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Abstract. In recent years, the growing number of available
climate models and future scenarios has led to emergent con-
straints becoming a popular tool to constrain uncertain future
projections. However, when emergent constraints are applied
over large areas, it is unclear (i) if the well-performing mod-
els simulate the correct dynamics within the considered area,
(ii) which key dynamical features the emerging constraint is
stemming from, and (iii) if the observational uncertainty is
low enough to allow for a considerable reduction in the pro-
jection uncertainties. We therefore propose to regionally op-
timize emergent relationships with the twofold goal to (a)
identify key model dynamics associated with the emergent
constraint and model inconsistencies around them and (b)
provide key areas where a narrow observational uncertainty
is crucial for constraining future projections.

Here, we consider two previously established emergent
constraints of the future carbon uptake in the North Atlantic
(Goris et al., 2018). For the regional optimization, we use a
genetic algorithm and pre-define a suite of shapes and size
ranges for the desired regions. Independent of pre-defined
shape and size range, the genetic algorithm persistently iden-
tifies the Gulf Stream region centred around 30◦ N as optimal
as well as the region associated with broad interior southward
volume transport centred around 26◦ N. Close to and within
our optimal regions, observational data of volume transport
are available from the RAPID array with relative low obser-
vational uncertainty. Yet, our regionally optimized emergent
constraints show that additional measures of specific biogeo-
chemical variables along the array will fundamentally im-
prove our estimates of the future carbon uptake in the North
Atlantic. Moreover, our regionally optimized emergent con-
straints demonstrate that models that perform well for the

upper-ocean volume transport and related key biogeochemi-
cal properties do not necessarily reproduce the interior-ocean
volume transport well, leading to inconsistent gradients of
key biogeochemical properties. This hampers the applicabil-
ity of emergent constraints over large areas and highlights the
need to additionally evaluate spatial model features.

1 Introduction and motivation

At the heart of current investigations of the impact of possible
future emissions pathways is the Coupled Model Intercom-
parison Project (CMIP). CMIP gathers the output of state-
of-the-art climate models to a set of given experiments, de-
signed to understand the drivers of climate change in a multi-
model context. The CMIP archive is commonly referred to
in reports of the Intergovernmental Panel on Climate Change
(e.g. IPCC, 2013, 2018) and has hence become fundamental
for the creation of climate policies.

The first phase of CMIP, CMIP1, began in 1996 and in-
cluded 21 global coupled climate models and a handful of
experiments (Meehl et al., 1997, 2000). In contrast, the sixth
and latest phase of CMIP (CMIP6; Eyring et al., 2016a) in-
cludes 312 experiments (Petrie et al., 2021) and anticipates
output data from at least 100 models hosted by 40 modelling
centres (Balaji et al., 2018), though not every model partic-
ipated in every experiment. Moreover, the model resolution
has increased substantially over the years, additional Earth
system processes and components have been introduced, and
an increased number of variables are required for each ex-
periment (Petrie et al., 2021). Accordingly, the size of CMIP
data is increasing rapidly, with a volume of 40 TB related to
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CMIP3, 2 PB for CMIP5, and an estimated 20 PB for CMIP6
(Balaji et al., 2018).

Despite much progress in climate modelling, model bias
and uncertainty (i.e. spread across models) have not de-
creased in many of the simulated variables. Most promi-
nently, the model generation of CMIP6 reveals the highest
model uncertainty in equilibrium climate sensitivity when
compared to other CMIP model generations (Meehl et al.,
2020). Similarly, Tagliabue et al. (2021) found that the ab-
solute uncertainty in projections of global ocean net primary
productivity has increased from CMIP5 to CMIP6. Addition-
ally, their study points out that this growth in uncertainty
substantially differs at the regional scale. Contrarily, Terhaar
et al. (2021) identify that the model uncertainty in surface
density in the Arctic has decreased in CMIP6 Earth system
models (ESMs) when compared to CMIP5, leading to a re-
duced inter-model range of the anthropogenic carbon uptake
in the Arctic. This result is echoed by Bourgeois et al. (2022),
who find a smaller CMIP6 than CMIP5 model uncertainty in
both the contemporary ocean stratification and the anthro-
pogenic carbon uptake in the Southern Ocean between 30
and 55◦ S. Yet, the combination of large data volume and par-
tially high model uncertainty in CMIP6 makes a comprehen-
sive evaluation of associated models and simulations highly
challenging. Moreover, while observational estimates inform
about present and past dynamics, it is often unclear how past
and contemporary model biases affect their simulated cli-
mate change signal (Eyring et al., 2019). The emergent con-
straint approach (e.g. Hall et al., 2019) addresses this prob-
lem by identifying a relationship between observable charac-
teristics of the current climate (predictor) and a certain aspect
of future change (predictand) that emerges within a multi-
model ensemble. Based on this relationship, it is possible to
constrain the uncertainty in the model ensemble, assuming
that a model’s alignment with the observational estimate of
the predictor is key to correctly simulating the predictand.
Emergent constraints offer an attractive way of evaluating
uncertain future projections. In the realm of Earth system
projections, more than 50 emergent constraints have been
found so far (Williamson et al., 2021). However, there are
several concerns denoted when it comes to the usefulness
of emergent constraints, including the concern that a high
cross-correlation between predictor and predictand can po-
tentially reflect (i) the simplicity of a commonly used model
parametrization and (ii) spurious relationships (Eyring et al.,
2019). Hence, a physical explanation behind the emergent
constraint is key for its plausibility (Williamson et al., 2021;
Hall et al., 2019).

In ocean biogeochemistry, emergent constraints are of-
ten applied to variables that are averaged over large areas,
as large-scale ocean dynamics are crucial for many biogeo-
chemical processes like the ocean carbon uptake (Kessler and
Tjiputra, 2016; Goris et al., 2018; Bourgeois et al., 2022;
Terhaar et al., 2021). Though these emergent constraints are
physically plausible, we note that they deem a model to be

the fittest due to its ability to simulate spatially averaged val-
ues of the predictor within observational uncertainty. There
is no inspection if the models deemed to be “fit” have a dy-
namically consistent predictor gradient within the considered
region, and we are not aware that this problem has been dis-
cussed yet. Yet, this is especially relevant in cases where the
predictor is closely linked to dynamical processes such as
meridional advection. Moreover, the yielded constrained pre-
dictand is highly dependent on the observational estimate and
a correct estimate of its uncertainty (Williamson et al., 2021).
In the marine biogeochemical realm, in situ observations are
often too sparse in space and time to fully capture spatial
and temporal variability, including fine-scale mixing; sea-
sonal, interannual, and decadal variability; long-term trends;
and short-term natural variability (Wang et al., 2019). Only
few platforms reach the deep ocean, though its continuous
observations are necessary, for example, to confidently cap-
ture the oceanic heat and carbon storage (Weller et al., 2019).
The error occurring from the interpolation of sparse data is
typically less well quantified than the observational error it-
self (Landschützer et al., 2020). Though the advent of bio-
geochemical ARGO floats gives the opportunity of a sub-
stantial contribution to the goal of a three-dimensional image
of ocean biogeochemistry (Claustre et al., 2010), this poten-
tial is still far from being fully explored. While case studies
for selected regions exist (e.g. D’Ortenzio et al., 2020), es-
timates of observational uncertainty are often uncertain for
emergent constraints in the realm of ocean biogeochemistry
due to the large area covered by the emergent constraint and
might hamper ongoing efforts to achieve a proper constraint
for sensitivities of ocean biogeochemical variables. Due to
these limitations of emergent constraints in the realm of bio-
geochemistry, our study is concerned with the regional opti-
mization of emergent relationships with the twofold goal to
(a) identify key model dynamics for the emergent constraint
and model inconsistencies around them and (b) provide key
areas where a narrow observational uncertainty is crucial for
constraining future projections. These key areas can be used
to guide observational strategies.

In this study, we utilized two existing emergent constraints
and applied a genetic algorithm to regionally optimize the
area of the predictor, i.e. the observed variable. Our re-
gional optimization explores different shapes and sizes of
the sought-after area as an input and hence can be adapted
for specific observational campaigns such as cruises. More-
over, the use of different shapes and sizes helps to identify
key model dynamics for the emergent constraint and model
inconsistencies around them. Both emergent constraints that
we regionally optimize are related to the future carbon up-
take of the North Atlantic and use (i) the seasonality of the
oceanic partial pressure pCO2 and (ii) the deep-ocean stor-
age of carbon since pre-industrial times as predictors (Goris
et al., 2018). Both predictors could gain from an improved
observational strategy as data are sparse both on seasonal
timescales and in the deep ocean. Additionally, both predic-
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tors are highly dependent on the large-scale ocean circula-
tion such that it is of importance to not only study their aver-
aged values over large areas but also the model performance
within key regions and its dynamical consistency. We there-
fore consider this as the optimal test case for our regional
optimization. We note, however, that our study is primar-
ily a showcase to illustrate the effectiveness of the genetic
algorithm and to demonstrate the usefulness of regionally
optimized emergent constraints. Our selection of the North
Atlantic basin is motivated by its critical role for the long-
term anthropogenic carbon sink and as the gateway to trans-
port carbon from the surface to the deep ocean (Tjiputra et
al., 2010). Further, the North Atlantic carbon uptake and dy-
namical features are relatively well studied (e.g. Olsen et al.,
2008; Pérez et al., 2013; Goris et al., 2015) such that the plau-
sibility of our results and their implications can readily be
confirmed.

This paper is organized as follows: in Sect. 2, we intro-
duce the concept of emergent constraints, the emergent con-
straints that we optimize, and the genetic algorithm used for
the regional optimization and its experimental set-up. When
describing our results and discussing them in Sect. 3, we
first describe the efficiency and performance of the genetic
algorithm. Subsequently, we present the optimal regions for
both predictors as well as the associated regionally optimized
emergent constraints and analyse the plausibility of our re-
sults as well as their implications. We discuss our approach
and the additional information that it provides in Sect. 4. Our
summary and conclusions can be found in Sect. 5.

