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Abstract. Atmospheric aerosols have a substantial impact
on climate and remain one of the largest sources of uncer-
tainty in climate prediction. Accurate representation of their
direct radiative effects is a crucial component of modern cli-
mate models. However, direct computation of the radiative
properties of aerosol populations is far too computationally
expensive to perform in a climate model, so optical prop-
erties are typically approximated using a parameterization.
This work develops artificial neural networks (ANNs) capa-
ble of replacing the current aerosol optics parameterization
used in the Energy Exascale Earth System Model (E3SM).
A large training dataset is generated by using Mie code to
directly compute the optical properties of a range of atmo-
spheric aerosol populations given a large variety of particle
sizes, wavelengths, and refractive indices. Optimal neural ar-
chitectures for shortwave and longwave bands are identified
by evaluating ANNs with randomly generated wirings. Ran-
domly generated deep ANNs are able to outperform conven-
tional multilayer-perceptron-style architectures with compa-
rable parameter counts. Finally, the ANN-based parameteri-
zation produces significantly more accurate bulk aerosol op-
tical properties than the current parameterization when com-
pared with direct Mie calculations using mean absolute error.
The success of this approach makes possible the future inclu-
sion of much more sophisticated representations of aerosol
optics in climate models that cannot be captured by extension
of the existing parameterization scheme and also demon-
strates the potential of random-wiring-based neural architec-
ture search in future applications in the Earth sciences.

1 Introduction

Atmospheric aerosols have a profound impact on atmo-
spheric radiation and, ultimately, on the entire Earth sys-
tem, both through their direct radiative effects (Hansen et al.,
2005; Johnson et al., 2018) and interaction with clouds
(Twomey, 1977; Albrecht, 1989; Fan et al., 2016). They
have long been known as one of largest sources of internal
uncertainty in climate modeling, primarily due to cloud in-
teractions, although with a significant contribution from di-
rect effects as well (Bellouin et al., 2020). Difficulties arise
in both accurately modeling aerosol populations (Liu et al.,
2012) and in determining their subsequent impacts in these
areas. While the underlying physics may be well understood
in many cases, modeling complex small-scale processes is
not computationally feasible within an Earth system model
(ESM), and these key physical processes are instead repre-
sented by parameterization schemes.

Recently, there has been a flurry of research that has lever-
aged new advances in machine learning (ML) to enhance cli-
mate and weather modeling (Boukabara et al., 2021). Vari-
ous strategies have been used, including emulation of an en-
tire weather or climate model (or at least key fields) with
deep learning (Scher, 2018; Weyn et al., 2020), nudging
parameterization output (Watt-Meyer et al., 2021; Brether-
ton et al., 2022), enhancing model output (Wang et al.,
2021; Geiss et al., 2022), replacing key model physics
such as the radiative transfer scheme (Krasnopolsky et al.,
2012; Lagerquist et al., 2021), and replacing the many pa-
rameterizations that approximate unresolvable sub-grid-scale
processes (Krasnopolsky et al., 2013; Rasp et al., 2018;
Brenowitz and Bretherton, 2018). While many of these ap-
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proaches have some overlap, most are not mutually exclu-
sive strategies for improving climate forecasts: conventional
climate models must be used to generate training data for
purely data-driven ML models (e.g., Gettelman et al., 2021)
and, in the future, those physics-based ESMs may be signif-
icantly enhanced by replacing key parameterization schemes
with ML emulators, for instance. Ideally, future climate mod-
els will leverage continued research in model development in
conjunction with multiple ML-based approaches to generate
climate simulations with unprecedented accuracy.

This research focuses on developing an artificial neural
network (ANN) emulator to replace the current aerosol op-
tics parameterization developed by Ghan and Zaveri (2007)
for internally mixed aerosols represented by the four-mode
version of the Modal Aerosol Module (MAM4) (Liu et al.,
2016) in the Energy Exascale Earth System Model’s (E3SM)
(Golaz et al., 2019) Atmosphere Model (EAM) (Rasch et al.,
2019). We perform a thorough neural architecture search us-
ing randomly generated ANN wirings to identify ANN struc-
tures best suited to accurately representing aerosol optics
with the fewest possible parameters (i.e., at the lowest com-
putational cost). Finally, we show that the ML-based parame-
terization can significantly outperform the current parameter-
ization in terms of accuracy, and it can even outperform very
high-resolution aerosol optics lookup tables, which would be
too large to use in EAM but can be seen as a high-resolution
extension of the current parameterization.

Section 2 of this paper provides background informa-
tion on the radiative effects of atmospheric aerosols and the
aerosol optics parameterization currently used in E3SM. Sec-
tion 3 discusses how training and testing datasets were gen-
erated and how the neural network input and output vari-
ables are handled. Section 4 describes the randomly gener-
ated ANN approach in detail as well as the network train-
ing procedure and evaluation of the neural architectures. Sec-
tion 5 evaluates the accuracy of the final ML-based param-
eterization. Finally, Sect. 6 provides a short summary of re-
sults and some concluding remarks.

2 Background

2.1 Modeling radiative effects of atmospheric aerosols

Atmospheric aerosols influence Earth’s radiative budget both
through direct interactions with radiation and modification
of clouds (Boucher et al., 2013). Both effects have long
been major sources of uncertainty in climate simulations as
chronicled by over 3 decades of assessment reports from the
Intergovernmental Panel on Climate Change (see Bellouin
et al., 2020, their Table 1). Accurate representation of atmo-
spheric aerosols in climate simulations is hindered by many
challenges, including complex aerosol–chemical and micro-
physical processes, aerosol–cloud–precipitation interactions,
and aerosol–radiation interactions. Even though the under-

lying physics have been studied in great detail and accurate
physics- and theory-based models exist to represent the rele-
vant processes, these models are far too computationally ex-
pensive to use in an ESM. Instead, such processes are rep-
resented with simplified physical models and parameteriza-
tions that usually make sweeping simplifications in their rep-
resentation of aerosol processes and trade model accuracy for
computational tractability.

