrise (SR)
to sunset (SS).

Q0 =

SS∫
SR

S0

(a
r

)2
(sinφ sinδ+ cosφ cosδ cosh)dt (9)

In Eq. (9) the constants for a given day are δ, φ, and
(a/r)2. The hour angle and time are associated with the an-
gular speed of Earth,�. Thus, a time differential substitution,
dt , assuming dt = dh/�, can be implemented. The result in
Eq. (9) is a function of h:

Q0 =
S0

�

(a
r

)2
sinφ sinδ

H∫
−H

dh + cosφ cosδ

H∫
−H

coshdh

 , (10)

where the hour angle from sunrise until solar noon is −H ,
and the hour angle from solar noon until sunset is+H . Then,
solving the integral yields the following equation:

Q0 =
2S0

�

(a
r

)2
(H sinφ sinδ+ cosφ cosδ sinH). (11)

Therefore, assuming that the angular speed of Earth is�=
2π/86400, the equation for accumulated solar radiation in
1 d, that is, the daily insolation, can be found. However, the
DINSOL model provides the daily average of the ISR, which
requires the simplification of the equation by removing the
total seconds per day. Finally, the equation implemented in
the DINSOL source code is as follows:

Q0 =
S0

π

(a
r

)2
(H sinφ sinδ+ cosφ cosδ sinH). (12)

Now, using Berger (1978b), to estimate Q0 following
Eq. (12), it is necessary to calculate sinδ, cosδ, cosH , sinH ,
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and H , which requires the implementation of these equa-
tions:

sinδ = sinε sinλ (13)

cosδ =
2
√

1− sin2δ (14)
cosH = − tanφ tanδ , (15)

where λ is the true solar longitude, which has already been
explained, and ε is the Earth obliquity; cosH demands the
initialization of the following conditions.

f (H)=

 cosH <−1, cosH =−1

cosH > 1, cosH = 1
. (16)

Finally, these are the last steps:

sinH = 2
√

1− cos2H (17)
H = arccos(cosH). (18)

Prior to the initialization of the instantaneous solar radia-
tion method, the equation used to calculate the day length, in
terms of number of hours of sunlight (N), is

N =
2H
15

. (19)

2.3.2 Instantaneous solar radiation

The DINSOL model has a subroutine dedicated to calculat-
ing the instantaneous solar radiation,QI. This subroutine em-
ploys Eqs. (7) and (8). The main difference between QI and
Q0 is that while Q0 stores a single value per day, QI can
store several values per day (hours or minutes). Another key
difference is that QI is calculated globally, while Q0 simu-
lates only the latitudinal effect. Below is Eq. (20), used to
calculate QI:

QI = S0

(a
r

)2
(sinφ sinδ+ cosφ cosδ cosh) (20)

Equation (20) is calculated using four nested loops
(Fig. 5), where the first loop represents the passage of the
days in a year, Di , and the second loop is the time interval,
ti , within 1 d (e.g. 6, 3, 1 h), as is shown in Fig. 6. The third
nested loop represents the latitudes, yi , and finally, the fourth
contains the longitudinal loop, xi .

In the following, the hour angle, h, is given as a function
of the time interval, ti , and longitude, xi :

h=−π +

(
2π
nt

)
(ti − 1)+

(
2π
nx

)
(xi − 1) . (21)

Therefore, after calculating h, the results must be substi-
tuted into Eq. (20), where the other variables may be calcu-
lated using the Q0 method, and negative QI values are as-
sumed to be zero. The algorithm for the hour angle is ini-
tiated from the west in an eastwards direction following the

Figure 5. An example of the loop employed to run the instantaneous
solar radiation subroutine.

Earth’s rotation about its axis. Thus, considering the first day,
D1, and the first hour (00:00 UTC), t1, the hour angle must
be calculated globally. This means that an hour angle cov-
ering all longitudinal points from the west to the east must
be calculated for each latitude. This way, from the first time
step, t1, the algorithm starts the second time step, t2, which
is the same data calculated previously at t1, after a westward
rotation (Fig. 6). Hence, iterations must repeat for 24 h be-
fore the start of the second day, D2, where changes in solar
declination, δ, and Earth–Sun distance, ρ, must be consid-
ered. In summary, this subroutine is responsible for realisti-
cally simulating the ISR in the outer atmosphere to ensure
that the program is viable for more complex deployments or
studies that require accurate simulations of the effect of the
day-to-night transition.

2.4 Orbital motions: parameterizations

The law of universal gravitation computes the mutual at-
traction force between two bodies, and, according to Yang
(2017), their formula is

F =−G
Mm

a2 r̂ (22)

for the Sun–Earth case. M represents the mass of the Sun,
m is the mass of the Earth, G is the universal gravitational
constant (G= 6.6739× 10−11 Nm2 kg2), and r̂ is a unitary
vector. The Earth–Sun distance, a, is given by the average
radius of the Earth’s orbit.

