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Abstract. Earth is a complex non-linear dynamical system.
Despite decades of research and considerable scientific and
methodological progress, many processes and relations be-
tween Earth system variables remain poorly understood. Cur-
rent approaches for studying relations in the Earth system
rely either on numerical simulations or statistical approaches.
However, there are several inherent limitations to existing ap-
proaches, including high computational costs, uncertainties
in numerical models, strong assumptions about linearity or
locality, and the fallacy of correlation and causality. Here,
we propose a novel methodology combining deep learning
(DL) and principles of causality research in an attempt to
overcome these limitations. On the one hand, we employ
the recent idea of training and analyzing DL models to gain
new scientific insights into relations between input and target
variables. On the other hand, we use the fact that a statisti-
cal model learns the causal effect of an input variable on a
target variable if suitable additional input variables are in-
cluded. As an illustrative example, we apply the methodol-
ogy to study soil-moisture–precipitation coupling in ERA5
climate reanalysis data across Europe. We demonstrate that,
harnessing the great power and flexibility of DL models, the
proposed methodology may yield new scientific insights into
complex non-linear and non-local coupling mechanisms in
the Earth system.

1 Introduction

The Earth system comprises many complex processes and
non-linear relations between variables that are still not
fully understood. Considering, for example, soil-moisture–
precipitation coupling, i.e., the question of how precipitation
changes if soil moisture is changed, it is well known that soil
moisture affects the temperature and humidity profile of the
atmosphere and thereby influences the development and on-
set of precipitation (Seneviratne et al., 2010; Santanello et al.,
2018). However, because there are several concurring path-
ways of soil-moisture–precipitation coupling, it remains an
open question whether an increase in soil moisture leads to
an increase or decrease in precipitation. Answering this ques-
tion might lead to improved precipitation predictions with
numerical models.

Approaches for studying relations in the Earth system may
be broadly divided into approaches based on numerical sim-
ulations (e.g., Koster, 2004; Seneviratne et al., 2006; Hartick
et al., 2021) and statistical approaches (e.g., Taylor, 2015;
Guillod et al., 2015; Tuttle and Salvucci, 2016). Both classes
of approaches have several inherent limitations. Approaches
based on numerical simulations usually have high compu-
tational costs and, even more importantly, rely on the cor-
rect representation of the considered relations in the numer-
ical model. For example, precipitation in numerical models
lacks accuracy due to several simplified parameterizations;
thus, using these models to study soil-moisture–precipitation
coupling is problematic. On the other hand, statistical ap-
proaches usually have much lower computational costs and
can directly be applied to observational data. However, cur-
rent statistical approaches have strong limitations on their
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own, for example, due to assumptions on linearity or local-
ity of considered relations and negligence of the difference
between causality and correlation.

A recent statistical approach for studying relations in the
Earth system is to (i) train deep learning (DL) models to pre-
dict one Earth system variable given one or several others and
(ii) use methods from the realm of interpretable DL (Zhang
and Zhu, 2018; Montavon et al., 2018; Gilpin et al., 2018;
Molnar, 2019; Samek et al., 2021) to analyze the relations
learned by the models (Roscher et al., 2020). The approach
has been applied in several recent studies (Ham et al., 2019;
Gagne et al., 2019; McGovern et al., 2019; Toms et al., 2020;
Ebert-Uphoff and Hilburn, 2020; Padarian et al., 2020), and
the use of DL models allows us to overcome common as-
sumptions in other statistical approaches like linearity or lo-
cality. So far, however, the difference between causality and
correlation has been neglected in studies using this approach.
Indeed, DL models might learn various (spurious) correla-
tions between input and target variables, while researchers
striving for new scientific insights are most interested in
causal relations.

Therefore, in this work, we propose extending the ap-
proach by combining it with a result from causality research
stating that a statistical model may learn the causal effect of
an input variable on a target variable if suitable additional
input variables are included (Pearl, 2009; Shpitser et al.,
2010). In the geosciences, this result has only recently re-
ceived attention in the work of Massmann et al. (2021). In
this work, it is combined with the methodology of training
and analyzing DL models to gain new scientific insights for
the first time. Note that there are several other recent stud-
ies on causal inference methods in the geosciences (e.g.,
Tuttle and Salvucci, 2016, 2017; Ebert-Uphoff and Deng,
2017; Green et al., 2017; Runge, 2018; Runge et al., 2019;
Barnes et al., 2019; Massmann et al., 2021). However, most
of them focus on discovering causal dependencies between
variables, while the proposed methodology assumes prior
knowledge on causal dependencies and focuses on quantify-
ing the strength and sign of a particular causal dependency.
As an illustrative example, we apply the proposed methodol-
ogy to study soil-moisture–precipitation coupling in ERA5
climate reanalysis data across Europe. Other geoscientific
questions that could be addressed with the proposed method-
ology are, for example, soil-moisture–temperature coupling
(Seneviratne et al., 2006; Schwingshackl et al., 2017; Schu-
macher et al., 2019) and soil-moisture–atmospheric-carbon-
dioxide coupling (Green et al., 2019; Humphrey et al., 2021).

This paper is structured as follows: Section 2 introduces
the background on causality research and details the pro-
posed methodology. Section 3 presents the application to
soil-moisture–precipitation coupling and provides a compar-
ison to other approaches. Finally, Sect. 4 contains several ad-
ditional analyses to assess the statistical significance and cor-
rectness of results obtained with the proposed methodology.

2 Methodology

To introduce the proposed methodology, which combines
deep learning with a result from causality research, we first
give a basic introduction into the required concepts from
causality research. Based on that, we describe how one can
train a DL model that reflects causality.

2.1 Background on causality

If we could change the value of any Earth system vari-
able, e.g., increase soil moisture in some area, this would
potentially affect numerous other Earth system variables,
e.g., evaporation, temperature and precipitation. The variable
that was changed thus has a causal impact on the latter vari-
ables. Formally, the causal effect of some variable X ∈ Rd
on another variable Y ∈ Rn is the expected response of Y to
changing the value of X. To determine this impact, one has
to determine the expected value of Y given that one sets X to
some arbitrary value x. In the framework of structural causal
models (SCMs) introduced below, setting X to x is repre-
sented by a mathematical intervention operator do(X = x),
and the sought value is referred to as the post-intervention
expected value E[Y |do(X = x)].

In some cases, E[Y |do(X = x)] can be determined exper-
imentally by setting X to x while monitoring Y . For exam-
ple, in Earth System Modeling, one may be able to set X to
x in numerical experiments. However, often it is impossible
to determine E[Y |do(X = x)] experimentally due to com-
putational constraints or because of the lack of appropriate
numerical models. Obviously, analog experiments are even
harder to perform or impossible in case of large-scale inter-
actions in the Earth system.

The framework of SCMs (Pearl, 2009) provides a deeper
understanding of the notion E[Y |do(X = x)] and describes
how it can be determined without experimentally setting X

to x. The framework is briefly introduced in the following.
For a more in-depth introduction we refer to Pearl (2009). An
introduction to the framework in the context of geosciences
is given in Massmann et al. (2021).