One crucial component of an atmospheric model is a radi-
ation scheme. Radiative transfer models are responsible for
representing the radiative exchange of energy between space,
the Earth’s surface, and the many intervening layers of the
atmosphere resolved by an ESM. The radiative flux diver-
gence computed by radiation code is used to determine heat-
ing rates in the atmosphere which ultimately impact large-
scale atmospheric dynamics. E3SM uses the version of the
Rapid Radiative Transfer Model (RRTM) (Mlawer et al.,
1997; Mlawer and Clough, 1997) developed for use in gen-
eral circulation models (RRTMG) (Iacono et al., 2008; Pin-
cus and Stevens, 2013). RRTMG does not take information
about aerosol populations as a direct input; instead, the bulk
optical properties of the aerosol populations in each grid cell
are first estimated using a parameterization scheme (Ghan
and Zaveri, 2007), and these properties (bulk absorption, ex-
tinction, and asymmetry parameter) are passed to the radia-
tive transfer scheme.

Estimation of the optical properties for aerosol popula-
tions in each model grid cell is, on its own, a computation-
ally daunting task. Scattering of light by particles is gen-
erally separated into three regimes that are defined by the
ratio between the radius of the particle (r) and the wave-
length of light (λ): Rayleigh (r � λ), Mie (r ≈ λ), and ge-
ometric (r � λ). In both the Rayleigh and geometric scatter-
ing regimes the optical properties of an aerosol particle vary
smoothly as a function of its size. In the Mie regime, how-
ever, absorption and scattering efficiencies can vary wildly
as a function of changing particle diameter. Mathematically,
these undulations arise as the solution to Maxwell’s equa-
tions applied to the propagation of electromagnetic radia-
tion over a spherical particle (van de Hulst, 1957). A sig-
nificant portion of atmospheric aerosols have size parame-
ters (x = 2πr/λ) within the Mie regime, particularly in the
shortwave radiative bands used by EAM’s radiative transfer
code. There is no strict definition of the bounds of the Mie
regime, but typically one would use Mie code to estimate
optical properties for size parameters within about 2 orders
of magnitude of unity, whereas one would use geometric or
Rayleigh approximations for larger or smaller particles, re-
spectively, depending on the accuracy required for the appli-
cation (Bohren and Huffman, 1983). Here, we use a Rayleigh
approximation for size parameters less than 0.05 and Mie
code for everything larger. Mie scattering solutions can be
found in the form of an infinite series, although these se-
ries are weakly converging, and sometimes require a large
number of terms to accurately determine a particle’s opti-
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cal properties (Hansen and Travis, 1974; Bohren and Huff-
man, 1983). This is a scenario where the underlying physics
are understood and accurate numerical models to represent
the physics have been developed (Wiscombe, 1979; Sumlin
et al., 2018), but they are far too computationally expensive
to use at a large scale, and parameterizations must be used to
represent these physics in an ESM (Ghan and Zaveri, 2007;
Pincus and Stevens, 2013). This parameterization must rep-
resent a high-dimensional manifold in a space defined by the
parameters of the aerosol size distribution, the imaginary and
real components of aerosol refractive indices (which depend
on the aerosol species), and various wavelengths of light. The
portion of this manifold that falls in the Mie regime is char-
acterized by large fluctuations, particularly with respect to
wavelength and particle size, and any function used to pa-
rameterize it will likely require a large number of parameters
to adequately capture this variability. In this work, we focus
on developing a parameterization of bulk aerosol radiative
properties that is fast enough to use in an ESM and substan-
tially more accurate than previous methods.

2.2 E3SM and the Modal Aerosol Module (MAM4)

This study focuses on updating the aerosol optics represen-
tation for E3SM, an ESM developed by the U.S. Department
of Energy (Golaz et al., 2019). EAMv1 (Rasch et al., 2019)
uses the four-mode version of the Modal Aerosol Module
(MAM4) (Liu et al., 2012, 2016) with improvements to rep-
resent aerosol processes (Wang et al., 2020), RRTMG for
atmospheric radiative transfer (Iacono et al., 2008; Pincus
and Stevens, 2013), and the Ghan and Zaveri (2007) param-
eterization for aerosol optics. This parameterization is also
used in other ESMs, including the Community Earth Sys-
tem Model (CESM) v2.2 (Danabasoglu et al., 2020; NCAR,
2020), so the new parameterization developed in this study
can be easily used in other ESMs.

MAM is a simplified model of aerosol populations that
was developed to allow representation of key aerosol physics
in climate simulations without being computationally pro-
hibitive. Because of the complexity of the general dynamic
equation for aerosols (Friedlander, 2000), several methods
for representing aerosols in simulations of the atmosphere
exist that have varying degrees of accuracy and computa-
tional complexity. These include bulk models (Lamarque
et al., 2012), modal models (Liu et al., 2012), the sectional
method (Gelbard et al., 1980), the quadrature method of mo-
ments (McGraw, 1997), and discrete models (Gelbard and
Seinfeld, 1979). The key differences between these models
are primarily their treatment of aerosol size distributions and
mixing. Section 1 of Liu et al. (2012) and Table 1 of Zhang
et al. (2020) provide overviews of different approaches to
modeling aerosol populations.

The MAM approach breaks aerosols down into several
modes based on species and approximate size. MAM4 in-
cludes Aitken, accumulation, coarse, and primary carbon

modes. Each mode contains multiple aerosol species within
a certain particle size range, and MAM assumes internal
mixing within modes and external mixing between modes
(aerosol properties are averaged within each mode). The
modal model assumes that the size distributions of each
mode are lognormal and prescribes the log-standard devia-
tions based on past observational studies. Major uncertainty
in the modal approach stems from the limited representation
of internal vs. external mixing of aerosol species and the
assumption of lognormal size distributions. It is reasonably
accurate and very computationally efficient compared with
other schemes, however, and this makes it a good choice for
long-duration ESM simulations.

2.3 The Ghan and Zaveri (2007) aerosol optics
parameterization

EAMv1 uses a parameterization to estimate the bulk opti-
cal properties of simulated aerosols. The parameterization
is described in detail in Ghan and Zaveri (2007) with fur-
ther relevant information found in Ghan et al. (2001) and
Neale et al. (2012), but we will provide a brief overview of
the method here because it will be useful for understanding
subsequent sections of this paper. A diagram of the aerosol
optics parameterization training/preparation and how it inte-
grates with EAMv1 is provided in Fig. 1 and may be a helpful
reference while reading this section.

The existing optics parameterization estimates optical
properties based on five input parameters: aerosol mode (cor-
responding to MAM modes), wavelength band (λ), real re-
fractive index (n), imaginary refractive index (κ), and mean
surface mode radius (rs). Optical properties are precomputed
over a range of values in each of these five dimensions; when
called by the model, the parameterization then estimates op-
tical properties from these precomputed values using a com-
bination of Chebyshev and linear interpolation.