Although Newton adopted the gravitational law for two
celestial bodies with success (e.g. Sun–Earth, Earth–Moon,
Sun–Mars), three-body problems proved to be more com-
plex. Precise astronomical predictions require consideration
of the gravitational influence of the other celestial bodies
(Laskar et al., 2004). Euler and Lagrange found particular
solutions for the three-body problem (Musielak and Quarles,
2017). In the late 1880s, Heinrich Bruns and Henri Poincaré
showed that a general arrangement of three or more bodies
(n-body problem) yielded no analytical solution (Hamilton,
2016).
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Figure 6. The instantaneous solar radiation at the top of the atmosphere from the DINSOL model for the present day on 29 June.

Though complex astronomical motions cannot admit an-
alytical solutions, a distinguished researcher overcame this
obstacle by adopting the spectral decomposition technique.
André Berger made it possible for anyone to estimate the
Earth’s orbital parameters (EOPs) within ±1 Myr of the
present (Crucifix et al., 2009). His parameterization was pub-
lished firstly in Berger (1978b), and after some years, a newer
version in Berger and Loutre (1991) expanded the valid time
range to ±3 Myr. Now, in this section and the following,
Berger (1978b) and Berger and Loutre (1991) are referred
to as Be78 and Be90, respectively. Both parameterizations,
Be78 and Be90, are described in this section, with a focus
on the main formulas and tables presented in this classical
paper.

Another remarkable researcher, Jacques Laskar, also sim-
ulated new long-term solutions for EOPs. Berger used the
Laskar solutions in Be90 (Laskar, 1986, 1988). Furthermore,
within the last decades, Laskar published novel solutions fo-
cused on expanding the valid time range (e.g. Laskar et al.,
1993, 2004, 2011). It is worth mentioning that although cur-
rent computers can simulate the planetary motions around
the Sun for billions of years, the chaotic behaviour of the so-
lution still limits the validation to a few tens of millions of
years (Laskar et al., 2011).

Thus, the efforts of André Berger and Jacques Laskar rep-
resent an important contribution to paleoclimatology. This
way, following the idea of this section, the mathematical de-
scription of the Berger parameterizations, ranging from equa-
tions to constants, is provided, as well as a Laskar custom
parameterization, such as in the DINSOL source code.

Table 1. The constant values are used to solve the Berger parame-
terizations.

ε∗ ψ ζ

(◦) (arcsec) (◦)

Be78 23.320556 50.439273 3.392506
Be90 23.3334095 50.41726176 1.60075265

2.4.1 The analytical solution of Be78 and Be90

Both parameterizations, Be78 and Be90, use spectral anal-
ysis, which used the same trigonometrical equations. How-
ever, the Be78 and Be90 methods require distinctive data
sources to work. Thus, DINSOL contains three tables for ev-
ery Berger parameterization: obliquity, eccentricity, and pre-
cession, such as Tables 1, 4, and 5 in Be78, respectively.
Furthermore, all these data tables were obtained from an R
package named PALINSOL (Crucifix, 2016) and converted
to sequential binary files. The data contained the following
columns: amplitude, mean rate, phase, and period. The time
in years for the Be78 and Be90 parameterizations is repre-
sented in the equations by the t variable.

The calculation of the obliquity (ε) is then estimated with
the following equation:

ε = ε∗+

N∑
i=1

Ai cos(Ri t +Fi) , (23)

where ε∗ is a constant given in Table 1; N represents the
number of terms per column; and Ai , Ri , and Fi are, respec-
tively, the second, third, and fourth columns of the obliquity
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tables used in Be78 and Be90. Similarly to the obliquity, the
eccentricity, e, can be calculated from the following equa-
tions:

e sinπ =
N∑
i=1

Mi sin(Gi t +Bi) (24)

ecosπ =
N∑
i=1

Mi cos(Gi t +Bi) (25)

e =
√
(e sinπ)2+ (ecosπ)2 , (26)

where Mi , Gi , and Bi are, respectively, the second, third,
and fourth columns of the eccentricity tables used in Be78
and Be90, and N is the number of elements per column. To
calculate the precession, $ , the following these steps must
be followed:

ψ = ψt + ζ +

N∑
i=1

Pi sin(Ki t +Di) , (27)

where ψ is the general precession, and the constants ψ and
ζ are given in Table 1. Pi , Ki , and Di are, respectively, the
second, third, and fourth columns of the precession tables
used in Be78 and Be90. Moreover, N is the number of table
terms. Now, we also need to calculate the arctangent from
e sinπ and ecosπ , like Eq. (28).

arctanπ = arctan
(
e sinπ
ecosπ

)
(28)

If arctanπ is negative, 180◦ must be added for arctanπ or
else it must be kept unchanged. The longitude of the perihe-
lion,$ , can now be calculated using the following equation:

$ = arctanπ +ψ +π . (29)

If $ is greater than 360◦, subtraction ($ − 360◦) must be
performed to obtain an angle less than the length of a full
revolution. The longitude of perigee, ω, can be calculated
as ω =$ + 180◦. Additionally, it is crucial use the same
units: radians, degrees, and arcseconds. For instance, DIN-
SOL Berger subroutines convert all column data to radians.