2 Background and experimental set-up

2.1 The emergent constraint approach

The emergent constraint approach identifies an emerging
quasi-linear relationship between characteristics of the cur-
rent climate (predictor) and a certain aspect of future change
(predictand) that emerge within a multi-model ensemble.
Based on this relationship, it is assumed that models that sim-
ulate the predictor within observational uncertainties are bet-
ter suited to simulate the predictand. Therefore, the emergent
constraint approach utilizes observations of the predictor to
constrain the uncertainty around the simulated estimate of the
predictand (e.g. Cox et al., 2013; Williamson et al., 2021).
Our method of calculating the constrained estimate follows
the approach of Cox et al. (2013). Here, the unconstrained
estimate of the predictand is given by the model mean and
its uncertainty by the multi-model standard deviation. As-
suming that all models are equally likely to simulate the true
state of the predictand and are sampled from a Gaussian dis-
tribution, a probability density function (PDF) can be calcu-
lated for the unconstrained estimate using model mean and
standard deviation. Similarly, PDFs of the observational esti-
mate and of the linear regression between multi-model real-

izations of predictor and predictand are established. For the
observationally constrained predictand, a conditional PDF is
calculated (Cox et al., 2013), i.e. a probability distribution
of the predictand based on the established linear regression
and under the condition that the predictor is within obser-
vational uncertainties. The observationally constrained esti-
mate equals the mean value of the conditional PDF, and the
uncertainty in the estimate is given by its standard devia-
tion. We note that emergent constraints come with a number
of caveats, among them the fact that they are often applied
over large areas and hence constrain a model’s ability to sim-
ulate spatially averaged values within observational uncer-
tainty (see Sect. 1).

2.2 Emergent constraints of the North Atlantic future
carbon uptake

As basis for our regional optimization, we utilize two emer-
gent constraints that both constrain the future North Atlantic
carbon uptake for an ensemble of 11 CMIP5 models un-
der a high-CO2 future. Here, we give a short summary of
these emergent constraints; for details the reader is referred
to Goris et al. (2018). We note that the study of Goris et
al. (2018) is concerned with the “anthropogenically altered”
component of the carbon cycle, defined as the outcome of ei-
ther the historical scenario (for the years 1850–2005) or the
high-CO2 future scenario (RCP8.5 experiment, years 2006–
2100) minus that of the piControl experiment of the corre-
sponding years. All variables calculated in this manner are
henceforth marked by the subscript “ant*”. Cant* uptake and
Cant* storage can hence be equated to changes in oceanic car-
bon uptake and storage due to increasing atmospheric CO2
and climate change.

Goris et al. (2018) found that their selected model en-
semble agrees fairly well on the North Atlantic Cant* uptake
of the 1990s (defined as an average over the years 1990 to
1999), yet the simulated future North Atlantic Cant* uptake
of the 2090s (defined as an average over the years 2090 to
2099) is highly uncertain. Here, some models simulate a fu-
ture Cant* uptake of the same magnitude as that of the 1990s,
and other models project a future Cant* uptake that is 2–3
times higher than that of the 1990s (Fig. 1a). Goris et al.
(2018) determined that discrepancies in the modelled North
Atlantic future Cant* uptake arise due to differences in the
simulated efficiency of the high-latitude transport of Cant*
storage from the surface to the deep ocean. This transport
is fuelled by deep mixed-layer depths, high biological pro-
duction and subsequent particle export to the deep as well
as deep convection and subsequent interior-ocean southward
transport of Cant* storage out of the high latitudes.

Two predictors associated with the contemporary effi-
ciency of the surface-to-depth carbon transport were iden-
tified by Goris et al. (2018). The first predictor is the mid-
to high-latitude summer (May–October) pCO2

sea anomaly of
the 1990s, which is tightly linked to winter mixing, nutrient
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Figure 1. Illustration of two emergent constraints of the future North Atlantic Cant* uptake, both considering the same ensemble of 11
CMIP5 models under a high-CO2 future. (a) Temporal evolution (10-year running averages) for the North Atlantic Cant* uptake (predictand).
Projected North Atlantic Cant* uptake for the years 2090–2099 against (b) the mid- to high-latitude winter pCO2

sea anomaly (1990–1999;
predictor 1) and (d) the fraction of the North Atlantic Cant* stored below 1000 m depth (1997–2007; predictor 2). (b, c) Scatterplots of
model results (colour coding of models indicated in legend), best fit linear regression (dashed grey lines) including the interval of the 68 %
projection uncertainty (grey shading), and observational constraints and their uncertainties (dashed brown lines and light-brown shading). (c,
e) Prior- and after-constraint probability density functions and their associated new estimates of the future North Atlantic Cant* uptake for
the years 2090–2099 (on the right side of the panels). See Appendix A for a detailed description of the considered observational estimates.

supply and biological production, but also to deep convec-
tion (e.g. Olsen et al., 2008; Tjiputra et al., 2012). We note
that Goris et al. (2018) utilized the negative mean summer
pCO2

sea anomaly in order to be able to depict positive cor-
relations. We follow this approach but opt to use the term
mean “winter pCO2

sea anomaly” (November–April) instead
(Fig. 1b), defining it to be the deviation of the averaged win-
ter pCO2

sea values from the mean annual pCO2
sea values and

hence to equal the negative mean summer pCO2
sea anomaly.

Goris et al. (2018) found that models with a low future Cant*
uptake have a negative contemporary mid- to high-latitude
winter pCO2

sea anomaly. Their pCO2
sea seasonal cycle is

driven by temperature, meaning that their Cant* uptake is
strongest in winter, when surface temperatures are cold. Con-
trarily, models with a high future Cant* uptake have a positive
contemporary mid- to high-latitude winter pCO2

sea anomaly,
indicating that their seasonal cycle of pCO2

sea is dominated
by variations in dissolved inorganic carbon (DIC) via biol-
ogy and mixed-layer depth. As the models considered here
have differing timings for their peak in biological produc-
tion (ranging from May–July) and as seasonal warming and
biological production are not in phase (the modelled peak

in seasonal warming occurs in August), the highest correla-
tions with the future North Atlantic Cant* uptake are yielded
when the seasonal pCO2

sea anomaly covers the months from
May–October (or November–March) and hence captures the
different seasonal drivers at play. While both a DIC- and
a temperature-driven pCO2

sea annual cycle leads approxi-
mately to the same contemporary Cant* uptake for the con-
sidered models, a temperature-driven pCO2

sea annual cycle
leads to less Cant* uptake in the future due to ocean warming.

The second predictor is the fraction of the North Atlantic
Cant* that is stored below 1000 m depth (Fig. 1d), indicat-
ing how efficient the Cant* storage is transported into the
deep ocean. Here, models that project a high future Cant* up-
take have the majority of Cant* storage below 1000 m depth,
leading to a smaller fraction of Cant* storage at the surface
and hence allowing for further Cant* uptake. For the sec-
ond predictor, our analysis focuses on the time frame 1997–
2007 (hereinafter referred to as the 1997s) as the related
observation-based data product is normalized to the year
2002 (see Appendix A).

By comparison to the observational database, these pre-
dictors allowed the model ensemble to be constrained and
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demonstrated that the models with more efficient surface-
to-deep transport are best aligned with current observations
(Fig. 1b and d). These models also show the largest future
North Atlantic Cant* uptake, which hence appears to be the
more plausible future evolution (Fig. 1c and e). We note that,
within the selected model ensemble, the cross-correlation
between the mid- to high-latitude winter pCO2

sea anomaly
of the 1990s and the future North Atlantic Cant* uptake is
r = 0.79, while the cross-correlation between the fraction of
the North Atlantic Cant* stored below 1000 m depth in the
1997s and the future North Atlantic Cant* uptake is r = 0.94.
These correlations build the basis of the emergent constraint
as they define how tight the relationships between predic-
tors and predictand are across the model ensemble. We note
that studies concerned with emergent constraints frequently
use relationships with correlations lower than r = 0.79 (e.g.
Qu et al., 2018; Selten et al., 2020; Mystakidis et al., 2017;
Tokarska et al., 2020). Yet, the study of Goris et al. (2018)
includes no regional optimization. Instead, it focuses on the
broad surface areas of Mikaloff Fletcher et al. (2006) in-
cluding the North Atlantic tropics (0.0 to 17.781◦ N), low
latitudes (17.781 to 35.563◦ N), mid-latitudes (35.563 to
48.901◦ N), and high latitudes (48.901 to 75.595◦ N) and the
depth boundary of 1000 m depth as an indication for deep
convection as well as for the horizon that separates the up-
per and lower limbs of the Atlantic Meridional Overturning
Circulation (AMOC).

2.3 Experimental set-up for the regional optimization

We apply a genetic algorithm (described in Sect. 2.4) to re-
gionally optimize both predictors, i.e. to find a regionally
condensed footprint of the already-discovered relationship.
This regional footprint might lead us even closer to the dy-
namical origin of the constraints and expose potential dy-
namical inconsistencies within the model ensemble but also
allows smaller and more concentrated regions to be focused
on, which ultimately can be utilized for observational strate-
gies and to refine observational uncertainties.

We consider the whole North Atlantic for regional opti-
mization of the winter pCO2

sea anomaly predictor instead
of focusing on the mid-latitudes to high latitudes. Likewise,
we consider all depth ranges of the fractional North Atlantic
Cant* storage predictor for the optimization instead of fo-
cusing on the depth horizon below 1000 m depth. This way,
the optimization can confirm or reject the latitudinal bound-
aries and depth ranges previously utilized by Goris et al.
(2018). Before applying the regional optimization, we re-
gridded both the winter pCO2

sea anomaly and the fractional
Cant* storage values from each model on a regular 1◦× 1◦

grid. We further interpolated the fractional Cant* storage at
depth levels at 100 m intervals. That way, it is more easily
possible to construct new regions and apply them to the out-
put of the whole model ensemble.

For our experimental set-up, we pre-defined the desired
optimal regions in terms of geometrical shape. Specifically,
we select two different shapes for both predictors, i.e. the
winter pCO2

sea anomaly (2D case) and the fractional Cant*
storage (3D case). For the 2D case, the selected shapes are
rectangles aligned with the longitudinal and latitudinal axes,
respectively, and arbitrary ellipses. For the 3D case, we chose
rectangular cuboids aligned with the longitudinal, latitudinal,
and depth axes, respectively, and general ellipsoids. Our set-
up of shapes is motivated by two criteria: (i) the possibility
of capturing regions of interest and (ii) a low-dimensional
search space, allowing for a fast optimization. The search
space is of a lower dimension for rectangles than for arbi-
trary ellipses and of a lower dimension for cuboids than for
general ellipsoids. Yet, arbitrary ellipses and general ellip-
soids can be tilted within the surface water plane and the
water volume, respectively, such that the associated optimal
regions have the option to follow water masses more closely
and are hence beneficial to consider. We note that other ge-
ometrical shapes would have satisfied both criteria. Among
them is the option to optimize a tube, so that, for example,
the ship track of an upcoming cruise can be optimized.

