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Abstract. Bias correction (BC) is often a necessity to im-
prove the applicability of global and regional climate model
(GCM and RCM, respectively) outputs to impact assessment
studies, which usually depend on multiple potentially depen-
dent variables. To date, various BC methods have been de-
veloped which adjust climate variables separately (univari-
ate BC) or jointly (multivariate BC) prior to their application
in impact studies (i.e., the component-wise approach). An-
other possible approach is to first calculate the multivariate
hazard index from the original, biased simulations and bias-
correct the impact model output or index itself using uni-
variate methods (direct approach). This has the advantage of
circumventing the difficulties associated with correcting the
inter-variable dependence of climate variables which is not
considered by univariate BC methods.

Using a multivariate drought index (i.e., standardized pre-
cipitation evapotranspiration index — SPEI) as an exam-
ple, the present study compares different state-of-the-art BC
methods (univariate and multivariate) and BC approaches
(direct and component-wise) applied to climate model sim-
ulations stemming from different experiments at different
spatial resolutions (namely Coordinated Regional Climate
Downscaling Experiment (CORDEX), CORDEX Coordi-
nated Output for Regional Evaluations (CORDEX-CORE),
and 6th Coupled Intercomparison Project (CMIP6)). The
BC methods are calibrated and evaluated over the same
historical period (1986-2005). The proposed framework is
demonstrated as a case study over a transboundary water-
shed, i.e., the Upper Jhelum Basin (UJB) in the Western Hi-
malayas.

Results show that (1) there is some added value of multi-
variate BC methods over the univariate methods in adjusting
the inter-variable relationship; however, comparable perfor-
mance is found for SPEI indices. (2) The best-performing
BC methods exhibit a comparable performance under both
approaches with a slightly better performance for the di-
rect approach. (3) The added value of the high-resolution
experiments (CORDEX-CORE) compared to their coarser-
resolution counterparts (CORDEX) is not apparent in this
study.

1 Introduction

Weather and climate-related extreme events (floods,
droughts, heat waves, storms, etc.) that arise from complex
interactions of various physical processes across multiple
scales in space and time are projected to be amplified under
global warming conditions and thus are expected to create
huge societal and ecological impacts (Kopp et al., 2017;
Zscheischler et al., 2018; Raymond et al., 2020; Zscheischler
et al., 2020). Such projected climate assessments are usually
undertaken using impact models or hazard indices under
different global warming scenarios. Those hazard indices
and impact models have been developed according to the
needs of different sectors, and they are usually based on one
or more essential climate variables (ECVs). For instance,
maximum consecutive 5d precipitation and the number of
days with minimum temperature above 20°C rely on one
ECV only, i.e., precipitation and temperature, respectively,
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while some require more complex calculations (e.g., the river
flow index using runoff based on the results of hydrological
model simulations).

Several studies employ such indices and impact models for
the assessment of the sectorial impacts of climate change:
for instance, drought indices (standardized precipitation in-
dex — SPI — and standardized precipitation evapotranspira-
tion index — SPEI) with implications in water-related sec-
tors, especially agriculture, hydrology, and water manage-
ment (Maru et al., 2022; Ansari and Grossi, 2022); snow in-
dices (snow days and mean winter snow depth) in the con-
text of water management, ecology, tourism, or road mainte-
nance (Schmucki et al., 2017); and river flow indices (100-
year return level of daily high streamflow and 10-year re-
turn level of 7d average low streamflow) for reservoir op-
eration, energy production, flood and drought management
(Naz et al., 2018), etc. To assess the climate change impacts
through such indices or any impact models, there is the need
to have good-quality observations and an adequate number
of climate model simulations to characterize uncertainties at
sufficiently high resolution to provide tailored regional to lo-
cal climate information for impact assessments.