2.1.1 Structural causal models

In the framework of SCMs, the considered system, e.g., the
Earth system, is described by a causal graph and associ-
ated structural equations. A causal graph is a directed acyclic
graph, in which nodes represent the variables of the system
and edges encode the dependencies between these variables.
For example, in the system described by Fig. 1a, variable Y

depends on all other variables, although the lack of an edge
from X to Y implies that X only affects Y indirectly via its
impact on C2. Parents of a considered variable (node) are
all variables that have a direct effect on that variable, i.e., all
variables with an edge pointing to that variable. In the follow-
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Figure 1. Example for a causal graph (a) and corresponding causal
graph for setting variable X to some arbitrary value x (b). The grey
circles are referred to as nodes of the graph, while the arrows are
referred to as directed edges.

ing, the terms “node” and “variable” are used interchange-
ably.

Formally, a variable in the causal graph is determined by
a function f , whose inputs are its parents and a random
variable U representing potential chaos and variables not in-
cluded in the causal graph explicitly. For example, for the
system in Fig. 1a, the four variables are determined by four
functions fC1 ,fC2 ,fX,fY :

C1 = fC1(UC1), X = fX(C1,UX),

C2 = fC2(X,UC2), Y = fY (C1,C2,UY ). (1)

These equations are called structural equations. The ran-
dom variables UC1 ,UC2 ,UX,UY are assumed to be mutu-
ally independent and give rise to a probability distribution
P(C1,C2,X,Y ), which describes the probability of observ-
ing any tuple of values (c1,c2,x,y). Integrating the prod-
uct of Y and this probability distribution over all tuples
(c1,c2,y) for some fixed value x, one obtains the expected
value of Y given that one observes the value x of X, i.e.,

E[Y |X = x] =

∫
c1,c2,y

y ·P[C1 = c1,C2 = c2,Y = y|X = x]. (2)

As stated above, to determine the causal effect of X on Y , one
has to determine the expected value of Y given that one set X

to some arbitrary value x, i.e., the post-intervention expected
value E[Y |do(X = x)]. By setting X to some arbitrary value
x, all dependencies of X on other variables are eliminated.
Within the framework of SCMs, this corresponds to remov-
ing all edges in the causal graph pointing to X and modifying
the structural equation for X accordingly. For example, when
studying the causal effect of X on Y in Fig. 1a, the modified
system is described by the causal graph in Fig. 1b with the
associated structural equations

C1 = fC1(UC1), X = x, C2 = fC2(X,UC2),

Y = fY (C1,C2,UY ). (3)

Again, the random variables UC1 ,UC2 ,UY give rise to a
probability distribution P(C1,C2,Y |do(X = x)), referred to
as the post-intervention probability distribution, and the cor-
responding post-intervention expected value E[Y |do(X =

x)]. This expected value is used to determine the causal ef-
fect of X on Y and differs from the expected value for the
original system, E[Y |X = x]. For instance, in the example
from Fig. 1, knowing X allows us to draw conclusions about
Y both in the original system (Fig. 1a) and in the modified
system (Fig. 1b), because X has a causal effect on Y (via its
impact on C2). However, in the original system, knowing X

allows us to draw additional conclusions about C1. This is
the case although the edge in the causal graph points from
C1 to X; i.e., C1 affects X, not vice versa. For example, if
X was simply the sum of C1 and the random term UX, a
high value of X would probably imply a high value of C1.
These conclusions about C1 cannot be drawn in the modi-
fied system, where the edge from C1 to X is removed. The
knowledge about C1 allows us to draw further conclusions
about Y because C1 also affects Y . Summarizing, due to the
confounding influence of C1, knowing X reveals more about
Y in the original system than in the modified system, which
is why the original expected value E[Y |X = x] and the post-
intervention expected value E[Y |do(X = x)] differ.

If we could observe the modified system, i.e., if we
could experimentally set variable X to arbitrary values x,
we could approximate the post-intervention expected value
E[Y |do(X = x)] by training a suitable (see Sect. 2.2.1) sta-
tistical model on the observed tuples (x,y) to predict Y given
X. However, in the cases considered in the proposed method-
ology, it is impossible or undesirable to experimentally set X

to x. Thus, we can only observe the original system and ap-
proximate the original expected value E[Y |X = x] by analo-
gously training a statistical model on observed tuples (x,y)
of the original system. Consequently, we have to bridge the
gap between the original expected value E[Y |X = x] and the
post-intervention expected value E[Y |do(X = x)].

2.1.2 Adjustment criteria

To bridge the gap between the original expected value
E[Y |X = x] and the post-intervention expected value
E[Y |do(X = x)], we must take into account variables other
than X and Y . Indeed, in the example from Fig. 1, we showed
that original and post-intervention expected values differ be-
cause, in the original system, knowing X allows inferences
about C1 that are not possible in the modified system. How-
ever, if we actually knew C1, this would not be the case;
thus, the original expected value E[Y |X = x,C1 = c1] and
the post-intervention expected value E[Y |do(X = x),C1 =

c1] are identical. Analogously to E[Y |X = x], the expected
value E[Y |X = x,C1 = c1] can be approximated by observ-
ing the original system and training a statistical model on
the observed tuples (x,y,c1) to predict Y given X and
C1. Therefore, this equality allows us to approximate the
post-intervention expected value E[Y |do(X = x),C1 = c1]

by only observing the original system and without experi-
mentally setting X to x.

https://doi.org/10.5194/gmd-16-2149-2023 Geosci. Model Dev., 16, 2149–2166, 2023



2152 T. Tesch et al.: Causal deep learning models for studying the Earth system

In the proposed methodology, we exploit the fact that the
equality

E[Y |X = x, {C` = c`}
k
`=1]

= E[Y |do(X = x), {C` = c`}
k
`=1] (4)

holds for any causal graph, thus allowing us to determine
the post-intervention expected value E[Y |do(X = x), {C` =

c`}
k
`=1] from observations alone, if the additional variables

C` ∈ Rd` ,`= 1, . . .,k, fulfill the following adjustment crite-
ria (Shpitser et al., 2010):

1. the variables {C`}
k
`=1 block all non-causal paths from

X to Y in the original causal graph;

2. no {C`}
k
`=1 lies on a causal path from X to Y .

Here, a path is any consecutive sequence of edges. A path
between X and Y is causal from X to Y if all edges point
towards Y , and it is non-causal otherwise. A path is blocked
by a set S = {C`}

k
`=1 of nodes if either (i) the path contains

at least one edge-emitting node, i.e., a node with at least one
adjacent edge pointing away from the node (. . .↔ C→ . . .),
that is in S (e.g., the path X← C1→ Y in Fig. 1 is blocked
by S if S contains C1), or (ii) the path contains at least one
collision node, i.e., a node with both adjacent edges point-
ing towards the node (. . .→ C← . . .), which is outside S
and has no descendants in S (e.g., the path X→ C← Y is
blocked if S does not contain C).

The first adjustment criterion generalizes the example of
C1 in Fig. 1, where adjusting for the edge-emitting node C1,
i.e., considering E[Y |X = x,C1 = c1] rather than E[Y |X =
x], blocks the non-causal path X← C1→ Y such that X is
only used to draw conclusions about Y via the causal path
X→ C2→ Y . In general, the criterion ensures that X is
only used to draw conclusions about Y via causal paths from
X to Y and not via any non-causal path between X and Y .

