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Abstract. A major limitation in modeling global ozone (O3)
vegetation damage has long been the reliance on empiri-
cal O3 sensitivity parameters derived from a limited num-
ber of species and applied at the level of plant functional
types (PFTs), which ignore the large interspecific variations
within the same PFT. Here, we present a major advance in
large-scale assessments of O3 plant injury by linking the
trait leaf mass per area (LMA) and plant O3 sensitivity in
a broad and global perspective. Application of the new ap-
proach and a global LMA map in a dynamic global veg-
etation model reasonably represents the observed interspe-
cific responses to O3 with a unified sensitivity parameter for

all plant species. Simulations suggest a contemporary global
mean reduction of 4.8 % in gross primary productivity by O3,
with a range of 1.1 %–12.6 % for varied PFTs. Hotspots with
damage > 10% are found in agricultural areas in the eastern
US, western Europe, eastern China, and India, accompanied
by moderate to high levels of surface O3. Furthermore, we
simulate the distribution of plant sensitivity to O3, which is
highly linked with the inherent leaf trait trade-off strategies
of plants, revealing high risks for fast-growing species with
low LMA, such as crops, grasses, and deciduous trees.
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1 Introduction

Tropospheric ozone (O3) has long been recognized as a haz-
ardous pollutant for plants (Richards et al., 1958; Reich and
Amundson, 1985). As a strong oxidant, O3 can cause damage
to leaf cells (Feng et al., 2014), impact stomata conductance
(Buker et al., 2015), and reduce photosynthesis and biomass
(Wittig et al., 2009). These negative impacts dampen global
plant productivity (Ainsworth et al., 2012, 2020) and crop
yield (Tai et al., 2014; Emberson et al., 2018; Feng et al.,
2022), altering multiple ecosystem functions and services
across various spatiotemporal scales (Agathokleous et al.,
2020; Feng et al., 2021). Thus, it is of crucial importance
to quantify O3 plant damage in global modeling and assess
its coupling effects in biosphere–atmosphere systems (Zhou
et al., 2018).

To date, O3 fumigation experiments have been conducted
for various plant species. Accordingly, O3 damage sensitiv-
ities, denoted as the dose–response relationships (DRRs),
were derived as regressions between O3 exposure metrics
and changes in biotic indicators (Mills et al., 2011). The
widely used O3 metrics include ambient O3 concentrations
for AOT40 (accumulated O3 concentration above the thresh-
old of 40 ppbv; Fuhrer et al., 1997) or the stomatal O3 flux
for PODy (phytotoxic O3 dose above a threshold flux of y;
Buker et al., 2015). The biotic indicators include visual leaf
states, photosynthetic rate, biomass, or crop yield. Normally,
the DRRs were derived for typical tree/grass species in spe-
cific regions, for example, Norway spruce, birch, and beech
in Europe (Buker et al., 2015) or poplar (Shang et al., 2017)
and crops (Peng et al., 2019) in East Asia.

Some assessment studies used DRRs to derive contempo-
rary O3 plant damage patterns at large scales. Concentration-
based DRRs were widely measured and applied on the ho-
mogenized land cover, mostly for estimating crop yield loss
(Feng et al., 2022; Tai et al., 2021; Hong et al., 2020). How-
ever, such DRRs do not include information about biochem-
ical defense and stomatal regulation. In comparison, flux-
based DRRs reflect a more detailed consideration in bio-
logical processes but are limited by the application scales
in both space and time (Mills et al., 2011, 2018b). For ex-
ample, the estimate of PODy needs a dry deposition model,
“DO3SE” (Deposition of Ozone for Stomatal Exchange)
(LRTAP Convention, 2017), or an equivalent model to ac-
count for environmental constraints on plant stomatal uptake
during the whole growing season. Furthermore, the applica-
tion of DRRs might introduce uncertainties due to the omis-
sion of complex interactions among biotic and abiotic factors
at varied spatiotemporal scales.

Alternatively, more and more mechanistic schemes were
developed and implemented in dynamic global vegetation
models (DGVMs) to assess the joint effects of environmen-
tal factors and O3 on plants. Felzer et al. (2004) considered
both the damaging (through AOT40) and healing (through
growth) processes related to O3 effects within the framework

of the Terrestrial Ecosystem Model. They further estimated
a reduction of 2.6 %–6.8 % in the net primary productivity
by O3 pollution in the US during 1980–1990. Different from
Felzer et al. (2004), Sitch et al. (2007) proposed a flux-based
scheme linking the instantaneous PODy with plant damage
through the coupling between stomatal conductance and pho-
tosynthetic rate. Implementing this scheme into the Yale In-
teractive terrestrial Biosphere (YIBs) vegetation model, Yue
and Unger (2015) predicted a range of 2 %–5 % reduction
in global gross primary productivity (GPP) taking into ac-
count the low to high O3 sensitivities for each vegetation
type. Lombardozzi et al. (2015) collected hundreds of mea-
surements and derived the decoupled responses on stom-
atal conductance and photosynthesis for the same O3 uptake
fluxes. They further implemented the separate response re-
lationships into the Community Land Model and estimated a
reduction of 8 %–12 % in GPP by O3 in the present day. Cou-
pling these schemes with Earth system models, studies have
assessed interactive O3 impacts on the carbon sink (Oliver et
al., 2018; Yue and Unger, 2018), global warming (Sitch et
al., 2007), and air pollution (Zhou et al., 2018; Gong et al.,
2020, 2021; Zhu et al., 2022).

