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Abstract. The reconstruction of sea surface currents from
satellite altimeter data is a key challenge in spatial oceanog-
raphy, especially with the upcoming wide-swath SWOT
(Surface Water and Ocean and Topography) altimeter mis-
sion. Operational systems, however, generally fail to retrieve
mesoscale dynamics for horizontal scales below 100 km
and timescales below 10 d. Here, we address this chal-
lenge through the 4DVarnet framework, an end-to-end neu-
ral scheme backed on a variational data assimilation for-
mulation. We introduce a parameterization of the 4DVarNet
scheme dedicated to the space–time interpolation of satel-
lite altimeter data. Within an observing system simulation
experiment (NATL60), we demonstrate the relevance of the
proposed approach, both for nadir and nadir plus SWOT al-
timeter configurations for two contrasting case study regions
in terms of upper ocean dynamics. We report a relative im-
provement with respect to the operational optimal interpola-
tion between 30 % and 60 % in terms of the reconstruction
error. Interestingly, for the nadir plus SWOT altimeter con-
figuration, we reach resolved space–timescales below 70 km
and 7 d. The code is open source to enable reproducibility
and future collaborative developments. Beyond its applica-
bility to large-scale domains, we also address the uncertainty
quantification issues and generalization properties of the pro-
posed learning setting. We discuss further future research av-
enues and extensions to other ocean data assimilation and
space oceanography challenges.

1 Introduction

Satellite altimetry is the main data source for the observa-
tion and reconstruction of sea surface dynamics on a global
scale (Chelton et al., 2001). Current satellite altimeters only
deliver along-track nadir observations. This results in a very
scarce sampling of the ocean surface. Interpolation schemes
are then key components of the operational processing of
satellite altimetry data. Current operational products (Tabu-
ret et al., 2019; Lellouche et al., 2018), however, show a lim-
ited ability to retrieve the full range of mesoscale dynamics.
The upcoming wide-swath altimetry SWOT (Surface Wa-
ter and Ocean and Topography) mission (see, e.g., Gaultier
et al., 2015) will provide, for the first time, a two-dimensional
observation of the sea surface height (SSH). The space–
time sampling of satellite altimeters will, however, still re-
main scarce for a long time, which has motivated the re-
cent surge in research literature towards the finding an im-
provement of the interpolation of satellite-derived SSH fields
(see, e.g., Lopez-Radcenco et al., 2019, Lguensat et al., 2017,
Beauchamp et al., 2021, and Ballarotta et al., 2019).

Besides operational schemes based on optimal interpola-
tion techniques (Taburet et al., 2019) and data assimilation
schemes for ocean circulation models (Benkiran et al., 2021),
we may sort the proposed SSH interpolation schemes into
three main categories, namely extension of optimal inter-
polation approaches towards multiscale schemes (Ardhuin
et al., 2020), data assimilation schemes using sea surface
dynamical priors such as quasi-geostrophic (QG) dynam-
ics (Le Guillou et al., 2020), and data-driven interpolation
methods. The latter comprises both EOF-based (empirical
orthogonal function) techniques (Beckers and Rixen, 2003b;
Alvera-Azcárate et al., 2009), analog approaches (Lguensat
et al., 2017; Tandeo et al., 2020), and, more recently, deep
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learning schemes (Fablet et al., 2020; Fablet and Chapron,
2022; Manucharyan et al., 2021; Beauchamp et al., 2020).

Here, we further explore this avenue and, more specifi-
cally, the 4DVarNet framework recently introduced in Fablet
et al. (2021). As it relies on a variational data assimilation
formulation, it appears to be particularly suited to the space–
time interpolation of sea surface variables from irregularly
sampled observations. We propose a parameterization of the
4DVarNet scheme dedicated to SSH interpolation from satel-
lite altimeter data and report OSSE (observing system sim-
ulation experiment) results to support the relevance of the
proposed scheme. Our main contributions are as follows:

– The proposed 4DVarNet-SSH scheme delivers an end-
to-end neural architecture using raw satellite altimeter
data and optimally interpolated fields as input. We also
address uncertainty quantification issues using an en-
semble method.

– For the OSSE on two case study regions, respectively,
along the GULFSTREAM, and for an open-ocean area
dominated by mesoscale eddy dynamics, the 4DVarNet-
SSH scheme outperforms previous work and signifi-
cantly improves the performance metrics with respect
to the operational processing. We also support the rel-
evance of wide-swath SWOT altimeter data to signifi-
cantly improve the reconstruction of sea surface dynam-
ics compared to nadir-only satellite altimeters.

– We deliver an open-source code for the proposed
4DVarNet-SSH scheme. It relies on PyTorch and as-
sociated state-of-the-art packages. As such, it supports
multi-GPU configuration and can scale up to large-scale
domains.

We believe that these contributions are able to help in the de-
velopment of deep learning approaches for satellite altimetry
and, more broadly, for operational oceanography.

This paper is organized as follows. Section 2 briefly re-
views the key methodological aspects and related work. We
describe the proposed 4DVarNet-SSH approach in Sect. 3,
and Sect. 4 presents the considered OSSE setting. We report
our results in Sect. 5 and further discuss our main contribu-
tions in Sect. 6.

2 Background and related work

From a methodological point of view, interpolation problems
in geoscience are classically regarded as data assimilation is-
sues (Asch et al., 2016). They aim at estimating the state xt
of a multidimensional dynamical system as follows:{

dxt
dt =M(xt )+ ηt

yt =Ht

(
xt
)
+ εt

. (1)

The first equation relates to the forecast step which de-
scribes the evolution of the system from time t to t + dt , ac-
cording to the potentially nonlinear model xk+1 =M(xk).
The second equation introduces the observations yt at time
t , where Ht is the corresponding observation operator, which
is usually known and also potentially learnable. η(t) is the
model error and ε(t) the observation error. Both errors are
generally assumed to be Gaussian, unbiased, and uncorre-
lated over time. When discretized on a spatiotemporal grid,
where index k = 1, · · ·,T refers to time tk , their associated
covariance matrices are Qk ∈ Rm×m and Rk ∈ Rpk×pk .

Broadly speaking, a vast family of data assimilation meth-
ods stems from the minimization of some energy or function
which involves two terms, a dynamical prior, and an obser-
vation term. We may distinguish two main categories of data
assimilation approaches (Evensen, 2009), namely variational
and statistical data assimilation. Specifically, within a varia-
tional data assimilation framework, the state analysis xa re-
sults in a gradient-based minimization of the defined varia-
tional cost J (x)= J8(x,y,�) (Asch et al., 2016). The lat-
ter generally combines the sum of an observation term and a
regularization term involving an operator 8, as follows:

J8(x,y,�)=
1
2

k+L∑
i=k−L

||yi −Hi(xi)||
2
R−1
i

+
1
2

k+L∑
i=k−L

||xi −8i(xi)||
2
Q−1
i

.