2.4.2 The Laskar solutions

The DINSOL model combines two Laskar time series solu-
tions (Laskar et al., 2004, 2011), resulting in a time range
from −249 to 21 Myr, referred to as the Lask. It implements
the function s(y), where y is a year as a multiple of 1000.
However, if y is not a multiple of 1000, s(y) cannot be used
directly, and a simple slope–intercept equation must be used
where the two nearest points are defined as before (ti) and af-
ter (ti+1). For instance, if y =−4600, then ti =−5000, and
ti+1 =−4000. Thus, the effective time, t , used in the slope–
intercept equation is t = y− ti , which results in a time of
t = 400.

Figure 7. Comparison between Be78 and Lask data with time (in
years) on the horizontal axis. Additionally, graph (a) is eccentricity,
(b) is obliquity (◦), and (c) is precession (◦).

Next, Eq. (30) is shown, where f (y) may assume two
forms:

f (y)=

 s(y), y mod 103
= 0

θt + b, y mod 103
6= 0 ,

(30)

where b = s(ti), and the slope is given by

θ =
s(ti+1)− s(ti)

103 . (31)

The annual change for each EOP is small, resulting in a
small calculation error from the slope–interception equation.
Additionally, comparing the Be78 and Lask data calculated
from DINSOL, Fig. 7 shows that the graphs overlap; there-
fore, the Lask parameterization can accurately estimate the
nonexistent original Laskar data. Both Laskar solutions were
obtained from the web page http://vo.imcce.fr/insola/earth/
online/earth/earth.html (last access: 21 January 2023), which
is maintained by the Institut de Mécanique Céleste et de Cal-
cul des Ephémérides (IMCCE).

2.5 Model structure, set-up, and execution

The DINSOL source code has a simple hierarchical structure
written in Fortran. A flow diagram representing the DINSOL
source code is available in Fig. 8, including input data, the
main program, modules, functions, subroutines, and output
data. The model is initiated from the main program reading
the input data: tables for analytical solutions of Be78 and
Be90 and combined time series of Lask. The program also
reads data from the namelist file (Table 2) as well as a module
containing the declared variables and simulation parameters.
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Figure 8. Fortran representation of the DINSOL source code, with subroutines, modules, namelist, input and output data, and brief explana-
tions of the simulation steps.

In the next step, the program invokes the DINSOL subrou-
tine, which is the main function and calls all other functions
for the simulations.

The next steps are a series of commands executed from
the namelist set-up function, where the calendar type must
be initialized. Variables like spatial resolution, time interval,
and calendar variables are then declared. The next step in-
vokes parameterization to obtain the orbital parameters, and

then the subroutines (seasons, perigee, and apogee) imple-
ment a calendar function to determine the day and month
occurrences of summer, autumn, winter, the perihelion, and
the aphelion. The solar longitude subroutine is then called
and computes the annual true solar longitude for use in the
daily insolation and instantaneous irradiance subroutines. Fi-
nally, the output subroutine is responsible for storing the data
simulated during the DINSOL execution.
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Table 2. A short description of DINSOL namelist variables.

Variables Short description

YEAR Any integer number in the time slice: −249 to 21 Myr
Note: zero represents the present day.

S0 The solar constant in the range ]0 : 108
[

Note: S0 must be in W m−2.

NY Latitudinal number points

NX Longitudinal number points

NTIME The time interval within 1 d, given in hours or minutes:
1: 6 h
2: 3 h
3: 1 h
4: 30 min
5: 15 min

CALENDAR The number of days in the year:
1: 365 d
2: 360 d

ORBITAL The orbital parameterization:
1: Be78: ±1 Myr
2: Be90: ±3 Myr
3: Lask: −249 to 21 Myr
4: user-defined value

ECC Eccentricity: any value in the range [0 : 0.5]

OBLQ Obliquity: any value in the range [−90 : 90]

PRCS Precession: any value in the range [0 : 360[
Note: this is the longitude of the perihelion, $ .

Table 3. A short description of DINSOL output data.

