Supplement of

Development of an ecophysiology module in the GEOS-Chem chemical transport model version 12.2.0 to represent biosphere–atmosphere fluxes relevant for ozone air quality

Joey C. Y. Lam et al.

Correspondence to: Amos P. K. Tai (amostai@cuhk.edu.hk)

The copyright of individual parts of the supplement might differ from the article licence.
S1.1 Leaf biochemistry

Formulations of photosynthesis rates for C_3 and C_4 plants were derived from leaf biochemistry and formulated as in Collatz et al. (1991) and Collatz et al. (1992), respectively. It is calculated from the three potentially limiting rates:

1. Rubisco-limited rate:
 CO_2 assimilation is limited by the availability of CO_2 in intercellular space, the kinetic properties of active sites of Rubisco, and/or the available amount of Rubisco. It is modeled as:
 \[
 W_c = \begin{cases}
 V_{c_{\text{max}}} \left(\frac{c_i - \Gamma}{c_i + K_c (1 + o_i / K_o)} \right) & \text{for C}_3 \text{ plants} \\
 V_{c_{\text{max}}} & \text{for C}_4 \text{ plants}
 \end{cases}
 \] (S1)
 where \(V_{\text{c_{max}}} \) is the maximum carboxylation rate (\(\mu \text{mol CO}_2 \text{ m}^{-2} \text{ s}^{-1} \)), \(c_i \) and \(o_i \) are the partial pressures (Pa) of CO_2 and O_2 in intercellular space, respectively, \(\Gamma \) is the CO_2 photorespiration compensation point (Pa), and \(K_c \) and \(K_o \) are the Michaelis–Menten coefficients (Pa) for carboxylation and oxygenation, respectively. \(c_i \) is calculated in Sect. 2.1.4. \(o_i \) is assumed to be equal to the partial pressure of O_2 in the lowest model level. Detailed formulations of temperature-dependent parameters are included in the supplementary materials.

2. RuBP-limited rate (light-limited rate):
 It describes the regeneration rate of RuBP, which depends on the amount of ATP and NADPH. This ultimately depends on the availability of absorbed photons, and is modeled as:
 \[
 W_l = \begin{cases}
 \alpha c_{\phi} \phi \left(\frac{c_i - \Gamma}{c_i + 2\Gamma} \right) & \text{for C}_3 \text{ plants} \\
 \alpha c_{\phi} \phi & \text{for C}_4 \text{ plants}
 \end{cases}
 \] (S2)
 where \(\alpha \) is the quantum efficiency of photosynthesis (mol CO_2 mol\(^{-1}\) PAR), \(c_{\phi} = 4.6 \mu \text{mol PAR J}^{-1} \) is a conversion constant, and \(\phi \) is the absorbed photosynthetically active radiation (PAR, W m\(^{-2}\)).

3. Product-limited rate:
 It refers to the rate of transport of photosynthetic products for C_3 plants and PEP carboxylase limitation for C_4 plants. It is modeled as:
 \[
 W_e = \begin{cases}
 0.5 V_{\text{c_{max}}} & \text{for C}_3 \text{ plants} \\
 2 \times 10^4 V_{\text{c_{max}}} (c_i / P_s) & \text{for C}_4 \text{ plants}
 \end{cases}
 \] (S3)
 where \(P_s \) is the surface air pressure (Pa).

The leaf-level net photosynthesis (\(A_n, \mu \text{mol CO}_2 \text{ m}^{-2} \text{ s}^{-1} \)) is calculated as a smoothed minimum (see supplementary materials) of the three potentially limiting rates minus dark respiration (\(R_d, \mu \text{mol CO}_2 \text{ m}^{-2} \text{ s}^{-1} \)):
\[
A_n = \min(W_c, W_l, W_e) - R_d \tag{S4}
\]
where \(R_d \) is linearly proportional to \(V_{\text{c_{max}}} \) by the dark respiration coefficient \(f_{dr} \):
\[
R_d = f_{dr} V_{\text{c_{max}}} \tag{S5}
\]
S1.2 Photosynthesis as a diffusive flux

The leaf-level net photosynthesis A_n can also be represented as a diffusive flux of CO$_2$ modulated by the leaf-level stomatal conductance g_s (m s$^{-1}$). Therefore, we can find g_s using:

$$g_s = \frac{1.6 \times 10^{-6} A_n R_* T}{c_c - c_i} \quad (S6)$$

where c_c is the canopy CO$_2$ partial pressure (Pa), 1.6 accounts for different diffusivities of CO$_2$ and H$_2$O through leaf stomata, $R_* = 8.31$ J K$^{-1}$ mol$^{-1}$ is the universal molar gas constant, and T is the canopy air temperature (K). We assume c_c and T to be equal to the ambient CO$_2$ concentration and the 2 m temperature respectively.