We additionally prescribed the approximate volume or
area size that the optimal region should have. Here, we focus
on areas and volumes of (i) 10 %–20 %, (ii) 20 %–30 %, and
(iii) 30 %–40 % of the total size of the North Atlantic surface
area (for the 2D case) or basin volume (for the 3D case), re-
spectively. In combination with rectangles, ellipses, cuboids,
and ellipsoids this results in 12 applications of the genetic al-
gorithm. We note that the desired area can also be given as
total area instead of a percentage and could, for example, be
the distance that a cruise can cover within a given time frame.
Our choice of considering different area sizes is motivated by
two considerations: firstly, we want to avoid spurious rela-
tionships, i.e. that the high correlation between the predictor
spatially averaged over the optimal area and the predictand
occurs without a direct causal relationship. If areas of differ-
ent geometrical shapes and area sizes point towards the same
key regions, it is less likely that the high correlations associ-
ated with these regions are non-causal, especially for diverse
area sizes. Secondly, it is our goal to identify key model dy-
namics for the emergent constraint and model inconsisten-
cies around them. A set of optimal areas of different shapes
and geometrical forms allows us to inspect in more detail
where key regions for the model performance are and if the
simulated results for each of these regions are consistent with
each other.

Apart from the size and shape limitations, we are also in-
terested in solutions where the inter-model spread in the pre-
dictor is high as we want our regionally optimized emergent
constraint to help us to constrain model spread. Therefore,
we only consider grid points within the optimal region where
the multi-model standard deviation of the predictor is larger
than the average multi-model standard deviation of the pre-
dictor for the whole North Atlantic.
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2.4 Genetic algorithm and optimization procedure

We utilize a genetic algorithm based on the algorithm de-
scribed in Johannsen et al. (2022) to conduct the regional op-
timization of the predictors described in Sect. 2.2. Genetic al-
gorithms are metaheuristics inspired by the process of natural
selection that can be used to design flexible optimization al-
gorithms. These algorithms go back to Holland (1975), who
created genetic algorithms drawing on ideas from the field of
biology. Since then, genetic algorithms have been developed
by a growing community. The algorithms are increasingly
popular due to their flexibility as they can be used in very
general setting with non-differentiable or even discontinuous
objective functions.

Genetic algorithms belong to the family of evolution-
ary algorithms and are inspired by Darwinian evolution
(Sivanandam and Deepa, 2008). They mimic natural evolu-
tion through reproduction, mutation, and selection to find
(close-to) optimal solutions for highly complex problems.
Constitutive elements of genetic algorithms are a population
formed by a number of individuals (characterized by genes
and equipped with phenotypical expressions and fitness), se-
lection of parents and reproduction (creation of offspring),
and mutation and selection of surviving individuals (survival
is determined via fitness). Subsequently, the original popu-
lation is replaced by the surviving individuals, forming the
next generation. For a number of generations, the steps out-
lined above are repeated. In this way, the algorithm can ap-
proximate the (close-to) optimal solution, determined by the
fittest individual over all generations. In our case, individu-
als correspond to domains, and the fittest individual is the
domain for which spatially averaged values of the predictor
reach the highest correlations when correlated with the pre-
dictand. In the following paragraphs, we describe our set-up
of a genetic algorithm to perform the regional optimization
of this study.

As we regionally optimize the predictors of two emergent
constraints and utilize two pre-defined area/volume shapes
and three pre-defined area/volume size ranges for each pre-
dictor (see Sect. 2.3), our genetic algorithm is applied 12
times to a population of individuals. We utilize four differ-
ent types of individuals, that is rectangles, ellipses, cuboids,
and ellipsoids (see Sect. 2.3). Genetic algorithms express an
individual as a specific combination of genes. Here, we ex-
press a rectangle as four continuous genes, where the first
and second genes describe the south-western point, and the
third and fourth genes describe the north-eastern point of the
rectangle in longitude–latitude coordinates (Fig. 2b). An el-
lipse is described by five genes (Fig. 2b), consisting of a shift
vector (two genes) and a symmetric positive definite matrix
(encoded by three genes). The shift vector is the centre of the
ellipse, and the eigenvectors of the symmetric positive defi-
nite matrix are the principal axis of the ellipse. A cuboid is
encoded by six genes (Fig. 2b). The first three genes describe
the south-western point at the shallowest ocean depth (lon-

gitude, latitude, and depth), and the fourth to sixth genes de-
scribe the north-eastern point at the deepest ocean depth (lon-
gitude, latitude, and depth). Similar to the ellipse, an ellipsoid
(Fig. 2b) is described by a shift vector (three genes) and a
symmetric positive definite matrix (six genes). The shift vec-
tor is the centre of the ellipsoid, and the eigenvectors of the
symmetric positive definite matrix are the principal axis of
the ellipsoid.

In order to find the fittest individual or the optimal do-
main, the genetic algorithm maximizes a fitness function. In
our study, the first part of the fitness function is the cross-
correlation between (i) the simulated predictor values per
model (contemporary winter pCO2

sea anomaly or contempo-
rary fractional Cant* storage) averaged over the region spec-
ified by the considered individual and (ii) the simulated pre-
dictand per model (the future Cant* uptake of the North At-
lantic). The cross-correlation describes how tight the rela-
tionship between predictor and predictand is, and higher val-
ues correspond to a higher fitness for an individual. As we ad-
ditionally prescribed the approximate volume or area size of
the optimal region, our fitness function includes a penaliza-
tion to ensure compliance with the area or volume condition.
If an area or volume is not compliant with the size condition,
a negative value smaller than −1, which is decreasing with
the area or volume violation, is added.

For each of our applications of the genetic algorithm, we
use a population of 1000 individuals evolving over 100 gen-
erations. As initialization, a population of (i) 1000 rectangles
or ellipses of varying area sizes are placed randomly across
the surface of the North Atlantic (2D case), or a population
of (ii) 1000 cuboids or ellipsoids of varying volume sizes are
placed randomly across the water volume of the North At-
lantic (3D case). Subsequently, each individual gets a fitness
assigned based on our fitness function. After our initializa-
tion, we create a new generation by applying three steps (see
Fig. 2a). (1) A new population of 1000 individuals is created
through a repeated tournament selection. In the tournament
selection process, 10 individuals are selected at random, and
the fittest of these is chosen (Eiben and Smith, 2003). This
process is repeated 1000 times to create the new population.
We note that the resulting population in general contains a
number of identical individuals. (2) We randomly choose
50 % of the individuals of our new population (this equals a
crossover probability of p = 0.5) as parents, create two off-
spring for each pair of parents, and use the offspring to re-
place their parents. This leads to a population of 500 selected
individuals and 500 offspring. To create an offspring, we use
a one-point crossover with random position (see Fig. 2c); i.e.
within the sequence of genes of both parents, a crossover site
is selected at random. If, for example, an individual is defined
by four genes (as this is the case for the rectangle, illustrated
in Fig. 2c), and the crossover site is between the first and
the second gene, then the first gene of one offspring will be
defined by one parent, while the second to fourth gene is de-
fined by the other parent (Sastry et al., 2005). (3) We mutate
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Figure 2. Schematic illustration for the experimental set-up of our application of the genetic algorithm. The panels illustrate (a) one itera-
tion of the algorithm; (b) genes chosen to represent rectangles, ellipses, cuboids, and ellipsoids; and (c) visualization of a crossover for a
population of rectangles.

20 % of the revised population (this equals a mutation prob-
ability of p = 0.2) and replace the corresponding individu-
als with their mutations. We realize mutation using Gaus-
sian mutation, where a vector of Gaussian noise is added to
the vector of genes (Kramer, 2017). As Gaussian noise we
choose a mean of zero and a standard deviation of 0.05. Af-
ter these three steps, we have a new generation consisting of
selected copies, selected and mutated copies, offspring, and
mutated offspring. Subsequently, the fitness of each individ-
ual of our new generation is evaluated. The assigned fitness
is then utilized for another iteration of the genetic algorithm
via repetition of steps (1)–(3). This algorithmic sequence is
illustrated in Fig. 2a. For the purpose of our study, we fix
the number of iterations to 100 and stop the algorithm after-
wards. The fittest individual of all generations is then defined
to be our (close-to) optimal solution.

3 Results

In this section, we first describe the (close-to) optimal cross-
correlations obtained through regional optimization of our
emergent constraints as well as the associated speed of con-
vergence of the genetic algorithm (Sect. 3.1). For both pre-
dictors, we separately illustrate the optimal regions and their
related emergent constraints (Sects. 3.2 and 3.3), their plausi-
bility (Sects. 3.2.1 and 3.3.1), and their implications for both
model dynamics and observational strategies (Sects. 3.2.2
and 3.3.2).

3.1 Towards an optimal solution in 100 iterations

Cross-correlations between the simulated values of the fu-
ture North Atlantic Cant* uptake and values of both predic-
tors within the optimal regions identified by the genetic algo-
rithm are significantly improved as compared to the original
emergent constraints (see Fig. 3). In the 2D case, the origi-
nal cross-correlation of r = 0.79 is improved to r = 0.863,
r = 0.855, and r = 0.848 for the rectangle solutions with
10 %–20 %, 20 %–30 %, and 30 %–40 % of North Atlantic
surface area, respectively, and r = 0.863, r = 0.856, and r =
0.852 for the ellipse solutions with corresponding area sizes.
For the 3D case, the already-high original cross-correlation
of r = 0.94 is still improved to r = 0.972, r = 0.966, and
r = 0.966 for the cuboid solutions with 10 %–20 %, 20 %–
30 %, and 30 %–40 % of North Atlantic volume size, respec-
tively, and r = 0.987, r = 0.975, and r = 0.970 for the el-
lipsoid solutions with corresponding volume sizes. We note
that, in general, higher cross-correlations are achieved for
smaller areas or volumes due to more placement possibili-
ties. While this is not surprising, this might lead to the desire
to use shapes that are even smaller than our pre-defined vol-
ume and area limits. For our application, however, we advise
against using shapes of very limited volume. This is based on
the fact that we are searching for areas that provide a finger-
print of the original emergent constraints for the North At-
lantic future Cant* uptake. Here, the original emergent con-
straints are based on features that are associated with the
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Figure 3. Iteration (population) versus cross-correlations for our ap-
plication of the genetic algorithm. The correlation coefficients are
calculated between contemporary values of the predictor within the
regions identified by the genetic algorithm and future values of the
predictand. Illustrated are the individuals with the highest cross-
correlation of each population (i.e. per iteration). The colour cod-
ing of the lines points towards the area and volume sizes that char-
acterize the identified regions. The grey lines illustrate the cross-
correlation without regional optimization of the predictor.

large-scale ocean circulation. While the algorithm would be
able to find high cross-correlations for shapes of smaller size,
it would be difficult to assign the outcome to those large-scale
circulation features and to assign a dynamical interpretation
to the so-obtained optimal regions.