Although different schemes considered varied physical
processes (Ollinger et al., 1997; Felzer et al., 2004, 2009;
Sitch et al., 2007; Lombardozzi et al., 2015; Oliver et al.,
2018), they followed the same principle that different O3 sen-
sitivities should be applied for varied plant functional types
(PFTs), as revealed by many measurements in the past 4
decades (Buker et al., 2015; Mills et al., 2018b) (Table S1
in the Supplement). Generally, needleleaf trees, deciduous
woody plants, and crop species show ascending sensitivities
to O3 (Reich and Amundson, 1985; Davison and Barnes,
1998; Buker et al., 2015). But the cause of such variation
is not fully understood and thus has not been uniformly de-
scribed in vegetation models (Massman et al., 2000; Tiwari et
al., 2016). As a result, all large-scale assessments of O3 vege-
tation damage had to rely on a PFT-based range of sensitivity
parameters derived from a limited number of plant species
and attempted to envelop the range of O3 impacts by assum-
ing all species within a PFT have either a “high” or “low”
sensitivity to O3. For example, Felzer et al. (2004) defined
empirical sensitivity coefficients for three major plants in-
cluding deciduous trees, coniferous trees, and crops. In Sitch
et al. (2007), the sensitivity coefficients were defined sepa-
rately for five PFTs with high/low ranges calibrated by DRRs
of typical species. These synthesized assumptions cannot re-
solve the intra-PFT variations in the O3 sensitivity and thus
may cause large uncertainties in regional to global assess-
ments.

Recent observations revealed a uniform plant sensitivity
to O3 if stomatal O3 flux was expressed based on a leaf mass
rather than leaf area basis (Li et al., 2016, 2022; Feng et al.,
2018). The trait of leaf mass per area (LMA) is an impor-
tant metric linking leaf area to mass. In a comparative study
with 21 woody species (Li et al., 2016) and a meta-analysis
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of available experimental data (Feng et al., 2018), the DRR
showed convergent O3 sensitivities for conifer and broadleaf
trees if the area-based stomatal uptake was converted to the
mass-based flux with LMA. This is likely related to the di-
luting effect of thicker leaves, which normally have stronger
defenses against O3 in their cross-section. Nowadays, a large
number of trait observations have been synthesized by global
networks (Gallagher et al., 2020). The TRY initiative (Kattge
et al., 2011) was one of the most influential datasets with 2.3
billion trait data by the year 2021. Based on the TRY dataset,
global LMA was estimated with upscaling techniques such
as Bayesian modeling (Butler et al., 2017) (hereafter B2017)
or the random forest model (Moreno-Martinez et al., 2018)
(hereafter M2018). These advances in the retrieval of LMA
provide the possibility to depict more accurate O3 vegetation
damage at the global scale.

Here, we present a major advance in large-scale assess-
ments of O3 plant damage using a trait-based approach.
We implement LMA into a stomatal flux-based O3 damage
framework aiming at a unified representation of plant O3 sen-
sitivities over the global grids. We couple this new approach
to the Yale Interactive terrestrial Biosphere (YIBs) model
(Yue and Unger, 2015) and evaluate the derived O3 sensitivi-
ties against observations. We further assess contemporary O3
impacts on global GPP in combination with the recently de-
veloped LMA datasets (Butler et al., 2017; Moreno-Martinez
et al., 2018; Gallagher et al., 2020) (Fig. 1a) and the multi-
model ensemble mean surface O3 concentrations (Fig. 1b).
The updated risk map for O3 vegetation damage is used to
identify the regions and vegetation types most at risk of O3
damage.

2 Scheme development and calibration

2.1 The trait-based O3 vegetation damage scheme

We develop the new scheme based on the Sitch et al. (2007)
(hereafter S2007) framework for transient O3 damage calcu-
lation. In the original S2007 scheme, the undamaged fraction
F for net photosynthetic rate is dependent on the excessive
area-based stomatal O3 flux, which is calculated as the dif-
ference between fO3 and PFT-specific area-based threshold
y, and modulated by the sensitivity parameter aPFT:

F = 1− aPFT×max
{
fO3 − y,0

}
, (1)

where aPFT is calibrated and varies among PFTs with a typ-
ical range from “low” to “high” values indicating uncertain-
ties of plant species within the same PFT. The stomatal O3
flux fO3 (nmol m−2 s−1) is calculated as

fO3 =
[O3]

r +
[
kO3
gp×F

] , (2)

where [O3] is the O3 concentration at the reference level
(nmol m−3), and r is the aerodynamic and boundary layer

Figure 1. Global leaf mass per area (LMA) and surface ozone (O3)
concentrations. The (a) LMA is adopted from Moreno-Martinez et
al. (2018) (M2018) and (b) annual mean O3 is derived from TF-
HTAP (Turnock et al., 2018).

resistance between leaf surface and reference level (s m−1).
The setting of kO3 to 1.67 represents the ratio of leaf resis-
tance for O3 to that for water vapor. gp represents potential
stomata conductance for H2O (m s−1).