S1.3 Canopy scaling

A simple big-leaf approach is applied to scale up leaf-level variables to the canopy-level variables. It is assumed that incident light is attenuated by the canopy according to Beer’s law:

$$I(L) = I_0 e^{-kL} \quad (S7)$$

where $I(L)$ and I_0 are the irradiance at the height of the canopy with cumulative leaf area index L and at the top of the canopy, respectively, and k is the PAR extinction coefficient of the canopy. It is also assumed that the in-canopy leaf photosynthetic capacity V_{cmax} at different heights vary proportionally to the in-canopy light profile. Therefore, from Eq. (S4), (S5) and (S6), leaf-level net photosynthesis rate A_n, dark respiration rate R_d, and stomatal conductance g_s also follow the same profile. Integrating over the entire canopy, the canopy-level net photosynthesis A_c, respiration R_{dc} and stomatal conductance g_s are given by:

$$A_c = A_n \frac{1 - e^{-kL_c}}{k} \quad (S8)$$

$$R_{dc} = R_d \frac{1 - e^{-kL_c}}{k} \quad (S9)$$

$$g_s = g_s \frac{1 - e^{-kb_c}}{k} \quad (S10)$$

where L_c is the canopy total leaf area index (m2 m$^{-2}$).

S1.4 Stomatal closure parameterization

A third equation by Jacobs (1994) relating c_i and g_s via canopy humidity deficit D (kg$_w$ kg$_a$$^{-1}$) is included to obtain a closed set of equations for A_n, g_s and c_i. This formulation was discussed in detail by Cox et al. (1998).

$$\frac{c_i - \Gamma}{c_c - \Gamma} = f_0 \left(1 - \frac{D}{D_*}\right) \quad (S11)$$

where f_0 and D_* are PFT-specific parameters. D is evaluated as the difference between the saturation specific humidity (kg$_w$ kg$_a$$^{-1}$) evaluated at leaf temperature T_l and the 2 m specific humidity. We assume a thin leaf boundary layer, T_l would be equal to the 2 m air temperature.
S1.5 Soil moisture stress

Under dry soil conditions, A_n, R_d and g_{s0} are reduced due to limited availability of water. An extra factor β_t, which ranges from 0 to 1, is multiplied to all three quantities. It is modeled as:

$$\beta_t = \begin{cases}
1 & \text{for } \theta > \theta_c \\
\frac{\theta - \theta_w}{\theta_c - \theta_w} & \text{for } \theta_w < \theta \leq \theta_c \\
0 & \text{for } \theta \leq \theta_w
\end{cases}$$ (S12)

where $\theta = S \times \theta_s$ is the root zone soil moisture, S is the root zone soil wetness (in terms of fraction of soil pore space), and θ_s, θ_c and θ_w are the saturation, critical and wilting soil moisture, respectively. We use the soil ancillary maps that contain θ_s, θ_c and θ_w at 0.5°×0.5° resolution from HadGEM2-ES.

S1.6 O$_3$ damage

The O$_3$ damage scheme in JULES is based on Sitch et al. (2007). When the ambient O$_3$ concentration is high enough, A_n, R_d and g_{s0} is further reduced due to O$_3$ damage on plant cells. An O$_3$ damage factor β_{O3}, which ranges from 0 to 1, is multiplied to the three quantities. The damage factor is given by:

$$\beta_{O3} = 1 - a \times \max[F_{O3} - F_{O3\text{crit}}, 0]$$ (S13)

where F_{O3} is the O$_3$ deposition flux through stomata (nmol m$^{-2}$ s$^{-1}$), $F_{O3\text{crit}}$ is the threshold for stomatal O$_3$ uptake (nmol m$^{-2}$ s$^{-1}$), and a is the gradient of the O$_3$ dose response function (nmol$^{-1}$ m2 s$^{-1}$); a and $F_{O3\text{crit}}$ are PFT-specific parameters. There are two sets of values of a corresponding to “high” and “low” sensitivities. The stomatal O$_3$ deposition flux is modeled using a flux gradient approach:

$$F_{O3} = \frac{[O_3]}{r_a + r_b + \kappa_{O3} r_s}$$ (S14)

where $[O_3]$ is the molar concentration of O$_3$ at the lowest model level, r_a is the aerodynamic resistance (s m$^{-1}$), r_b is the quasi-laminar sublayer resistance, $r_s = 1 / g_s$ is the stomatal resistance, and $\kappa_{O3} = 1.61$ accounts for the relative difference in diffusivities of O$_3$ and H$_2$O through leave stomata. Since r_s in equation (14) depends on β_{O3}, equations (S13) and (S14) can be combined into a quadratic equation and solved analytically to give β_{O3}.

S1.7 Open vs. closed stomata

It is important to note that open and closed stomata are treated differently in the module. Open stomata follow the processes described above. Closed stomata are assigned a minimum value of stomatal conductance $g_{\text{min}} = 10^{-6}$ m s$^{-1}$. Photosynthesis and O$_3$ deposition cannot occur, and thus A_n is only affected by R_d and β_t:

$$A_n = -R_d \beta_t$$ (S15)

Closed stomata are determined by
1. \(g_{s0} \leq g_{\text{min}} \), which indicates that \(g_{s0} \) is close to zero and the associated fluxes can be neglected,

2. \(A_n \leq 0 \), which indicates that photosynthesis is not effective, and thus plants close the stomata,

3. \(D \geq D_s \), which implies \(c_i \leq \Gamma \) from Eq. (S11), hence there is no net uptake of CO\(_2\) across stomata,

4. \(\beta_t = 0 \), which implies a dry soil condition inhibiting photosynthesis,

5. \(\phi = 0 \), which implies that PAR is not available for photosynthesis.

S1.8 Photosynthesis-dependent isoprene emission

In prior GEOS-Chem, canopy isoprene emission is computed by MEGAN v2.1, which calculates biogenic VOC emissions of various species as functions of canopy-scale PFT-specific emission factors modulated by environmental activity factors to account for changing temperature, light, leaf age and LAI, weighted by the PFT fraction in each grid cell to give the grid cell-level emission fluxes. The activity factors are essentially semi-empirical functions constrained by experimental data, not explicitly linked to mechanistic ecophysiological processes. Here in the ecophysiology module, canopy isoprene emission \((E_{\text{isoprene}}, \text{kg C m}^{-2} \text{s}^{-1})\) is linked explicitly to photosynthesis, based on Pacífico et al. (2011):

\[
E_{\text{isoprene}} = \text{IEF} \rho_{\text{leaf}} \frac{A_c + R_{dc}}{(A_n)_{\text{st}} + (R_{d})_{\text{st}}} f_T f_{\text{CO2}}
\]

where IEF is the PFT-specific isoprene emission factor (\(\mu\text{g C g dw}^{-1} \text{h}^{-1}\), “dw” means dry weight), i.e., base emission rate of isoprene at the leaf level under standard conditions (i.e., temperature of 30°C, photosynthetically active radiation of 1000 \(\mu\text{mol CO}_2 \text{m}^{-2} \text{s}^{-1}\), CO\(_2\) concentration of 370 ppm and without any O\(_3\) damage or soil moisture stress), \(\rho_{\text{leaf}}\) is the dry leaf area density (g dw\(^{-1}\) m\(^{-2}\)), \(f_T\) and \(f_{\text{CO2}}\) are temperature- and CO\(_2\)-dependent empirical factors to account for variation with changing temperature and CO\(_2\) level. Variables with subscript “st” are calculated under standard conditions. \(f_T\) and \(f_{\text{CO2}}\) are calculated as:

\[
f_T = \min\left[e^{a_T (T - T_{\text{st}})}; 2.3\right]
\]

\[
f_{\text{CO2}} = \frac{(c_i)_{\text{st}}}{c_i}
\]

where \(a_T = 0.1 \text{ K}^{-1}\), \(T_{\text{st}} = 300 \text{ K}\), \(c_i\) is the partial pressure of CO\(_2\) in the intercellular space. We note that, as opposed to Pacífico et al. (2011), our model does not capture a reduction in \(c_i\) following soil moisture limitation because we use prescribed 2 m specific humidity data in the meteorological input to calculate \(c_i\). The effect of soil moisture stress on isoprene emission is only captured in the calculation of \(A_c\) and \(R_{dc}\). This may lead to a lower isoprene emission rate compared to the original scheme, but direct comparison is not possible due to different input meteorology used in our study.