The second adjustment criterion ensures that no causal
path from X to Y is blocked, such that the post-intervention
expected value E[Y |do(X = x), {C` = c`}

k
`=1] actually re-

flects the causal effect of X on Y . For example, considering
the causal path X→ C2→ Y in Fig. 1, C2 blocks the only
causal path between X and Y . Thus, E[Y |do(X = x),C2 =

c2] = E[Y |C2 = c2] would indicate that there is no causal
effect of X on Y .

Summarizing this section, we can approximate the post-
intervention expected value E[Y |do(X = x), {C` = c`}

k
`=1]

from observations alone, if we can describe the considered
system by a causal graph and find variables C` ∈ Rd` ,`=
1, . . .,k, that fulfill the above adjustment criteria. Describ-
ing the system by a causal graph requires knowledge on
which variables are relevant to the considered relation (rep-
resented by the nodes in the graph) and on the existence of
causal dependencies between these variables (represented by
the edges in the graph). Nevertheless, it does not require
knowledge on the sign or strength of these dependencies,

i.e., on the structural equations. Note that the parents of X

in the causal graph always fulfill the adjustment criteria. In
the proposed methodology, we exploit the post-intervention
expected value E[Y |do(X = x), {C` = c`}

k
`=1] to determine

the causal effect of X on Y as detailed in Sect. 2.2.2.

2.2 Steps of the methodology

The proposed methodology is as follows: given a complex re-
lation between two variables X ∈ Rd and Y ∈ Rn, for exam-
ple, soil-moisture–precipitation coupling, we train a causal
deep learning (DL) model to predict Y given X and ad-
ditional input variables C` ∈ Rd` ,`= 1, . . .,k. In a second
step, we perform a sensitivity analysis of the trained model
to analyze how Y would change if we changed X, i.e., to
determine the causal effect of X on Y .

2.2.1 Training a causal DL model

DL models (LeCun et al., 2015; Reichstein et al., 2019) learn
statistical associations between their input and target vari-
ables. By training a causal DL model, we mean that we train a
DL model that approximates for each input tuple (x, {c`}k`=1)

the post-intervention expected value E[Y |do(X = x), {C` =

c`}
k
`=1], i.e., the model approximates the map

(x, {c`}
k
`=1)→ E[Y |do(X = x), {C` = c`}

k
`=1]. (5)

To obtain a causal DL model, the loss function, model ar-
chitecture and additional input variables {C`}

k
`=1 have to be

chosen carefully. In particular, we choose a loss function that
is minimized by the original expected value of Y given X

and the other input variables, i.e., by the map

(x, {c`}
k
`=1)→ E[Y |X = x, {C` = c`}

k
`=1]. (6)

An example for such a loss function is the expected mean
squared error,

(m : (X, {C`}
k
`=1)→ Rn)→ E[(Y −m(x, {c`}

k
`=1))

2
], (7)

which maps a function m : (X, {C`}
k
`=1)→ Rn, represent-

ing the predictions of the DL model, to its expected mean
squared error (Miller et al., 1993). Furthermore, in terms
of model architecture, we choose a differentiable DL model
(e.g., a neural network) that can represent the potentially
complicated function from Eq. (6). Finally, we choose addi-
tional input variables {C`}

k
`=1 that fulfill the adjustment cri-

teria from Sect. 2.1.2, such that the maps from Eqs. (5) and
(6) become identical. The choice of additional input variables
requires prior knowledge on which variables are relevant for
the considered relation and on the existence of causal depen-
dencies between these variables. However, it does not require
prior knowledge on the strength, sign, or functional form of
these dependencies (see Sect. 2.1.2), which can be obtained
from the proposed methodology.
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2.2.2 Sensitivity analysis of the trained model

To determine the causal effect of X ∈ Rd on Y ∈ Rn, we con-
sider partial derivatives of the map from Eq. (5), i.e.,

sij (x, {c`}
k
`=1)=

∂E[Y i |do(X = x), {C` = c`}
k
`=1]

∂Xj

, (8)

where i ∈ {1, . . .,n}, j ∈ {1, . . .,d}. These partial derivatives
indicate how Y i is expected to change if we experimentally
varied the value of Xj by a small amount for given values
X = x, {C` = c`}

k
`=1. We approximate these derivatives by

the corresponding partial derivatives of the DL model, i.e., by
the derivative of the predicted Y i with respect to the input
Xj , denoted qij (x, {c`}k`=1).

The target quantity in the proposed methodology is
the expected value of sij (x, {c`}k`=1) with respect to the
probability distribution of X and {C` = c`}

k
`=1, i.e., sij =

Ex,{c`}
k
`=1
[sij (x, {c`}

k
`=1)]. This quantity, which we refer to

as the causal effect of X on Y , indicates how Y i is expected
to change if we experimentally varied the value of Xj by
a small amount. To approximate this quantity, we average
the partial derivatives qij (x, {c`}k`=1) of the DL model over
a large number of observed tuples (x, {c`}k`=1). For instance,
when studying soil-moisture–precipitation coupling, we av-
erage qij (x, {c`}k`=1) over the T samples from the test set;
i.e., we consider

qij =
1
T

∑
(x,{c`}

k
`=1)∈test set

qij (x, {c`}
k
`=1). (9)

Note that one might also combine partial derivatives for dif-
ferent tuples (i,j), for example, to analyze the impact of
a change in Xj on the sum

∑n
i=1Y i . When studying soil-

moisture–precipitation coupling, we combine different par-
tial derivatives to study the local and regional impact of soil
moisture changes on precipitation (see Sect. 3.4).

In theory, the proposed methodology identifies the causal
effect of X on Y exactly. In practice, however, we make two
important approximations. First, due to the complexity of the
Earth system, the additional input variables {C`}

k
`=1 may not

strictly fulfill the adjustment criteria from Sect. 2.1.2, such
that the map from Eq. (6) is only approximately identical to
the map from Eq. (5). Second, the DL model only approx-
imates the map from Eq. (6). Thus, the partial derivatives
qij (x, {c`}

k
`=1) of the DL model only approximate the partial

derivatives sij (x, {c`}k`=1) that we are interested in. We will
come back to this in Sects. 3.3 and 4.

3 Application to soil-moisture–precipitation coupling

As an illustrative example, we apply the proposed method-
ology to study soil-moisture–precipitation coupling, i.e., the
question how precipitation changes if soil moisture is

changed. Although it is well known that soil moisture af-
fects precipitation (Seneviratne et al., 2010; Santanello et al.,
2018), it remains unclear whether an increase in soil mois-
ture results in an increase or decrease in precipitation. This
is due to several concurring pathways of soil-moisture–
precipitation coupling (see Fig. 2). Improving our under-
standing of soil-moisture–precipitation coupling is important
to improve precipitation predictions with numerical models.

We apply the proposed methodology to study soil-
moisture–precipitation coupling across Europe at a short
timescale of 3 to 4 h. Namely, we train a causal DL model to
predict precipitation P [t + 4h] ∈ R80×140 at 80× 140 target
pixels across Europe, given soil moisture SM[t] ∈ R120×180

and further input variables C`[t] ∈ R120×180, e.g., antecedent
precipitation, that approximately fulfill the adjustment crite-
ria from Sect. 2.1.2, at 120×180 input pixels (see Fig. 3). In
a second step, we perform a sensitivity analysis of the trained
model to analyze how the precipitation predictions change if
the soil moisture input variable is changed. Note that the in-
put region is larger than the target region because P [t + 4 h]
depends on input variables in a surrounding region.