Regarding the speed of convergence for the 2D case, the
first iteration of the genetic algorithm already reaches cross-
correlation of r = 0.863, r = 0.854, and r = 0.847 for the
rectangle solution with area sizes of 10 %–20 %, 20 %–30 %,
and 30 %–40 %, respectively, and only offers improvements
in the fourth decimal point afterwards (Fig. 3a). After four
iterations, there is subsequently no improvement in the first
10 decimal points. For the ellipse solutions, the first iteration
yields cross-correlations of r = 0.857, r = 0.849, and r =
0.851 for area sizes of 10 %–20 %, 20 %–30 %, and 30 %–
40 %, and only improvements in the third or subsequent dec-
imal points are subsequently achieved. In contrast to the rect-
angle solutions, the genetic algorithm converges slower for
the ellipse solutions (Fig. 3b), and, for the area size of 30 %–
40 %, the first 10 decimal points still improve during the first
66 iterations. In general, for the 2D case, there is a fast speed
of convergence that can be traced back to the limited area that
the genetic algorithm operates in and the associated limited
options for placement.

Compared to the convergence of the rectangle solutions,
the convergence of the cuboid solutions is a bit slower be-
tween the 1st and 10th iteration due to more placement op-
tions throughout the water column (Fig. 3c). Yet, the first
iteration of the cuboid application of the genetic algorithm
already reaches cross-correlations of r = 0.962, r = 0.964,
and r = 0.962 for 10 %–20 %, 20 %–30 %, and 30 %–40 %
of North Atlantic volume size. Subsequently, only improve-
ments in the third decimal place are achieved, and after 10
iterations there is no improvement in the first 10 decimal
points.

In contrast to the cuboid solutions and all applications of
the 2D case, all ellipsoid solutions show a slightly different
convergence behaviour (Fig. 3d). Here, the cross-correlations
are still significantly increasing at the end of our application
of the genetic algorithm. At the same time, the maximum
cross-correlations of the smaller ellipsoids during our execu-
tion of 100 iterations are 0.015 and 0.009 higher than those
of the smaller cuboids. We assign both the slow speed of con-
vergence and the improved cross-correlations of the smaller
ellipsoid to the higher degrees of freedom as well as to more
placement options as the smaller-volume ellipsoids have the
option to be tilted within the water column.

3.2 Optimal regions for the winter pCO2
sea anomaly

and associated new emergent constraints

The optimal regions found by the genetic algorithm for the
winter pCO2

sea anomaly (2D case) all have their southern
boundary at 28 or 29◦ N, independent of pre-defined shape
and size (Fig. 4). Their northern boundaries vary between 43
and 53◦ N, with larger optimal areas reaching further north.
Longitude-wise, all optimal areas are placed in the west-
ern part of the North Atlantic. Here, their western and east-
ern boundaries vary depending on the pre-defined size range
and shape of the optimal area. Yet, the area between 73 and
30◦W and between 29 and 42◦ N is enclosed by all opti-
mal areas and is hence central for the considered emergent
constraint. This central area is very similar to the optimal
rectangle and ellipse covering 10 %–20 % of the North At-
lantic area size, which yield the highest cross-correlations
when compared to the optimal rectangles and ellipses with
larger surfaces, respectively (see Sect. 3.1). We note that, for
the optimal areas and their given size requirements, a place-
ment further south than 28◦ N was not possible as only grid
points where the multi-model standard deviation of the pre-
dictor is larger than that of the mean multi-model standard
deviation of the predictor of the North Atlantic are eligible
for our optimal regions (see Sect. 2.4). It can be readily seen
in Fig. 4b–d that our requirements for eligible grid points ex-
clude the lower latitudes of the North Atlantic from being
chosen for placement of the optimal region.

We utilize the optimal regions to spatially average the win-
ter pCO2

sea anomaly over each of them individually and con-
strain our predictand (Fig. 5). For details of the method that
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we utilize to calculate the unconstrained and observationally
constrained estimates of the future North Atlantic Cant* up-
take, the reader is referred to Sect. 2.1. For the 2D case, the
unconstrained estimate of our model ensemble yields a mean
value of 0.5±0.23 PgCyr−1 for the future North Atlantic
Cant* uptake, while the original emergent constraint corrected
this to 0.73±0.27 PgCyr−1. When applying our regionally
optimized predictors, the observational constraints correct
the unconstrained values towards mean values between 0.72
and 0.79 PgCyr−1 (Fig. 5 and Table 1).

As outlined in Sect. 1, our regional optimization of emer-
gent relationships has the twofold goal to (a) identify key
model dynamics for the emergent constraint and model in-
consistencies around them and (b) provide key areas where
a narrow observational uncertainty is crucial for constraining
future projections. However, before following up with our
goal, we need to ensure that there is a physical explanation
behind the optimal areas found as this is key for the plausibil-
ity of emergent constraints (Williamson et al., 2021; Hall et
al., 2019). Therefore, we utilize Sect. 3.2.1 to investigate the
plausibility of the optimal areas found before examining our
twofold goal in Sect. 3.2.2. We note however that our inves-
tigation of the plausibility of the optimal regions is closely
related to model dynamics and hence to part of our goal.

3.2.1 Plausibility of the optimal areas for the winter
pCO2

sea anomaly

As all of our six optimal areas cover the same central area be-
tween 73 and 30◦W and between 29 and 42◦ N, we consider
it less likely that the high correlations between the predictor
spatially averaged over the optimal areas and the predictand
are spurious. Therefore, we proceed to investigate the physi-
cal explanation of the identified optimal domains. For our op-
timal regions, the simulated differences in the winter pCO2

sea

anomaly are especially well related to a model’s future North
Atlantic Cant* uptake. We expect large-scale circulation fea-
tures to be an important driver of model differences in the
winter pCO2

sea anomaly as these are directly related to nu-
trient supply, heat transport, and deep mixing. Based on this
logic, the identified optimal regions seem reasonable as they
all cover a major part of the Gulf Stream. The Gulf Stream
is a key part of the warm and upper branch of the Atlantic
Meridional Overturning Circulation (AMOC), which trans-
ports waters from the low-latitude North Atlantic via the Gulf
Stream, the North Atlantic Current (NAC), and the Irminger
Current to the high-latitude North Atlantic, thereby releasing
heat to the atmosphere (e.g. Rhein et al., 2011). Along this
path, deep mixed layers are formed via wind-driven velocity
shears but also via heat loss to the atmosphere, which be-
comes more prominent at higher latitudes, where it leads to
deep convection (e.g. Rhein et al., 2011). The strength of the
Gulf Stream and its extension is an important driver of not
only the amount of heat that is transported from low to high
latitudes and the strength of deep convection at high latitudes

but also for transporting high-nutrient thermocline waters
from low to high latitudes (the so-called nutrient-stream; see
e.g. Williams et al., 2011) and hence for the strength of the
winter pCO2

sea anomaly. In line with this, the model spread
is increasing further north, and the highest multi-model stan-
dard deviation of the contemporary winter pCO2

sea anomaly
(Fig. 4b) follows the path of the NAC, which is the immedi-
ate Gulf Stream extension.

At first glance, it seems surprising that not all optimal re-
gions cover the path of this high standard deviation but that
the smallest optimal regions are placed directly at the south-
western boundary of it, which coincides with the beginning
of the Gulf Stream. However, we note that high multi-model
standard deviations might also indicate a slightly different
placement of currents between models and that the paths of
the Gulf Stream and NAC in the open ocean are influenced
by decadal variations, which might not be in phase within
the model ensemble. The optimal regions cover those lati-
tudes before and where the Gulf Stream starts to separate
from the coast and where the spatial path of the current is
therefore less variable within models. Additionally, we note
that this placement seems reasonable as biological produc-
tion becomes more dominant further north. Here, different
ecosystem model parametrizations get a larger imprint on the
simulated contemporary winter pCO2

sea anomaly, such that
the cross-correlations between predictor and predictand are
not only based on surface temperature, available nutrients,
and mixed-layer depth.

We use further calculations to support our plausibility ar-
gument that our optimal regions capture the influence of the
upper branch of the AMOC, specifically the Gulf Stream,
on the simulated contemporary winter pCO2

sea anomaly and
hence on our predictand, the future North Atlantic Cant* up-
take. For this, we calculate cross-correlations between our
predictand and the simulated strength of the upper AMOC
branch (see Appendix B) at 30◦ N, as this is a central lat-
itude in our identified optimal regions. As we consider the
AMOC volume transport only in terms of driving the con-
temporary winter pCO2

sea anomaly, we expect the trans-
port within the mixed layer to be key. Indeed, when cal-
culating cross-correlations between 10-year running aver-
ages of the accumulated northward volume transport between
the surface and different depths at 30◦ N and our predic-
tand, we identify cross-correlations to be highest for the ac-
cumulated northward volume transport between the surface
and 500 m. The cross-correlations get worse for both shal-
lower and deeper depths when varying the lower boundary of
the northward volume transport in depth intervals of 100 m
(Fig. 6a). We note that cross-correlations between 10-year
running averages of our predictand and the northward vol-
ume transport between the surface and 500 m at 30◦ N stay
between r = 0.845 and r = 0.921 for all considered time pe-
riods (Fig. 6a), with a cross-correlation of r = 0.883 for the
1990s. This value is slightly above the cross-correlations be-
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Figure 4. Contemporary winter pCO2
sea anomaly and associated optimal regions as identified by the genetic algorithm. For the contemporary

winter pCO2
sea anomaly of our considered model ensemble, panel (a) illustrates the multi-model mean, while panel (b) displays the multi-

model standard deviation. Panels (c) and (d) display the optimal regions identified by the genetic algorithm on top of the multi-model standard
deviation (here with an added transparency of 70 %), with non-eligible points coloured in different shades of blue (separated with a black
contour line in panel b). Optimal regions are visualized according to shapes, with panel (c) visualizing rectangles and panel (d) visualizing
ellipses. The colour coding of the lines indicates different area conditions that were imposed on the optimal areas (dark-lilac lines: area size
of 10 %–20 % of the surface of the North Atlantic; light-lilac lines: area size of 20 %–30 % of the surface of the North Atlantic; pink lines:
area size of 30 %–40 % of the surface of the North Atlantic).

Table 1. Constrained estimates of the future North Atlantic Cant* uptake based on regionally optimized predictors. Listed are the predictors,
their realms (upper ocean: above 500 m; deep ocean: below 500 m depth), and considered time frames as well as the associated constrained
estimates of the future North Atlantic Cant* uptake. Different size ranges of the optimal areas are indicated with numbers (1: area size of
10 %–20 % of the considered area; 2: area size of 20 %–30 % of the considered area; 3: area size of 30 %–40 % of the considered area).