Global climate models (GCMs), which are the major
source of knowledge about future climate change, represent a
substantially simplified form of physical processes connect-
ing the atmosphere, ocean, sea ice, land surface, and bio-
geochemical system. However, they typically present sys-
tematic biases with respect to observations (Christensen et
al., 2008). These biases may be due to the temporal and
spatial discretization (Teutschbein and Seibert, 2012), im-
perfect and unresolved representation of basic physical pro-
cesses (Stevens and Bony, 2013), and parametrizations of un-
resolved subgrid-scale processes (cloud formation, tempera-
ture inversion, convection, precipitation, etc.). Even though
regional climate models (RCMs) improve the representa-
tion of regional-scale processes to some extent, their hori-
zontal resolution is still coarser than that required for im-
pact studies, and additionally they suffer from substantial
biases, partly inherited from the driving GCMs (Maraun et
al., 2017). The use of raw GCM and RCM output for sub-
sequent impact studies without any post-processing could
lead to biased adaptation decisions for the foreseeable fu-
ture (Piani et al., 2010; Haerter et al., 2011; Argiieso et al.,
2013). Nowadays global models from the 6th Coupled In-
tercomparison Project (CMIP6; Eyring et al., 2016) and re-
gional counterparts from the Coordinated Regional Down-
scaling Experiment (CORDEX; Giorgi et al., 2009; Jones,
2010) constitute the state-of-the-art simulations for global
and regional climate, respectively. Within CORDEX, stan-
dard simulations are developed on a 0.44° x 0.44° grid (ap-
proximately 50 x 50 km) for many spatially distributed do-
mains, and, more recently, the CORDEX Coordinated Out-
put for Regional Evaluations (CORDEX-CORE; Teichmann
et al., 2021) provides a reduced set of models on a higher-
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resolution grid (approx. 25 x 25km) covering most of the
continental domains.

Bias correction (BC, also known as bias adjustment)
is commonly applied to climate model output as a post-
processing step to render climate model output more useful
for climate impact studies. Over the recent years, a number of
bias correction methods have been developed, varying from
simple adjustments of the mean to correction of all quan-
tiles, either univariate or multivariate and trend-preserving
or not. These methods can only reduce systematic biases re-
sulting from subgrid-scale parameterizations and unresolved
orography under the current climate, but their efficiency is
constrained by the misrepresentation of basic physical pro-
cesses in the models, such as large-scale atmospheric circu-
lation (Eden et al., 2012; Addor et al., 2016; Maraun et al.,
2017). Further, BC constitutes an additional source of un-
certainty in century-long climate change projections when
applied under the stationarity (time invariance) assumption
(Christensen et al., 2008; Ehret et al., 2012) and thus may in-
duce physically implausible future climate signals (Maraun
et al., 2017). Since BC might introduce inconsistencies in
the bias-corrected data, considerable attention should be paid
towards its evaluation not only in terms of simulated sta-
tistical moments but also regarding trend preservation and
inter-variable physical coherence. The latter is especially im-
portant for any climate index or impact model whose cal-
culation depends on more than one variable (e.g., multivari-
ate drought indices, fire weather indices, ecological and hy-
drological models). For example, the physical coherence be-
tween precipitation and temperature determines the available
water for evaporation over arid and tropical watersheds and
affects the snow accumulation and melting processes (Chen
et al., 2018; Guo et al., 2020).

The physical coherence among several meteorological
variables and their dynamic nature in the projected cli-
mate have been increasingly discussed under the BC frame-
work. Contrasting reviews are found in literature. Various
researchers advocate the use of multivariate BC methods
to reconstruct the inter-variable coherence of the observa-
tions to the simulated climatic data (Zscheischler et al., 2019;
Francois et al., 2020; Guo et al., 2020). For instance, Frangois
et al. (2020) report the added value of multivariate BC meth-
ods over univariate ones and conclude that the choice of the
BC method should be based on the end user’s goal. Con-
versely, Rity et al. (2018) find that the univariate and multi-
variate methods perform similarly, while Wilcke et al. (2013)
show that univariate bias adjustment is able to retain the qual-
ity of the temporal structure and the inter-variable dependen-
cies of the uncorrected data. However, it is also argued that
the ability of climate models to respond in a physically con-
sistent way to external forcings is one of their basic foun-
dations (Wilby et al., 2000) and that relationships between
climate variables are not constant over time (time-invariant)
(Mahony and Cannon, 2018; Hao et al., 2019). Another al-
ternative approach in practice is the direct correction of the
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multivariate index (Casanueva et al., 2014, 2018; Li et al.,
2019; Chen et al., 2021). This direct approach allows the
preservation of the physical and temporal coherence among
the primary variables as represented in the original climate
model output. However, it may hide compensating biases in
the contributing variables, particularly in the case of complex
indices bearing in their formulation nonlinear relationships
between components (Casanueva et al., 2018; Van de Velde
et al., 2022).