Studies suggested that LMA could be used to unify the
area-based plant sensitivities to O3 (Li et al., 2016; Feng et
al., 2018), resulting in a constant mass-based parameter a
independent of plant species and PFTs:

a = aPFT×LMA. (3)

Here, we convert the area-based O3 stomatal flux expression
in Eq. (1) to a mass-based flux as follows:

F = 1− a×max
{
fO3

LMA
− x,0

}
, (4)

where the new sensitivity parameter a is a cross-species con-
stant (nmol−1 s g), LMA is leaf mass per area (g m−2), and
the flux threshold is replaced by a mass-based value of x
(nmol g−1 s−1) (Feng et al., 2018). Equations (2) and (4) can
form a quadratic equation. F can be derived at each time
step (i.e., hourly) and applied to net photosynthetic rate and
stomatal conductance to calculate the O3-induced damage.
The updated LMA-based framework (YIBs-LMA) reduces
the number of O3 sensitivity parameters from three for each
PFT (Sitch et al., 2007) in S2007 to a single parameter a for
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all PFTs. For the YIBs-LMA framework, the default value
of the x threshold in Eq. (4) is set to 0.019 nmol g−1 s−1, as
recommended by Feng et al. (2018).

2.2 Dose–response relationship (DRR)

We compare the simulated and observed sensitivities to O3 so
as to calibrate the LMA-based scheme. In field experiments,
DRR is used to quantify species-specific damage by O3 with
a generic format as follows:

R = 100+ SO×φO3 , (5)

where R (%) is the relative percentage of a biotic indica-
tor (such as biomass or yield) after and before O3 damage,
φO3 is an area-based O3 metric (e.g., PODy measured in
sunlit leaves at the top of canopy), and SO (usually nega-
tive) is the observed sensitivity derived as the slope of lin-
ear relationship between R and φO3 . We collected SO from
DRRs with conventional criteria (typically PODy=1 for nat-
ural PFTs and PODy=6 for crops as dose metrics (LRTAP
Convention, 2017); the biotic indicators include the relative
biomass for natural PFTs and relative yield for crops) among
plant species from the International Cooperative Programme
on Effects of Air Pollution on Natural Vegetation and Crops
(CLRTAP) (LRTAP Convention, 2017) and multiple litera-
ture sources (Table S1). Such observations are used to cali-
brate the LMA-based scheme.

As a comparison with observations, we calculate annual
relative GPP percentage (RGPP, %) and PODy of sunlit leaves
in the first canopy layer (mmol m−2 yr−1, based on per leaf
area) from the vegetation model to derive the slopes (SS) of
simulated DRRs. Here, PODy is a diagnostic variable calcu-
lated as

PODy =
∫

max
{
fO3 − y,0

}
, (6)

where fO3 represents the stomatal O3 flux under instant O3
stimulus at each time step, which can be calculated follow-
ing Eq. (2) at the leaf level, and y is the prescribed critical
level (1 nmol m−2 s−1 for natural or 6 nmol m−2 s−1 for crop
species; LRTAP Convention, 2017). Excessive O3 flux above
y is accumulated for the sunlit leaves of the top canopy layer
and over the growing season to derive the PODy . The simu-
lated SS is calculated as the slope of the regression between
simulated RGPP (%) and PODy at the PFT level. Only the
dominant PFT in each grid is considered for the estimate of
SS at both PFT level and gridded analyses.

Similarly, the mass-based PODx is derived from
O3-impacted fO3 (nmol m−2 s−1) in Eq. (2), together
with gridded LMA (g m−2) and mass-based threshold x

(nmol g−1 s−1), as

PODx =
∫ (

fO3

LMA
− x

)
. (7)

2.3 Simulations and calibrations

We perform two groups of supporting experiments (Table 1).
The first group explores modeling uncertainties associated
with the mass-based framework: (1) YIBs-LMA_B2017 re-
places the default LMA map of M2018 (Moreno-Martinez
et al., 2018) with B2017 (Butler et al., 2017). (2) YIBs-
LMA_PFT applies PFT-specific LMA values (Table S2) for
each PFT without considering global LMA geo-gradient.
(3) YIBs-LMA_T replaces the default threshold of x =
0.019 nmol g−1 s−1 with x = 0.006 nmol g−1 s−1, which is
an alternative parameter suggested by observations (Feng et
al., 2018). The second group of supporting experiments ex-
plores the differences between mass-based and S2007 area-
based frameworks. Typically, S2007 has a “low to high” aPFT
range for each PFT. Here, a mean sensitivity parameteriza-
tion of S2007 (YIBs-S2007_adj) is re-calibrated according
to SO in Table S1.

For all supporting experiments, the parameter a for YIBs-
LMA or the eight mean aPFT values for YIBs-S2007_adj
are derived with the optimal 1 : 1 fitting between SS and
SO to minimize the possible biases (Tables 2 and S3–S6).
The basic method for calibration is feeding the model with
series values of a or aPFT until the predicted O3 damage
matches observations with the lowest normalized mean bias
(NMB). For all LMA-based experiments, SS values from var-
ied PFTs grouped for the calibration of a, while for aPFT
in YIBs-S2007_adj, each aPFT is determined individually by
matching simulated SS with SO. Since SO values are avail-
able only for six out of the eight YIBs PFTs, including ev-
ergreen broadleaf forest (EBF), needleleaf forest (NF), de-
ciduous broadleaf forest (DBF), C3 grass, C4 grass, and crop
(Table S1), SO values of these PFTs are used for calibration.
All runs are summarized in Table 1.