The precomputed optical properties are generated as fol-
lows: for each wavelength band and aerosol mode, refractive
index bounds are computed by taking the minimum and max-
imum refractive indices across all aerosols in that mode and
water. The real refractive index range is spanned by 7 lin-
early spaced values, and the imaginary refractive index range
is spanned by 10 logarithmically spaced values. A range of
200 plausible aerosol radii are then generated between 0.001
and 100 µm. The wavelength, refractive index, and radii data
are fed to a Mie code (Wiscombe, 1979) to compute the op-
tical properties for individual particles. Ultimately, the pa-
rameterization uses bulk optical properties integrated over a
size distribution, so a range of 30 lognormal size distribu-
tions are assumed and the individual particle optical proper-
ties are integrated over these size distributions. The size dis-
tributions are generated for rs values between 0.01 and 25 µm
and spaced according to Chebyshev nodes. The optical prop-
erties are then fit with a fifth-order Chebyshev polynomial
along the rs dimension, and the five Chebyshev coefficients
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are saved rather than directly saving 30 optical property val-
ues (Vetterling et al., 1988). Ultimately a three-dimensional
matrix (real refractive index, imaginary refractive index, and
surface mode radius) of Chebyshev coefficients is stored for
each wavelength and aerosol mode combination, and four of
these must be produced representing the four required output
variables: bulk shortwave absorption efficiency, bulk short-
wave extinction efficiency, bulk shortwave asymmetry pa-
rameter, and bulk longwave absorption efficiency. Because
of its high dimensionality, the amount of data stored by the
parameterization grows rapidly as the resolution with which
it resolves the input parameters is increased. This is a major
motivation for replacing the current parameterization with a
neural network, because increasing accuracy by increasing
resolution of the input parameter space rapidly becomes in-
tractable in the existing parameterization.

When the optics parameterization is called by EAM, it
is passed values of rs, n, and κ for each aerosol mode–
wavelength band combination. The parameterization applies
bilinear interpolation along the refractive index dimensions
of the table to estimate Chebyshev coefficients at an interme-
diate refractive index. Then, the fifth-order Chebyshev poly-
nomial generated with these coefficients is used to estimate
the optical properties as a function of rs. This approach is
very similar to using a lookup table, in that the optical prop-
erties have been precomputed, with the major difference be-
ing that a combination of bilinear and Chebyshev interpola-
tion is used to resolve three of the dimensions as continuous
functions of the input variables.

Errors are introduced at nearly every step in this process,
including averaging of within-mode refractive properties, a
limited number of wavelength bands treated by the model,
assumed aerosol size distributions, interpolation of refractive
indices and particle size distributions, and others. This ap-
proximation of well understood but unresolvable physics is a
frustrating but unavoidable facet of climate modeling. Here,
we set out to replace the Chebyshev interpolation approach
with a neural network emulator, which addresses the errors
incurred by coarsely resolving n, κ , rs, and particle radius
information (evaluated in more detail in Table 1 in Sect. 5).

3 Data

3.1 Mie code

Training a neural network to emulate Mie scattering first re-
quired the generation of large training, validation, and testing
datasets using established Mie solvers. We chose to refac-
tor the Fortran code used to generate the existing parame-
terization’s precomputed optical properties into Python. The
FORTRAN 77 “MIEV0” Mie scattering code (Wiscombe,
1979, 1980a), which was originally used to perform Mie
calculations to generate the current EAM parameterization,
was replaced by PyMieScatt (Sumlin et al., 2018; Sumlin,

2017), a Python-based Mie code. The machine learning li-
braries used in this study are also written in Python, and this
refactoring allowed for an end-to-end Python-based pipeline
for creating the neural network emulator and will enable eas-
ier and more flexible editing if new training data need to be
generated in the future. Furthermore, PyMieScatt has support
for additional scattering models, such as core–shell optics,
which we intend to integrate into the neural network emula-
tor in the future. We have made all of the code written for
this study available on the project’s GitHub repository (see
the “Code and data availability” statement).

To ensure that using PyMieScatt did not introduce any
additional errors or discrepancy with the original parame-
terization, we performed a comparison to MIEV0. The op-
tical properties of every refractive index, particle size, and
wavelength combination used by the original parameteriza-
tion were output and compared to the same optical prop-
erties computed using PyMieScatt. The maximum, 99.9th-
percentile, and 99th-percentile absolute errors are shown in
Table A1. Even the most extreme discrepancies between the
two schemes are negligible compared with other sources of
error in the parameterization.

3.2 Training and validation data

For ANN training, we generated a large table of bulk aerosol
optical properties similar to what is described in Sect. 2.3 but
with significantly higher resolution in terms of its input vari-
ables. We used the same bounds for possible real and imagi-
nary refractive index values, particle radii, and surface mode
radius as in Ghan and Zaveri (2007) and also similarly used
logarithmic vs. linear spacing depending on the variable (the
same wavelength bands and aerosol modes were used). The
resolution of each of these variables was increased to 2049
particle radii, 257 mode radii, 129 imaginary refractive in-
dices, and 129 real refractive indices; this is in comparison
to 200, 30, 10, and 7 respective values in the original pa-
rameterization. The resulting high-resolution table has about
20 000 times the number of entries, takes on the order of 1 d
to compute using parallelized calls to PyMieScatt on a mod-
ern CPU, and occupies several gigabytes of RAM, making it
inappropriate for direct use in an ESM.

When training a neural network, it is best practice to eval-
uate the ANN on a holdout set of validation data after it is
trained as a check for overfitting to the training data. The
validation data used here were drawn randomly from the
high-resolution table using half of the data points for training
and half for validation. In this application, the boundaries of
the optical property tables were chosen by Ghan and Zaveri
(2007) to encompass all possible input values the parame-
terization could receive from the ESM, so we are not con-
cerned about poor performance when extrapolating outside
of the optics table. However, there is potential for overfitting
to cause unexpected behavior in the regions between points
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Figure 1. A diagram of the aerosol optics parameterization and how it integrates with EAM. The “online” section shows how the param-
eterization is used during a simulation, and the “offline” portion shows the process of precomputing optical properties and preparing the
parameterization.

in the training set, and this choice of validation set allows for
detection of this type of overfit if it occurs.