Predictor Realm Time frame Constrained Cant* uptake

δpCO2
sea (Ellipse E1) upper ocean 1990–1999 0.72± 0.31 PgCyr−1

δpCO2
sea (Ellipse E2) upper ocean 1990–1999 0.72± 0.28 PgCyr−1

δpCO2
sea (Ellipse E3) upper ocean 1990–1999 0.77± 0.27 PgCyr−1

δpCO2
sea (Rectangle R1) upper ocean 1990–1999 0.72± 0.30 PgCyr−1

δpCO2
sea (Rectangle R2) upper ocean 1990–1999 0.73± 0.31 PgCyr−1

δpCO2
sea (Rectangle R3) upper ocean 1990–1999 0.79± 0.29 PgCyr−1

1AMOC, 26◦ N (0–500 m) upper ocean 2005–2014 0.74± 0.18 PgCyr−1

Cant* fraction (Ellipsoid E1) water column 1997–2007 0.79± 0.44 PgCyr−1

Cant* fraction (Ellipsoid E2) water column 1997–2007 0.73± 0.36 PgCyr−1

Cant* fraction (Ellipsoid E3) water column 1997–2007 0.55± 0.18 PgCyr−1

Cant* fraction (Cuboid C1) deep ocean 1997–2007 0.63± 0.18 PgCyr−1

Cant* fraction (Cuboid C2) deep ocean 1997–2007 0.62± 0.17 PgCyr−1

Cant* fraction (Cuboid C3) deep ocean 1997–2007 0.62± 0.18 PgCyr−1

1AMOC, 26◦ N (700–4700 m) deep ocean 2005–2014 0.57± 0.20 PgCyr−1
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Figure 5. Illustration of emergent constraints between different realizations of the regionally optimized winter pCO2
sea anomaly (predictor)

for the years 1990–1999 and the future North Atlantic Cant* uptake (predictand) for the years 2090–2099 for our model ensemble. Emergent
constraints for optimal regions of different area size conditions in the shape of rectangles are visualized in panels (a) and (b) (R1: 10 %–20 %
of the considered area; R3: 30 %–40 % of the considered area), while those in the shape of ellipses are visualized in panels (c) and (d)
(E1: 10 %–20 % of the considered area; E3: 30 %–40 % of the considered area). All panels show scatterplots (colour coding of models as in
Fig. 1), best fit linear regression (R1/E1: lilac line; R3/E3: pink line) including the interval of the 68 % projection uncertainty (R1/E1: lilac
shading; R3/E3: pink shading), cross-correlations between simulated predictor and predictand, and mean observational constraints and their
uncertainties (dashed brown lines and light-brown shading). Associated estimate for the unconstrained model ensemble (dashed grey bars),
the original emergent constraint (grey bars), and the regionally optimized emergent constraint (lilac/pink bars) are shown on the right side of
the panels. See Appendix A for a detailed description of the considered observational estimates.

tween the modelled contemporary winter pCO2
sea anomaly

in our optimal regions and the predictand.
In order to quantify that these high cross-correlations be-

tween our predictand and the accumulated northward volume
transport between the surface and 500 m are a specific feature
of our identified optimal regions, i.e. the Gulf Stream region,
we further vary the latitude of the northward volume trans-
port in our calculations in latitude intervals of 5◦ (Fig. 6b).
When utilizing 10-year running averages of the northward
volume transport between the surface and 500 m, we find
that cross-correlations are highest at 25 or 30◦ N, depending
on the year considered, and that cross-correlations get worse
for latitudes further north and south. Specifically between
30 and 35◦ N, the cross-correlations are decreasing rapidly.
For most of the considered decades, cross-correlations are
slightly higher at 25 than at 30◦ N. However, this latitudinal
band contains no eligible grid points in the Gulf Stream re-
gion, so that the genetic algorithm could not identify it to
be part of an optimal region. We conclude that it is indeed

in the Gulf Stream region, where cross-correlations between
our predictor and the predictand are exceptionally high. We
deem the identified optimal regions to be characteristic of the
northward volume transport of a model, governing its sur-
face temperature distribution, available nutrients, and mixed-
layer depths not only at the specified latitudes of the optimal
regions, but along the path of the Gulf Stream, NAC, and
Irminger currents from low to high latitudes. This confirms
the plausibility of our optimal regions for the contemporary
winter pCO2

sea anomaly.
We would like to additionally denote that the relationship

between maximum AMOC strengths and the North Atlantic
carbon sink might not be as strong as commonly assumed in
modelling studies. Cross-correlations between 10-year run-
ning averages of the maximum northward volume transport
at our central latitude of 30◦ N or the commonly used lati-
tude of 40◦ N and our predictand are between r = 0.652 and
r = 0.870 and between r = 0.575 and r = 0.790 for all con-
sidered time periods, respectively. Both relationships asso-
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Figure 6. Time series of cross-correlations between 10-year running averages of the simulated upper branch of the Atlantic Meridional
Overturning Circulation (AMOC) and the future North Atlantic Cant* uptake (2090s) for our model ensemble. The upper branch of the
AMOC is expressed as accumulated northward volume transport between the surface and a lower depth boundary at a certain latitude. Panel
(a) shows results for 30◦ N and a varying lower depth boundary, while panel (b) shows results for a lower depth boundary of 500 m and
varying latitudes.

ciated with maximum AMOC strength yield weaker corre-
lations with the future North Atlantic Cant* uptake than the
northward volume transport within the mixed layer. When
studying the North Atlantic carbon sink, we hence propose
to rather focus on the northward volume transport within the
mixed layer at latitudes between 25 and 30◦ N.

3.2.2 Implications of the optimal areas of the winter
pCO2

sea anomaly

After having verified the plausibility of the optimal areas of
the winter pCO2

sea anomaly, we follow up on the twofold
goal of our regional optimization of emergent relationships.
Our optimal areas directly fulfil one part of our goal by in-
dicating key areas where a narrow observational uncertainty
is crucial for constraining future projections. With regards
to our second goal of identifying key model dynamics for
the emergent constraint, our plausibility analysis identified
the northward volume transport of a model to be the key
driver of the emergent constraint between the winter pCO2

sea

anomaly and future North Atlantic Cant* uptake, via govern-
ing its distributions of temperature, available nutrients, and
mixed-layer depths from low to high latitudes. Based on this,
we examine the emergent constraints of our regionally opti-
mized winter pCO2

sea anomaly (Fig. 5) for model inconsis-
tencies around these key model dynamics.

We find that all newly obtained constrained values for the
future North Atlantic Cant* uptake are consistent with each
other; i.e. the differences in the mean values are small, and
the uncertainties around the mean values ensure that the solu-
tions do not contradict each other (Fig. 5 and Table 1). Nev-
ertheless, the constrained mean values of the future North

Atlantic Cant* uptake based on the smallest optimal ellipse
or rectangle are consistently smaller than those based on the
largest optimal ellipse or rectangle (Fig. 5), which reach fur-
ther north (Fig. 4c and d). Similarly, areas positioned further
south (Fig. 5a and c) generally have models with lower fu-
ture North Atlantic Cant* uptake closer to their mean obser-
vational value of the pCO2

sea anomaly than those positioned
further north (Fig. 5b and d), equal to the observational con-
straint shifting further right within the model ensemble (from
Fig. 5a and c to Fig. 5b and d). Between the smallest and the
largest rectangles or ellipses, the observational mean value of
the winter pCO2

sea anomaly increases by 5.85 or 7.18 µatm,
respectively, while the average value of the winter pCO2

sea

anomaly of the four models that are within observational
uncertainty for all optimal areas only increased by 1.89 or
3.99 µatm, respectively. The seven remaining models show
an even smaller increase of 0.01 µatm or even a decrease of
0.73 µatm, respectively. This could indicate that the south–
north gradient of the winter pCO2

sea anomaly is not steep
enough in the model ensemble, i.e. that the modelled north-
wards propagation of related properties is too weak (this rela-
tionship is visualized for the winter pCO2

sea anomaly gradi-
ent between the southernmost and northernmost latitudes of
the smallest rectangle in Fig. S2 in the Supplement). How-
ever, the uncertainties around the observational estimates of
the winter pCO2

sea anomaly are large and do not allow us to
be certain about the observed south–north gradient and hence
potential discrepancies in the modelled south–north gradient.
We use observational estimates of the upper (0–500 m) North
Atlantic northward volume transport to further investigate a
potentially too-weak northward propagation (confirmed to be
a plausible predictor in Sect. 3.2.1), due to limited obser-
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vational availability only considered at 26.5◦ N and for the
time period 2005–2014 (see Appendix A). The transport val-
ues show that the northward propagation of the seven models
with the lowest future Cant* uptake is notably too weak but
that the upper-ocean northward transport of the four models
with the highest future Cant* uptake is within observational
uncertainties (see Fig. S1 in the Supplement). Yet, the model
ensemble shows diverse changes in this transport between
26◦ N and the latitudes of the optimal areas. Here, the trans-
port of the four models with the highest future Cant* uptake
shows an average increase of 1.86 Sv between 26 and 30◦ N,
and we find an average increase of 0.65 Sv for the remaining
seven models. Without an additional observational estimate
at 30◦ N (or another latitude of the optimal areas), we can-
not confirm or deny if the northward propagation of the four
best models is within observational bounds for our optimal
regions.

3.3 Optimal regions for the fractional Cant* storage
and associated new emergent constraints

In the case of cuboid solutions, all optimal areas identified by
the genetic algorithm for the contemporary fractional North
Atlantic Cant* storage (3D case) are placed in the western
part of the North Atlantic (Fig. 7c) with a common west-
ern boundary at 96◦W and southern boundaries at 19◦ N
(smallest cuboid) or 18◦ N (larger cuboids). Their northern
and eastern boundaries vary between 34 and 50◦ N as well as
61 and 31◦W, respectively, with larger cuboids reaching both
further north and east. With the given size requirements and
the grid point eligibility criterion (see Sect. 2.3), a placement
of the optimal cuboids further south is unlikely. We note that
the eligibility of grid points is considered per depth layer,
such that the illustrated depth-integrated values of the multi-
model standard deviation (Fig. 7b) only give a first indica-
tion of eligible points (non-eligible points are visualized per
depth layer in Figs. S5 and S6 in the Supplement). The ge-
netic algorithm identified the optimal depth ranges for the
cuboids to be 700–4700 m for the smallest cuboid as well
as 800–4900 m for the larger cuboids. Apart from the depth
range of 700–800 m, the optimal cuboids of larger volumes
are enclosing the optimal cuboids of smaller volumes. As
the cross-correlations between the simulated future North At-
lantic Cant* uptake and the fractional Cant* storage within the
optimal cuboids is also highest for the smallest cuboid (see
Sect. 3.1), we consider its enclosed volume to be central for
our emergent constraint.