2.4 YIBs model and forcing data

In this study, all O3 vegetation damage schemes are imple-
mented in the YIBs model (Yue and Unger, 2015), which is
a process-based dynamic global vegetation model incorpo-
rated with well-established carbon, energy, and water interac-
tive schemes. The model applies the same PFT classifications
as the Community Land Model (Bonan et al., 2003) (Fig. S1
in the Supplement). Eight PFTs are employed including ev-
ergreen broadleaf forest (EBF), needleleaf forest (NF), de-
ciduous broadleaf forest (DBF), cold shrub (C_SHR), arid
shrubland (A_SHR), C3 grassland (C3_GRA), C4 grassland
(C4_GRA), and cropland (CRO) (Fig. S1). For each PFT,
phenology is well evaluated (Yue and Unger, 2015) to gener-
ate a reliable growing season, which is crucial for the simu-
lation of stomatal O3 uptake (Anav et al., 2018). Photosyn-
thesis and stomatal processes are calculated using Farquhar
et al. (1980) and Ball et al. (1987) algorithms, respectively.
Leaf area index (LAI) and tree height are predicted dynami-
cally based on vegetation carbon allocation. The YIBs model
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Table 1. Summary of simulations.

Experimenta Method Thresholdsa LMA LMA Optimal Tests
(x or y) format map (a or aPFT) (a or aPFT)

YIBs-LMA

Mass-based

x = 0.019 gridded M2018 a = 3.5 five tests
(Table 2) (a = 2.5, 3, 3.5, 4, 4.5)

YIBs-LMA_PFT x = 0.019 PFT-specific M2018 a = 2.0 five tests
(Table S3) (a = 2, 2.5, 3, 3.5, 4)

YIBs-LMA_T x = 0.006 gridded M2018 a = 3.0 five tests
(Table S4) (a = 2, 2.5, 3, 3.5, 4)

YIBs-LMA_B2017 x = 0.019 gridded B2017 a = 2.8 five tests
(Table S5) (a = 2, 2.5, 2.8, 3, 3.5)

YIBs-S2007_adj Area-based eight values for y – – eight values for aPFT 40 tests
(Table S6) (Table S6) (five each for eight PFTs)

a Units of thresholds are nmol g−1 s−1 for x and nmol m−2 s−1 for y. b Units of key parameters are nmol−1 s g for a and nmol−1 m2 s for aPFT.

Table 2. Calibrations of the YIBs-LMAa experiment with varied a.

PFT SO SS SS/SO
b

a = 2.5 a = 3.0 a= 3.5 a = 4.0 a = 4.5 a = 2.5 a = 3.0 a= 3.5 a = 4.0 a = 4.5

EBF −0.19 −0.13 −0.16 −0.18 −0.21 −0.23 0.70 0.83 0.96 1.08 1.20
NF −0.23 −0.26 −0.31 −0.36 −0.40 −0.45 1.14c 1.35c 1.56c 1.75c 1.95c

DBF −0.70 −0.51 −0.60 −0.69 −0.78 −0.87 0.72 0.86 0.99 1.12 1.24
C_SHR – −0.75 −0.90 −1.04 −1.18 −1.31 – – – – –
A_SHR – −0.38 −0.45 −0.53 −0.60 −0.66 – – – – –
C4_GRA −0.85 −0.71 −0.84 −0.97 −1.10 −1.22 0.83 0.99 1.14 1.29 1.44
C3_GRA −0.62 −0.47 −0.55 −0.64 −0.73 −0.81 0.75 0.89 1.03 1.17 1.30
CRO −3.35 −1.97 −2.57 −3.28 −4.11 −5.10 0.59 0.77 0.98 1.23 1.52

Fittingd – 0.61 0.79 0.99 1.23 1.50 – – – – –
Median – – – – – – 0.74 (0.72) 0.88 (0.86) 1.01 (0.99) 1.20 (1.17) 1.37 (1.30)
SD – – – – – – 0.19 (0.09) 0.21 (0.08) 0.23 (0.07) 0.25 (0.08) 0.28 (0.13)

a All runs from the YIBs-LMA experiment use x =0.019 nmol g−1 s−1 and the LMA map from M2018. b Slopes of simulated DRRs (SS) are divided by observations (SO, Table S1) to derive
the model-to-observation ratios (“SS/SO”). The O3 dose metric is PODy=1 for natural PFTs and PODy=6 for crops. The median and standard deviation (SD) of SS/SO ratios of all PFTs are
calculated for each set of specific parameter a. The values in parentheses exclude the effect of those numbers marked with c that are beyond 1 standard deviation. d The slopes (fitting) of linear
regressions between SO and SS are listed for each a. The optimal a values with 1 : 1 fitting between SS and SO are shown in bold.

has joined the multi-model ensemble project TRENDY and
showed reasonable performance in the simulations of global
biomass, GPP, LAI, net ecosystem exchange, and soil car-
bon relative to observations (Friedlingstein et al., 2022). Key
plant biogeochemical parameters of the YIBs model are ad-
justed for this research (Table S7).