3.3 Testing data

In addition to a validation set, when hyperparameter tuning is
used or multiple models are tested, an additional set of “test”
data should be held out to ensure that the validation set has
not been overfit by the hyperparameter or model selection
(Murphy, 2012). The test set used in this study was gener-
ated separately from the training data and is approximately
the same size as the combined training and validation sets.
The training set was constructed by generating an additional
table of optical properties where each of the input parame-
ters bisects the grid of values used to generate the training
and validation data. This ensures that it completely covers
the range of possible inputs and does not contain values near
any of the training and validation data points. This test set
was used to ensure that the randomly wired ANN approach
did not lead to an overfit of the validation set.

3.4 Benchmark datasets

In addition to the high-resolution optics data used for training
and validation, three other tables of optical properties were
generated at intermediate resolutions of 1025×129×65×65,
513× 65× 33× 33, and 257× 65× 17× 9. Where the ta-
ble dimensions have been listed in the following order: par-
ticle radii × mode radii × imaginary refractive index ×
real refractive index. We have chosen to scale dimensions
to a power of 2 plus 1 so that grid points in a table will
be bisected by grid points in the next-highest-resolution ta-
ble. These datasets have total parameter counts of approx-
imately 108, 107, and 106, respectively, once the multiple
wavelengths, aerosol modes, and output parameters are ac-

counted for. Note that the number of particle radii used to
resolve the particle size distributions does not add to the size
of the optics table and is only used when the dataset is gen-
erated, but it is important to the table’s accuracy. The total
parameter count, in the shortwave table, for example, is com-
puted as follows: number of mode radii × number of imagi-
nary refractive indices × number of real refractive indices ×
14 shortwave bands × 4 aerosol modes × 3 optical proper-
ties. These additional optics tables were evaluated by linearly
interpolating their entries to query points in the test set de-
scribed above, and the resulting errors are shown in Table 1
in Sect. 5. They provide an indication of how the resolution
of the training data might impact the accuracy of the trained
neural network parameterization.

3.5 Neural network inputs and outputs

To compute the bulk optical properties of a population of ho-
mogeneous spheres with lognormally distributed radii, five
values must be known: the real and imaginary components
of the refractive index, the geometric mean radius and log-
standard deviation that define the size distribution, and the
wavelength of light. For the parameterization problem solved
here, we assist the neural network by encoding this informa-
tion in a format more conducive to training neural networks.

Neural networks tend to perform better when input and
output data have certain well-behaved distributions and for-
mats. Several pre- and post-processing steps were used
alongside the ANN to help ensure optimal performance.
Each ANN has nine inputs (in order): λ, n, κ , rs/λ, rs, and a
“one-hot” encoding of the four aerosol modes (four values).
The one-hot encoding is a common strategy for categorical
inputs and usually leads to better performance than a single
scalar input that encodes the category (Murphy, 2012, p. 35).
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The existing parameterization prescribes a log-standard de-
viation for each aerosol mode, so the log-standard deviation
was not included as a separate continuous input. We chose
to include rs/λ as a constructed input despite the fact that
both of these variables are used as individual inputs because
the size parameter is a key input for Mie scattering calcula-
tions, and we found this to improve model skill in early ex-
periments. All of the inputs other than the one-hot encoding
are scalar and are each standardized by first taking the log
(except for real refractive indices where a log is not used)
and then subtracting the mean and dividing by the standard
deviation (each rounded to a precision of 0.1). The means
and standard deviations used are shown in Table A2 and are
based on data from the training set. This yields dimension-
less, zero-centered inputs with a standard deviation of 1 and
without extreme skew or leptokurtosis.

The Ghan and Zaveri (2007) parameterization estimates
specific extinction, absorption, and scattering efficiencies,
which are bulk optical properties of the aerosol distribution
per total wet aerosol mass, but these values can span several
orders of magnitude and, thus, are not well suited for predic-
tion with a neural network. Instead, we have the neural net-
work estimate a key intermediate value used in the Ghan and
Zaveri (2007) parameterization that encapsulates the compu-
tationally expensive components of estimating bulk aerosol
optical properties:

Q=
1

logσ
√

2π

∞∫
0

Q(r,λ,m)e

(
−0.5

(
log(r/rs)

logσ

)2
)

1
r

dr, (1)

where σ is the log-standard deviation of the particle size dis-
tribution, r is wet particle radius, λ is wavelength, m is the
complex refractive index, Q is either the extinction or ab-
sorption efficiency (see Ghan and Zaveri, 2007, their Eq. 20),
and the overline indicates a bulk optical property. In MAM,
the values of σ are prescribed for each mode: 1.6 for modes
2 and 4 and 1.8 for modes 1 and 3.

While the values of Eq. (1) are constrained to a reasonable
range, linear scaling of the outputs of the ANN is still used
to ensure that they are bounded by zero and one. This allows
the use of a sigmoid output function to constrain the ANN’s
outputs. The bulk absorption efficiency is linearly scaled by a
factor of 2.2, whereas the bulk extinction efficiency is scaled
by 4.6. These values were determined empirically from the
training set; when the parameterization is used in an ESM,
this scaling will need to be applied. The bulk asymmetry pa-
rameter (g) is naturally bounded by zero to one for the range
of inputs in this study and is not scaled (Bohren and Huff-
man, 1983). The longwave and shortwave bands have sig-
nificantly different ranges for some of their inputs, and the
existing parameterization only computes bulk absorption in
the longwave, so two neural networks were trained: one with
three outputs to process the shortwave bands and one with a
single output to process the longwave bands.

4 Randomly wired neural networks

4.1 Neural architecture search

Neural networks are powerful data-fitting tools, and simple
ANN designs can easily generalize to a wide variety of prob-
lems. Even so, specialized ANN architectures that have been
optimized for a task will usually perform best. Task-specific
ANN design is difficult, however, because the space of rea-
sonable ANN designs is usually far too large to explore ex-
haustively, and it is not usually obvious which will work best.
Typically, researchers will rely on heuristics, past experience,
or simply convenience and popularity to choose an appropri-
ate ANN architecture.

Various algorithmic approaches to neural architecture
search (NAS) (Elsken et al., 2019) and hyper-parameter op-
timization (HPO) (Feurer and Hutter, 2019) have become
popular for addressing this problem. These algorithms usu-
ally involve training many different neural networks with a
range of parameter and design choices and selecting the best-
performing models. Search methods range from simple ran-
dom or grid search to sophisticated algorithms such as evo-
lutionary optimization (Angeline et al., 1994), Bayesian op-
timization (Bergstra et al., 2013), or reinforcement learning
(Baker et al., 2017). Much of the recent (past 10 years) re-
search in neural architecture search has focused on develop-
ing new convolutional neural network architectures for image
processing (e.g., Zoph et al., 2018). Elsken et al. (2019) and
Yao (1999) provide reviews of this topic.