Files Short description

summary.txt This file is a summary of the main results:
– namelist set-up
– the orbital parameters
– astronomical dates
– annual average of daily insolation.

insolation.txt This formatted data file contains some results
in columns:

– year
– days
– true solar longitude (λ)
– relative Earth–Sun distance (ρ)
– latitude (φ)
– solar declination (δ)
– day length (N )
– daily insolation (Q0).

solar.radiation A binary file of annual daily insolation (Q0)

solar.radiation.ctl A GrADS descriptor file

radiation A binary file of instantaneous solar
radiation (QI)

radiation.ctl A GrADS descriptor file

The DINSOL model also works from a GUI, where the
namelist options are the same, except for the spatial resolu-
tion, where the GUI mode offers only six options: 5, 4, 3, 2,
1, and 0.5◦. All the output files generated (Table 3) are iden-
tical regardless of the execution mode, except for the plot
file gui-plot.png: a panel used to display results in the GUI
mode. This plot contains sketches of the orbital parameters
and contour fields for a simulated year: daily insolation, the
difference to present day, and the length of a day. A snapshot
of the GUI interface and two graphical windows containing
the results is displayed in Fig. 9.

Users have the option to customize their simulation set-up,
implementing custom scenarios using a user-defined value.
The orbital parameters can then be set without compliance to
the Berger or Laskar parameterizations, provided that the re-
sults will not be invalidated. For instance, if the eccentricity
is set to zero, the orbit of Earth would become a perfect cir-
cle, meaning the dates of the perihelion and aphelion would
no longer exist. If obliquity is set to zero, the seasons would
not exist, and if a negative obliquity is assumed, the solstice
and equinox dates would occur on inverted dates. Even under
hypothetical cases, the program still works correctly.
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Figure 9. Snapshot of DINSOL-v1.0 GUI running on Windows 11.

3 Model evaluation: a short statistical analysis

This section evaluates the DINSOL program by comparing
its products against data obtained from other similar tools or
available in the literature. Still, the first subsection presents
the Earth’s orbital parameter (EOP) evaluation, where the
Be78, Be90, and Lask parameterizations (Sect. 2.4) were
evaluated. For that, we compared the Be78 parameteriza-
tion with the Goddard Institute for Space Studies (GISS)
data computed by Bartlein and Shafer (2019a). The authors
adapted a set of Fortran programs provided by the GISS that
run the EOPs using the Be78 parameterization (Bartlein and
Shafer, 2019b). On the other hand, the Be90 and Lask pa-
rameterizations were evaluated by adopting the PALINSOL
package (Crucifix, 2016). The EOP evaluation assumes a
time series’ starting from −150 kyr until present day, t =
0. Furthermore, we decided to use the climatic precession
(e sin$) instead of the distance of the perihelion, $ .

Over the following subsections, we analyse DINSOL com-
pared to PMIPII and PALINSOL. At first, we evaluate the
astronomical dates by using the PMIPII dates as a reference.
Please note that the classical method of measuring the pa-
leoclimate dates assumes the spring equinox to be a fixed
date (21 March) and a constant month length regardless of
the year. Still, in the final subsection, the evaluation of the
monthly insolation data is conducted, where the assumption
is that the solar constant is S0 = 1365 W m−2, and the year
is equal to t = 0 for present day (0 ka), t =−6000 during

the mid-Holocene (6 ka), and t =−21000 in the Last Glacial
Maximum (21 ka) using a 365 and 360 d calendar with the
Berger (1978b) parameterizations (EOPs and daily insola-
tion), such as the implemented PMIPII experiments.

The samples were analysed from measures of central ten-
dency using average (X) and median (µ), as well as mea-
sures of dispersion using standard deviation (σ ) and coeffi-
cient of variation (CV). Additionally, the root mean square
error (RMSE) was implemented to evaluate the sample dif-
ferences, where the RMSE was calculated by performing the
sum of the differences between simulation and observational
data, given by Eq. (32):

RMSE= 2

√√√√ 1
N

N∑
i=1
(Si −Oi)

2 . (32)

In accordance with Oliveira et al. (2019), N is the number
of elements, Si represents the simulation data, and Oi is the
observational data. Note that PMIPII, PALINSOL, and GISS
are assumed to be observational data, a standard dataset to
evaluate DINSOL.

3.1 Earth’s orbital parameters

In Fig. 10, there is a correlation between the GISS and
DINSOL curves, indicating that DINSOL EOP subroutines
(Be78, Be90, and Lask) function as expected. The error mar-
gin estimations were determined using a statistical summary
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Figure 10. Time series of the Earth’s orbital parameters (EOPs) for the last 150 kyr. (a) Eccentricity, (b) obliquity, and (c) climatic precession.
Each graph shows Goddard Institute for Space Studies (GISS) and DINSOL parameterizations: Be78, Be90, and Lask.

Table 4. Evaluation of the DINSOL model adopting a statistical analysis from Earth’s orbital parameters (EOPs), where the values are from
the minima (Min), maxima (Max), average (X), median (µ), standard deviation (σ ), coefficient of variation (CV), and the root mean square
error (RMSE) of each tool type. All presented data were obtained from DINSOL, GISS, and PALINSOL. The EOPs are the eccentricity (e),
obliquity (ε), and climatic precession(e sin$).