The hourly Modern-Era Retrospective Analysis for Re-
search and Applications version 2 (MERRA2) climate re-
analyses (Gelaro et al., 2017) are used to drive the YIBs
model. The gridded LMA required for the main mass-based
simulation is derived from Moreno-Martinez et al. (2018)
(M2018), which shows the highest value of > 150 g m−2

for needleleaf forest at high latitudes while low values of
∼ 40 g m−2 for grassland and cropland (Figs. 1a and S1).
Grids with missing LMA data are filled with the mean of the
corresponding PFT. Contemporary O3 concentration fields
in the year 2010 from the multi-model mean in Task Force

on Hemispheric Transport of Air Pollutants (TF-HTAP) ex-
periments (Turnock et al., 2018) (Fig. 1b) are used as forc-
ing data. The original monthly O3 data are downscaled to
an hourly scale using the diurnal cycle predicted by the
chemistry–climate–carbon fully coupled model ModelE2-
YIBs (Yue and Unger, 2015). Generally, areas of severe O3
pollution are found in the midlatitudes of the Northern Hemi-
sphere, with the highest annual average O3 concentration of
over 40 ppbv in East Asia. All data are interpolated to a spa-
tial resolution of 1◦× 1◦.

https://doi.org/10.5194/gmd-16-2261-2023 Geosci. Model Dev., 16, 2261–2276, 2023
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Figure 2. Simulated area-based (a, b, c) or mass-based (d, e, f) DRRs for the YIBs-LMA experiment. Three tests from the YIBs-LMA
experiment all adopt x = 0.019 nmol g−1 s−1 and gridded LMA from M2018 with parameter a = 2.5, 3.5, and 4.5 nmol−1 s g, respectively.
Each dot represents estimated POD-RGPP (PODy=1 for a–c, PODx=0.019 for d–e) at a grid with corresponding PFT. The PFT-specific
regressions between area- or mass-based POD and RGPP are displayed with solid lines shown in legend. Regression relationships of all PFTs
are displayed by the dashed black line, with coefficients of determination (R2) denoted in each panel. Note the differences of ranges in x
axis among PFTs. The YIBs-LMA experiment is summarized in Table 1.

3 Results

3.1 Comparison of simulated sensitivities with
observations

Simulated relative GPP percentage (RGPP) values at global
grids were sorted by dominant PFTs (Fig. S1) and plotted
against area-based accumulated phytotoxic O3 dose above
a threshold y nmol m−2 s−1 (PODy=1) at the corresponding
grids (Fig. 2). The DRR shows varied slopes among different
PFTs, resulting in a coefficient of determination (R2) around
0.54 for all PFTs (Fig. 2a–c). We further calculated the mass-
based accumulated phytotoxic O3 dose above a threshold of
0.019 nmol g s−1 (PODx=0.019) and compared it with RGPP.
The updated DRR showed convergent slopes and reached a
high R2 of 0.77 across all PFTs (Fig. 2d–f), suggesting that
the mass-based scheme could better unify O3 sensitivities
among different PFTs.

We then calibrated the single, best-fit a value for the YIBs-
LMA framework by minimizing the absolute difference be-
tween simulated (SS) and observed (SO) slopes of O3 DRR
for all PFTs. With different a parameters, the YIBs-LMA
framework yielded considerably high R2 values of ∼ 1.0
but varied biases between simulated and observed O3 im-
pacts across PFTs (Fig. 3). Both the 1 : 1 fitting and the low-
est bias between SS and SO were achieved with an optimal

a = 3.5 nmol−1 s g (Fig. 3c). Notably, such calibration of a
is robust under different O3 fields (see Fig. S2). Consistent
with observations, YIBs-LMA with this optimal a param-
eter simulated low SS values of −0.18% and −0.36% per
mmol m−2 yr−1 of PODy=1 for evergreen broadleaf forest
and needleleaf forest, respectively (Fig. 4a, b); median SS
values from −0.53% per mmol m−2 yr−1 for arid shrubland
(Fig. 4e); and high SS values from −0.64% to −1.04% per
mmol m−2 yr−1 for deciduous broadleaf forest, C3 and C4
grassland, cropland, and cold shrubland (−3.28% for crops
with PODy=6; Fig. 4c–d, f–h).