Most NAS strategies that test a variety of network wiring
patterns are limited to exploring certain families of prede-
fined network styles or break up the search space by random-
izing individual network “cells” that are then wired together
in sequence. However, Xie et al. (2019) demonstrated a NAS
strategy in which new convolutional neural network archi-
tectures were discovered through random wiring of network
layers. Motivated by early observations during our work that
the inclusion of skip connections and more complex wirings
contributed to performance for the aerosol optics problem,
we chose to employ a similar approach here. Whereas Xie
et al. (2019) focus on convolutional neural networks, we
use ANNs constructed of fully connected layers. In general,
skip connections and complex wirings are much more com-
mon in deep convolutional neural network architectures than
ones constructed from fully connected layers, but there is
some past evidence that including skip connections in deep
fully connected networks can improve performance on cer-
tain non-linear problems (Lang and Witbrock, 1988), and
this seems to be the case for the problem of emulating Mie
scattering. Here, we designed an ANN generator that auto-
matically produces ANNs with a random number of layers,
random layer sizes, and random connections between lay-
ers. Ultimately the randomly generated wirings allow for the
discovery of networks that substantially outperform simple
multilayer perceptrons.
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4.2 Random network motivation

The physical parameterization problem discussed in this
paper is particularly well suited for an ANN. The bulk
aerosol optical properties used by the parameterization can
be thought of as smooth, bounded, manifolds in a high-
dimensional space, and representing this type of dataset is
an area where neural networks often excel. It is also a partic-
ularly data-rich problem because the only limits to the size
of our training dataset are the computational and storage re-
sources that we would like to devote to generating training
data (and ultimately an upper bound on training set resolu-
tion where neighboring data points become highly autocorre-
lated). In early experiments, we found that while simple feed-
forward multilayer-perceptron-style architectures with one to
two hidden layers can provide much higher performance than
the current EAMv1 parameterization discussed in Sect. 2.3,
more complex architectures that included many smaller lay-
ers with skip connections could achieve even higher accu-
racy without an increase in the number of model parameters.
Ultimately, when used in a climate model, the ANN-based
parameterization will be evaluated many times (every time
the radiative transfer code is called for each model grid cell).
This means that reducing the network size as much as possi-
ble without significantly reducing accuracy is a worthwhile
endeavor and can save both computation time and memory
when the climate model is run. Additionally, because of the
relatively small size (500–100 000 parameters) of the ANNs
used here, they are cost-effective to train. Together, these fac-
tors mean that this ML problem is ideal for NAS.

4.3 The random ANN generator

Our ANN generator randomizes the network layer size,
layer count, merge operators, and wiring. First, it randomly
chooses a number of layers between 2 and 12; it then ran-
domly chooses the number of neurons per layer by choosing
an integer between 7 and 45 and scaling it by a factor of
0.5Nlayers (the scaling prevents the generation of very deep
and wide ANNs with extremely high parameter counts). To
facilitate merging inbound tensors to a layer with element-
wise addition, all layers in the network use the same number
of neurons. Each hidden layer used in the network is a fully
connected layer and applies a tanh activation to its outputs.

Once layer counts and size are selected, the ANN genera-
tor creates a random wiring between the layers by generating
an adjacency matrix that represents layer connections. Sev-
eral constraints must be enforced on the adjacency matrix to
ensure that it represents a usable ANN architecture. Firstly,
we require that the ANN is feed forward. If each row in the
adjacency matrix represents a layer in the order in which they
will be evaluated in the ANN, this can be accomplished by
enforcing that the adjacency matrix is lower triangular. For an
ANN with N hidden layers, this means there are 1

2 (N
2
+N)

valid layer connections. The number of active connections

for an ANN is randomly chosen from a uniform distribution
between 0 and 1

2 (N
2
+N), and this many entries in the lower

triangular portion of the adjacency matrix are then randomly
turned on. Additionally, each layer must have at least one in-
bound and one outbound tensor. Because the number of lay-
ers in the ANN is determined before the adjacency matrix is
constructed, this must be enforced by iterating through each
row and column of the adjacency matrix and randomly turn-
ing on one valid inbound and/or outbound connection if the
corresponding layer has none.

Lastly, the number of inputs to each ANN are static (nine
inputs), but we would like the outputs from each network
layer to be a fixed size, and any layer can be directly con-
nected to the input layer. As a workaround, each ANN in-
cludes an additional fully connected layer with a number of
neurons equal to the difference between the nine inputs and
the randomly selected network layer size. The outputs from
this layer are appended to the actual inputs as a learnable
padding.

Initial experiments on a subset of the training data were
run using a single shortwave band (because of reduced train-
ing time on the smaller dataset) with additional randomiza-
tion including the following: variable layer sizes (ANNs that
used different layer sizes internally exclusively used concate-
nation to merge tensors); randomly selected activation func-
tions from linear, tanh, rectified linear unit (ReLU) (Glorot
et al., 2011), exponential linear unit (Clevert et al., 2015),
leaky ReLU, and parametric ReLU (He et al., 2015); and
batch normalization (Ioffe and Szegedy, 2015), dropout (Sri-
vastava et al., 2014), or no regularizer. These experiments
showed that the tanh function provided slightly better per-
formance than other activations and that including batch nor-
malization or dropout substantially reduced performance. We
hypothesize that the reduced performance with dropout is re-
lated to the fact that we are testing relatively small networks.
Because dropout layers generally force the ANNs to learn
redundant representations of the data and the small ANNs
used here only have limited capacity to represent the com-
plex training data, requiring them to learn redundant repre-
sentations of the data only reduces their skill. Additionally,
the complexity of the training data and small size of the net-
works means that we are not particularly concerned about
overfitting and do not expect to gain much from using reg-
ularization techniques. These additional types of randomiza-
tion were not included in final experiments.