In this work we intercompare different state-of-the-art BC
methods (univariate and multivariate) and BC approaches
(direct and component-wise) applied to climate model sim-
ulations stemming from three modeling initiatives (CMIP6,
CORDEX — WAS-44 domain and CORDEX-CORE — WAS-
22 domain) for a multivariate drought index (namely the
standardized precipitation evapotranspiration index — SPEI).
The performance of BC and climate model simulations
is examined in terms of the inter-variable physical coher-
ence of involved key essential variables, i.e., precipitation
(Pr), maximum temperature (Tmax), and minimum temper-
ature (Tmin), and characteristics of extreme events (dura-
tion, severity and frequency of wet and dry events) dur-
ing the historical period 1986-2005. The proposed frame-
work is demonstrated as a case study over a transbound-
ary watershed, namely the Upper Jhelum Basin (UJB) lo-
cated at the foothills of the Western Himalayas, one of the
mountain ranges most affected by climate change. The re-
gion has already witnessed an increase in extreme hydro-
meteorological events in the last few decades (Pachauri et
al., 2014), and hence the projection of these extreme events
cannot be left apart in the development of the climate change
adaptation strategy for the region. The use of the SPEI over
other drought indices such as SPI is preferred due to its link
to potential evapotranspiration (PET), which makes it more
sensitive in the context of global warming (Vicente-Serrano
et al., 2010; Huang et al., 2017; Yao et al., 2018).

The specific objectives of the study are

— to assess the added value of multivariate bias correction
methods with respect to the univariate bias correction
methods in the context of the physical coherence of two
variables, i.e., multivariate dependency;

— to assess the applicability of the direct and component-
wise bias correction of a multivariate index (SPEI);

— to assess the added value of the CORDEX-CORE simu-
lations compared to the CORDEX counterparts, as well
as the added value of CORDEX compared to CMIP6
after bias correction.

https://doi.org/10.5194/gmd-16-2055-2023

2 Data and methods

2.1 Standardized precipitation evapotranspiration
index (SPEI)

A multivariate drought index, i.e., standardized precipita-
tion evapotranspiration index (SPEI; Vicente-Serrano et al.,
2010), is widely used to monitor and assess drought and
their sectorial impacts under global warming conditions. It
can be interpreted as the number of standard deviations by
which the observed anomaly deviates from the long-term
mean. Various researchers highlighted its suitability to detect
the onset and spatiotemporal evolution of drought at the re-
gional to global scales (Wang et al., 2014; Ansari and Grossi,
2022) and recommended it for operational drought monitor-
ing (Vicente-Serrano et al., 2010).

In the present study, the SPEI is calculated using a 30d
accumulation period at a daily time step which can be used
for short- or long-term extreme event analysis. The calcu-
lation and application of a daily SPEI are similar to those
of a monthly SPEI except for the temporal resolution of in-
put climatic data. Its calculation requires two parameters, i.e.,
precipitation and potential evapotranspiration (PET). The lat-
ter involves numerous variables, including air surface tem-
perature, air humidity, shortwave incoming radiation, water
vapor pressure, and ground—atmosphere latent and sensible
heat fluxes (Allen et al., 1998), which hinder its correct esti-
mation. Various methods (physical or empirical) have been
developed to indirectly estimate PET from meteorological
variables. These methods also vary in their input data re-
quirement. The data-intensive methods such as the Penman—
Monteith method, in general, provide better results than
others for PET quantification (Droogers and Allen, 2002).
However, the purpose of including PET in the drought in-
dex calculation is to obtain a relative temporal estimation,
and therefore the method used to calculate the PET is not
critical (Vicente-Serrano et al., 2010). A study conducted
by Begueria et al. (2014) compared the SPEI values us-
ing three different methods for PET estimation (Penman—
Monteith, Hargreaves, and Thornthwaite) and found small
differences in humid regions. Mavromatis (2007) also found
similar results for a drought index (i.e., Palmer drought sever-
ity index — PDSI) when considering simple and complex
PET methods. Therefore, the present study employs a sim-
ple temperature-based Hargreaves—Samani method (involves
Tmax and Tmin) (Hargreaves and Samani, 1985) due to data
availability. The extraterrestrial radiation (mm d~1) used in
the Hargreaves—Samani method was calculated from the lat-
itude of each grid box and day of the year. The SPEI cal-
culation involves two further steps: aggregation of daily cli-
matic water balance time series at different timescales (30 d
in the present study) and then its normalization into a log-
logistic probability distribution to obtain the SPEI series.
The log-logistic distribution for the SPEI calculation is used
and recommended by many researchers (Vicente-Serrano et
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al., 2010; Wang et al., 2015; Himayoun and Roshni, 2019;
Ansari and Grossi, 2022). A more detailed description of the
SPEI calculation procedure can be found in Vicente-Serrano
et al. (2010) and Wang et al. (2015).