3.1 Data

The data underlying our example are ERA5 hourly data
(Hersbach et al., 2023) constituting an atmospheric re-
analysis of the past decades (1950 to today) provided by
the European Centre for Medium-Range Weather Forecasts
(ECMWF). Reanalysis means simulation data and observa-
tions have been merged into a single description of the global
climate and weather using data assimilation technologies.
ERA5 data contain hourly estimates for a large number of
atmospheric, ocean-wave and land-surface quantities on a
regular latitude–longitude grid of 0.25◦ (≈ 30 km). In this
study, soil moisture refers to the ERA5 variable “volumet-
ric soil water in the upper soil layer (0–7 cm)”. The target
variable, precipitation P [t+4h], represents an accumulation
of precipitation over the time interval [t+3h, t+4h]. In our
analyses, we consider ERA5 data from 1979 to 2019 across
Europe. Because soil-moisture–precipitation coupling in Eu-
rope is strongest during the summer months, we only con-
sider the months June, July and August. Further, we restrict
our analyses to daytime processes considering precipitation
predictions, P [t + 4h], for times t + 4h between noon and
23:00 UTC.

3.2 Loss function, model architecture and training

As described in Sect. 2.2.1, the loss function should be mini-
mized by the expected value of precipitation P [t+4h], given
soil moisture SM[t] and the other input variables C`[t],
i.e., by the function (see Eq. 6)

(SM[t], {C`[t]}
k
`=1)→ E[P [t + 4h]|SM[t], {C`[t]}

k
`=1]. (10)
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Figure 2. Concurring pathways of soil-moisture–precipitation coupling. An increase in soil moisture can increase latent heat flux and decrease
sensible heat flux at the land surface (Seneviratne et al., 2010). This can increase precipitation via an increase in atmospheric water content
(a; Eltahir, 1998). At the same time, it can increase or decrease precipitation via boundary layer dynamics (b; Findell and Eltahir, 2003a, b;
Gentine et al., 2013) or via effects of spatial heterogeneity in latent and sensible heat fluxes on mesoscale circulations (c; Eltahir, 1998; Adler
et al., 2011; Taylor et al., 2011; Taylor, 2015).

Figure 3. Input and target regions in the example of soil-moisture–
precipitation coupling. The colored region represents the 120×180
pixel input region and the red box the 80× 140 pixel target region.
Note that the offset between input and target region is 20 pixels on
each side and distorted by the projection.

This holds true for the expected mean squared error from
Eq. (7). Given N training time steps ti , associated values
(SM[ti], {C`[ti]}

k
`=1,P [ti + 4h])Ni=1 and model predictions

m(SM[ti], {C`[ti]}
k
`=1)

N
i=1, the expected mean squared error

is approximated by the sum

1
N

N∑
i=1

mean((P [ti + 4h]−m(SM[ti], {C`[ti]}
k
`=1))

2). (11)

Here, the mean operator denotes the mean over the 80× 140
target pixels across Europe.

The employed DL model should be able to represent the
presumably highly non-linear function from Eq. (10). We
choose a convolutional neural network (CNN; LeCun et al.,
2015) whose architecture is inspired by the U-Net architec-
ture (see Fig. 4; Ronneberger et al., 2015). Two concepts
are important in applying CNNs in representing the function
from Eq. (10). The first is the concept of receptive fields.
Namely, the prediction of the model at some target location
is fully determined by the input variables in a surrounding
region, the so-called receptive field. In our case, the size of
the receptive field is ≤ 52× 52 pixels; i.e., the precipitation
prediction at a target location is fully determined by the input
variables in a ≤ 52× 52 pixel surrounding region.

The second concept is that of translation invariance. Trans-
lation invariance means that the function f̂ , which maps the
input variables in the receptive field to a prediction, is identi-
cal for all target locations. In our case, due to the arithmetic
details of the considered model architecture (Dumoulin and
Visin, 2016), the DL model is block translation invariant;
i.e., the prediction at a target location (i,j) is not determined
by a single function f̂ for all target locations but by one of
4× 4 fixed functions f̂nk,n,k = 1, . . .,4, depending on the
values imod4 and jmod4.

Both concepts, receptive field and translation invariance,
are important features of CNNs, because they counteract
overfitting, i.e., making (nearly) perfect predictions on the
training data but not generalizing to unseen data. How-
ever, both concepts constitute constraints that may prevent
CNNs from representing the function from Eq. (10). In-
deed, the translation invariance requires including additional
input variables {C`}k`=1 that lead to spatial variability in
soil-moisture–precipitation coupling. We will discuss this in
Sect. 3.3. Note that we can mostly ignore the general con-
straint of receptive fields, because the lead time of the pre-
dictions is only 4 h and the receptive field is large enough
to take into account all relations between soil moisture and
precipitation at that timescale.
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Figure 4. Model architecture in the example of soil-moisture–precipitation coupling. The leftmost blue box represents the input to the
model, which consists of 12 variables (including soil moisture) at the 120× 180 input pixels (see Fig. 3). This input is passed through
multiple sequential modules represented by the arrows. Each module performs simple mathematical operations on its respective inputs and
produces an output that is fed to the next module. This output is represented by the next blue box and, in general, differs in shape from the
input, as indicated by the grey upright and rotated numbers. For details on the mathematical operations we refer to Ronneberger et al. (2015).
The rightmost blue box represents the output of the model, which consists of the precipitation prediction at the 80× 140 target pixels. The
combination of multiple simple modules allows the model to represent complex functions.

Before training the model, we split our data into training,
validation and test sets. Due to potential correlations between
subsequent time steps, an entirely random split would lead to
high correlations between samples in training, validation and
test sets. To achieve independence between samples belong-
ing to different sets, we randomly choose all samples from
the years 2010 and 2016 for validation, all samples from the
years 2012 and 2018 for testing, and all samples from the re-
maining 37 years for training. The test set is not used during
the entire training and tuning process of the model.

During training, the Adam optimizer (Kingma and Ba,
2017) is used to adapt the approximately 2.3 million, ran-
domly initialized weights of the model to minimize the mean
squared error on the training set. In terms of implementa-
tion, we use the PyTorch (Paszke et al., 2019) wrapper sko-
rch (Tietz et al., 2017) with default parameters for training
the model: set the maximum number of epochs to 200, the
learning rate in the Adam optimizer to 1× 10−3, the batch
size to 64, and patience for early stopping (i.e., the number
of epochs after which training stops if the loss function eval-
uated on the validation set does not improve by some thresh-
old) to 30 epochs. During training, we further use data aug-
mentation. Namely, we randomly rotate by 180◦ (or not) and
subsequently horizontally flip (or not) the considered region
for each training sample and each training epoch indepen-
dently. Similar to the translation invariance of the model, this
requires including input variables which lead to spatial vari-
ability in soil-moisture–precipitation coupling as discussed
in the next section.