4.4 Training and model selection

Each model was trained using the Adam optimizer with an
initial learning rate of 0.001, β1 = 0.9, and β2 = 0.999 to op-
timize mean-squared error. We used a batch size of 64 sam-
ples and trained for 10 epochs. The learning rate was reduced
manually by a factor of 10 on the 4th, 7th, and 10th epochs.
A total of 500 randomly wired ANNs were trained, and each
was evaluated on the validation set. Figure 2 shows scatter-
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plots of each random ANN’s validation performance in terms
of mean absolute error (MAE) on the standardized ANN out-
puts plotted against the number of trainable parameters in the
network. Both panels in Fig. 2 show a similar pattern in terms
of ANN performance vs. size: skill improves rapidly with in-
creasing size until it plateaus somewhere between 1000 and
20 000 trainable parameters. Additional size increases yield
only very small performance gains. The approximate loca-
tion of the elbow in each of these performance vs. size plots
is expanded in an inset in each figure panel. Based on these
inset plots, we subjectively chose an ANN for both the long-
wave and shortwave regimes that appears to provide a good
balance between network size and skill. The selected ANNs
are denoted in Fig. 2 with red circles, and diagrams of the
wirings for the selected networks are shown in Fig. 3. Note
that later, in Sect. 5, errors will be reported after rescaling
the standardized network outputs for comparison to the Ghan
and Zaveri (2007) scheme; however, here, we report the se-
lected ANNs’ MAEs on the test set computed directly on
the ANN output as in Fig. 2: shortwave (SW): 8.96× 10−5;
longwave (LW): 2.32× 10−5. The comparable performance
on the test set to the validation set indicates that the chosen
ANNs did not overfit the training and validation data. These
selected ANNs were ultimately retained for use as parame-
terizations and are evaluated in more detail on the test set in
Sect. 5.

We also trained several benchmark ANNs for compari-
son to the random ANNs. Each of the benchmark networks
is composed of two to six hidden layers wired in sequence
with tanh activation functions, and they represent the perfor-
mance of conventional ANN architectures. One-layer ANNs
performed almost an order of magnitude worse than the oth-
ers and were not included. Benchmark ANNs with a total
of 10 different sizes in terms of total trainable parameters
were used. Five copies of each unique benchmark ANN layer
count–parameter count combination were trained, and only
the best-performing models were retained to ensure that poor
performance at a particular ANN size was not simply due
to an unlucky random initialization or training sample selec-
tion. This means that a total of 250 benchmark ANNs were
trained for both the longwave and shortwave regimes. The
performance of these benchmark ANNs is also indicated in
Fig. 2 by solid lines.

4.5 Discussion of ANN architecture

The performance of the benchmark and random ANNs pro-
vides some insight into ANN design. Firstly, we note that
one-layer ANNs were also tested, but they typically per-
formed nearly an order of magnitude worse than other ANNs
and are not shown in Fig. 2. This suggests that using al-
most any multilayer architecture, regardless of construction,
can yield substantial performance gains. Secondly, the two-
to six-layer sequential models are outperformed by the ma-
jority of randomly wired ANNs that have similar parame-

ter counts. Also, the multilayer sequential models with more
than three layers begin to perform worse than their shallower
counterparts. It appears that the inclusion of skip connec-
tions has likely allowed the random networks to train suc-
cessfully despite their depth (high layer count). In the con-
text of this problem, the neural networks are attempting to
fit a high-dimensional manifold that varies significantly with
respect to several of the input parameters. Deeper networks
are likely required to efficiently represent the non-linearities
in the problem, but deep neural networks can struggle to train
effectively due to vanishing gradients (Goodfellow et al.,
2016). The ANNs that were ultimately chosen here tend to
have more, but smaller, layers than the best serially con-
nected ANNs, and they include multiple skip connections.

The universal approximation theorem implies that this
problem is solvable with a wide, single-layer perceptron net-
work (Hornik et al., 1989). In practice, however, multilayer
networks are almost always more efficient, and this is the
case here. Furthermore, any of the randomly wired networks
used here could theoretically be represented by a serially
connected multilayer network: one can imagine a serially
connected network learning to apply the identity function
to some of its inputs, thereby learning to generate skip con-
nections on its own. Again, while it is technically possible,
this is not the case in practice, and even learning the iden-
tity function is not necessarily a trivial task for neural net-
works. While the importance of skip connections has been
thoroughly explored in the context of building very deep con-
volutional neural networks (He et al., 2016), it has only rarely
been applied to ANNs with fully connected layers, although
some early examples of this approach do exist (Lang and
Witbrock, 1988). These results are informative for our ap-
plication and similar use cases, where the ANN’s memory
and computational requirements at the inference time are of
particular importance; moreover, by evaluating many ANN
architectures, we have identified ANNs with significantly
higher accuracy than conventional architectures with no in-
crease in inference cost. Taken together, our results indicate
that significant performance gains may be achieved in other
applications of ANNs in the Earth sciences and Earth sys-
tem modeling through in-depth exploration of task-optimized
network architectures.

5 Evaluation

The ANNs were ultimately evaluated on the randomly gen-
erated holdout test set described in Sect. 3.3. In addition
to evaluating the accuracy of their outputs, we evaluate
them on two additional optical properties derived from the
ANN output: shortwave bulk scattering efficiency (QSca.)
and single-scattering albedo (SSA). These respective prop-
erties are computed as follows: QSca. =QExt.−QAbs. and
SSA= 1−QAbs./QExt. (Bohren and Huffman, 1983). SSAs
with QExt. < 0.01 were not included in the analysis because
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Figure 2. Validation set performance of randomly wired neural networks plotted against the network size. Panels show results for different
wavelength regimes. The mean absolute error is computed on normalized optical properties (directly on the outputs from the neural networks)
and are dimensionless. In each case, there is a clear elbow, beyond which increasing the network size does not substantially improve perfor-
mance. In both panels, the inset shows a magnified region around this elbow. Solid lines indicate the performance of traditional feed-forward
multilayer perceptron ANNs with two to six hidden layers. The red dot indicates the network that was ultimately chosen for use.