The prior operator 8k is a time-stepping operator at time
tk . In a model-based data assimilation, it generally relates
to a dynamical model M to provide a background estima-
tion (i.e., the physical prior) corresponding to the determin-
istic forecast. x = {xk−L, · · ·,xk+L}, respectively, denotes the
temporal vectors of sizes (2L+ 1)×m, and

∏k+L
i=k−Lpi as-

sociated with the state of the system and the observations
within the data assimilation window (DAW) of length 2L+1
centered around tk . Hk is the observation operator, and �=
{�k} is the set of subdomains of D, with observations at
times tk , k = 1, · · ·,T . Last, Qk and Rk are the background
and the observation error covariance matrices. This formula-
tion of functional J8(x,y,�) directly relates to weak con-
straint 4D-Var (see, e.g., Carrassi et al., 2018), which aims at
estimating the optimal trajectory of a system in a predefined
DAW, given the additional constraint of model uncertainty in
the objective function J .

Regarding statistical data assimilation, many state-of-the-
art methods rely on optimal interpolation (OI), which is the
basic block of all statistical methods, especially regarding
SSH-related datasets. OI has been used for decades (Taburet
et al., 2019) for the interpolation of along-track nadir altime-
ter datasets and is still used today for the operational ma-
rine (Copernicus Marine Environment Monitoring Service,
CMEMS) and climate (Copernicus Climate Change Service,
C3S) production of the EU Copernicus program. It involves a

Geosci. Model Dev., 16, 2119–2147, 2023 https://doi.org/10.5194/gmd-16-2119-2023



M. Beauchamp et al.: 4DVarNet interpolation for satellite altimetry 2121

significant smoothing for solving spatial scales up to 150 km.
Extensions of OI schemes to multiscales to better account for
mesoscale sea surface dynamics have recently been proposed
(Ardhuin et al., 2020; Ubelmann et al., 2016).

Variational DA schemes have also been widely explored
for the assimilation of satellite altimeter data in ocean general
circulation models (see, e.g., Ngodock et al., 2015, Benkiran
et al., 2021, or Li et al., 2021). Previous works have also con-
sidered quasi-geostrophic (QG) dynamics as an approximate
and reduced-order dynamical prior for sea surface dynam-
ics, leading to state-of-the-art performance (Ubelmann et al.,
2016; Le Guillou et al., 2020).

Whereas model-driven and optimal interpolation ap-
proaches are the state-of-the-art solutions for operational
products, data-driven strategies have recently emerged as
promising alternatives to improve the space–time resolu-
tion of interpolated products. We may cite, among others,
DINEOF (Data Interpolating Empirical Orthogonal Func-
tions; Beckers and Rixen, 2003a; Alvera-Azcárate et al.,
2005, 2009) and the analog data assimilation (AnDA; Lguen-
sat et al., 2017; Tandeo et al., 2020) and the recent de-
velopments of deep learning schemes (Barth et al., 2019).
Beauchamp et al. (2020) have reported a benchmarking
experiment, which supported the relevance of data-driven
schemes compared with the operational OI product.

Here, we further explore deep learning approaches,
and more particularly the 4DVarNet scheme (Fablet and
Chapron, 2022), which bridges variational data assimila-
tion and deep learning. Because the analyzed state obtained
from OI matches the minimization of the 3D-Var cost func-
tion, this establishes the formal link between the statisti-
cal DA framework and the optimal control theory used in
the variational formulation. When adding time as an ex-
tra dimension, 4D-Var generalizes the stationary case of
the 3D-Var formulation (see, e.g., Carrassi et al., 2018).
It makes the 4DVarNet framework relevant for comparison
with traditional DA methods. The BOOST-SWOT 2020 data
challenge (https://github.com/ocean-data-challenges/2020a_
SSH_mapping_NATL60, last access: 2022) provides a rep-
resentative benchmarking framework to assess the perfor-
mance of SSH mapping schemes for nadir-only and nadir
plus SWOT (denoted as nadir+swot in the figures) altime-
try datasets.

As detailed hereafter, we introduce a parameterization of
the 4DVarNet scheme dedicated to SSH interpolation issues
and demonstrate its relevance in the context of the bench-
marking settings introduced in the BOOST-SWOT 2020 data
challenge.

3 Method

This section details the proposed learning-based framework
for the interpolation of satellite altimeter data. We first briefly
review 4DVarNet framework recently introduced in Fablet

et al. (2021) in Sect. 3.1 and present the proposed parame-
terization for SSH mapping from nadir and SWOT altimeter
data in Sect. 3.2. We describe the resulting PyTorch package
and its associated implementation details in Sect. 3.4 and the
proposed learning setting in Sect. 3.3.

3.1 4DVarNet framework

The 4DVarNet framework introduced in Fablet et al. (2021)
provides a generic approach for the training of 4D-Var mod-
els and solvers. They have been shown to outperform classic
4D-Var solvers for toy case studies, such as Lorenz-63 and
Lorenz-96 dynamics, when considering partially observed
systems. The 4DVarNet framework can be regarded as an
extension that used trainable, gradient-based solvers of the
deep learning scheme, which led to the best SSH interpola-
tion performance in our previous work (Beauchamp et al.,
2020).

From a methodological point of view, the 4DVarNet
framework derives an end-to-end neural architecture from
an underlying variational data assimilation (DA) formulation
(see Sect. 2 again) as follows:

J8(x,y,�)= λ1||y−H(x)||2�+ λ2||x−8(x)||
2, (2)

where λ1,2 are predefined or tunable scalar weights, and we
replaced the Mahalanobis norms ||.||−1

R and ||.||−1
Q with a

standard mean square norm for the sake of simplicity. In the
regularization term, we substitute the traditional dynamical
prior M with a neural operator 8 based on a convolutional
architecture. Then, we can exploit the automatic differenti-
ation tools embedded in deep learning libraries to consider
the following iterative gradient-based solver, denoted as 0,
for the minimization of variational cost J8 with regard to
the state x, as follows:{
g(i+1)

= LSTM
[
α · ∇xJ8(x(i),y,�),h(i),c(i)

]
x(i+1)

= x(i)− T
(
g(i+1)) , (3)

where LSTM denotes a convolutional long short-term mem-
ory model (see, e.g., Shi et al., 2015), α a is normalization
scalar, h(i) and c(i) denote the internal states of the LSTM,
and T is a linear mapping. The key idea relies on the ca-
pability of the LSTM to learn an adaptive gradient update
g(i+1) from the gradient of the variational cost ∇xJ8(x(i))
in order to considerably speed up the optimization and reach
the corresponding optimal state. This iterative rule, based
on a trainable LSTM operator, is similar to meta-learning
schemes (Andrychowicz et al., 2016). Due to the ability of
LSTM models to capture long-term dependencies, it results
in a trainable gradient descent with momentum.

Overall, a 4DVarNet scheme defines a neural architecture
which runs a predefined number of iterative gradient-based
updates (see Eq. 3). Let us denote 98,0(x(0),y,�) as the
output of the 4DVarNet architecture for a given prior 8 and
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Figure 1. Sketch of the gradient-based algorithm. The upper-left stack of images corresponds to an example of the temporal sequence of
SSH observations, with missing data used as input. The upper-right stack of images is an example of intermediate reconstruction of the SSH
gradient at iteration i, while the bottom-left stack of images identifies the updated reconstruction fields used as new inputs after each iteration
of the algorithm.

solver 0, the initialization x(0) of the state x, and the obser-
vations y on the domain �. The resulting neural architec-
ture is referred as an end-to-end architecture, since it uses as
input raw observation data and an initial guess and directly
provides as output the reconstructed state.