Min Max X µ σ CV RMSE

Be78

GISS (e) 0.012509 0.041421 0.026755 0.026859 0.010076 0.37660
7.3008× 10−9

DINSOL (e) 0.012509 0.041421 0.026755 0.026859 0.010076 0.37660

GISS (ε) 22.20748 24.43585 23.35631 23.44278 0.711554 0.03047
1.3622× 10−6

DINSOL (ε) 22.20748 24.43585 23.35631 23.44278 0.711554 0.03047

GISS (e sin$ ) −0.0413 0.039898 −0.000147 −0.000187 0.020279 −137.686
3.094× 10−8

DINSOL (e sin$ ) −0.0413 0.039898 −0.000147 −0.000187 0.020279 −137.682

Be90

PALINSOL (e) 0.014093 0.043988 0.027717 0.026111 0.01043 0.376280
6.5272× 10−9

DINSOL (e) 0.014093 0.043988 0.027717 0.026111 0.01043 0.376280

PALINSOL (ε) 22.23484 24.43667 23.36954 23.43276 0.702570 0.03007
1.4389× 10−6

DINSOL (ε) 22.23484 24.43667 23.36954 23.43276 0.702570 0.03007

PALINSOL (e sin$ ) −0.043938 0.041798 −0.000131 −0.000057 0.021009 −160.7944
4.0904× 10−8

DINSOL (e sin$ ) −0.043938 0.041798 −0.000131 −0.000057 0.021009 −160.7965

Lask

PALINSOL (e) 0.013706 0.043921 0.027408 0.025952 0.010528 0.384112
3.0026× 10−7

DINSOL (e) 0.013706 0.043921 0.027408 0.025952 0.010528 0.384112

PALINSOL (ε) 22.20721 24.43463 23.35852 23.43069 0.70934 0.030368
1.5292× 10−5

DINSOL (ε) 22.20721 24.43464 23.35852 23.43071 0.70934 0.030368

PALINSOL (e sin$ ) −0.043845 0.041907 −0.000132 −0.000386 0.020825 −158.3981
2.2275× 10−7

DINSOL (e sin$ ) −0.043845 0.041907 −0.000132 −0.000386 0.020825 −158.3987
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Table 5. This table contains the dates of summer, autumn, winter, the perihelion, and the aphelion during present day (0 ka), the mid-
Holocene (6 ka), and the Last Glacial Maximum (21 ka) calculated by DINSOL and by PMIPII, both using the method of Be78, for 365 and
360 d calendars.

Summer solstice Autumnal equinox Winter solstice Perihelion Aphelion
(June) (September) (December) (day/month) (day/month)

0 ka

PMIPII (365) 21.73 23.30 22.05 2.85/01 4.35/07
DINSOL (365) 21.74 23.30 22.05 2.85/01 4.35/07

PMIPII (360) 22.46 24.74 23.26 4.91/01 4.91/07
DINSOL (360) 22.47 24.76 23.28 4.91/01 4.91/07

6 ka

PMIPII (365) 22.45 19.56 17.61 20.42/09 21.92/03
DINSOL (365) 22.46 19.57 17.62 20.42/09 21.92/03

PMIPII (360) 23.17 21.06 18.89 21.90/09 21.90/03
DINSOL (360) 23.18 21.07 18.91 21.90/09 21.90/03

21 ka

PMIPII (365) 21.32 23.52 22.65 15.51/01 17.01/07
DINSOL (365) 21.32 23.52 22.65 15.51/01 17.01/07

PMIPII (360) 22.06 24.96 23.86 17.39/01 17.39/07
DINSOL (360) 22.06 24.97 23.87 17.39/01 17.39/07

shown in Table 4. Thus, measurements such as mean (X),
median (µ), standard deviation (σ ), and coefficient of varia-
tion (CV) indicate a strong correlation between DINSOL and
GISS as well as DINSOL and PALINSOL, therefore suggest-
ing an insignificant difference to the EOP DINSOL products.
The RMSE values also support the previous statistical infer-
ence from the insignificant difference between the samples.

The GISS and Be78 values are nearly identical, which val-
idates the Be78 subroutine. The same occurs with the Be90
and Lask parameterizations, where the test parameters indi-
cate a roundoff error between DINSOL and PALINSOL. In
addition, regarding the coefficient of variation, CV, we see
that it was the climatic precession (e sin$) that showed the
more prominent differences. Moreover, we found the largest
RMSE value during the Lask evaluation, specifically in the
obliquity (ε) parameter. Note that for negative years (re-
constructions), DINSOL adopts Laskar et al. (2011) (la10),
while PALINSOL adopts Laskar et al. (2004) (la04), which
justifies this slight difference.