Figure 3. Wiring patterns of the two (longwave and shortwave) ran-
domly generated neural networks that were selected for use in the
optics emulator. Nodes represent “dense” (fully connected) layers.
“C” and “+” indicate whether inbound tensors are combined by
concatenation or addition, respectively. All hidden layers have the
same number of neurons within each network: SW has 54 and LW
has 32 (the nine inputs are padded to reach the appropriate size, and
the output layer has either 3 neurons for SW or 1 neuron for LW).

very small errors get amplified by the Q
−1
Ext. in scenarios

where scattering is negligible. The existing aerosol optics pa-
rameterization was also evaluated along with linear interpo-
lation applied to several high-resolution tables of aerosol op-
tical properties that were generated at a range of resolutions
(described in Sect. 3.4). This includes the very high resolu-
tion table used for training and validation. The test set MAE
for each of the output parameters and wavelength regimes are
listed in Table 1. The ANN shows a substantial performance
improvement over the existing parameterization, with MAEs
about 3 orders of magnitude smaller. This is particularly no-

table for the shortwave extinction efficiencies where the ex-
isting parameterization has an MAE of 0.2 but the ANN has
an MAE of 3.6× 10−4. Extinction efficiencies range from
about 0 to 3.5, so an MAE of 0.2 is substantial. The per-
formance of the additional interpolated optics tables behaves
about as expected, with the MAE decreasing in proportion to
table size. It can also be seen that a lookup table with approx-
imately 109 parameters is required to achieve performance
comparable to the ANN. This is far too large to be used in
an ESM. Lastly, Table 1 indicates the test set performance of
the best-performing conventional (serially connected) ANN
on the test set, and again we see that it cannot match the per-
formance of the randomly wired ANN, which consistently
outperforms it by around 10 % to 30 % for the shortwave and
65 % for the longwave.

The very low MAE shown in Table 1 is encouraging, but
ideally a parameterization should perform well over the full
range of possible inputs and a low MAE could potentially
still be achieved in the presence of outlier cases with high
error that could cause problems when it is used in a cli-
mate simulation. Figure 4 shows logarithmically scaled his-
tograms of the absolute error for all individual samples in
the test set. Here, we see that, in addition to outperforming
the benchmark optics tables and existing parameterization on
average, the most extreme errors produced by the ANN are
also far smaller than those produced by the existing parame-
terization. Furthermore, the ANN’s histograms tend to have
peaks at lower error values than the other methods. Note that,
because of the log scaling, the peak represents a large num-
ber of samples and the size of the error distribution’s tails
is exaggerated. An interesting feature from Fig. 4 is that the
lookup tables tend to have longer left tails, representing cases
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Table 1. Mean absolute error for bulk optical property estimates using different methods. Note that only bulk absorption efficiency is
computed for the longwave bands and that shortwave single-scattering albedo (SSA) and bulk scattering efficiency are computed from
shortwave absorption and extinction efficiencies. The overbars denote that these are bulk values integrated over lognormal size distributions
(Eq. 1).

Method N params. QAbs. (SW) QExt. (SW) g (SW) QSca. (SW) SSA (SW) QAbs. (LW)

Random ANN 104 8.6× 10−5 3.6× 10−4 1.1× 10−4 3.5× 10−4 3.2× 10−4 3.7× 10−5

Serial ANN 104 1.1× 10−4 4.2× 10−4 1.2× 10−4 4.1× 10−4 4.3× 10−4 7.3× 10−5

Ghan and Zaveri (2007) 105 1.8× 10−2 2.0× 10−1 2.5× 10−2 2.0× 10−1 5.2× 10−2 1.4× 10−2

Lookup table 106 3.8× 10−3 6.6× 10−3 1.7× 10−3 9.0× 10−3 2.6× 10−3 2.5× 10−3

Lookup table 107 1.0× 10−3 1.9× 10−3 5.3× 10−4 2.5× 10−3 6.8× 10−4 6.7× 10−4

Lookup table 108 3.1× 10−4 7.2× 10−4 2.1× 10−4 8.6× 10−4 2.0× 10−4 2.0× 10−4

Lookup table 109 1.2× 10−4 3.9× 10−4 1.1× 10−4 4.2× 10−4 7.6× 10−5 7.6× 10−5

Figure 4. Error histograms for estimates of the bulk aerosol optics test dataset. These panels show the distribution of errors on a log–log
histogram to make outlier cases with high error more apparent. The vertical grid shows the bin edges of the histogram. The blue and magenta
lines represent the Chebyshev-polynomial-based parameterization and the neural network, respectively. The dashed gray lines represent the
error from applying linear interpolation to precomputed optics datasets of varying resolution, with the highest-resolution tables appearing to
the left and progressively coarser tables to the right.

with very low error. These occur because some regions in the
input space have little to no variability in the output space –
for instance, the large regions where extinction is near zero.
The linear interpolation in the lookup tables can perfectly
fit constant-valued functions, but the ANN and Chebyshev
methods will still have a small amount of error. Ultimately,
the key observation from Fig. 4 is that the ANN’s errors do

not have a large right tail, meaning that we still expect very
accurate estimates of aerosol optical properties, even for the
input queries where the ANN performs worst.

Finally, Fig. 5 shows a joint histogram of bulk aerosol opti-
cal properties estimated by the existing parameterization and
by direct computation with Mie code for all samples in the
test set. Separate joint histograms are not included for the
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Figure 5. Scatterplot-like joint histograms comparing optical properties from the Chebyshev-interpolation-based parameterization and Mie
code. Gray shading indicates the density of data points. The red contour contains all outputs from the neural network, which all lie very close
to the 1-to-1 line.

ANN outputs; instead, a red contour in each of the joint his-
tograms denotes the boundary containing all samples. No-
table patterns appear in the joint histograms of the shortwave
extinction field and the fields derived from it (SW scattering
and SSA) as well as, to a lesser degree, the other predicted
fields. These arise in the Ghan and Zaveri (2007) parameter-
ization from the Chebyshev polynomial fit used to approxi-
mate optical properties as a function of surface mode radius.
The Chebyshev polynomials are smooth functions that do not
perfectly fit the bulk extinction efficiency curve, for instance,
and consistently over- or undershoot it for certain rs values.
Because bulk extinction efficiency is very sensitive to the par-
ticle size distribution, this effect is obvious in Fig. 5.

Drawing the training set from a regular grid over the in-
put space has ensured good coverage of possible input val-
ues, while generating a test set of equal size consisting of
intermediate values that are not near points in the training
or validation data helps demonstrate that the ANN will not
perform unexpectedly when interpolating within the region
defined by the training data. Together, Table 1 and Figs. 4
and 5 demonstrate that the ANN parameterization not only
provides a dramatic performance improvement over the cur-
rent approach but can also be expected to perform exceed-
ingly well for the full range of possible input data, with no
extreme cases of high error. Therefore, the ANN parameteri-
zation is an accurate and reliable replacement for the current
bulk aerosol optics parameterization.