Then, the joint training of operators {8,0} is stated as the
minimization of a reconstruction cost L(x,x?), which is typ-
ically the root mean squared error (RMSE) between the true
state x and its reconstruction x? and additional regularization

terms (fully described in Sect. 3.3), as follows:

argmin
8,0

L(x,x?)subject tox? =98,0(x(0),y,�). (4)

Let us stress that the outer loss function L differs from the in-
ner variational cost J8 in order to take advantage of a super-
vised configuration (true states are known during training).
Such a formulation turns out to be particularly efficient when
applied to Gaussian processes for which the optimal solution
is known (see, e.g., Beauchamp et al., 2022), with promising
transfer to non-Gaussian/nonlinear dynamics.

In Appendix A, a parameter-free fixed point version of
the solver is also given, based on the previous results of
(Beauchamp et al., 2020). In addition, Beauchamp et al.
(2021) have already shown how the iterative gradient-based
update is more efficient than the simpler fixed-point formu-
lation.

3.2 4DVarNet-SSH parameterization

The proposed 4DVarNet-SSH framework aims at exploit-
ing and improving the mapping performance of current op-
erational OI products. This section draws from the generic
4DVarNet formulation presented above and adapts its target
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Figure 2. Patch-based strategy, where the whole spatiotemporal
dataset is split into small patches. The temporal size of the patches
corresponds to the length of the data assimilation window.

components, given that OI products retrieve consistent large-
scale dynamics. Then, we rely on the following multiscale
decomposition:

x = x+ dx+ ε, (5)

where the anomaly dx is seen as the difference between the
true state x and the large-scale components x. Regarding
the observation data, let us denote by y(�)= {yk(�k)} the
partial and potentially noisy altimetry observations associ-
ated with masks �= {�k} ⊂D, where �k corresponds to
the gappy part of the field and index k refers to time tk . We
use the operational OI product as a gap-free observation data,
denoted as y, for the state component x, whereas the obser-
vation data for anomaly dx are y− y over domain �.

Numerical experiments showed that an augmented-state
formulation led to better interpolation performance regard-
ing the potential stripping of artifacts due to the nadir along-
track sampling. This results in the application of 4DVarNet
model (see Eq. 4) to augmented states x̃ and observations ỹ
are defined as follows:

x̃ =

 x

dx1
dx2

 , ỹ =
 y

dy1
dy2

 , �̃=
1
�

0.

 (6)

This augmented-state parameterization introduces two
anomaly components, dx1 and dx2, with corresponding ob-
servations. While only the first one is actually observed, the
reconstructed SSH state is, however, given by the addition of
the coarse component x and the latent anomaly dx2, where
x? = x+ dx2.

Following Fablet et al. (2021), the operator 8 follows a
purely data-driven parameterization with two-scale residual
architectures involving bilinear units (Fablet et al., 2020).
The number of residual blocks is set to two, and the bilin-
ear units are made of two hidden convolutional layers, re-
spectively, with linear and rectified linear unit (ReLU) acti-
vations, followed by a linear scheme combining the outputs

Figure 3. Extents of the GULFSTREAM, GULFSTREAM2, OS-
MOSIS, OSMOSIS2, and cNATL domains used in this work, which
are all part of the North Atlantic (NATL) basin used in the BOOST-
SWOT data challenge.

of the second layer. A final convolutional layer with linear
activation is involved to bring the outputs back to the initial-
state dimension. In its current implementation, 8 contains
about 500 000 parameters. In any case, the number of gradi-
ent iterations for the solver 0 is fixed at five. Complemen-
tary tests showed that a higher number of iterations leads to
a large increase in the training time (because of the implicit
number of parameters which grows linearly with this num-
ber of iterations) without a significant gain in terms of the
4DVarNet reconstruction skills.

Regarding the initial state for iterative gradient-based rule
(Eq. 3), we consider the OI field y for the state component
x, y−y for the anomaly component dx1, and a zero state for
the anomaly component dx2. For anomaly component dx1,
gaps are initialized to 0.

3.3 Learning setting

We implement a classic supervised learning strategy using
gap-free targets. The considered training loss L combines
reconstruction losses and additional regularization terms as
follows:

L(x,x?)= λ1

N∑
i=1

wi ||x− x
?
||

2
+ λ2|

N∑
i=1

wi |∇x −∇x? ||
2 (7)

+λ3

N∑
i=1

wi ||x−8(x
?)||2+ λ4

N∑
i=1

wi ||x−8(x)||
2, (8)
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i.e., the L2 norm of the difference between the state x and
reconstruction x?, in addition to their gradients, and regu-
larization losses according to the prior 8 is to enforce that
both the true states and the reconstructed ones are correctly
encoded by prior8.w = {wi}, i = 1, · · ·,N denote a weight-
ing vector along the data assimilation window of sizeN (= 7
here). To give more importance to the center of the DAW, we
use the following:

w =
[
0 0.25 0.75 1 0.75 0.25 0

]T
. (9)

This training loss is used in Sect. 4 for the OSSE-based
BOOST-SWOT data challenge framework.

Regarding the training configuration, when the domain is
small (see the GULFSTREAM and OSMOSIS regions de-
fined in Sect. 4), we use a single GPU and Adam optimizer
with a batch size of 2 over 200 epochs. The same set of pa-
rameters holds for larger domains (NATL and cNATL; see
again Table 1), but we use the 4DVarNet-distributed ver-
sion of the code over 4 GPUs. The computational time of
the training procedure lies between 4 and 5 h for the small-
domain setup and between 7 and 8 h for the large-domain
setup.

3.4 Implementation aspects

We provide an open-source PyTorch implementation of
the 4DVarNet-SSH scheme. (The code is available at
https://doi.org/10.5281/zenodo.7186322, hgeorgenthum et
al., 2023). PyTorch is a state-of-the-art deep learning frame-
work. We benefit from the associated packages such as light-
ning and hydra to provide a high-level environment and make
the reproduction of the experiments and the development
of other applications easier. Through the lightning package,
our implementation supports multi-GPU distributed learning
configurations. This may be highly relevant for speeding up
the training process.

Regarding computational issues, the OSSE-based applica-
tions (see Sect. 4) involve the processing of 7× 240× 240
tensors (i.e., 7 d time series over a 12◦× 12◦ domain with a
1/20◦ resolution). GPUs with a significant RAM (typically
above 30 Gb), such as NVIDIA V100, A40, and A100, can
process such tensors through the proposed 4DVarNet archi-
tecture. The direct training 4DVarNet models over larger spa-
tial domains is, however, limited by the GPU memory. To
address this issue, we develop a specific data management
module, through so-called data loaders. Our data loader mod-
ule automatically extracts patches of a predefined size (typ-
ically, 7× 240× 240 in the reported experiments) from the
considered training dataset according to stride parameters (as
sketched in Fig. 2). One can exploit the same approach to ap-
ply a learned model to a large domain during the evaluation
or production stage. In both cases, we benefit from the fully
convolutional feature of the considered neural architecture.
This guarantees that, up to border effects, the 4DVarNet pro-
cessing is translation invariant.

Table 1. Description of the NATL subdomains used for assessing
4DVarNet capabilities generalization.