2.2 Identification of extreme events and their
characteristics

The wet and dry extreme events are identified by using
monthly SPEI values (computed from daily SPEI values;
see Sect. 2.1). Although the SPEI was originally proposed
for drought monitoring, it can also be used as a tool to de-
tect flood risk, since it quantifies both positive and negative
anomalies representing wet and dry conditions, respectively.
In the present study, wet and dry extreme events are defined
as the positive (SPEI> 1) and negative SPEI (SPEI < —1)
for at least 2 consecutive months, respectively. The thresh-
olds for the wet and dry extreme events based on SPEI val-
ues are taken from other literature (Svoboda et al., 2012).
Three event indices (severity, duration, and frequency) are
considered to characterize the wet and dry extreme events
during the historical period (1986-2005). The duration of a
wet and dry event (denoted hereafter as wet duration — WD —
and dry duration — DD) is the number of consecutive months
with SPEI values above 1 and below —1, respectively; sever-
ity (wet severity — WS — and dry severity — DS) refers to
the cumulative value of the index from the first month to the
last month of the wet/dry event, and it represents the water
surplus and deficit, respectively; and the absolute frequency
(wet frequency — WF — and dry frequency — DF) is the to-
tal number of events in the historical period. Since duration
and severity are obtained for individual events, we consider
the median value across all the identified events as the single
index.

2.3 Reference dataset

Because of complex orography, severe weather, and harsh en-
vironmental conditions in High-mountain Asia (HMA), ob-
servations from meteorological stations are rare in this re-
gion. Available weather stations are usually sparse and un-
evenly distributed. Gridded data, satellite observations, and
reanalysis are mostly used as an alternative even though they
are affected by the uncertainties inherent to the observations
and to statistical post-processing (e.g., interpolation). In the
present study, the WSES dataset (Lange, 2019) is used as
the observational reference for training the bias correction
methods during the historical period (1986-2005). We use
these 20 years of calibration to maximize the number of cli-
mate model simulations and to align them to other climate
change studies, such as the IPCC Fifth Assessment Report,
which considered it as the baseline for future changes. The
WS5ES dataset was developed under Phase 3b of the Inter-
Sectoral Impact Model Intercomparison Project (ISIMIP3b)
and was used as reference to bias-correct the climate models’
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output which serves as input data to carry out the impact as-
sessments under ISIMIP3b. The WS5ES is a merged dataset,
developed using version 2.0 of WFDES data: WATCH forc-
ing data methodology applied to ERAS data (Weedon et
al., 2014; Cucchi et al., 2020) over land and ERAS5 (Hers-
bach et al., 2020) over the ocean. W5ES is a global daily
dataset available at 0.5° horizontal resolution covering the
period 1979-2016. The W5ES dataset provides 12 meteoro-
logical variables; however, the present study employed three
variables, i.e., precipitation, daily maximum near-surface air
temperature, and daily minimum near-surface air tempera-
ture.

The use of W5E5 (WFDES data over land and ERAS
over ocean) for the present study is motivated by numer-
ous previous studies. For instance, the suitability of ERAS
and its slight overestimation of precipitation over the study
region (UJB), especially over the mountainous part of the
basin, have been evaluated and acknowledged by several re-
searchers (Baudouin et al., 2020; Arshad et al., 2021; Li-
aqat et al., 2022; Ansari et al., 2022b). These studies rec-
ommend performing the bias correction of ERAS with local-
ized data before its application in impact studies. Moreover,
the WFDEI dataset, which is the predecessor of WFDES
but based on ERA-Interim reanalysis, has also been applied
to the UJB and surrounding regions to alleviate the data
scarcity issue across the transnational border (Lutz et al.,
2016; Dabhri et al., 2016; Azmat et al., 2018). The WFDES
benefits from the higher spatial and temporal resolution and
better representation of spatial variability in ERAS compared
to WFDEI, which was generated by interpolating the lower-
resolution ERA-Interim reanalysis. An evaluation of both
products against meteorological observations shows that, on
average, WFDES has lower mean absolute error and higher
correlation than WFDEI for all variables (Cucchi et al.,
2020). W5ES has also been used as the reference observa-
tional dataset for bias correction in the IPCC Interactive At-
las in the 6th Assessment Report (Gutiérrez et al., 2021).

2.4 Climate model simulations

In the present work, we consider climate model histori-
cal simulations from 2 GCMs of the 6th Coupled Inter-
comparison Project (CMIP6; Eyring et al., 2016), 17 RCM
simulations (3 RCMs unevenly driven by 10 GCMs) of
the Coordinated Regional Climate Downscaling Experiment
(CORDEX; Giorgi et al., 2009; Jones, 2010), and 9 RCM
simulations (3 RCMs unevenly driven by 6 GCMs) of the
CORDEX Coordinated Output for Regional Evaluations
(CORDEX-CORE; Teichmann et al., 2021). For the RCM
simulations, the South Asian domain (denoted as WAS) is
considered. In particular, we use all available simulations by
November 2021 for WAS-44 and WAS-22 domains (simula-
tions conducted at horizontal resolutions of 0.44° and 0.22°
on rotated grids, approximately 50 and 25 km) for CORDEX
and for CORDEX-CORE, respectively. The selection of this
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particular subset of GCMs from CMIP6 is motivated by the
availability of models with high spatial resolution (Table 1),
approximately similar to the CORDEX counterparts. Coarser
GCMs are not considered due to the small size of the catch-
ment under study. More details on the considered climate
models are given in Tables 1 and 2.