Although the parameterizations Be78, Be90, and Lask
provide almost the same values, the users need to pay atten-
tion to the epoch and ecliptic reference used by each param-
eterization, that is, the time references, which are different
from one another. For instance, while Be78 assumed 1950 to
be the epoch and 1850 to be its ecliptic reference, the Lask
parameterization adopted J2000 as a time reference, con-
forming to the Julian calendar. Therefore, t = 0 represents
the year 1950 in Be78 and 2000 in Lask. Thus, to overlap the
Be78 and Lask parameterizations, we would need to perform
a calibration shift of 50 years one another. For additional in-
formation the reader is referred to the Berger and Laskar ar-
ticles.

3.2 Astronomical dates

Table 5 contains the dates of summer, autumn, winter, the
perihelion, and the aphelion calculated by DINSOL and
PMIPII, where both use the method of Be78. These dates rep-
resent present day (0 ka), the mid-Holocene (6 ka), and the
Last Glacial Maximum (21 ka). Thus, perihelion and aphe-
lion dates calculated by DINSOL are identical to those cal-
culated by PMIPII. These dates correlate with the expected
dates because they were determined using Eqs. (4), (5), and
(6). Nevertheless, the summer, autumn, and winter dates have
a small error compared to those determined by PMIPII. In
DINSOL, these dates were estimated from a large number
of values within the annual true solar longitude vector. In
Table 5, an accumulative error is observed, where the sea-
son date error increases as a function of the distance to the
spring equinox. The RMSE provides values around 12, 16,
and 19 min for summer, autumn, and winter, respectively.
Thus, for less than 20 min, the error remains small, mean-
ing that DINSOL provides accurate date estimates. The com-
pliance of DINSOL and PMIPII to the classical method of
measuring astronomical events must always be considered.
However, for a more realistic approach to paleoclimate calen-
dars, it is recommended to follow the methodology of Jous-
saume and Braconnot (1997) or Bartlein and Shafer (2019a),
although many authors prefer the classical method because it
is easier to compare with our current Gregorian calendar.

3.3 Monthly insolation

The DINSOL monthly insolation was analysed from a vi-
sual evaluation of the contour fields (Figs. 11, 12, 13) and
some statistical parameters (Table 6). This evaluation used
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Figure 11. DINSOL monthly insolation contour fields obtained from a 360 d calendar – (a) present day, (b) mid-Holocene minus present
day, (c) Last Glacial Maximum minus present day – and from a 365 d calendar – (d) present day, (e) mid-Holocene minus present day, (f)
Last Glacial Maximum minus present day. The horizontal axis represents the months, while the vertical axis is the latitude.

Figure 12. Monthly insolation differences between DINSOL and PMIPII from a 360 d calendar – (a) present day, (b) mid-Holocene minus
present day, (c) Last Glacial Maximum minus present day – and from a 365 d calendar – (d) present day, (e) mid-Holocene minus present
day, (f) Last Glacial Maximum minus present day. The horizontal axis represents the months, while the vertical axis is the latitude.
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Figure 13. Contour fields of monthly insolation from Last Glacial Maximum minus present day: (a) PALINSOL minus PMIPII and (b)
DINSOL minus PALINSOL. Each one is for a 360 d calendar. The horizontal axis represents the months, while the vertical axis is the
latitude.

Table 6. Evaluation of the DINSOL model adopting a statistical analysis from monthly insolation data samples, where the data displayed
represent the minimum values (Min), maximum values (Max), average (X), median (µ), standard deviation (σ ), coefficient of variation (CV),
and the root mean square error (RMSE). All presented data were obtained from DINSOL, PMIPII, and PALINSOL. They have two calendar
options (365 and 360 d) and three different periods: present day (0 ka), the mid-Holocene (6–0 ka), and the Last Glacial Maximum (21–0 ka).

Min Max X µ σ CV RMSE
RMSE

0 ka

DINSOL (365) 0 550.39 292.58 341.62 169.3383 0.5788
0.02595

PMIPII (365) 0 550.40 292.58 341.60 169.3369 0.5788

DINSOL (360) 0 548.26 292.62 341.41 169.4682 0.5791
0.00481

PMIPII (360) 0 548.25 292.62 341.41 169.4666 0.5791

6–0 ka

DINSOL (365) −25.50 52.14 1.0466 −0.081 16.0434 15.3283
0.00313

PMIPII (365) −25.50 52.14 1.0466 −0.085 16.0435 15.3288

DINSOL (360) −25.61 51.83 1.15 −0.15 16.0347 13.9873
0.00290

PMIPII (360) −25.61 51.83 1.15 −0.16 16.0347 13.9854

21–0 ka

DINSOL (365) −13.56 4.16 −0.83 0 4.0808 −4.9441
0.01966

PMIPII (365) −13.54 4.15 −0.83 0 4.0812 −4.9456

DINSOL (360) −13.48 4.15 −0.84 0 4.0870 −4.8427
0.02054
0.02043
0.00324

PMIPII (360) −13.46 4.15 −0.84 0 4.0876 −4.8424
PALINSOL (360) −13.48 4.15 −0.84 0 4.0870 −4.8433
DINSOL (360) – – – – – –