Domain Longitude Latitude Extent

GULFSTREAM (−65◦, −55◦) (33◦, 43◦) 10◦× 10◦

GULFSTREAM2 (−45◦, −35◦) (42◦, 52◦) 10◦× 10◦

OSMOSIS (−19.5◦, −11.5◦) (45◦, 55◦) 8◦× 10◦

OSMOSIS2 (−28.5◦, −20.5◦) (50◦, 60◦) 8◦× 10◦

cNATL (−50◦, −10◦) (33◦, 53◦) 20◦× 40◦

NATL (−79◦, 7◦) (27◦, 65◦) 38◦× 88◦

Let us specify that the size of the tensors relates to the
maximal space–time distance with significant autocorrela-
tion of the SSH. Then, we use a data assimilation window
of length N = 2L+ 1, meaning that we use temporal se-
quences of the state space xk±L = xk−L:k+L. The idea is to
optimize the results for the time tk at the center of the window
[tk−L; tk+L], and the value of N has to be chosen according
to the dynamics of the geophysical field considered, which is
the SSH here. In the following experiments, we use a value of
N = 7, which seems to be enough to describe the spatiotem-
poral correlations of the anomaly between the ground truth
and the DUACS (Data Unification and Altimeter Combina-
tion System) OI scheme. To apply 4DVarNet directly on the
SSH dataset, without providing the DUACS OI baseline as
a coarse version of the reconstruction, the value of N shall
increase up to ∼ 20 d (see, e.g., Beauchamp et al., 2022). In
the same vein, the spatial size of the patches is 240× 240 pix-
els, with a corresponding 0.05◦ resolution, where 12◦ is large
enough to consider the spatial autocorrelation as negligible
outside of the patch.

4 Observation system simulation experiments

This section details the experimental setup considered in this
study for the quantitative evaluation of the proposed frame-
work. We first introduce the simulation dataset used in our
experiments as well as the case study regions. Section 4.2 re-
views the simulation satellite altimetry datasets and Sect. 4.3
describes our evaluation framework.

4.1 NATL60 dataset and case study regions

In our study, the nature run (NR) corresponds to the NATL60
configuration (Molines, 2018) of the NEMO (Nucleus for
European Modelling of the Ocean) model. It is one of the
most advanced, state-of-the-art, basin-scale, high-resolution
(1/60◦) simulations available today, whose surface field ef-
fective resolution is about 7 km.

In this work, we will use the following five different sub-
domains of the North Atlantic basin (see Fig. 3):

Geosci. Model Dev., 16, 2119–2147, 2023 https://doi.org/10.5194/gmd-16-2119-2023

https://doi.org/10.5281/zenodo.7186322


M. Beauchamp et al.: 4DVarNet interpolation for satellite altimetry 2125

Figure 4. NATL60 ground truth (a) and its gradient (b). Panel (c)
shows 1 d accumulated along-track four nadirs, and wide-swath
SSH pseudo-observations plus four nadirs are shown in panel (d),
both for 25 October 2012 (GULFSTREAM domain).

– two 10◦× 10◦ GULFSTREAM and GULFSTREAM2
domains,

– two 8◦× 10◦ OSMOSIS and OSMOSIS2 open-ocean
domains, and

– a large 20◦×40◦ cNATL domain, at the center North At-
lantic basin, used to assess 4DVarNet training on large
domains, without any areas of land inside to avoid any
issues in the learning process.

The GULFSTREAM and OSMOSIS domains (solid blue
and red lines in Fig. 3) are the domains used by the BOOST-
SWOT project in the framework of the NATL60 OSSE
throughout the different related studies (see their 2020 ocean
data challenges in Le Guillou et al., 2020). Because we
aim at exploring the capabilities of 4DVarNet to deploy at
the basin scale, we also propose the two alternate GULF-
STREAM2 and OSMOSIS2 domains (dashed blue and red
lines in Fig. 3), with similar dynamical properties to the two
initial domains, and a larger domain centered in the North
Atlantic basin (cNATL; dashed purple lines). The full extent
of the subdomains is summarized in Table 1.

The GULFSTREAM regions display physical processes
100 times more energetic at scales larger than 100 km, with
a greater temporal variability than the OSMOSIS regions.

Figure 5. NATL60 ground truth (a) and its gradient (b). Panel (c)
shows 1 d accumulated along-track four nadirs, and wide-swath
SSH pseudo-observations plus four nadirs are shown in panel (d),
both for 25 October 2012 (OSMOSIS domain).

As a consequence, the SSH spatial gradient at scales above
100 km is lower for OSMOSIS regions, which explains why
we can see more small-scale-related structures on such do-
mains. In addition to their intrinsic differences in terms of the
dynamical regimes, the latitudes of GULFSTREAM-based
and OSMOSIS-based regions implies different SWOT tem-
poral samplings. For OSMOSIS regions, one SWOT obser-
vation is available every day, while over the low-latitude
GULFSTREAM domains, the SWOT sampling is irregular,
leading to sequences of several days with only pseudo-nadir
observations.

Over these regions, the SSH resolution of the nature run
is downgraded to 1/20◦, which is enough to capture both
mesoscale dynamical regimes and the OSMOSIS-related
smaller scales, while avoiding unnecessary heavy computa-
tion time.

The NATL60 nature run will then be used as the reference
ground truth (GT) in an observing system simulation ex-
periments (OSSEs). The pseudo-altimetric nadir and SWOT
observational datasets will be generated by a realistic sub-
sampling of satellite constellations.
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Table 2. 4DVarNet-SSH performance on the GULFSTREAM domain compared to DUACS OI (traditional covariance-based optimal inter-
polation), BFN (back-and-forth nudging of a QG model), MIOST (multiscale OI), DYMOST (dynamic OI accounting for nonlinear temporal
propagation of the SSH fields), fixed-point versions with 10, and a single iteration of the 4DVarNet solver, over the period from 22 October
to 2 December 2012 (42 d). Bold formatting stands for the best metrics.

Method Description µ (RMSE) σ (RMSE) λx (degrees) λt (days)

DUACS (four nadirs) OI 0.92 0.01 1.42 12.0
BFN (four nadirs) QG-based DA (nudging) 0.92 0.02 1.23 10.6
DYMOST (four nadirs) Dynamic OI 0.91 0.01 1.36 11.79
MIOST (four nadirs) Multiscale OI 0.93 0.01 1.35 10.19
4DVarNet (four nadirs) Fixed-point solver; Ni = 10 0.92 0.01 1.22 11.51
4DVarNet (four nadirs) NN-based 4D-Var (ours) 0.94 0.01 0.83 8.01

DUACS (one SWOT plus four nadirs) OI 0.92 0.01 1.22 11.15
BFN (one SWOT plus four nadirs) QG-based DA (nudging) 0.93 0.02 0.8 10.09
DYMOST (one SWOT plus four nadirs) Dynamic OI 0.93 0.02 1.2 10.07
MIOST (one SWOT plus four nadirs) Multiscale OI 0.94 0.01 1.18 10.14
4DVarNet (one SWOT plus four nadirs) Fixed-point solver; Ni = 10 0.94 0.01 1.18 9.65
4DVarNet (one SWOT plus four nadirs) NN-based 4D-Var (ours) 0.95 0.01 0.62 5.29

4.2 Simulated altimetry datasets

In this section, we provide a technical description of the
two observational datasets used to train 4DVarNet, namely
the four nadir and one SWOT plus four nadir configura-
tions. Regarding the pseudo-nadir altimetry dataset, repre-
sentative of the current pre-SWOT observational altimetric
dataset, we use the ground tracks of four altimetric missions
(TOPEX/Poseidon, Geosat, Jason-1, and Envisat) picked up
from the 2003 constellation to interpolate the NATL60 sim-
ulation from 1 October 2012 to 29 September 2013. A Gaus-
sian white noise, with variance σ 2

= (4· · ·9) cm2, is added
to the interpolated NATL60 simulation by the SWOT sim-
ulator tool to mimic noise with a spectrum of error consis-
tent with global estimates from the Jason-2 altimeter (Dufau
et al., 2016). We aggregate the nadir pseudo-observations on
a daily basis to procure the gappy daily fields used as input by
4DVarNet-SSH. Figures 4c vs. d and Figs. 5c vs. d illustrate
the resulting nadir altimetry data on 25 October 2012.