3.3 Choice of input variables

The choice of additional input variables {C`}
k
`=1 repre-

sents a crucial aspect of the proposed methodology for
two reasons (see Sect. 2.2.2). First, we need the addi-
tional input variables to (approximately) fulfill the ad-
justment criteria from Sect. 2.1.2, such that the map-
ping of input variables (SM[t], {C`[t]}

k
`=1) to E[P [t +

4h]|SM[t], {C`[t]}
k
`=1] (see Eq. 10) is a good approxima-

tion of the map

(SM[t], {C`[t]}
k
`=1)→ E[P [t + 4h]|do(SM[t]), {C`[t]}

k
`=1]. (12)

Second, the choice of additional input variables affects how
accurately the CNN approximates the map from Eq. (10)
and finally the partial derivatives of this map with respect
to SM[t] values that are computed in the sensitivity analysis
(see Sect. 3.4).

Choosing additional input variables that fulfill the adjust-
ment criteria is usually based on a causal graph of the con-
sidered system. However, a generally applicable causal graph
of the Earth system does not exist. Thus, we make use of the
fact that causal parents of SM[t] always fulfill the adjust-
ment criteria; i.e., we look for a set of Earth system variables
that is sufficient to determine SM[t]while not being affected
by SM[t]. Given the temporal resolution of the ERA5 data
and the timescale of our analysis, a reasonable example is the
set of variables in the second column in Fig. 5.

If we included all of these variables, the adjustment cri-
teria would be met and the map from Eq. (10) would be
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Figure 5. Causal graph in the example of soil-moisture–
precipitation coupling. The dark grey nodes represent the chosen in-
put variables, while light grey nodes represent variables that are ig-
nored in our analysis (see text). Land properties comprise the time-
independent variables topography, land–sea mask, and fractions of
high and low vegetation cover. The state of the atmosphere at time
t is represented by temperature and dew point temperature at 2 m
height at time t , as well as wind at 100 m height at time t . In addi-
tion to these variables, we included short- and long-wave radiation
at the land surface at time t . Note that the depicted causal graph only
includes nodes and edges that are relevant for the adjustment criteria
from Sect. 2.1.2 (e.g., no edge from “other variables” to P [t−1h, t],
and no nodes on the causal path from SM[t] to P [t + 3h, t + 4h],
such as evaporation [t, t + 3h]).

identical to that from Eq. (12). Nevertheless, obtaining a
good approximation of the map from Eq. (10) with our
DL model would be difficult due to the strong correlation
between SM[t − 1 h] and SM[t]. Furthermore, the strong
correlation between evaporation [t − 1h, t] and evaporation
[t, t + 3h] may prevent us from identifying any causal ef-
fect of SM[t] on P [t + 4h], because evaporation [t, t +
3h] is a direct descendant of SM[t] on every causal path
from SM[t] to P [t + 4h] (see motivation of the second
adjustment criterion in Sect. 2.1.2). Therefore, we decided
to exclude SM[t − 1h] and evaporation [t − 1h, t]. Never-
theless, this leads to unblocked non-causal paths between
SM[t] and P [t + 4h] via these variables (e.g., SM[t] ←

SM[t −1h] → state of the atmosphere[t] → P [t +4h]). To
block these paths, we include additional input variables that
represent the state of the atmosphere at time t .

Approximating the map from Eq. (10) and its partial
derivatives with respect to SM[t] gets more difficult with
increasing number of input variables. This is because addi-
tional input variables increase the complexity of this map
and the general risk of overfitting. Therefore, and because
SM[t−1h] and evaporation [t, t−1h] presumably affect the
lower atmosphere more strongly than the higher atmosphere,

we focus on variables representing the state of the lower at-
mosphere in this example.

The above considerations are valid for any model architec-
ture and training procedure. In our example, we further must
take into account the translation invariance of the considered
DL model and the rotation and flipping of the region used for
data augmentation during the training procedure. A seem-
ingly valid option is to include latitude–longitude informa-
tion as additional input variables. However, if we did so, the
DL model would have to learn a different mapping for each
location (i,j), and data augmentation in the form of flipping
and rotation of the region would not be useful. Instead, we
include short- and long-wave radiation at the land surface
[t]. Thus, the above requirement is approximately fulfilled,
and the model does not have to learn a different mapping for
each location, which presumably leads to it learning a better
approximation of the map from Eq. (10).

The choice of input variables is where we insert prior
knowledge in the proposed methodology (see Sect. 2.2.1).
There is no unique choice of input variables, but several sub-
jective decisions that have to be made. For example, above
we could have started from a different set of causal par-
ents, e.g., going not one but several hours into the past from
time t , but at least theoretically that makes no difference (see
Sect. 4). Starting from a set of causal parents and replac-
ing variables strongly correlated with X, as described above,
seems to be a valid strategy for the choice of input variables,
which is applicable to many relations in the Earth system be-
sides soil-moisture–precipitation coupling. It is in line with
the fact that causal parents always fulfill the adjustment crite-
ria and with the general finding from causality research that
input variables strongly correlated with X reduce the effi-
ciency of statistical estimators of causal effects (Witte et al.,
2020). The causal graph clearly conveys to other scientists
the assumptions underlying a specific application of the pro-
posed methodology.

3.4 Sensitivity analysis

Given our trained DL model, we consider different combi-
nations of partial derivatives of the model to study the local
and regional effects of soil moisture changes on precipitation
(see Sect. 2.2.2). We define the causal effect of a soil mois-
ture change at a pixel (i,j) on precipitation at the very same
pixel as the local effect or local soil-moisture–precipitation
coupling. Accordingly, we consider for each pixel (i,j) in
the target region the partial derivative

q loc
ij =

∂pij (SM, {C`}
k
`=1)

∂SM ij

, (13)

where pij denotes the precipitation prediction of the DL
model for pixel (i,j), and SM and {C`}

k
`=1 are the input

variables to the model. We average these derivatives over all
input samples (SM, {C`}

k
`=1) from the test set denoted by

q loc
ij .
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Next to the local soil-moisture–precipitation coupling,
we define the regional effect or regional soil-moisture–
precipitation coupling as the causal effect of a soil moisture
change at a pixel (i,j) on precipitation in the entire target
region. Accordingly, we consider for each pixel (i,j) in the
target region the sum of partial derivatives

q
reg
ij =

80∑
î=1

140∑
ĵ=1

∂p
î ĵ
(SM, {C`}

k
`=1)

∂SM ij

. (14)

Note that most of the derivatives in the sum are zero, be-
cause, e.g., a change in soil moisture in Great Britain at time
t does not affect precipitation in Italy 4 h later. Outside of
a 52× 52 pixel surrounding region, this is enforced by the
architecture of the DL model (see Sect. 3.2), and inside of
this region, it is learned during training of the model. As for
local soil-moisture–precipitation coupling, qreg

ij denotes the
average of qreg

ij over all input samples from the test set.
To obtain robust results, we computed local and regional

couplings for 10 instances of the DL model that were trained
from different random weight initializations. Next, we av-
eraged the obtained couplings (q loc

ij and qreg
ij ) over the 10

instances. The results are shown in Fig. 6. Notably, the differ-
ence in sign between positive local and negative regional im-
pact demonstrates the importance of taking into account non-
local effects of soil-moisture–precipitation coupling, which
are neglected by many other approaches. Moreover, Fig. 6
indicates particularly strong local and regional couplings in
mountainous regions and ridges. We will further discuss the
correctness of these results in Sect. 4.