3.2 Global map of O3 vegetation damage

We estimated contemporary GPP reductions induced by O3
with the global concentrations of surface O3 (Fig. 1b) in
the year 2010. The YIBs-LMA framework using an increase
of a parameter yielded an almost linear enhancement of
global GPP reduction (Fig. S3) with consistent spatial dis-
tributions (Fig. S4). The simulation with the optimal a =
3.5 nmol−1 s g predicted a global GPP reduction of 4.8 %
(Fig. 5a), which was similar to the value estimated with the
area-based S2007 scheme (YIBs-S2007_adj, Table 1). Large
reductions of > 10% were predicted over the eastern US,
western Europe, eastern China, and India (Fig. 5a). Hotspots
were mainly located in cropland and agricultural areas mixed
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Figure 3. Comparison between SO (% per mmol m−2) and SS (% per mmol m−2) for the YIBs-LMA experiment. Five tests from the
YIBs-LMA experiment all adopt x = 0.019 nmol g−1 s−1 and gridded LMA from M2018 but with varied parameter a from (a) 2.5 to
(e) 4.5 nmol−1 s g. SO values are from Table S1. SS values are derived as the slope between RGPP and PODy . The linear regression (dashed
lines), 1 : 1 fitting (light-grey lines), normalized mean bias (NMB), and correlation coefficient (r) between SS and SO for varied PFTs are
shown on each panel. The SS and SO of CRO are derived using PODy=6, while other PFTs use PODy=1. The YIBs-LMA experiment is
described in Table 1.

with deciduous broadleaf forest or grassland, accompanied
by moderate to high levels of surface O3. Few discrepan-
cies between the damage maps of YIBs-LMA and YIBs-
S007_adj were found (Figs. 5b and S5), even though the
number of parameters was greatly reduced in the YIBs-LMA
scheme.

For YIBs-LMA, PFTs with low LMA such as crop-
land, grassland, and deciduous broadleaf forest account for
73.3 Pg C yr−1 (50.0 %) of the global GPP (Table S8). How-
ever, these PFTs contributed to a total GPP reduction of
5.4 Pg C yr−1 (75.5 % of total GPP loss) by O3 damage. In
contrast, evergreen broadleaf and needleleaf forests with high
LMA accounted for 48.8 Pg C yr−1 (33.0 %) of total GPP but
yielded only a reduction of 0.75 Pg C yr−1 (10.5 % of total
GPP loss). Differences in GPP percentage losses were in
part associated with the global pattern of O3 concentrations,
which were usually higher over midlatitudes with populated
cities and dense crop plantations (Fig. 1b). However, the
differences in LMA and simulated O3 sensitivities of these
PFTs also made important contributions to such discrepan-
cies in GPP damage.

3.3 Uncertainties of the LMA-based scheme

We quantified the uncertainties in the LMA-based scheme by
comparing simulated GPP damage among different experi-
ments (Table 1). The experiment with the alternative LMA
map of B2017 (Fig. S6) showed similar spatial patterns but a
slightly enhanced GPP reduction of 5.3 % (Fig. 6a) compared
to the simulations using LMA map of M2018 (Fig. 5a). The
B2017 map contains more LMA data than M2018 (∼ 40%),
leading to unexpected high O3 threats over the tundra in
the Arctic (Fig. S7). Another experiment using PFT-specific
LMA estimated a global GPP reduction of 4.6 % (Fig. 6b)
with a consistent spatial pattern similar to the prediction in
YIBs-LMA, suggesting that the PFT-level LMA can be used
in the case of a lack of regional LMA data. The third experi-
ment with an alternative threshold flux (Feng et al., 2018) of
0.006 nmol g−1 s−1 estimated a high GPP reduction of 6.5 %
(Fig. 6c) due to the overestimations of O3 sensitivities for
some tree PFTs (Fig. 7). The fourth run, YIBs-S2007_adj,
predicted a similar global GPP damage of 4.79 %, similar
to the YIBs-LMA run, with a high spatial correlation coef-
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Figure 4. Comparisons of observed and simulated dose–response relationships. Simulated PFT-specific DRRs are derived from YIBs-LMA
with gridded LMA from M2018, x = 0.019 nmol g−1 s−1, and a = 3.5 nmol−1 s g. Each dot represents results from a grid cell with corre-
sponding PFT. The regressions between relative GPP percentage (RGPP) and leaf area-based stomatal O3 uptake fluxes (PODy=1 for natural
PFTs and PODy=6 for crops) are shown for observations (red; see Table S1) and simulations (blue) with slopes of DRRs denoted as SO and
SS, respectively. SO values are missing for (d) cold and (e) arid shrubs. Coefficients of determination (R2) of simulations are displayed in
each panel. Note the differences of ranges in x axis among PFTs (PFTs are shown in Fig. S1).

Figure 5. Global O3 vegetation damage simulated with the LMA-based scheme. Results shown are the (a) GPP reduction percentages by
O3 simulated with the YIBs-LMA framework (gridded LMA from M2018, x = 0.019 nmol g−1 s−1, and a = 3.5 nmol−1 s g) and (b) their
differences compared to the predictions from YIBs-S2007_adj simulation. Blue (red) patches indicate the regions where damage predicted
in YIBs-LMA is lower (higher) than in YIBs-S2007_adj.
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Figure 6. Global O3-induced GPP reductions simulated in four supporting experiments. All damage maps are based on optimal parameters
shown in Table 1. The spatial correlation coefficients between YIBs-LMA and these supporting simulations are shown in each panel as well
as the global average damage percentage of each map. Simulations are described in Table 1.

ficient of 0.98 (Fig. 6d). Such good consistency is mainly
due to the application of recalibrated PFT-level sensitivities
in YIBs-S2007_adj. Finally, we tested a new calibration ex-
cluding CRO, the PFT that contributed the most to the cal-
ibration biases (shown by dashed orange lines in Fig. S8).
The results gave an optimal a of 3.2, with global damage of
4.5 %. All sensitivity experiments achieved results consistent
with the YIBs-LMA simulation, with damage ranging from
4.5 % to 6.5 % and spatial correlation coefficients larger than
0.94.