We proceed similarly to simulate the SWOT pseudo-
observations using the SWOT simulator tool (Gaultier et al.,
2015) in its swath mode, with an along-track and across-track
2 km spatial resolution (the same theoretical resolution that
the upcoming SWOT-mission-derived products are expected
to provide). Let us note that we consider error-free SWOT
pseudo-observations.

4.3 Evaluation framework

Our evaluation framework exploits and extends the one in-
troduced in Le Guillou et al. (2020), as follows:

– Training and evaluation setting. Because the NATL60
dataset is made of 365 daily simulations, and the refer-
ence data used for training never have to be used dur-
ing the optimization, we train all learning-based models

Figure 6. SSH Gradient (DUACS OI and 4DVarNet reconstruction)
on 25 October 2012 for the GULFSTREAM domain.

using the time period from 4 February to 30 Septem-
ber 2013. During the training procedure, we select the
best model according to the metrics computed over the
validation period from 1 January to 2 February 2013.
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Table 3. 4DVarNet-SSH performance on the OSMOSIS domain compared to DUACS OI over the period from 22 October to 2 Decem-
ber 2012 (42 d). Bold formatting stands for the best metrics.

Method µ (RMSE) σ (RMSE) λx (degrees) λt (days)

DUACS (four nadirs) 0.78 0.02 1.10 18.80
4DVarNet (four nadirs; ours) 0.80 0.01 1.18 14.51

DUACS (one SWOT plus four nadirs) 0.81 0.02 1.03 17.50
4DVarNet (one SWOT plus four nadirs; ours) 0.87 0.02 0.35 6.84

Figure 7. SSH Gradient (DUACS OI and 4DVarNet-SSH recon-
struction) on 25 October 2012 for the OSMOSIS domain.

Overall, we evaluate the performance metrics over the
test period from 22 October to 2 December 2012, which
is 42 d, corresponding to two SWOT cycles in the
SWOT science-phase orbit. In doing so, the test period
can be considered uncorrelated to the training and vali-
dation period.

– Evaluation metrics. We use BOOST-SWOT DC (data
challenge) metrics to benchmark the 4DVarNet-SSH
scheme with respect to the state-of-the-art SSH inter-
polation schemes. They comprise the following:

– RMSEs(t), for the mean RMSE score (normalized
RMSE),

– σ
[
RMSEs(t)

]
, for the RMSE(t) standard deviation

of the RMSE(t), which gives some information re-
garding the temporal stability of the reconstruction,

– λx , for which the minimum spatial scale is resolved
(wavelength in degrees),

– λt, for which the minimum temporal scale is re-
solved (wavelength in days),

where RMSEs(t)= 1− RMSE(t)
RMS(x) , RMS denotes the root

mean square function, N is the number of pix-
els included in the study domain, and RMSE(t)=√

1
N

∑N
i=1(x

?(t, i)− x(t, i))2. Last, the spectral analy-
sis (λx and λt) is based on the wavenumber frequency
power spectral density score PSDwf

S , which is defined

as PSDwf
S = 1− PSDwf(x?−x)

PSDwf(x)
. We refer the reader to

Le Guillou et al. (2020) for additional descriptions re-
garding these metrics. Besides these quantitative met-
rics, we also analyze the space–time distribution of the
interpolation error and explore the impact of the inter-
polation for the characterization of mesoscale eddy dy-
namics. Based on the work of Mason et al. (2014), we
detect anticyclonic and cyclonic eddies in the ground
truth NATL60 outputs, interpolate SSH fields using the
py-eddy-tracker toolbox (Delepoulle et al., 2022), and
analyze how key features of matching eddies, such as
speed radius (km), outer radius (km), amplitude (cm),
and speed max (cm s−1), are retrieved.

5 Results

This section presents the considered OSSE for the evalua-
tion of the 4DVarNet-SSH scheme. We first report the bench-
marking experiments with respect to the state of the -art
(Sect. 5.1). Section 5.2 studies the impact of wide-swath
SWOT data to improve the reconstruction of finer-scale SSH
pattern. Last, we analyze generalization issues and uncer-
tainty quantification in Sect. 5.3 and 5.4.

5.1 Benchmarking experiments

Regarding the BOOST-SWOT OSSE data challenge on the
GULFSTREAM domain, we provide both performance with
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Figure 8. (a) Spatial performance, where the RMSE time series are computed for each spatial position of the GULFSTREAM domain (four
nadirs on the left and one SWOT plus four nadirs on the right). (b) Temporal performance, where the RMSE daily GULFSTREAM maps are
computed along the BOOST-SWOT DC evaluation period (four nadirs on the left and one SWOT plus four nadirs on the right), and the daily
spatial coverage of the two configurations are given as complementary red and green bar plots scaled on the right-hand side. (c) Spectral
performance, where the PSD-based score evaluates the spatiotemporal scales resolved in GULFSTREAM mapping (yellow area; four nadirs
at the top and one SWOT plus four nadirs at the bottom).
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Figure 9. (a) Spatial performance, where the RMSE time series are computed for each spatial position of the GULFSTREAM domain (four
nadirs on the left and one SWOT plus four nadirs on the right). (b) Temporal performance, where the RMSE daily GULFSTREAM maps are
computed along the BOOST-SWOT DC evaluation period (four nadirs on the left and one SWOT plus four nadirs on the right), and the daily
spatial coverage of the two configurations are given as complementary red and green bar plots scaled on the right-hand side. (c) Spectral
performance, where the PSD-based score evaluates the spatiotemporal scales resolved in GULFSTREAM mapping (yellow area; four nadirs
at the top and one SWOT plus four nadirs at the bottom).
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four nadirs and one SWOT plus four nadirs in Table 2. For
both settings, the improvement is quite significant with re-
spect to all benchmarked schemes, i.e., not only compared
to DUACS OI (Taburet et al., 2019) but also with respect to
the recently proposed SSH interpolation schemes Le Guillou
et al. (2020), DYMOST (dynamic OI accounting for the SSH
nonlinear temporal propagation; see, e.g., Ballarotta et al.,
2020) and MIOST (multiscale OI) in Ardhuin et al. (2020).
While DUACS OI has a minimal spatial and temporal res-
olution of 1.42◦ (four nadirs)/1.22◦ (one SWOT plus four
nadirs) and 12 d (four nadirs)/11.15 d (one SWOT plus four
nadirs), 4DVarNet-SSH reaches 0.83◦ (four nadirs)/0.62◦

(one SWOT plus four nadirs) and 8.01 d (four nadirs)/5.29 d
(one SWOT plus four nadirs). It amounts to a gain of up to
33 % in the four-nadir setup and 50 % in the one SWOT plus
four nadir configuration.