3.5 Comparison to other approaches

A common approach for studying relations in the Earth sys-
tem is to consider the linear correlation between variables
(Froidevaux et al., 2014; Welty and Zeng, 2018; Holgate
et al., 2019). Here, we compare our results on regional soil-
moisture–precipitation coupling to results obtained from a
linear correlation analysis. For each location in the consid-
ered target region, Fig. 7 shows the linear correlation coeffi-
cient of soil moisture SM[t] at that location and subsequent
precipitation P [t + 4h] summed over the 15× 15 pixel sur-
rounding region. In contrast to our analysis of regional soil-
moisture–precipitation coupling, the linear correlation anal-
ysis assumes linearity of relations between local soil mois-
ture and regional precipitation and neglects the difference be-
tween causality and correlation. The obtained regional soil-
moisture–precipitation coupling in Fig. 7 then also differs in
sign and spatial pattern from the coupling in the right panel of
Fig. 6, stressing the importance of accounting for non-linear
effects and for the difference between causality and correla-
tion in the proposed methodology.

Another approach for studying soil-moisture–precipitation
coupling is to perform multiple numerical simulations that
differ only in initial soil moisture and to analyze the differ-

Figure 6. Local and regional soil-moisture–precipitation couplings.
(a) Impact of local soil moisture changes (m3 waterm−3 soil) on lo-
cal precipitation (mmh−1) for each pixel in the target region (in the
text denoted by qloc

ij ). (b) Impact of local soil moisture changes
on regional precipitation for each pixel in the target region (in the
text denoted by qreg

ij ). For better comparability of local and re-
gional values, the unit mmh−1 for precipitation refers to a single
pixel in both panels. Missing hatching indicates that the coupling
reflects more than random correlations between soil moisture and
precipitation in the training data, artifacts of the DL training pro-
cedure, seasonality, and the correlation between soil moisture and
topography (see Sect. 4.2). The green and yellow elevation contour
lines indicate 370 and 750 m, respectively.

Figure 7. Linear correlation coefficient of local soil moisture and
regional precipitation. For each location, the linear correlation co-
efficient of soil moisture SM[t] at the location and subsequent pre-
cipitation P [t + 4h] summed over the 15× 15 pixel surrounding
region of the location is shown.

ences in precipitation between these simulations (Imamovic
et al., 2017; Baur et al., 2018; Leutwyler et al., 2021). This
approach allows us to evaluate the effects of soil mois-
ture changes on precipitation within the employed numerical
model precisely. However, for some questions, it is computa-
tionally infeasible. For instance, in this work, we used ERA5
data to analyze the effects of soil moisture changes at each
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of 80× 140 target pixels on subsequent precipitation in the
target region. We averaged these effects over all time steps
in 2 test years, constituting 2208 time steps. Performing an
analogous study based on numerical simulations would re-
quire at least 80×140×2208= 24729600 4-hourly simula-
tions with the ECMWF Earth system model used to produce
the considered ERA5 data. Each simulation would be initial-
ized with the state of the reference simulation at one of the
2208 considered time steps, with the only difference being
that soil moisture would be slightly increased or decreased at
one of the 80×140 target pixels. This corresponds to simulat-
ing more than 10000 years with the ECMWF Earth system
model and is computationally infeasible. Furthermore, an ad-
vantage of the proposed methodology over approaches based
on numerical simulations is that it can directly be applied to
observational data, if suitable observational data are avail-
able. In this case, the proposed methodology does not rely
on any assumptions incorporated into numerical models.

4 Additional analyses to verify the results

To ensure that the proposed methodology provides reliable
results, this section presents some additional analyses. The-
oretically, the proposed methodology determines the causal
effect of X on Y exactly. However, in practice, we make
two important approximations (see Sect. 2.2.2). First, the ad-
ditional input variables {C`}

k
`=1 may not strictly fulfill the

adjustment criteria from Sect. 2.1.2, such that the mapping
of input variables to the original expected value E[Y |X =
x, {C` = c`}

k
`=1] in Eq. (6) is only approximately identi-

cal to the mapping to the post-intervention expected value
E[Y |do(X = x), {C` = c`}

k
`=1] in Eq. (5). Second, the DL

model represents only an approximation of the map from
Eq. (6). Both errors are difficult to quantify, because both
maps are unknown.

For example, the performance of the DL model on the
test set cannot indicate how well the DL model approxi-
mates the map from Eq. (6), because the loss value for this
map is not known. For instance, for a system described by
the causal graph X→ Y ← C and the structural equation
Y =X+ 1000 ·C (where X and C vary in similar ranges),
the adjustment criteria from Sect. 2.1.2 imply that it suffices
to consider X as the only input variable in the proposed
methodology. Nevertheless, even if the trained DL model
perfectly represented the map x→ E[Y |X = x], the associ-
ated loss value would be high as knowing X does not reveal
much about Y , which is mainly determined by C.

The results of the proposed methodology are the partial
derivatives qij of the DL model computed in the sensitivity
analysis. Due to the above approximations, these derivatives
are only approximations of the partial derivatives sij of the
map from Eq. (5), which represent the causal effect of X

on Y (see Sect. 2.2.2). However, even quantifying the two
approximation errors mentioned above would not give us a

good estimate of the errors in these results. In this section, we
propose several additional analyses to build confidence in re-
sults obtained with the proposed methodology. Particularly,
the proposed analyses show if results are statistically signif-
icant, i.e., reflect more than random correlations or artifacts
of the DL training procedure (Sect. 4.1), and if they reflect
more than specific (known) correlations (Sect. 4.2). More-
over, the analyses proposed in Sect. 4.3 allow us to identify
(potentially unknown) spurious correlations in the results. Fi-
nally, we propose some further sanity checks in Sect. 4.4.
We illustrate the analyses with our results on soil-moisture–
precipitation coupling from Sect. 3.

For reference only, we provide here the normalized mean
squared error on the test set (target variable normalized to a
mean of 0 and standard deviation of 1 on the training set)
for our application to soil-moisture–precipitation coupling:
it is 0.60 for the DL model. For a persistence prediction,
i.e., when predicting the input P [t] as target P [t+4h], which
is a simple baseline prediction, it is 1.54.

4.1 Statistical significance

To test whether results obtained with the proposed method-
ology are statistically significant, i.e., represent more than
random correlations between X and Y in the training data
and random artifacts of the procedure for training the DL
model, we propose the following procedure. First, randomly
permute X in the training data, thereby breaking all non-
random correlations between X and Y . For example, in the
application to soil-moisture–precipitation coupling, permute
soil moisture temporally and spatially. Next, train a separate
instance of the original DL model with a random initializa-
tion of model weights on the modified training data. Repeat
this procedure several times. If the original results deviate
significantly from the results obtained from this procedure,
they are statistically significant.