4 Discussion

4.1 Mechanisms behind the LMA-based approach

In recent decades, the plant science community has exam-
ined how traits could be used to differentiate and predict the
function of plant species (Reich et al., 1997, 1999). LMA,
related to leaf density and thickness, is a key trait reflect-
ing many aspects of leaf function (Reich et al., 1998). In
the field of O3 phytotoxicology, experiments have revealed
plants with high LMA usually have thick leaves with phys-

ical and chemical defenses (Poorter et al., 2009), which can
strengthen their resistance to O3 (Li et al., 2016; Feng et
al., 2018). Conversely, plants with low LMA normally have
thin leaves which are likely to be less O3-tolerant (Li et al.,
2016; Feng et al., 2018). Moreover, it seems plausible that
the oxidative stress caused by a given amount of stomatal O3
flux per unit leaf area would be distributed over a larger leaf
mass, and hence diluted, in a leaf with high LMA. Such an
LMA–O3 sensitivity relationship can be well reproduced by
our LMA-based model (Fig. 8a and b). Below we explore the
linkage between O3 plant sensitivities and the mutual adapta-
tion of growth strategies and leaf morphology with plant leaf
trade-off theory (Reich et al., 1999; Shipley et al., 2006).

In the natural world, plants often adapt to maximize carbon
uptake under prevailing conditions (Reich et al., 1998; Ship-
ley et al., 2006). To make full use of resources in the growing
season, leaves under varied living conditions choose either
fast photosynthetic rates (fast-growing deciduous types) or
long photosynthesis duration (slow-growing evergreen types)
with compatible leaf structures (Reich, 2014; Diaz et al.,
2016). The former species expand leaf area (low LMA) to
maximize light interception, while the latter species produce
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Figure 7. Comparison of SS/SO among supporting experiments. Individual ratios for (b) different PFTs are grouped to the box plot in (a).
All experiments adopt optimal parameters shown in Table 1.

thick and mechanically strong leaves (high LMA) with am-
ple resistant substances for durable utilization (Poorter et al.,
2009) in resource-limited and/or environment-stressed habi-
tats (Wright et al., 2002). As a side effect of such leaf trade-
offs, deciduous plants with their high rates of photosynthesis,
associated large stomatal conductance (Davison and Barnes,
1998; Henry et al., 2019), and less total defense capacity
through the leaf profile (Poorter et al., 2009), are highly O3-
sensitive (Mode1 in Fig. 9). In contrast, moderate photosyn-
thesis, relatively low maximum stomatal conductance (Davi-
son and Barnes, 1998; Henry et al., 2019), and reinforced
dense leaves (Poorter et al., 2009) lead to low sensitivity for
evergreen plants (Mode2 in Fig. 9). Therefore, in our model-
ing practice, the mass-based O3 gas exchange algorithm can
be regarded as taking into account several interrelated factors
such as growth-driven gas exchange requirements, gas path
length, and biochemical reserves, in a unified, simplified, and
effective manner via LMA.

4.2 Implication of potential risks for fast-growing
plants

Our new approach reflected the general experimental find-
ings that deciduous plants are much more vulnerable to
O3 than evergreen species (Li et al., 2017; Feng et al.,
2018), and in turn within a PFT, early-successional/pioneers
with low LMA are likely more vulnerable than late-
successional/canopy trees with high LMA (Fyllas et al.,
2012). This law has been neglected in previous model-
ing studies due to the dependence on the limited observed
data used for PFT-specific tuning. Our LMA-based approach
bridges this gap through grid-based parameterization, and in
addition, our data–model integration specifically emphasizes
the broad high risks for fast-growing plants, especially for
crops. Among PFTs, crops may endure the largest O3 threats
(Davison and Barnes, 1998; Feng et al., 2021; Mukherjee
et al., 2021) because they are artificially bred with high
photosynthetic capacities (Richards, 2000), stomatal conduc-
tance, generally low LMA (Bertin and Gary, 1998; Wang and
Shangguan, 2010; Wu et al., 2018; Li et al., 2018) (roughly
30–60 g m−2), and cultivated in populated regions with high
ambient O3 concentrations. Modern technology aims to pro-
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Figure 8. Relationships between O3 sensitivity and LMA. (a) Simulated O3 sensitivity (SS) at each grid is compared with LMA for different
PFTs. Gridded SS is derived as GPP change per unit PODy=1 from the YIBs-LMA simulation. Each point represents the value in a grid cell
with a dominant PFT. (b) The PFT-level relationships between LMA and O3 sensitivity are grouped as box plots, which indicate the median,
25th percentile, and 75th percentile of y-axis variables within the same PFT. The width of box plots represents 1 standard deviation of LMA
for a specific PFT.