Figure 6 displays the SSH gradient field of DUACS OI
and 4DVarNet-SSH interpolations on 25 October. The com-
parison to the associated ground truth displayed in Fig. 4b
clearly reveals the improvement brought by 4DVarNet-SSH,
in particular along the main meander of the GULFSTREAM.

We can draw similar conclusions from the experiments
reported in Table 3 and Fig. 7 for the OSMOSIS domain.
We may emphasize that 4DVarNet-SSH interpolation for the
one SWOT plus four nadir configuration (see, e.g., Fig. 7)
retrieves most of the fine-scale features of the SSH fields,
which are smoothed out by the optimal interpolation.

5.2 Impact of SWOT data on the interpolation
performance

Thanks to its ability to reconstruct finer-scale patterns,
4DVarNet-SSH complements the assessment of the potential
impact of SWOT data onto the reconstruction of mesoscale
sea surface dynamics. Though the interpolation performance
(Tables 2 and 3) improves with the use of SWOT data for all
the interpolation methods, the relative improvement strongly
depends on the interpolation method. Interestingly, contrary
to the DUACS OI scheme, we report a significant improve-
ment when using SWOT data with 4DVarNet-SSH for both
GULFSTREAM and OSMOSIS regions. These results em-
phasize the ability of our scheme to exploit irregularly sam-
pled high-resolution data. For instance, for the OSMOSIS re-
gion, we truly benefit from SWOT data for reconstructing
mesoscale dynamics up to 0.4◦ and 7 d, whereas OI DUACS
smooths out the altimetry signals in the mesoscale range be-
low 1◦ and 14 d.

While we report relative gains of 20 %–25 % for the
GULFSTREAM region for the different evaluation metrics,
it reaches 40 %–60 % for the OSMOSIS domain. We inter-
pret these results as a direct consequence of differences in the
space–time sampling of SWOT data for these two regions.
As revealed by Figs. 8b and 9b, no SWOT data may be avail-
able over 4 (respectively, 1) consecutive days for the GULF-
STREAM (respectively, OSMOSIS) domain. This time vari-

Figure 10. Eddies detected on the GULFSTREAM domain (25 Oc-
tober 2012) over SSH (one SWOT plus four nadirs).

ability in the sampling pattern translates to a periodic vari-
ability in the MSE (mean squared error) time series in the
GULFSTREAM region. By contrast, the OSMOSIS region
leads to a much lower time variability in the interpolation
performance. The PSD-based analysis reported in Figs. 8c
and 9c further supports these conclusions.

To complement with the analysis of the contribution of
SWOT altimetry on the interpolation performance, Fig. 10
displays the eddy identification results for 25 October 2022
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Figure 11. Speed radius (km), outer radius (km), amplitude (cm), and speed max (cm s−1) scatterplots of 4DVarNet/DUACS OI (one SWOT
plus four nadirs) vs. ground truth in the GULFSTREAM domain (25 October 2012) for matching eddies.

after application of a 200 km high-pass filter when using a
one SWOT plus four nadir configuration. Additional figures
are given in Appendix B for illustrations of both the GULF-
STREAM and OSMOSIS domains in the two observational
configurations (four nadirs and one SWOT plus four nadirs).
Clearly, 4DVarNet-SSH improves the matching between the
true and interpolated eddies (39 vs. 35), and the features of
the matching eddies are also more similar to those of the true
eddies, in terms of the speed radius (km), outer radius (km),
amplitude (cm), and speed max (cm s−1), with respect to
their true values. Again, the interpolation of eddy-related dy-
namics significantly improves with the exploitation of SWOT
data.

5.3 Generalization performance

Whereas the results reported in the previous sections involve
4DVarNet-SSH models evaluated on the same domain as the
training one, we assess how 4DVarNet-SSH schemes trained

for a specific domain may also apply to another one. Besides
the GULFSTREAM and OSMOSIS regions, we consider the
following three additional domains:

– cNATL domain, which is a larger 20◦×40◦ North At-
lantic domain that involves a variety of dynamical
regimes,

– GULFSTREAM2 domain, which is a domain similar
to the reference GULFSTREAM domain in terms of
upper-ocean dynamics but with a disjointed spatial ex-
tent, and

– OSMOSIS2 domain, which is a domain similar to the
reference OSMOSIS domain in terms of upper-ocean
dynamics but with a disjointed spatial extent.

For the one SWOT plus four nadir configuration, we train
4DVarNet-SSH schemes on these three domains. We then
evaluate how these models compare with the models re-
ported in Sect. 5.1 for the GULFSTREAM and OSMOSIS
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domains. We also evaluate how the different models apply to
the cNATL domain. Table 4 summarizes the resulting perfor-
mance metrics.

As expected for each evaluation domain, we retrieve the
best performance for the model trained on this domain. For
the GULFSTREAM regions, the difference in terms of the
minimal temporal scales is negligible, while the minimal
spatial scales may exhibit an increase of 30 % when using
the model trained on the GULFSTREAM2 domain. This
does not hold in the opposite direction when applying on
the GULFSTREAM2 domain a model learned on GULF-
STREAM, as similar spatial scales resolved in the end. The
same conclusions hold for the OSMOSIS regions, except that
the minimal resolved temporal scales also display a slight
increase (lower than 20 %) over OSMOSIS. These results
are consistent with the dynamical properties given in Sect. 4
and support the generalization capabilities of 4DVarNet-SSH
schemes. The comparison with the performance metrics re-
ported for the model trained on the cNATL domain suggests
that the considered 4DVarNet-SSH parameterization applies
to a regional scale. This training configuration only leads to
a relatively marginal gain with regard to OI DUACS when
applied to the GULFSTREAM region. We report a slightly
better performance for the OSMOSIS domain. We expect fu-
ture work to explore new 4DVarNet-SSH parameterizations,
which could better account for basin-scale variabilities.

5.4 Uncertainty quantification for 4DVarNet-SSH
interpolations

Besides gap-free fields, operational interpolation products
generally require us to provide some evaluation of the recon-
struction uncertainty. While this is a built-in feature of OI
and statistical DA methods, uncertainty quantification may
involve specific methodological or computational methods
for other data assimilation schemes, among which ensemble
methods represent a widely considered family of approaches
(see, e.g., Asch et al., 2016). Their common feature is to gen-
erate an ensemble of solutions, generally through some ran-
domization process.

Here, we benefit from the stochastic nature of the train-
ing procedure of 4DVarNet-SSH schemes (Goodfellow et al.,
2016). Similar to most deep learning schemes, we exploit
a stochastic gradient descent during the learning stage and
a random initialization of model parameters. As such, for
a given training configuration, we can train an ensemble of
4DVarNet-SSH schemes by running multiple training proce-
dures.