The optimal depth ranges identified by the genetic algo-
rithm for the ellipsoids are 0–4800 m for the smallest and
0–5000 m for the medium-sized and the largest ellipsoid.
The surface positions of the vertical principal axis of the
smallest and the medium-sized ellipsoids are in the eastern
North Atlantic around 40◦ N, 25◦W, and they tilt in a south-
west direction with depth until being positioned in the west-
ern North Atlantic at around 25◦ N, 75◦W, for their deepest

points (Fig. 7d and e). Contrarily, the vertical principal axis
of the largest ellipsoid tilts in a north-eastern direction with
depth, and its position is already in the western North At-
lantic for its shallowest point (Fig. 7f).

To constrain our predictand, we spatially average the
fractional Cant* storage over each of our optimal regions
(Fig. 8). Our regionally optimized predictors lead to as-
sociated constrained estimates of the future North At-
lantic Cant* uptake with mean values between 0.55 and
0.79 PgCyr−1 (Fig. 8 and Table 1). In comparison, the un-
constrained estimate of the future North Atlantic Cant* uptake
is 0.5± 0.23 PgCyr−1, and the original emergent constraint
corrected this to 0.64± 0.26 PgCyr−1.

Before we follow up on our twofold goal associated
with the regional optimization of this emergent relationship,
we follow the same approach as for the 2D case and in-
vestigate the plausibility of the optimal areas found first
(Sect. 3.3.1) and only subsequently report on our twofold
goal (Sect. 3.3.2). However, there is a close relation between
our investigation of the plausibility of the optimal regions
and our goal of identifying key model dynamics for the emer-
gent constraint.

3.3.1 Plausibility of the optimal areas for the fractional
Cant* storage

We find that all three optimal cuboids cover the same cen-
tral area between 19–34◦ N, 96–61◦W, and 800 and 4700 m,
such that the high correlation between the predictor spatially
averaged over the optimal cuboids and the predictand are less
likely to be spurious. Similarly, all optimal ellipsoids appear
to cover the relatively slow and broad interior pathway west
of the North Atlantic for ocean depths below 1000 m, yet the
similarity of the optimal ellipsoids is more difficult to es-
tablish. To confirm the plausibility of our optimal areas, we
hence investigate the physical explanation for the regionally
optimized emergent constraint.

Our identified optimal regions for the predictor point out
key regions, where the simulated differences in the fractional
North Atlantic Cant* storage are especially well related to a
model’s future North Atlantic Cant* uptake. The contempo-
rary fractional North Atlantic Cant* storage is a measure for
the efficiency of carbon sequestration (Goris et al., 2018),
which reflects not only the strength of high-latitude deep con-
vection and sinking organic particles, but also of southward
volume transport of Cant* at deeper ocean depths. This fea-
ture is tightly related to our predictand, the future North At-
lantic Cant* uptake, as the pathways of carbon sequestration
ultimately determine how much Cant* storage is efficiently
removed from the high-latitude North Atlantic ocean sur-
face and hence how much Cant* can subsequently be taken
up across the air–sea interface. Here, a more efficient carbon
sequestration, i.e. less storage of Cant* at shallower depths
and more storage in the deeper ocean, leads to the potential
for more Cant* uptake in a high-CO2 future. We hence expect
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Figure 7. Contemporary fraction of the North Atlantic Cant* and associated optimal regions as identified by the genetic algorithm. For
the depth-integrated contemporary fraction of the North Atlantic Cant* of our considered model ensemble, panel (a) illustrates the multi-
model mean, while panel (b) displays the multi-model standard deviation. Panels (c–f) display the optimal regions identified by the genetic
algorithm on top of the multi-model standard deviation (here with an added transparency of 70 %). Optimal regions are visualized according
to shapes, with panel (c) visualizing cuboids with volume sizes of 10 %–20 % (dark-lilac lines), 20 %–30 % (light-lilac lines), and 30 %–40 %
(pink lines) of the North Atlantic. Panels (d–f) visualize ellipsoids of different volumes via illustration of their mid-points (dots) and outlines
for the depth planes 500–660 (continuous line), 2500–2600 (long dashed line), and 4500–4600 m (dashed line) and their depth-following
principal axis (line connecting the mid-points). In panels (d) and (e), the midpoint of the surface plane is additionally illustrated.

our optimal regions to be a reflection of important carbon
sequestration pathways.

As the ellipsoids can be tilted within the water volume,
the associated optimal regions have the option to follow wa-
ter masses more closely. Their optimal solutions allow us to
visually quantify if the reasoning of the predictor being a
measure of pathways of carbon sequestration (Goris et al.,
2018) holds. While the placements of the optimal ellipsoids
in shallower ocean layers are still influenced by mixed-layer
dynamics, and the pathways of carbon sequestration are dif-
ficult to identify, the optimal ellipsoids are placed in central

areas of the simulated fractional Cant* storage pathways for
deeper layers. We note that the spatial gradients of the frac-
tional Cant* storage multi-model mean (displayed for differ-
ent depths in Figs. S3 and S4 in the Supplement) are con-
sistent with the theory that the deeper and southward branch
of the North Atlantic volume transport can be divided into
(i) a fast and narrow boundary pathway and (ii) a relatively
slow and broad interior pathway west of the North Atlantic
ridge (Gary et al., 2011, and references therein). However,
the multi-model standard deviation of the fractional Cant*
storage as displayed in Fig. 7b (and additionally displayed for
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Figure 8. Illustration of emergent constraints between different realizations of the regionally optimized Cant* fraction (predictor) for the years
1997–2007 and the future North Atlantic Cant* uptake (predictand) for the years 2090–2099 for our model ensemble. Emergent constraints
for optimal regions of different volume size conditions in the shape of cuboids are visualized in panels (a) and (b) (C1: 10 %–20 % of the
considered volume; C3: 30 %–40 % of the considered volume), while those in the shape of ellipsoids are visualized in panels (c) and (d) (E1:
10 %–20 % of the considered volume; E3: 30 %–40 % of the considered volume). All panels show scatterplots (colour coding of models as
in Fig. 1), best fit linear regression (R1/E1: lilac line; R3/E3: pink line) including the interval of the 68 % projection uncertainty (R1/E1: lilac
shading; R3/E3: pink shading), cross-correlations between simulated predictor and predictand, and mean observational constraints and their
uncertainties (dashed brown lines and light-brown shading). Associated estimate for the unconstrained model ensemble (dashed grey bars),
the original emergent constraint (grey bars), and the regionally optimized emergent constraint (lilac/pink bars) are shown on the right side of
the panels. See Appendix A for a detailed description of the considered observational estimates.

different depths in Figs. S5 and S6) indicates that the models
do not agree on the strength of this southward transport, for
neither its slow nor its fast component. For ocean depths be-
low 1000 m, the optimal ellipsoids consistently point towards
the areas of the relatively slow and broad interior pathway
west of the North Atlantic ridge with both high fractional
Cant* storage multi-model mean values and standard devia-
tions. We hence consider the optimal ellipsoids to be in ac-
cordance with the previous reasoning of Goris et al. (2018),
though we note that it was difficult to relate the ellipsoid
shapes to physical meaning.

The cuboid solutions are implemented in a way that pre-
vents them from being tilted within the water volume, and
they hence cannot follow the Cant* sequestration pathway
as closely as the ellipsoid solutions. All optimal cuboids
seem to point roughly towards the southernmost points that
the relatively slow and broad interior southward transport of
Cant* reaches, though the narrow and fast southward trans-
port of Cant* reaches further south (both are indicated through

the horizontal gradient in the fractional Cant* storage multi-
model mean as illustrated in Figs. 7b, S3, and S4). This
placement seems to support our argument that the optimal
cuboid solutions capture the influence of the transport path-
ways of the carbon sequestration.

As previously done in the 2D case, we support our argu-
ment with respect to the optimal cuboids with additional cal-
culations. Here, we calculate cross-correlations between our
predictand and the streamfunction volume transport at 26◦ N
(see Appendix B), as this is the latitudinal mid-point of the
smallest cuboid and hence a central latitude of our identified
optimal cuboids. To validate the depth boundaries identified
by the smallest and central cuboid, we set one boundary of
the volume transport to be one of the identified depth bound-
aries of the cuboid, while we vary the other depth boundary
(Fig. 9a and b). Cross-correlations between 10-year running
averages of the accumulated volume transport in different
depth ranges at 26◦ N and our predictand show that cross-
correlations are highest for the accumulated southward vol-
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ume transport between 900–4700 m when varying the upper
depth boundary (Fig. 9a) and between 700–5300 m (or even
deeper) when varying the lower depth boundary (Fig. 9b).
While this seems to indicate that the depth boundaries of the
cuboids are not optimal, we note that the cross-correlations
obtained for upper depth boundaries of 900 and 700 m are
relatively similar, and a strong decline in cross-correlations
only appears for an upper depth boundary above 500 m.
Moreover, the Cant* southward transport is strongly influ-
enced by the amount of Cant* that is available for transport
in a specific depth layer, and while the lower depth boundary
of 5300 m reaches higher cross-correlations between 10-year
running averages of the southward volume transport and the
predictand, the amount of Cant* that can be transported in
these deep depth layers is negligible. Additionally, there are
no eligible grid points in these very deep layers.

When considering the streamfunction volume transport
within the depth boundaries given by the smallest optimal
cuboid and varying its latitudes (Fig. 9c), we find that the
10-year running averages of volume transport at the identi-
fied mid-latitude of the smallest cuboid offers significantly
higher cross-correlations with our predictand than the vol-
ume transport further north. This points towards the opti-
mal cuboids capturing an important latitude of the south-
ward interior Cant* transport. However, the volume trans-
port south of the cuboid’s placements offers slightly higher
cross-correlations with the predictand. Yet, at these latitudes
south of our cuboids, the amount of deep Cant* storage avail-
able for southward transport is small, and there are more-
over very few eligible grid points at these latitudes. Under
the conditions given to the genetic algorithm, the identi-
fied depth ranges and latitudes hence seem plausible. Cross-
correlations between our predictand and 10-year running av-
erages of the southward volume transport at the identified
depth ranges and latitudinal mid-point of the smallest cuboid
are between r = 0.690 and r = 0.859 for all time periods and
r = 0.771 for the analysed time period 1997–2007. The iden-
tified cross-correlations indicate a strong link between south-
ward volume transport and our predictand and hence verify
its plausibility. We note, however, that the fractional Cant*
storage offers a better relationship with our predictand than
the southward volume transport. This comes as no surprise
as the depth distribution of the Cant* storage plays a big role
in its southward transport.