6 Conclusions

This work has demonstrated the effectiveness of machine
learning for emulating the aerosol optical properties that
are crucial to climate simulation. A neural network is ca-
pable of producing bulk optical property estimates that are
substantially more accurate than those produced by the ex-
isting (Ghan and Zaveri, 2007) parameterization in E3SM
and CESM and does so with an order of magnitude smaller
memory requirement. The computational requirements for
evaluating an ANN with 104 parameters is larger than the
computational requirements of the current approach, but this
parameterization is evaluated every time EAM calls radia-
tion code, and evaluating the ANN requires negligible com-
putation compared with the radiation code, so the impact
on model runtime should be negligible. Additionally, the
ANN outperforms lookup-table-based optics emulators that
resolve aerosol optical properties at much higher resolution
than the existing scheme. Testing over a wide range of possi-
ble input data showed that the neural network performs well
over the possible input space and will not produce any outlier
errors or unexpected results within this range. Representation
of aerosol direct effects is a major source of uncertainty in
climate simulation; while representation of aerosol optics is
likely only a small component of this uncertainty, adequate
representation of these physics is a key step forward towards
accurately representing aerosols in general.
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This work, to some degree, should be seen as a first step or
proof of concept and as a demonstration of the power of ran-
domly wired networks for this problem. Our ultimate goal is
to develop a neural-network-based parameterization that rep-
resents core–shell scattering – a physical model that is too
computationally expensive to represent with existing param-
eterizations. While this work presents the machine learning
technique and evaluates it directly against Mie code, we ex-
pect to follow it with a climate modeling study evaluating
the impacts of this parameterization, and a future core–shell
scattering model, on E3SM simulations.

In addition to developing a new parameterization, we ap-
plied a recently developed (Xie et al., 2019) neural architec-
ture search strategy that randomizes wiring patterns in deep
neural networks. Key findings were that deeper ANNs sig-
nificantly outperformed a single-layer ANN of comparable
size. Also, the majority of randomly constructed ANN ar-
chitectures (which include skip connections) outperformed
conventional multilayer perceptron networks. In the context
of this study, the NAS allowed us to identify neural archi-
tectures that provide a substantial performance improvement
with no increase in network size.

Our findings provide some insights into ANN design. The
fact that the majority of randomly wired networks outper-
form multilayer networks with serially connected layers in-
dicates that the inclusion of skip connections may be critical
for this type of problem. In image processing, convolutional
neural networks with a large number of layers and skip con-
nections (He et al., 2016; Huang et al., 2017) were identified
as superior to serially connected designs several years ago,
and they have dominated deep learning research since. While
using skip connections in networks constructed of fully con-
nected layers is certainly not a new idea (Lang and Witbrock,
1988), it has received comparatively little attention in recent
machine learning literature. This work indicates that the in-
clusion of skip connections could be an effective way to train
smaller regressor and function-fitting neural networks to fit
complicated data or surfaces.

To the best of our knowledge, this is the first use of ran-
domly wired neural architecture search approaches in the at-
mospheric sciences. Their performance against conventional
serially connected feed-forward ANNs in this task was strik-
ing. The majority of random wirings were better able to rep-
resent Mie optics than serial wirings by a substantial amount
(about 10 %–30 % in the shortwave regime and 65 % in the
longwave) with no increase in model complexity in terms
of the number of trainable parameters. There has recently
been significant push to leverage new advances in machine
learning to replace the various existing parameterizations
used by climate and weather models with more performant
and/or accurate representations (e.g., Gettelman et al., 2021;
Lagerquist et al., 2021). Many of these problems, like the
Mie optics problem addressed here, are data-rich and well
suited for neural architecture search, as training data can be
produced by an accurate but computationally expensive nu-

merical simulation. Our results indicate that, when using neu-
ral networks for this type of application, significant perfor-
mance improvements can be achieved by taking care to de-
sign or select network architectures optimized for the target
task. NAS algorithms and random wirings have, so far, re-
ceived little attention in the Earth sciences, and random net-
work wiring may be a fruitful strategy for developing neural-
network-based parameterizations and physics emulators in
the future.

Appendix A

Table A1. Errors between optical properties computed with PyMi-
eScatt and MIEV0.

QAbs. QSca. g

Max abs. err. 1.8× 10−3 1.6× 10−2 9.6× 10−2

99.9th percentile 1.1× 10−3 1.5× 10−3 8.0× 10−4

99th percentile 3.3× 10−4 4.3× 10−4 4.4× 10−4

Table A2. Constants used to standardize ANN inputs. For all vari-
ables except the real refractive index, standardization is done after
taking the natural logarithm. A value of 1× 10−6 is added to the
imaginary refractive index before taking the logarithm.

(µ/σ) Real ref. Imaginary. Surf. mode Wavelength Rsurf/λ
ind. ref. ind. rad. (Rsurf) (λ)

SW 1.6/0.2 −7.0/4.0 −14.5/2.3 −13.6/1.0 −0.9/3.9
LW 1.7/0.3 −7.0/3.9 −14.5/2.3 −11.5/1.1 −3.0/2.5

Code and data availability. The code created as part of this
research is available from the project’s GitHub reposi-
tory (https://github.com/avgeiss/aerosol_optics_ml, last ac-
cess: 20 February 2023) and has been archived on Zenodo:
https://doi.org/10.5281/zenodo.6767169 (Geiss, 2022a).

Wiscombe’s MIEV0 is thoroughly documented in Wis-
combe (1979, 1980a) and has been preserved in several
locations online, including as part of the CESM 1.0 code:
https://www.cesm.ucar.edu/models/cesm1.0/cesm/cesmBbrowser/
html_code/cam/miesubs.F.html#MIEV0 (last access: 25
April 2022) and https://github.com/avgeiss/aerosol_optics_
ml/blob/main/mie_codes/miev0.F (Wiscombe, 1980b).

PyMieScatt is available from https://github.com/bsumlin/
PyMieScatt (Sumlin, 2017) and can be installed via the pip Python
package manager. PyMieScatt documentation is available from
https://pymiescatt.readthedocs.io/en/latest/ (last access: 8 February
2022).

All data produced as part of this study, including op-
tics tables, random ANN files, and Chebyshev coefficients
generated by our Python port of the Ghan and Zaveri
(2007) parameterization, have been made available online at
https://doi.org/10.5281/zenodo.6762700 (Geiss, 2022a). We note
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that all of the data stored here can be produced by running the code
in the project’s GitHub repository.
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