We apply this approach to build an ensemble of nine
4DVarNet-SSH schemes for a given training configura-
tion, which comprises a training dataset, the considered
4DVarNet-SSH parameterization, and given training hyper-
parameters (i.e., number of epochs, learning rates, and opti-
mizers). For a given observation time window, we then re-
trieve nine interpolations from which we can compute a me-

Figure 12. Interpolation performance of an ensemble of nine
4DVarNet-SSH models trained using similar training parameters
(number of epochs, learning rates, optimizers, gradient steps, etc.)
but different random initialization of both8 and 0 weights. (a) Spa-
tial RMSE time series on the BOOST-SWOT DC evaluation period,
(b) 4DVarNet median run (25 October 2012; GULFSTREAM do-
main), and (c) its spatial standard deviation.
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Table 4. 4DVarNet performance on the GULFSTREAM and OSMOSIS domain compared to DUACS OI over the period from 22 October
to 2 December 2012 (42 d).

Domain Method µ (RMSE) σ (RMSE) λx (degrees) λt (days) Train/test

GULFSTREAM
DUACS OI (one SWOT plus four nadirs) 0.92 0.01 1.22 11.31 –
4DVarNet (one SWOT plus four nadirs) 0.96 0.01 0.62 5.29 GULFSTREAM/GULFSTREAM
4DVarNet (one SWOT plus four nadirs) 0.95 0.01 0.86 5.67 GULFSTREAM2/GULFSTREAM
4DVarNet (one SWOT plus four nadirs) 0.92 0.02 1.25 10.93 cNATL/GULFSTREAM

OSMOSIS
DUACS OI (one SWOT plus four nadirs) 0.81 0.02 1.04 17.80 –
4DVarNet (one SWOT plus four nadirs) 0.89 0.02 0.35 6.84 OSMOSIS/OSMOSIS
4DVarNet (one SWOT plus four nadirs) 0.88 0.02 0.41 8.05 OSMOSIS2/OSMOSIS
4DVarNet (one SWOT plus four nadirs) 0.84 0.02 0.93 9.59 cNATL/OSMOSIS

Table 5. 4DVarNet performance on the GULFSTREAM domain based on nine different training sessions with a random initialization of
both8 and 0 weights but similar training parameters (number of epochs, learning rates, optimizers, gradient steps, etc.) over the period from
22 October to 2 December 2012 (42 d).

Members µ (RMSE) σ (RMSE) λx (degrees) λt (days)

4DVarNet (no. 1) 0.96 0.01 0.68 5.16
4DVarNet (no. 2) 0.96 0.01 0.66 4.52
4DVarNet (no. 3) 0.96 0.01 0.62 4.66
4DVarNet (no. 4) 0.96 0.01 0.63 4.12
4DVarNet (no. 5) 0.96 0.01 0.87 4.92
4DVarNet (no. 6) 0.96 0.01 0.86 5.07
4DVarNet (no. 7) 0.96 0.01 0.68 5.18
4DVarNet (no. 8) 0.96 0.01 0.85 4.99
4DVarNet (no. 9) 0.96 0.01 0.62 5.29
4DVarNet (median) 0.96 0.01 0.67 4.62

dian field and the associated standard deviation. We report
the performance metrics for the GULFSTREAM domain of
the nine trained models and the median model in Table 5. It
reveals the internal variability in the training process. Though
it does not reach the best performance, the median model
combines a resolved spatial scale below 0.7◦ and a resolved
timescale below 5 d, which is only the case for 6 out of 9
of the trained models. Figure 12a further illustrates this as-
pect. Interestingly, the standard deviation of the ensemble of
4DVarNet-SSH schemes correlates to the interpolation error,
with an R2 coefficient of determination equal to 0.86. Even
if the scales between the interpolation error and the training-
related 4DVarNet internal variability differ (see Fig. 13), the
latter can be regarded as an indicator of the interpolation er-
ror, usually with an appropriate localization of large errors.
In future works, we plan to draw from traditional ensemble
DA methods or ensemble Gaussian-based simulations to ad-
dress all the components of the interpolation error related to
the data assimilation scheme.

6 Conclusion and discussion

This paper introduced the 4DVarNet-SSH scheme, an end-
to-end neural architecture for the space–time interpolation
of SSH fields from nadir and wide-swath satellite altimetry

data. The 4DVarNet-SSH scheme draws from recent method-
ological development to bridge data assimilation and deep
learning with a view to training 4D-Var DA models and
solvers from data. Numerical experiments within an OSSE
setting support the relevance of the 4DVarNet-SSH scheme
with respect to the state of the art.

We further discuss our main contributions according to
three aspects, namely the added value of a deep learning
scheme for satellite altimetry and operational oceanography,
the exploitation of upcoming SWOT data, and the ability to
scale up learning approaches from regional case studies to
the global scale.

– Deep learning for satellite altimetry and operational
oceanography. This study contributes to a growing re-
search effort regarding the potential benefit of deep
learning schemes for space and operational oceanog-
raphy challenges (see, e.g., Ballarotta et al., 2020).
Given the sampling of available satellite and in situ data
sources, interpolation problems naturally arise as crit-
ical challenges. This study brings additional evidence
of the potential of deep learning schemes to outper-
form the state-of-the-art operational techniques, which
are generally based on optimal interpolation and data
assimilation. Importantly, we do not rely on the off-
the-shelf application of some reference deep learning
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Figure 13. Standard deviation of the 4DVarNet-SSH median ensemble interpolation error (a) and average of the daily standard deviation
interpolation errors in the test period (b).

architectures. The considered class of neural architec-
ture relates to a variational DA formulation, such that
it can be regarded as the implementation of a neural
and trainable version of a DA model and solver. Our
results for satellite altimetry are in line with other re-
cent studies for other ocean parameters, such as sea
surface temperature (Barth et al., 2019), suspended
sediments (Vient et al., 2022), and 3D temperature
and salinity fields (Pauthenet et al., 2022). All these
studies support the potential of neural approaches to
retrieve finer-scale variabilities from available satel-
lite and/or in situ observations. Regarding satellite al-
timetry, a future challenge includes the application to
real altimetry datasets (see, e.g., the 2021 Observ-
ing System Experiments (OSEs) BOOST-SWOT data
challenge at https://github.com/ocean-data-challenges/
2021a_SSH_mapping_OSE, last access: 2022) and
the exploitation of multimodal synergies (Fablet and
Chapron, 2022).

– Making the most of SWOT data. Our study brings new
evidence that the wide-swath space–time sampling of
the upcoming SWOT mission could lead to a very sig-
nificant improvement in the reconstruction of mesoscale
sea surface dynamics. For the considered case study
regions, with contrasting dynamical regimes at play
and different revisit times of SWOT orbits, we re-
port relative gains from 20 % to 60 % compared to
nadir altimetry data only in terms of RMSE and re-
solved space–timescales. These results assume an error-
free SWOT product. Therefore, exploring further how
these results could generalize to error-prone (Esteban-
Fernandez, 2014; Gaultier and Ubelmann, 2010) and
uncalibrated SWOT data (Febvre et al., 2022) is a criti-
cal challenge. Preliminary preprocessing of the pseudo-
SWOT observations (Metref et al., 2020) to filter out the

correlated components and avoid major issues in the as-
similation and/or learning process of the interpolation
methods may also be considered. The extension of the
considered OSSE to multi-SWOT configurations could
also provide new means to optimize the deployment of
multi-satellite configurations in coming years.