PMIPII insolation samples prepared from 365 and 360 d cal-
endars for three different periods: present day (0 ka), the
mid-Holocene (6–0 ka), and the Last Glacial Maximum (21–
0 ka). Simulations were thus performed with DINSOL using
the same PMIPII set-up. Additionally, DINSOL was com-
pared to the monthly insolation obtained from the PALIN-
SOL package, but, in this case, we considered only the Last
Glacial Maximum (21–0 ka) period. Incidentally, the contour
fields present in Fig. 11a–c were generated using a 360 d
calendar, with d–f employing a 365 d calendar set-up. From
Fig. 11, compared to present day, the biggest insolation dif-
ferences were found during the mid-Holocene, primarily due
to the perihelion date changes, around 3 January for present

day and 20 September during the mid-Holocene. This analy-
sis of the mid-Holocene agrees with the presented discussion
in Brierley et al. (2020).

In order to perform the visual evaluation, we plotted the
contour fields of DINSOL minus PMIPII (Fig. 12). Thus, in
Fig. 12a–c, we have contour fields made from a 360 d calen-
dar, whereas Fig. 12d–f is based on a 365 d calendar. Still, it
is clear that for present day (0 ka), the mid-Holocene (6 ka),
and the Last Glacial Maximum (21 ka), the differences are
within the roundoff error, about ±0.08 W m−2. Figure 12a,
b, and e contain plots almost uniform with values nearest to
zero than the other panels. For example, Fig. 12d presents a
more remarkable bias. However, it is worth noting that the

https://doi.org/10.5194/gmd-16-2371-2023 Geosci. Model Dev., 16, 2371–2390, 2023



2386 E. D. Oliveira: DINSOL-v1.0

values are randomly distributed in the image, which is con-
sidered normal and allows us to infer that DINSOL is work-
ing according to the expectations of present day (0 ka) and
the mid-Holocene (6 ka), including both calendar options:
360 and 365 d.

On the other hand, Fig. 12c and f show a systematic bias
for high latitudes, where we can observe an almost harmonic
behaviour between the Northern Hemisphere and Southern
Hemisphere, which happens near the equinox dates. De-
spite that, the differences remain small, and as a confirma-
tion test, we additionally decided to compare PMIPII (21–
0 ka) to PALINSOL. Moreover, we also performed a DIN-
SOL and PALINSOL comparison to the Last Glacial Maxi-
mum. Thus, Fig. 13a shows the same pattern at high latitudes,
whereas Fig. 13b plots an almost uniform field. Therefore,
DINSOL minus PALINSOL works as expected, suggesting
that PMIPII (21–0 ka) contains some systematic roundoff er-
ror in the monthly insolation files, which should be reported
to the PMIP team in order to investigate it.

With regard to the statistical analyses, the parameters
available in Table 6 are dependable enough to confirm or re-
ject our previous visual analyses from Figs. 11, 12, and 13.
At first, we can see that the minima and maxima are nearly
identical and converge towards the same value in the mid-
Holocene. Furthermore, the central tendency indicates that
all samples’ average values are equal, while most median
values are almost identical. The dispersion values also cor-
roborate the previous conclusions, where the standard devi-
ation and coefficient of variation suggest no significant dif-
ferences. Still, in order to estimate the error between DIN-
SOL and PMIPII samples, we also compute the RMSE. Ta-
ble 6 shows that the highest value occurred from a calendar
of 365 d when assaying present day, 0.02595 W m−2. On the
other hand, a lower RMSE value was found for a calendar of
360 d by considering the mid-Holocene sample.

As a final analysis, we focus on the Last Glacial Maxi-
mum, including the PALINSOL package as an alternative
to the PMIPII samples. Thus, comparing PALINSOL and
PMIPII, we realized that the RMSE was almost identical to
the DINSOL and PMIPII values. However, evaluating DIN-
SOL from PALINSOL, we got an RMSE of 0.00324 W m−2,
which is around 84 % less than the value obtained from DIN-
SOL and PMIPII analyses. Therefore, it is reasonable to
claim that the DINSOL program can compute the daily inso-
lation accurately compared to the literature because the field
differences show us almost homogenous contour data with
values near zero. Indeed, according to Table 6, all samples
must be considered numerically the same because we did not
find significant differences in our statistical analyses.