S1.9 Photosynthesis model parameterization

Parametrizations of \(V_{\text{max}}, \Gamma, K_c\) and \(K_o\) in the photosynthesis model follows from Clark et al. (2011).
Maximum carboxylation rate V_{cmax} is parametrized using PFT-specific values of n_e (mol CO$_2$ m$^{-2}$ s$^{-1}$ kg C (kg N)$^{-1}$), top leaf nitrogen concentration n_0 (kg N (kg C)$^{-1}$), and an optimal temperature range represented by T_{upp} (°C) and T_{low} (°C). V_{cmax} is formulated as:

$$V_{\text{cmax}} = \frac{n_e n_0 f_T(T_c)}{1 + e^{0.3(T_c - T_{\text{upp}})}/[1 + e^{0.3(T_{\text{low}} - T_c)}]}$$ (S19)

where T_c is the canopy air temperature (°C) and f_T is the Q_{10} temperature dependence with default value of $Q_{10,\text{leaf}} = 2$:

$$f_T(T_c) = Q_{10,\text{leaf}}^{0.1(T_c - 25)}$$ (S20)

CO$_2$ photorespiration compensation point Γ is modelled as

$$\Gamma = \begin{cases} o_a/	au & \text{for C}_3 \text{ plants} \\ 0 & \text{for C}_4 \text{ plants} \end{cases}$$ (S21)

where o_a is the partial pressure (Pa) of O$_2$ and τ is the Rubisco specificity for CO$_2$ relative to O$_2$ with default value of $Q_{10,rs}=0.57$:

$$\tau = 2600 Q_{10,rs}^{0.1(T_c - 25)}$$ (S22)

The Michaelis-Menten coefficients K_c and K_o are also calculated using the Q_{10} temperature dependence with default values of $Q_{10,Kc} = 2.1$ and $Q_{10,Ko} = 1.2$:

$$K_c = 30 Q_{10,Kc}^{0.1(T_c - 25)}$$ (S23)

$$K_o = 30000 Q_{10,Ko}^{0.1(T_c - 25)}$$ (S24)

S1.10 Smooth minimum of co-limiting photosynthesis rates

To smoothen the transition from one limiting rate to another, double quadratic equations with convexity factors $\beta_1 = 0.83$ and $\beta_2 = 0.93$ are used:

$$\beta_1 W_p^2 - (W_c + W_l)W_p + W_c W_l = 0$$ (S25)

$$\beta_2 W^2 - (W_p + W_o)W + W_p W_o = 0$$ (S26)