Formally, we propose to interpret a result r ∈ R of the
proposed methodology, e.g., local or regional soil-moisture–
precipitation coupling at some pixel (i,j) (see Sect. 3.4), as
a sample of a random variable r̂ :�→ R, where � is the
probability space

�= {Training data}× {Weight initialization of the DL model}. (15)

Thus, r̂ computes the considered result, e.g., local or regional
soil-moisture–precipitation coupling at pixel (i,j) according
to the proposed methodology, for any given sample ω ∈�.
We define the null hypothesis that r represents random cor-
relations between X and Y in the training data or random
artifacts of the procedure for training the DL model. To test
this hypothesis, we create m samples ω1

0, . . .,ω
m
0 of � by the

above-described procedure of permuting X and randomly
initializing the weights of separate instances of the consid-
ered DL model. Moreover, we compute the associated values
r i0 = r̂(ω

i
0), i = 1, . . .,m, representing samples of r̂ under the

null hypothesis.
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If the original value r differs from these samples, we can
reject the null hypothesis and conclude that r is statistically
significant. In particular, if m is large enough, we can reject
the null hypothesis at some significance level α (e.g., α =
5%), if the original value r lies outside the middle 100%−α
of the values r1

0 , . . ., r
m
0 , i.e., if

r 6∈ [percentile({r1
0 , . . ., r

m
0 },α/2),

percentile({r1
0 , . . ., r

m
0 },100%−α/2)]. (16)

However, because we have to train m DL models for this
analysis, it may not be feasible to choose m large enough
to get reasonable approximations of these percentiles. In this
case, we propose computing the mean µ and standard devi-
ation σ of the values r1

0 , . . ., r
m
0 , assuming a normal distri-

bution of r̂ under the null hypothesis, and rejecting the null
hypothesis at significance level α if r is not in the middle
100%−α of the distribution N(µ,σ), i.e., if

r 6∈ [percentile(N(µ,σ),α/2),percentile(N(µ,σ),

100%−α/2)]. (17)

4.2 Known spurious correlations

As mentioned above, the proposed methodology identifies
the exact causal effect of X on Y in theory, but not neces-
sarily in practice, where results might reflect spurious cor-
relations. In this section, we propose two analyses to test
whether results obtained with the proposed methodology rep-
resent more than spurious correlations. The analyses apply
whenever the spurious correlations are known, and X can be
permuted such that the considered correlations are preserved
while other correlations between X and Y break. For exam-
ple, there exists a spurious correlation between SM[t] and
P [t + 4h] via topography, because topography affects both
SM[t] and P [t + 4 h] (SM[t] ← topography→ P [t + 4h];
see Sect. 2.1.1). Further, there might exist a spurious corre-
lation between SM[t] and P [t + 4h] via seasonality, e.g., if
both soil moisture and precipitation were generally lower in
August than in June. Both correlations are preserved if we
permute soil moisture year-wise as illustrated in Fig. 8. All
other cases of spurious correlations are discussed in the next
section, in particular unknown spurious correlations.

The first proposed analysis is identical to the analysis de-
scribed in Sect. 4.1 except that X in the training data is not
permuted randomly but in such a way that the considered
spurious correlations are preserved. If the original results de-
viate significantly from the results obtained in this analysis,
they are statistically significant and do not only represent
the considered spurious correlations. In our example of soil-
moisture–precipitation coupling, we permuted SM[t] year-
wise as illustrated in Fig. 8 and trained m= 10 separate in-
stances of the DL model. The analysis indicates that our re-
sults on soil-moisture–precipitation coupling are statistically
significant and represent more than correlations between soil

moisture and topography or seasonality (missing hatching in
Fig. 6). Intriguingly, the regional coupling is statistically sig-
nificant (albeit weak) at most ocean locations, although one
would not expect the DL model to learn a systematic effect
of soil moisture variations on precipitation at these locations,
since soil moisture does not vary at these locations. Indeed,
we set soil moisture to 1m3 water per cubic meter at all ocean
locations for all time steps, while it is smaller than 0.75 at
all non-ocean locations. We assume that the statistical sig-
nificance of the regional coupling at ocean locations is an
artifact of the DL model architecture, which favors general-
ization between locations, ocean and non-ocean.

The second proposed analysis evaluates whether the orig-
inal DL model learned useful information in terms of pre-
dictive performance on the relation between X and Y , apart
from the considered spurious correlations. In the analysis,
we train m separate instances of the original DL model on
the original training data. The m instances differ in the ran-
dom initialization of model weights (see Sect. 3.4). For each
model instance, we compute the value of the loss function on
the test set, obtaining m values l1, . . ., lm ∈ R. Next, for each
model instance separately, we randomly permute X in the
test data such that the considered spurious correlations are
preserved, and we compute the value of the loss function on
the modified test set, obtaining m values lperm

1 , . . ., l
perm
m ∈ R.

Finally, we use a permutation test (Hesterberg, 2014) to test if
the expected value of the loss function is smaller on the origi-
nal test set than on the modified test set. If this is the case, the
DL models learned something useful in terms of predictive
performance on the relation between X and Y , apart from
the considered spurious correlations. In our example of soil-
moisture–precipitation coupling, we trainedm= 10 separate
instances of the DL model. We considered the year-wise per-
mutation of soil moisture in the test data as described above.
In this case, the analysis indicates at a confidence level of
99 % that the model learned useful information in terms of
predictive performance on soil-moisture–precipitation cou-
pling, apart from the correlations between soil moisture and
topography or seasonality. However, for the validity of this
analysis, it may be limiting that there are only two test years
in this example and thus only one possible permutation of
years apart from the original one. Therefore, we repeated
the analysis and permuted soil moisture in the test data com-
pletely randomly in time. While this does not preserve cor-
relations between soil moisture and seasonality, it still pre-
serves the correlation between soil moisture and topography.
Furthermore, it ensures the validity of the analysis as there
are a lot of possible permutations. In this case, the analysis
indicates at a confidence level of 99 % that the model learned
useful information in terms of predictive performance on
soil-moisture–precipitation coupling, apart from the correla-
tion between soil moisture and topography. Note that even
if the first analysis indicates that some result reflects more
than the considered correlations, it cannot exclude that the
results are partly affected by the considered spurious corre-
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Figure 8. Modification of the training data for the year-wise permutation of SM[t]. The modification of the test data works analogously.

lations. Analogously, if the second analysis indicates that the
DL model learned useful information in terms of predictive
performance on the relation between X and Y , apart from
the considered spurious correlations, it cannot exclude that
the predictions are partly affected by the considered spurious
correlations.

4.3 Further spurious correlations

In the previous section, we analyzed specific spurious corre-
lations, i.e., spurious correlations that were known, and for
that X could be permuted such that the spurious correlations
are preserved, while other correlations between X and Y

break. As an additional analysis to identify any spurious cor-
relations reflected in obtained results, we propose a variant
approach. The concept of the approach is related to the ideas
in Tesch et al. (2021) and Peters et al. (2016). It consists of
training separate instances of the original DL model (referred
to as variant models) on modified prediction tasks (referred
to as variant tasks) for which it is assumed that causal rela-
tions between input and target variables either remain stable
or vary in specific ways. Subsequently, the results obtained
from original and variant models are compared, and it is eval-
uated whether they reflect the assumed stability or specific
variations, respectively, of causal relations. If not, the origi-
nal model or one of the variant models (or all models) learned
spurious correlations.

For example, we may assume that the general (causal)
mechanisms of soil-moisture–precipitation coupling do not
vary in time or space. Then, if the couplings in Fig. 6 reflect
the causal effect of soil moisture on precipitation, we should
obtain the same couplings from separate instances of the DL
model that are trained only on

– data from the first or second half of the training years;

– data from June, July or August; or

– the left or right half of the considered region.

On the other hand, if Fig. 6 reflected spurious correlations
and these spurious correlations differed for the different sub-
sets of training data listed above, we should obtain different
couplings from the different model instances.