3.3.2 Implications based on the optimal areas of the
fractional Cant* storage

In order to get a more certain estimate of the future North
Atlantic Cant* uptake, a reduction in the observational un-
certainty in the Cant* storage within our optimal areas would
be highly valuable. Yet, it might be operationally more chal-
lenging to encompass the optimal ellipsoids during a cruise,
while the optimal cuboids might be represented with obser-
vations more easily.

Our optimized emergent constraints can moreover inform
us about model inconsistencies within key dynamical fea-
tures. For the smallest and medium-sized ellipsoids, the ob-
servational uncertainty does not allow for constraining the
solution further (see Fig. 8c for the smallest ellipsoid). For
the largest ellipsoid and the optimal cuboids, we find that
all newly obtained constrained values for the future North
Atlantic Cant* uptake are consistent with each other, i.e. the
solutions do not contradict each other (Fig. 8a, b, and d and
Table 1). Nevertheless, the constrained mean values of the fu-
ture North Atlantic Cant* uptake based on the optimal cuboids
and the largest ellipsoid are consistently smaller than that of
the original emergent constraint and offer a reduced uncer-
tainty. Especially for the optimal cuboids, the regional opti-
mization leads to a narrowing down of our ensemble of well-
performing models from five models (original emergent con-
straint) to three models (largest optimal cuboid) and finally
down to two models (smallest optimal cuboid).

4 Discussion

With a multitude of model projections available from several
scenarios and model generations, the desire to decrease the
related model uncertainty based on a process-based under-
standing has increased. In this context, the concept of emer-
gent constraint appears to be highly valuable and has be-
come increasingly popular in recent years. Yet, the method
has also attracted a lot of criticism relating to, among other
things, the non-valid Gaussian assumption for the model
ensemble, relationships between predictors and predictands
that occur without any physical meaning behind them (Cald-
well et al., 2014), non-robust emergent constraints that are
not valid across different scenarios and model ensembles,
the assumption of linearity between predictor and predic-
tand (Williamson and Sansom, 2019, who include a solution
for testing the linearity assumption), and most prominently
the criticism that the linear relationship of averaged values
overly simplifies the complex interactions of many compo-
nents and feedbacks (Schlund et al., 2020; Williamson and
Sansom, 2019). Our study relates to the last point, but in a
manner not previously discussed: we advance the view that
it is overly simplified to compare a regional average of the
predictor (as often done in emergent constraints) to a region-
ally averaged observational value. We use regionally opti-
mized emergent constraints to show that this course of ac-
tion might deem a model to be “fit” in the context of an
emergent constraint but disregards that some aspects of the
model’s spatial distribution of the predictor within the con-
sidered region might be a misfit. Yet, the spatial distribution
is of high importance for dynamical predictors that capture or
rely on, for example, a transport from north to south. Here,
the north–south distribution of the predictor is in fact an ex-
pression of its dynamical correctness. The spatial distribution
is moreover especially important for predictands that are not
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Figure 9. Time series of cross-correlations between 10-year running averages of the simulated lower branch of the Atlantic Meridional
Overturning Circulation (AMOC) and the future North Atlantic Cant* uptake (2090s) for our model ensemble. The lower branch of the
AMOC is expressed as accumulated southward volume transport between a higher depth boundary and a lower depth boundary at a certain
latitude. Panel (a) shows results for 26◦ N, a lower depth boundary at 4700 m, and a varying higher depth boundary, while panel (b) shows
results for 26◦ N, a higher depth boundary at 700 m, and a varying lower depth boundary, and panel (c) shows results for a higher depth
boundary at 700 m, a lower depth boundary at 4700 m, and varying latitudes.

evenly distributed within the considered region like the fu-
ture North Atlantic Cant* uptake. This predictand has sub-
stantially higher Cant* uptake at higher latitudes such that
a misfit in the north–south gradient of the winter pCO2

sea

anomaly will have consequences for the correctness of the
constrained value. While it can be argued that a potentially
easy approach to solve this problem is to additionally eval-
uate the spatial gradient of the predictor within the consid-
ered area (not done here), we note that not all parts of the
considered region might be equally important for the consid-
ered emergent constraint. Our regionally optimized emergent
constraints point towards key areas for the emergent con-
straints (in terms of the predictor) and hence do reveal po-
tential spatial mismatches only for highly important areas for
the emergent constraint. Moreover, the identification of these
key areas also allows us to uncover key dynamics behind the
emergent constraint. We hence find our regionally optimized
emergent constraints superior to a simple gradient analysis
and recommend using it.

Regionally optimized emergent constraints can be applied
to create new estimates of the predictand, which are poten-

tially inconsistent with those of the original emergent con-
straint or with each other. In a review of emergent constraints,
Williamson et al. (2021) noted that highly related predic-
tors with different predictand estimates indicate (i) persistent
measurement biases and/or (ii) that the real world may not
be sharing the same responses as the models and hence that a
persistent error across the model ensemble exists. Our anal-
ysis does not consider the possibility of measurement biases
as this is beyond the goal of our study. Yet, we restrict mea-
surement biases from playing a big role by assuming mea-
surement errors generously. We hence use our regionally op-
timized emergent constraints to investigate potential incon-
sistencies within the model ensemble. In our case study, we
note a potential model inconsistency for our first predictor,
the winter pCO2

sea anomaly, indicating that the south–north
gradient of the model ensemble is not steep enough; i.e. the
modelled northwards propagation of related properties is too
weak (see Sect. 3.2.2). However, the uncertainties around the
observational estimates of the winter pCO2

sea anomaly are
large and do not allow us to be certain about this. We do
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not detect model inconsistencies for our second predictor, the
fractional Cant* storage (see Sect. 3.3.2).

In our case study, both considered predictors are highly
related to each other and can therefore further be used to
inform about inconsistencies between the simulated upper-
and interior-ocean transport in terms of Cant*. This is due to
the fact that (i) the strength of the northward AMOC volume
transport in the upper 500 m drives the upper-ocean proper-
ties in the high-latitude North Atlantic and hence the winter
pCO2

sea anomaly (see Sect. 3.2.1), and concurrently, (ii) the
strength of the southward AMOC volume transport in the in-
terior ocean drives the effectiveness of surface-to-deep Cant*
transport (see Sect. 3.3.1). Both parts are connected as the
strength of the northward AMOC volume transport (i.e. the
upper branch of the AMOC) is highly related to the strength
of the southward AMOC volume transport (i.e. its lower
branch). Specifically, the upper branch of the AMOC trans-
ports warm waters from the low-latitude to the high-latitude
North Atlantic, thereby releasing heat to the atmosphere (e.g.
Rhein et al., 2011). Upon losing its heat, the water becomes
denser and sinks. This densification links the warm, surface
branch with the cold, deep return branch at regions of deep
convection in the Nordic and Labrador seas. For the Atlantic
north of 26◦ N, volume conservation dictates that, for con-
stant sea level, the net northward flow of upper waters bal-
ances the southward flow of deeper waters with a tolerance
of 1 Sv (McCarthy et al., 2015) such that there is a direct link
between the upper and lower branch of the AMOC, driving
both our predictors and the predictand.

When dividing our newly constrained estimates into those
associated with the upper ocean (0–500 m depth, i.e. those
related to optimal rectangles and ellipses) and those of the
deep ocean (below 500 m depth, i.e. those related to opti-
mal cuboids), it can readily be seen that our observational
constraints for the upper-ocean predictors are systematically
identifying models with a higher future North Atlantic Cant*
uptake to be better performing than those for the deep-ocean
predictors (Figs. 5 and 8a and b, Table 1). This is also re-
flected in our constrained mean values, which are 0.09–
0.16 PgCyr−1 higher for the regionally optimized winter
pCO2

sea anomaly than for the regionally optimized cuboids
(see Table 1), and indicates a mismatch between the prop-
agation from the upper ocean to the deep ocean for some
of the models. We note that this is also confirmed for the
optimal ellipsoids, where both the smallest and medium-
sized ellipsoids have a higher volume in the upper ocean
(25 % and 19 % of their volumes are above 1000 m depth, re-
spectively) and higher constrained mean values of the future
North Atlantic Cant* uptake than the largest ellipsoid, with
only 6 % of its volume above 1000 m. Based on our plausi-
bility analysis for the optimal areas for the upper and deep
ocean (Sects. 3.2.1 and 3.3.1), we found that the upper (0–
500 m) North Atlantic northward volume transport at 30◦ N
(2D case) and the deep (700–4700 m) North Atlantic south-
ward volume transport at 26◦ N (3D case) are also plausi-

ble predictors for the future North Atlantic Cant* uptake and
can be utilized to confirm this potential mismatch. Due to the
limited observational availability, we only consider these vol-
ume transports at 26.5◦ N and for the time period 2005–2014.
The resulting emergent constraints (see Figs. S1 and S7 in
the Supplement) confirm the assumed mismatch, identifying
several models which are only well performing for one of the
volume transport constraints. Only one model is able to per-
form well for all considered upper- and deep-ocean emergent
constraints (CESM1-BGC; Figs. 5, 8, S1, and S7).

For both upper-ocean and deep-ocean constraints, the
AMOC observations come with lower observational uncer-
tainty, yet the AMOC represents a purely physical constraint
such that we consider the biogeochemical constraints to be
more closely related to the North Atlantic Cant* uptake and
hence more plausible. This is reflected in the fact that they
also offer very similar or higher correlations with the North
Atlantic Cant* uptake when compared to the AMOC con-
straints in the same ocean depth range. A lower observational
uncertainty in the biogeochemical constraints would hence
be of high value.

5 Summary and conclusions

We applied a genetic algorithm to regionally optimize emer-
gent relationships with the twofold goal to (a) identify key
model dynamics for the emergent constraint and model in-
consistencies around them and (b) provide key areas where
a narrow observational uncertainty is crucial for constraining
future projections. We base the need for regional optimiza-
tion on the fact that emergent constraints are often related
to dynamical features inherently coupled to spatial distribu-
tions. Hence, model performance of this dynamic cannot be
captured by one single averaged value, as is usually done for
emergent constraints. As a case study to illustrate the use-
fulness of regional optimization, we consider two previously
established emergent constraints of the future carbon uptake
in the North Atlantic (Goris et al., 2018). The predictors of
these emergent constraints are (i) the contemporary winter
pCO2

sea anomaly, which is a surface quantity (2D case), and
(ii) the fraction of the North Atlantic Cant* storage, which is a
surface-to-interior-ocean quantity (3D case). Both predictors
relate to a model’s ability to efficiently remove Cant* from the
surface into the deep ocean.