The smaller quadratic root of each equation is used.
Table S1: PFT-specific parameters used in the ecophysiology module. *, # and + indicates the parameters are taken from Clark et al. (2011), Raoult et al. (2016) and Sitch et al. (2007) respectively.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Unit</th>
<th>Name</th>
<th>Broadleaf tree</th>
<th>Needleleaf tree</th>
<th>C₃ grass</th>
<th>C₄ grass</th>
<th>Shrub</th>
</tr>
</thead>
<tbody>
<tr>
<td>k</td>
<td>/</td>
<td>PAR extinction coefficient#</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>a</td>
<td>mol CO₂ mol⁻¹ PAR</td>
<td>Quantum efficiency#</td>
<td>0.131</td>
<td>0.096</td>
<td>0.179</td>
<td>0.118</td>
<td>0.102</td>
</tr>
<tr>
<td>n₀</td>
<td>kg N (kg C)⁻¹</td>
<td>Top leaf nitrogen concentration^</td>
<td>0.061</td>
<td>0.065</td>
<td>0.07</td>
<td>0.051</td>
<td>0.041</td>
</tr>
<tr>
<td>nₑ</td>
<td>µmol CO₂ m⁻² s⁻¹ / kg N (kg C)⁻¹</td>
<td>Ratio of Vₓmax to n₀#</td>
<td>800</td>
<td>800</td>
<td>800</td>
<td>400</td>
<td>800</td>
</tr>
<tr>
<td>Tₑupp</td>
<td>°C</td>
<td>Upper temperature parameter^</td>
<td>38.578</td>
<td>34.721</td>
<td>36.242</td>
<td>44.897</td>
<td>35.385</td>
</tr>
<tr>
<td>Tₑlow</td>
<td>°C</td>
<td>Lower temperature parameter^</td>
<td>1.203</td>
<td>−8.698</td>
<td>−1.985</td>
<td>11.37</td>
<td>−5.208</td>
</tr>
<tr>
<td>fₑdr</td>
<td>/</td>
<td>Dark respiration coefficient#</td>
<td>0.015</td>
<td>0.015</td>
<td>0.015</td>
<td>0.025</td>
<td>0.015</td>
</tr>
<tr>
<td>Dₑ</td>
<td>kgₑ kgₐ⁻¹</td>
<td>Closure parameter^</td>
<td>0.048</td>
<td>0.036</td>
<td>0.086</td>
<td>0.046</td>
<td>0.077</td>
</tr>
<tr>
<td>f₀</td>
<td>/</td>
<td>Closure parameter^</td>
<td>0.765</td>
<td>0.737</td>
<td>0.817</td>
<td>0.765</td>
<td>0.782</td>
</tr>
<tr>
<td>a</td>
<td>nmol⁻¹ m² s⁻¹</td>
<td>Slope of O₃ dose response⁺ (Low sensitivity)</td>
<td>0.04</td>
<td>0.02</td>
<td>0.25</td>
<td>0.13</td>
<td>0.03</td>
</tr>
<tr>
<td>−</td>
<td>−</td>
<td>Slope of O₃ dose response⁺ (High sensitivity)</td>
<td>0.15</td>
<td>0.075</td>
<td>1.40</td>
<td>0.735</td>
<td>0.10</td>
</tr>
<tr>
<td>F₀₃Єₐₚ</td>
<td>nmol m⁻² s⁻¹</td>
<td>O₃ uptake threshold#</td>
<td>1.6</td>
<td>1.6</td>
<td>5.0</td>
<td>5.0</td>
<td>1.6</td>
</tr>
</tbody>
</table>

Long-term stomatal response to changing ambient CO₂ concentration

According to Franks et al. (2013), the relative change of stomatal conductance can be approximated by:

\[g_s(\text{rel}) \approx \frac{A_n(\text{rel})}{c_a(\text{rel})} \] (S27)

where \(g_s(\text{rel}) \), \(A_n(\text{rel}) \), and \(c_a(\text{rel}) \), are, respectively, \(g_s \), \(A_n \) and the ambient CO₂ concentration \(c_a \) relative to their values under a reference ambient CO₂ concentration \(c_a₀ \). \(A_n(\text{rel}) \) is further approximated by:

\[A_n(\text{rel}) = \frac{(c_a - \Gamma^*)(c_a + 2\Gamma^*)}{(c_a + 2\Gamma^*)(c_a - \Gamma^*)} \] (S28)

where \(c_a₀ \) and \(\Gamma^* \) are the reference [CO₂] (ppm) and CO₂ compensation point (ppm) in absence of dark respiration respectively.

Following Franks et al. (2013), we use \(c_a₀ = 360 \text{ ppm} \) and \(\Gamma^* = 40 \text{ ppm} \). Therefore, for \(c_a = 580 \text{ ppm} \), \(g_s(\text{rel}) = 0.698. \)
Figure S1: Plots of modeled monthly mean dry deposition velocity of O₃ (cm s⁻¹) in northern summer (JJA) against SynFlux estimates, categorized by site PFT for each simulation case. Columns from right to left represent simulation cases 0, 1a, 1b and 1c. Each row corresponds to a PFT. C₄ grass is ignored due to a lack of observational data. The soil moisture stress factor βᵢ on the corresponding model grid cell is represented by the color of the circle. Mean bias (MB) and root-mean-squared error (RMSE) are shown for each plot.
Figure S2: Same as Fig. S1, but for modeled monthly mean stomatal conductance g_s (cm s$^{-1}$).
Figure S3: Same as Fig. S2, but for modeled monthly mean O$_3$ concentration (ppbv).
Figure S4: Monthly averages of 2 m temperature in year 2000 minus monthly averages from year 2000-2009.