Appendix Figs. A1 to A3 show the local and regional cou-
plings obtained from the different model instances trained on
the listed training subsets. As expected for the case in which
all instances learned the causal effect of soil moisture on pre-
cipitation, all couplings are very similar to the ones shown in
Fig. 6. Note, however, that this does not guarantee that they
show causal relations.

4.4 Task-specific sanity checks

To further assess the correctness and increase trust in results
obtained from the proposed methodology, we propose to per-
form further, task-specific sanity checks. For instance, in our
example of soil-moisture–precipitation coupling, precipita-
tion P can be partitioned into convective precipitation P con
(occurring at spatial scales smaller than the spatial resolu-
tion of the numerical model) and large-scale precipitation P ls
(occurring at larger spatial scales), such that P = P con+P ls.
Accordingly, soil-moisture–precipitation coupling, SM–P

coupling, can be decomposed into the sum of SM–P con cou-
pling and SM–P ls coupling. As a sanity check for the re-
sults in Fig. 6, we applied the proposed methodology to ob-
tain SM–P con coupling and SM–P ls coupling by replacing
P by P con and P ls, respectively, and compared the sum of
the obtained couplings with Fig. 6. Appendix Fig. A5 shows
the sum of local and regional SM–P con and SM–P ls cou-
plings, which are indeed very similar to the couplings shown
in Fig. 6.

Further, SM–P coupling can approximately be factorized
into instantaneous (local) soil-moisture–evaporation (SM–
E) coupling times evaporation–precipitation (E–P ) cou-
pling. As another sanity check for the results in Fig. 6, we ap-
plied the proposed methodology to obtain SM–E coupling
and E–P coupling by once replacing the target variable P by
E and the other time replacing the input variable SM by E.
Appendix Fig. A7 shows the product of local SM–E and lo-
cal and regional E–P couplings. The obtained couplings are
very similar to the couplings shown in Fig. 6, despite being
slightly weaker in general and far weaker in the high Alps.
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4.5 Control experiment

As a simple control experiment for the proposed methodol-
ogy and analyses, we replaced the target variable P [t + 4h]
by random noise. As expected from the missing correlations
between SM[t] and random noise, the methodology identi-
fied no statistically significant (see Sect. 4.1) causal effect of
soil moisture on the target variable in this case.

Defining a more complex control experiment confirm-
ing the results obtained in the application to soil-moisture–
precipitation coupling is not possible. This is because the
maps in Eqs. (6) and (5), and thus the errors in their approxi-
mations, would differ if, for example, we replaced SM[t] by
a variable X that is highly correlated with P [t+4h] but does
not causally affect P [t + 4h]. However, we believe that the
analyses proposed in this section build high confidence in the
methodology and the results.

5 Conclusions

In this study, we proposed a novel methodology for studying
complex, e.g., non-linear and non-local, relations in the Earth
system. The methodology is based on the recent idea of train-
ing and analyzing a DL model to gain new scientific insights
into the relations between input and target variables. It ex-
tends this idea by combining it with concepts from causality
research. A crucial aspect in the proposed methodology is the
choice of additional input variables for the DL model. This
choice requires prior knowledge on which variables are rele-
vant to the considered relation and on the existence of depen-
dencies between these variables. However, it does not require
prior knowledge on the strength or sign of these dependen-
cies, which can be obtained from the proposed methodology.
When the required prior knowledge does not exist, meth-
ods from causal discovery (Guo et al., 2021) might be used
to identify a causal graph anyway, such that the proposed
methodology might still be applicable.

In addition to the methodology, we presented analyses to
assess whether results obtained with the proposed method-
ology are statistically significant, i.e., reflect more than ran-
dom correlations or artifacts of the DL training procedure;
whether they reflect more than specific (known) correlations;
and whether they actually reflect causal rather than (poten-
tially unknown) spurious correlations. Finally, we proposed
sanity checks for the obtained results. While the analyses
cannot guarantee the correctness of obtained results, we be-
lieve that the proposed analyses provide a solid indication
of the correctness of obtained results. Taking into account
the difference between causality and correlation, and over-
coming common assumptions on linearity and locality in sta-
tistical approaches, as well as high computational costs and
assumptions of numerical approaches, we believe that the
proposed methodology may yield new scientific insights into
various complex mechanisms in the Earth system.

As an illustrating example, we applied the methodol-
ogy and the proposed analyses to study soil-moisture–
precipitation coupling in ERA5 climate reanalysis data
across Europe. Our main findings are the difference in sign
between positive local and negative regional impact and par-
ticularly strong local and regional couplings in mountain-
ous regions and ridges. While we believe that these findings
may contribute to a better understanding of soil-moisture–
precipitation coupling, in this article, we focused on demon-
strating the methodology. An extension and discussion of our
results on soil-moisture–precipitation coupling in terms of
physical processes are the subject of a future study.

Appendix A

Figure A1. Local and regional soil-moisture–precipitation cou-
plings for models trained on the first and second half of the train-
ing years, respectively. (a, c) Local couplings. (b, d) Regional cou-
plings. (a, b) Model trained on the first half of all training years
(1979–1997). (c, d) Model trained on the second half of all training
years (1998–2019).
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Figure A2. Local and regional soil-moisture–precipitation cou-
plings for models trained only on data from June, July and August,
respectively. (a, c, e) Local couplings. (b, d, f) Regional couplings.
(a, b) Model trained on data from June. (c, d) Model trained on data
from July. (e, f) Model trained on data from August.

Figure A3. Local and regional soil-moisture–precipitation cou-
plings for models trained on the left and right half of the considered
region, respectively. (a, c) Local couplings. (b, d) Regional cou-
plings. (a, b) Model trained on the left half of the considered region.
(c, d) Model trained on the right half of the considered region (see
Appendix Fig. A4). Note that the models were trained only on the
left and right half, respectively, but the model architecture allows us
to compute local and regional couplings for the entire region.

Figure A4. Location variant tasks. The input region was divided
into a left and a right input region with corresponding target regions
(indicated by the red and blue boxes).
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Figure A5. Sum of local and regional soil-moisture–convective-
precipitation and soil-moisture–large-scale-precipitation couplings.
(a) Sum of local couplings. (b) Sum of regional couplings. See Ap-
pendix Fig. A6 for soil-moisture–convective-precipitation and soil-
moisture–large-scale-precipitation couplings.

Figure A6. Local and regional soil-moisture–convective-
precipitation and soil-moisture–large-scale-precipitation cou-
plings. (a, c) Local couplings. (b, d) Regional couplings. (a,
b) Soil-moisture–convective-precipitation coupling. (c, d) Soil-
moisture–large-scale-precipitation coupling.

Figure A7. Product of local soil-moisture–evaporation and lo-
cal and regional evaporation–precipitation couplings. (a) Prod-
uct of local soil-moisture–evaporation and local evaporation–
precipitation couplings. (b) Product of local soil-moisture–
evaporation and regional evaporation–precipitation couplings. See
Appendix Fig. A8 for local soil-moisture–evaporation and local and
regional evaporation–precipitation couplings.

Figure A8. Local soil-moisture–evaporation and local and regional
evaporation–precipitation couplings. (a) Local soil-moisture–
evaporation coupling. (b) Local evaporation–precipitation coupling.
(c) Regional evaporation–precipitation coupling.
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