The genetic algorithm was primarily adopted to find opti-
mal regions for both predictors, such that cross-correlations
between the regionally optimized predictor values and pre-
dictand values are maximized. As emergent constraints are
utilized to constrain the model spread, we only allowed the
genetic algorithm to consider grid points where the multi-
model standard deviation of the simulated predictors was
larger than average. For the regional optimization, we pre-
defined a suite of different shapes and size ranges, such that
the genetic algorithm had to identify optimal ellipses and
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rectangles for the 2D case and optimal ellipsoids and cuboids
for the 3D case with different sizes and volumes. Our con-
sideration of different geometrical shapes and area sizes al-
lows us to inspect in more detail where key regions for the
model performance are, to determine if the simulated results
for each of these regions are consistent with each other, and
to avoid spurious relationships.

Our results indicate that the genetic algorithm converges
quickly for rectangles, ellipses, and cuboids and slower for
ellipsoids. After 100 iterations, the optimal solutions of the
genetic algorithm provided higher cross-correlations than the
original emergent constraints. The regional solutions of the
2D case have cross-correlations between 0.848 and 0.863,
that is 0.058–0.093 higher than that of the original emergent
constraint of 0.79. The regional solutions of the 3D case have
cross-correlations between 0.966 and 0.987 and offered an
improvement of 0.026–0.047 in comparison to that of the
original emergent constraint of 0.94. The optimal predictor
regions identify the Gulf Stream area at around 30◦ N to be
central for our emergent constraint (2D case) as well as the
region of the interior-ocean pathway of the southward vol-
ume transport (3D case). Before following up on our twofold
goal of the regional optimization, we investigated the plausi-
bility of the newly identified optimal areas. The Gulf Stream
is fundamental in transporting heat and nutrients to the north
and is therefore key in determining a model’s mixed-layer
depth as well as its productivity at high latitudes and hence
its Cant* uptake. The interior-ocean southward volume trans-
port is fundamental for transporting Cant*-saturated surface
water masses to the deep ocean, hence allowing for further
high-latitude Cant* uptake. These dynamical justifications led
to the detection of two additional qualified predictors of the
future North Atlantic Cant* uptake: the upper-ocean north-
ward volume transport between the surface and 500 m depth
at 30◦ N and the deep-ocean southward volume transport be-
tween 700 and 4700 m at 26◦ N. We note that the commonly
used depth range of the northward maximum volume trans-
port (surface to depth of maximum) did not allow for such
high cross-correlations, at neither 26◦ N nor 40◦ N. This indi-
cates that the relation of maximum northward volume trans-
port to the ocean carbon sink is not as robust as often as-
sumed in modelling studies.

After this confirmation of the plausibility of the optimal
areas, we used the regionally optimized emergent constraints
to better understand the modelled dynamics of the predictors
and potential inconsistencies around them. Though a typi-
cal emergent constraint should already have a solid physi-
cal background, its predictor is usually averaged over a large
area such that the optimal areas found by the algorithm help
to refine this knowledge. Our regional optimization and the
newly identified emergent constraints point us towards the
fact that a correct simulation of the upper-ocean and interior-
ocean volume transport is fundamental for a correct estimate
of the future North Atlantic Cant* uptake. However, our re-
sults indicate that most models that perform well for the

upper-ocean volume transport do not perform well for the
interior-ocean volume transport and that most of the con-
sidered models do not capture the south–north gradient of
the upper-ocean northward volume transport well. It is ques-
tionable if a model that simulates the average upper-ocean
northward volume transport within observational constraints
but not the related dynamical features like the south–north or
vertical gradient of that transport can be considered a well-
performing model. In future studies, we henceforth advise
combining the average values of the emergent constraint with
a measure of spatial performance relating to the dynamical
feature in question.

Though invaluable progress has been made through auto-
mated observational platforms like Argo (Argo, 2000) and
analysis tools like ESMValTool (Eyring et al., 2016b), ob-
servational networks and analyses of model projections are
not growing at the same speed. Here, our regional optimiza-
tion of existing emergent constraints can be used to guide
future monitoring strategies. We show this for the North At-
lantic, where our results point towards the already employed
RAPID array and prove that the genetic algorithm is able
to provide meaningful results. We note, however, that the
RAPID array takes purely physical observations, though our
localized emergent constraints show that additional measures
of carbon storage would fundamentally improve our under-
standing of the Cant* uptake in the North Atlantic.

To our knowledge, this is the first time that a regional op-
timization of emergent constraints has been carried out. The
results are of high value as the use of emergent constraints
in the realm of climate projections has gained a lot of mo-
mentum in the last decade (see Williamson et al., 2021, for a
review of existing emergent constraints for climate sensitiv-
ities) due to the fast-growing number of models taking part
in coordinated model exercises associated with future projec-
tions (e.g. Balaji et al., 2018). Here, a regional optimization
can be valuable to identify model inconsistencies in terms of
spatial gradients and at the same time to point towards ar-
eas where a reduction in observational uncertainties is most
useful.

Appendix A: Observational estimates

For observational estimates of the contemporary winter
pCO2

sea anomaly (depicted in Figs. 1b and 5), we utilized
a neural-network-based interpolated pCO2

sea product (Land-
schützer et al., 2017, https://doi.org/10.7289/v5z899n6, ver-
sion 2.2). Specifically, we calculated the contemporary win-
ter pCO2

sea anomaly as a decadal average based on the
“spco2_smoothed” variable for the years 1990–1999. We
note that it would have been possible to focus on other time
frames. However, we decided to consider the same time
frames as in Goris et al. (2018) so that an easy compari-
son of previous and new results is possible. As the utilized
pCO2

sea database does not include an error estimate, we uti-
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lize the error estimate of the supplementary information of
Landschützer et al. (2018), where the neural-network prod-
uct is analysed for seasonal-mean biases for four broad lat-
itudinal bands. Results for summer and winter biases of the
data product for the latitudinal bands of 10–40◦ N and 40–
65◦ N show that the biases are randomly spread around 0 but
do show substantial variability. We apply the largest detected
seasonal bias of these latitudinal bands of about ±14 µatm
as our uncertainty range of the observational estimate of the
contemporary winter pCO2

sea anomaly.
For observational estimates of the contemporary fractional

Cant* storage (depicted in Figs. 1d and 8), a mapped clima-
tology of anthropogenic carbon (Cant) has been used (Lau-
vset et al., 2016, https://doi.org/10.7289/v5kw5d97, version
GLODAPv2.2016, mapped). We note that there is a differ-
ence between this data product and our modelled estimates as
the data product describes Cant, and the modelled estimates
describe Cant*, i.e. a combination of the anthropogenic com-
ponent of the carbon cycle combined with climate-change-
induced differences. Yet, for the time span of the histori-
cal simulation, the climate-change-induced differences are
small, and it is possible to use Cant as an approximation
of Cant* (Frölicher et al., 2015). The observation-based data
product of the Cant storage is normalized to the year 2002.
We therefore compare it to the simulated fractional Cant*
storage in the time frame 1997–2007, abbreviated as 1997s.
For conversion of the data product from micromoles per kilo-
gramme to petagrammes of carbon, we utilized a mean ocean
standard density of 1036 kgm−3(Pawlowicz, 2013). Further-
more, we linearly interpolated the data product onto the con-
sidered depth levels. Though the data product includes es-
timates of a mapping error, a comprehensive error estimate
containing observational, methodological, and mapping er-
ror is not available. Lacking such an estimate, we follow the
approach of Goris et al. (2018) and use an error estimate of
±10 % for the observational estimate of the fractional Cant
storage below 1000 m accumulated over the whole North At-
lantic (Fig. 1d). In order to get an error estimate for the frac-
tional Cant storage within our optimal cuboids and ellipsoids,
we utilize the error estimate of ±29 % for the Cant storage
of the North Atlantic (Steinfeldt et al., 2009). The simple as-
sumption of an error of 29 % for every grid point leads to
the same factor in numerator and denominator and results in
an error estimate of zero for the fractional Cant storage. Only
a spatially heterogeneously distributed error in the Cant stor-
age leads to a non-zero error estimate for the fractional Cant
storage. As such an error estimate is missing, we simply as-
sume an error of ±29 % within our optimal areas but assume
no error for other grid points of the North Atlantic, which
are taken into account to build the fractional measure. When
assuming an error of ±29 % for the Cant values within our
largest optimal cuboid, we obtain an error of +3.78 % and
−4.12 % for the fractional Cant storage. In order to obtain
an evenly distributed error around the mean value, we chose
the error value larger in absolute values, yielding an error of

±4.12 % for the largest cuboid. We follow the same proce-
dure for the other optimal volumes.

For observational estimates of the contemporary strength
of northward and southward volume transport (depicted in
Figs. S1 and S7), data from the RAPID-Meridional Overturn-
ing Circulation and Heatflux Array-Western Boundary Time
Series array at 26◦ N have been employed (Frajka-Williams
et al., 2021, https://doi.org/10/gwqg). RAPID observations
are only available from April 2004 onward, though our ap-
plication of the genetic algorithm considers the years 1990–
1999 (2D case) and 1997–2007 (3D case) for our regional
optimization. Due to lacking observations in the time frames
of interest, we build a decadal average of the observations of
the AMOC streamfunction profile for the years 2005–2014.
When needing to access accumulations of the streamfunction
over differing depth ranges with boundaries at the surface
and at 500, 700, and 4700 m, we utilize the observed depths
that are closest to these boundaries, i.e. surface and 496,
694, and 4696 m. We consider these depth values to be close
enough to the desired boundaries such that no interpolation
is necessary. Annual error estimates between 0.9 and 1.3 Sv
are given for maximum northward transport estimates of the
years 2004 to 2014 (https://rapid.ac.uk/rapidmoc/rapid_data/
README_ERROR.pdf, last access: November 2021). We
employ the estimate of 1.3 Sv as our observational error es-
timate. We note, however, that we do not utilize the maxi-
mum northward volume transport estimate directly but ac-
cumulate differing depths of the streamfunction profile. This
might lead to the error estimate being imprecise.

Appendix B: Streamfunction values for our CMIP5
ensemble

Several of the models considered here did not provide the
Atlantic Meridional Overturning Circulation to the CMIP5
database. Therefore, we utilized AMOC streamfunction val-
ues calculated with monthly mean meridional currents as de-
scribed in Mecking et al. (2017).

Code and data availability. The code of the genetic algorithm in-
cluding the relevant input and output data is available through Jo-
hannsen (2022a, https://doi.org/10.5281/zenodo.7037947) and Jo-
hannsen (2022b, https://doi.org/10.5281/zenodo.7037981) for our
North Atlantic 2D and 3D case study, respectively.
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line at: https://doi.org/10.5194/gmd-16-2095-2023-supplement.
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