4 Conclusions

The Daily INSOLation (DINSOL-v1.0) program is a robust
and versatile tool offering various simulation options and us-
ability. It is ideal to compute solar radiation data for climate
models, which aids in simplified climate approaches or more
complex studies. Furthermore, the DINSOL model may be
employed as an educational tool by adopting its user-friendly
GUI. The program was developed as a novel educational tool
for use in geoscience colleges worldwide, providing a quick
view of daily insolation by considering the Milankovitch cy-
cles (ideal for paleoclimatology) or adopting hypothetical or-
bital parameters (ideal for exoplanets). Therefore, the pro-
gram can aid students, teachers, and researchers in conduct-
ing their respective studies. Still, despite the program evalu-
ation having presented insignificant differences compared to
the literature, the users are incentivized to report any issues
found during the program execution. Moreover, DINSOL is
an open-source program whose author encourages users to
develop the source code continuously. Ultimately, DINSOL
may be considered a viable tool that accurately provides var-
ious types of output data, such as the Earth’s orbital param-
eters; astronomical dates; daily insolation; and instantaneous
solar radiation, simulating the passage of day to night realis-
tically.
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Appendix A: Data manipulation

The output folder contains five scripts to aid users in
analysing the simulation data. The files are listed with a brief
description in Table A1.

Table A1. Brief description of all scripts located in the DINSOL output folder.

Scripts Short description

get-dinsol-value.R This script provides the insolation and day
length from a given day and latitude.
Moreover, this script plots a panel
containing six graphs.

plot-dinsol.R This script makes a plot with contour fields
of the daily insolation.

plot-dinsol.gs This script makes a plot with contour fields
of the daily insolation.

plot-global.R This script makes a plot of the instantaneous
solar radiation globally from a given
day and hour.

plot-radiation.gs This last script makes an animation using
the GrADS graphical window.

Appendix B: Computing power

DINSOL does not adopt restrictions for latitudinal and lon-
gitudinal number points during execution by command lines,
which means that the high-resolution set-ups demand users’
attention. This appendix brings a table containing the output
file sizes for different simulation set-ups, where the instan-
taneous solar radiation file (radiation) grows significantly as
a function of the time interval (hours or minutes) and spa-
tial resolution. Thus, it is necessary to ensure that the com-
puter has sufficient storage capacity in its hard disk prior
to conducting a high-resolution simulation; otherwise, the
system could crash, interrupting the simulation. It is worth
mentioning that most data visualization tools cannot allocate
enormous files. Thus, to get around this, the user should use
some tool like the Climate Data Operator (CDO) to extract
a specific hour of the day and perform some plot analysis
posteriorly. Another question is the execution time, which
is increasing substantially and is a function of the computa-
tional power, compiler, program set-up, etc. In addition, even
though the standard source code works only in serial execu-
tion, the author already adapted and tested the code to work
in parallel using the OpenMP API, which improved the pro-
gram performance significantly. Please note that when the
radiation file is not required, the simulation parameters can
be set to NX= 1 and NTIME= 1, allowing users to change
the values of NY while keeping simulation times minimal.
In any case, the most efficient option would be to modify
the source code, deactivating the instantaneous solar radia-
tion subroutine and not storing the radiation data.

Table B1. DINSOL short performance summary by considering the
spatial resolution and time interval changes, where the computation
was performed in the Ubuntu operating system using the IFORT
13 compiler. Thus, we have the required machine storage for each
output file as well as the execution time.

6 h 1 h 15 min

1.0◦
insolation.txt (MB) 5.7 5.7 5.7

solar.radiation (MB) 1.10 1.10 1.10

radiation (GB) 1.5 8.5 34.0

Execution time (min) 0.30 1.17 5.05

0.5◦
insolation.txt (MB) 12.0 12.0 12.0

solar.radiation (MB) 2.10 2.1 2.1

radiation (GB) 5.70 34.0 136.0

Execution time (min) 0.78 5.10 19.47

https://doi.org/10.5194/gmd-16-2371-2023 Geosci. Model Dev., 16, 2371–2390, 2023



2388 E. D. Oliveira: DINSOL-v1.0

Code and data availability. The DINSOL program is available
for download in different repositories: Zenodo, GitHub, and
LabMet/UNIVASF. Further, even though the program is Lin-
ux/Unix software, a custom Windows OS version is available
too. Both versions (Windows and Linux) contain manuals and
README files to aid users in installing the dependencies and
compiling the source code. On Zenodo, the Windows ver-
sion is available at https://doi.org/10.5281/zenodo.7554620
(Oliveira, 2022c), while the Linux version is avail-
able at https://doi.org/10.5281/zenodo.7551458 (Oliveira,
2022b). GitHub provides only the Linux version: https:
//github.com/Emerson-D-Oliveira/dinsol-v1.0-linux (last access:
20 January 2023; DOI: https://doi.org/10.5281/zenodo.7843723,
Oliveira, 2023). It is important to mention that the Windows
version does not require any prior programming experience from
the user to install and execute DINSOL from the GUI mode.
Moreover, although the program has not been tested on macOS,
the Linux version should work since some adjustments have been
made. Ultimately, users are encouraged to adapt and share the
modified source code with the community. A supplementary file
containing all datasets used to prepare this paper is available in
the Zenodo repository (https://doi.org/10.5281/zenodo.7557354;
Oliveira, 2022a).

Supplement. The supplement related to this article is available on-
line at: https://doi.org/10.5194/gmd-16-2371-2023-supplement.
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