Figure 9. Illustration of the relationships between leaf trade-off
strategy and its sensitivity to O3.

mote crop yield (Herdt, 2005), but this can potentially ele-
vate crop sensitivities to O3 (Biswas et al., 2008, 2013). This
study estimated the highest annual mean GPP damage for
crop, 12.6 %, which is at the high end of the 4.4 %–12.4 % of
the O3-induced yield loss estimated for global modeling of
soybean, wheat, rice, and maize (Mills et al., 2018a). Further-
more, human-induced land use activities may also increase
O3 damage risks. The global demand for food and commodi-
ties leads to the conversion of natural forests to irrigated
croplands, grazing pastures, and economical-tree plantations
(Curtis et al., 2018; Zalles et al., 2021). Meanwhile, the ur-
gent actions to combat climate change promote large-scale
afforestation and reforestation (Cook-Patton et al., 2020).

These land use changes with fast-growing plant species may
increase the risks of terrestrial ecosystems to surface O3.

4.3 Advances in the global O3 damage assessment

For the first time, we implemented plant trait LMA into a
process-based O3 impact modeling scheme and obtained rea-
sonable interspecific and inter-PFT O3 responses supported
by observations. The similarity between YIBs-S2007 and
YIBs-LMA shown in Fig. 5 revealed an advance in the mod-
eling strategy. Simulated O3 damage in YIBs-S2007 is based
on the PFT-level calibrations that tuned sensitivity parame-
ters of each PFT with observed DRRs. Such refinement is
a data-driven approach without clear physical reasons. In-
stead, the YIBs-LMA framework converts the area-based re-
sponses to mass-based ones and achieves better unification
in O3 sensitivities among different PFTs. In this algorithm,
the O3 damage efficiency is inversely related to plant LMA,
which influences both the O3 uptake potential and the detox-
ification capability of the vegetation. The similarity in the
global assessment of O3 vegetation damage between YIBs-
S2007 and YIBs-LMA further demonstrated the physical va-
lidity of the LMA-based scheme in Earth system modeling
because the independent LMA map was applied in the latter
approach.

In addition to the advance in physical mechanisms, the
LMA-based approach improves global O3 damage assess-
ments in the following aspects. First, it significantly reduces
the number of required key parameters. To account for inter-
specific sensitivities, many schemes have to define PFT-level
parameters to capture the ranges of plant responses (Sitch
et al., 2007; Felzer et al., 2009; Lombardozzi et al., 2015).
As a result, those schemes rely on dozens of parameters,
which increases the uncertainties of modeling and the dif-
ficulties for model calibration. The LMA-based approach re-
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quires the calibration of one single parameter a, largely fa-
cilitating its application across different vegetation models.
Second, the new approach accounts for the continuous spec-
trum of O3 sensitivities. Previous studies usually categorized
species into groups of low or high O3 sensitivity, depend-
ing on very limited data from O3 exposure experiments. As
a result, grid cells for a specific PFT share the same sensitiv-
ities regardless of their geographic locations and ecosystem
characteristics. In reality, there are hundreds and thousands
of plant species in each PFT, and they usually have large vari-
ations in biophysical parameters including LMA and O3 sen-
sitivities. The LMA-based approach takes advantage of the
newly revealed unifying concept in O3 sensitivity (Li et al.,
2016, 2022; Feng et al., 2018) and the recent development
of a trait-based LMA global map (Fig. 1a). Such configura-
tions present a spectrum of gridded O3 sensitivities (Fig. 8a)
following the variations of LMA distribution.

5 Outlook for future modeling

In nature, all aspects of plant physiochemical processes, such
as growth, development, reproduction, and defense, are influ-
enced by abiotic factors like water availability, temperature,
CO2 concentration, and light resources (Kochhar and Gu-
jral, 2020). In our modeling, the cumulative O3 fluxes are
based on dynamic plant simulations with well-established
DGVM to calculate the effects of these abiotic factors. LMA
is considered a factor representing the vulnerability of each
species, by which divergent responses to the same O3 stom-
atal dose can be further differentiated. In fact, many other key
variables in DGVMs, for example, leaf photosynthetic traits
(Vcmax and Jmax), nutrient traits (leaf nitrogen and phos-
phorus), morphological traits (leaf thickness and size), and
phenology-related traits (leaf life span) are all more or less
interlinked with LMA (Walker et al., 2014). There are some
generic regression relationships between them. In addition,
efforts are being made to directly predict key traits, includ-
ing LMA, through environmental factors. As a result, con-
siderable improvements can be made in the direction of trait-
flexible modeling within the existing DGVM frameworks.
Our study demonstrates the validity of LMA-based approach
for the O3 plant damage modeling.

Although we used the most advanced LMA integrated
from available observations, this dataset was developed
based on static global grids and revealed the mean state for
each pixel. In reality, LMA can vary with biotic/abiotic fac-
tors like leaf position in the canopy (Keenan and Niinemets,
2017), phenology, plant health, living environment (Fritz et
al., 2018), and climate (Wright et al., 2005; Cui et al., 2020).
Even long-term exposure to O3 can alter leaf morphological
characteristics and LMA (Li et al., 2017). In future studies,
simulations from local to global scales could implement the
spatiotemporal variations in LMA taking into account the de-
mographic information and environmental forcings. We ex-

pect a breakthrough in the calculation of reliable LMA to
achieve fully dynamic predictions of O3 plant damage in
Earth system modeling, thus facilitating the research of plant
response and adaption in changing environments.
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