– Scaling up to a global scale with a learning-based
scheme. Our numerical experiments focused mainly on
a regional scale, typically 10◦× 10◦ domains, as illus-
trated by the GULFSTREAM and OSMOSIS regions.
The reported results support the relevance of the pro-
posed 4DVarNet-SSH parameterization to account for
such regional space–time variabilities. Scaling up to a
basin scale or even the global scale naturally arises as
a key challenge for future work. Through the built-in
features of the PyTorch framework and its associated
packages, our open-source code can leverage multi-
GPU distribution learning schemes and on-the-fly mini-
batch generation tools to deal with larger-scale datasets
from a computational point of view. To account for a
greater diversity in the dynamical regimes at play on
the global scale, or even on a basin scale, it also seems
necessary to explore more complex 4DVarNet-SSH pa-
rameterizations, especially regarding dynamical prior
8. This could benefit from the variety of neural archi-
tectures recently introduced in computational imaging
(Barbastathis et al., 2019), especially when using atten-
tion mechanisms (Vaswani et al., 2017) to achieve some
decomposition of the underlying space–time variabili-
ties.
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Appendix A: Fixed-point formulation of the solver

Let note that when replacing both CNN (convolutional neu-
ral networks) and/or LSTM cells by the identity operator and
the minimization function J8(x,y,�) by its single regular-
ization term J b

8(x), the gradient-based solver simply leads
to a parameter-free fixed-point version of the algorithm, the
same used in Beauchamp et al. (2020); Fablet et al. (2019),
which is similar to the DINEOF approach (see Fig. A1).
x(k+1)

= ψ
(
x(k)

)
x(k+1) (�) = y (�)

x(k+1) (�) = x(k+1) (�) (A1)

This fixed-point solver is parameter free and easily imple-
mented as a neural network (NN) in a joint solution with the
NN parameterization of J8 for the interpolation problem.

Figure A1. Sketch of the iterative fixed-point algorithm. The upper-left stack of images corresponds to an example of SSH observations
temporal sequence, with missing data used as input. The upper-right stack of images is an example of an intermediate reconstruction of the
SSH gradient at iteration i, while the bottom-left stack of images identifies the updated reconstruction fields used as new inputs after each
iteration of the algorithm.
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Appendix B: Additional results on the 4DVarNet
generalization capabilities

Table B1. 4DVarNet performance on the GULFSTREAM2 and OSMOSIS2 domain compared to DUACS OI over the period from 22 October
to 2 December 2012 (42 d).

Domain Method µ (RMSE) σ (RMSE) λx (degrees) λt (days) Train/test

GULFSTREAM2
DUACS OI (one SWOT plus four nadirs) 0.87 0.02 1.26 11.95 –
4DVarNet (one SWOT plus four nadirs) 0.93 0.02 0.63 6.30 GULFSTREAM2/GULFSTREAM2
4DVarNet (one SWOT plus four nadirs) 0.92 0.01 0.66 6.53 GULFSTREAM/GULFSTREAM2
4DVarNet (one SWOT plus four nadirs) 0.88 0.02 1.26 11.22 cNATL/GULFSTREAM2

OSMOSIS2
DUACS OI (one SWOT plus four nadirs) 0.91 0.02 1.35 17.69 –
4DVarNet (one SWOT plus four nadirs) 0.96 0.01 0.70 33.61 OSMOSIS2/OSMOSIS2
4DVarNet (one SWOT plus four nadirs) 0.95 0.01 0.69 36.84 OSMOSIS/OSMOSIS2
4DVarNet (one SWOT plus four nadirs) 0.93 0.02 1.10 9.64 cNATL/OSMOSIS2

Figure B1. 4DVarNet generalization capabilities (GULFSTREAM), with the spatial, temporal, and spectral performance in the BOOST-
SWOT DC evaluation period, based on the three different training domains of GULFSTREAM, GULFSTREAM2, and cNATL.
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Figure B2. 4DVarNet generalization capabilities (OSMOSIS), with the spatial, temporal, and spectral performance on the BOOST-SWOT
DC evaluation period, based on the three different training domains of OSMOSIS, OSMOSIS2, and cNATL.

Figure B3. 4DVarNet generalization capabilities (cNATL), with the spatial, temporal, and spectral performance on the BOOST-SWOT DC
evaluation period, based on the three different training domains of cNATL, GULFSTREAM, and OSMOSIS.
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Figure B4. 4DVarNet generalization capabilities (GULFSTREAM2), with the spatial, temporal, and spectral performance on the BOOST-
SWOT DC evaluation period, based on the three different training domains of GULFSTREAM2, GULFSTREAM, and cNATL.

Figure B5. 4DVarNet generalization capabilities (OSMOSIS2), with the spatial, temporal, and spectral performance on the BOOST-SWOT
DC evaluation period, based on the three different training domains of OSMOSIS2, OSMOSIS, and cNATL.

Geosci. Model Dev., 16, 2119–2147, 2023 https://doi.org/10.5194/gmd-16-2119-2023



M. Beauchamp et al.: 4DVarNet interpolation for satellite altimetry 2139

Appendix C: Eddy identifications

Figure C1. Eddies detected on the GULFSTREAM domain (25 October 2012) over SSH (four nadirs).
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Figure C2. Speed radius (km), outer radius (km), amplitude (cm), and speed max (cm s−1) scatterplots of 4DVarNet/DUACS OI (four nadirs)
vs. ground truth on the GULFSTREAM domain (25 October 2012) for matching eddies.
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Figure C3. Eddies detected on the OSMOSIS domain (25 October 2012) over SSH (four nadirs).
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Figure C4. Speed radius (km), outer radius (km), amplitude (cm), and speed max (cm s−1) scatterplots of 4DVarNet/DUACS OI (four nadirs)
vs. ground truth on the OSMOSIS domain (25 October 2012) for matching eddies.
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Figure C5. Eddies detected on the OSMOSIS domain (25 October 2012) over SSH (one SWOT plus four nadirs).
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Figure C6. Speed radius (km), outer radius (km), amplitude (cm), and speed max (cm s−1) scatterplots of 4DVarNet/DUACS OI (one SWOT
plus four nadirs) vs. ground truth on the OSMOSIS domain (25 October 2012) for matching eddies.
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Code and data availability. The open-source 4DVarNet version
of the code is available at https://doi.org/10.5281/zenodo.7186322
(hgeorgenthum et al., 2023). The datasets are shared through
the BOOST-SWOT data challenge also available on GitHub
(https://github.com/ocean-data-challenges/2020a_SSH_mapping_
NATL60, last access: 2022).

Video supplement. The animations corresponding to the 4DVarNet
comparison to DUACS OI on the BOOST-SWOT DC test period
are given for both GULFSTREAM and OSMOSIS domains in the
four nadirs and one SWOT plus four nadir configuration. They can
be found on the OceaniX-AI YouTube channel under the following:

– GULFSTREAM (four nadirs) at https://youtube.com/shorts/
QKXukB_Rd5E (Beauchamp, 2022a),

– GULFSTREAM (one SWOT plus four nadirs) at https://
youtube.com/shorts/i91Z1pMm4gY (Beauchamp, 2022b),

– OSMOSIS (four nadirs) at https://youtube.com/shorts/
Pxcsd0Afco0 (Beauchamp, 2022c), and

– OSMOSIS (one SWOT plus four nadirs) at https://youtube.
com/shorts/HbVSJFtdG6Q (Beauchamp, 2022d).
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