2.5 Bias correction methods

Several univariate and multivariate bias correction methods
are used in this study. A comparison between five univariate
bias correction methods and three multivariate bias correc-
tion methods is performed with respect to their ability to re-
produce observed univariate distributions and inter-variable
relationships. The univariate methods are applied to climate
model simulations following two approaches: (1) individ-
ually to all involved essential climatic variables (i.e., the
component-wise approach) and (2) directly to the uncor-
rected SPEI (i.e., the direct approach). All BC methods make
a common assumption of stationary biases by applying the
same calibrated transfer function in the calibration period
(1986-2005) to the future projected climate which may lead
to modifications of the raw model climate change signals for
non-trend-preserving methods. The Table 3 summarizes the
considered BC approaches and methods.

2.5.1 Univariate bias correction methods

Five univariate methods (either parametric or empirical) are
considered in this study. The present study uses the imple-
mentation included in the R package “downscaleR” (Bedia et
al., 2020a) which is part of the R bundle “climate4R” (Itur-
bide et al., 2019).

— Empirical quantile mapping (EQM). This method cal-
ibrates an empirical transfer function that matches all
quantiles of the model empirical cumulative distribu-
tion function (CDF) to those of the reference dataset.
The values lying outside the calibration range are ad-
justed through constant extrapolation (first and last per-
centile corrections for values below and above the cali-
bration range, respectively) (ThemeBl et al., 2012). The
method also adjusts the overestimation of wet or dry
day frequency (defined as days with precipitation above
or below 1 mm in the reference dataset) in the model
using, respectively, adjusted wet-day threshold and fre-
quency adaptation proposed by Themefl et al. (2012)
and Wilcke et al. (2013). If a model produces too many
wet days, then the wet-day frequency is corrected in
such a way that it matches the observed wet-day fre-
quency. In the case of the overestimation of dry days
in the model, then the frequency adaptation is made
through the random sampling of the observed gamma
distribution into the simulated first bin (0—1 mm) in or-
der to generate wet days.
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— Parametric quantile mapping (PQM). This method ad-

justs the theoretical CDF of the model output onto the
corresponding observed distribution via a parametric
transfer function calibrated over the training period (Pi-
ani et al., 2010). Assumptions are made about the dis-
tribution of a particular variable (i.e., precipitation and
temperature follow the gamma and Gaussian distribu-
tions, respectively). As for EQM, in the considered im-
plementation the overestimation of wet or dry days in
the model data is also adjusted using wet-day frequency
correction and the frequency adaptation approach, re-
spectively.

Generalized Pareto parametric quantile mapping
(GPOM). The method is specifically designed to ad-
just the extremes of the distribution. It fits two differ-
ent parametric distributions to adjust the extreme and
non-extreme values separately. The gamma or Gaus-
sian distribution (for precipitation and temperature, re-
spectively) adjusts the central part, whereas generalized
Pareto distributions are applied above the 95th and be-
low 5Sth percentiles (Vrac and Naveau, 2007). As for
EQM, the wet-day frequency correction and frequency
adaptation are applied.

The Quantile Delta Mapping (QDM). The method was
first developed by Li et al. (2010) and Wang and
Chen (2014) as “equidistant” and “‘equiratio” quantile
matching, respectively. The main idea is to preserve
the trends of all quantiles of the simulated distribu-
tion. Later, Cannon et al. (2015) termed both meth-
ods as QDM due to its similarity to a quantile delta
change method. Firstly, model projections are detrended
by quantile, and quantile mapping is applied to adjust
systematic distributional biases relative to the observa-
tions. Then the removed projected trends are reintro-
duced to the bias-corrected quantiles. Thus, it ensures
that the sensitivity of the underlying climate model re-
mains unaffected by the bias correction (at least so far
as quantiles are concerned).

Detrended quantile mapping (DQM). The method is
similar to QDM, except that absolute or relative changes
in the simulated mean are accounted for rather than all
modeled quantiles (Cannon et al., 2015). Hence, the
long-term mean (linear) trend is removed, and bias cor-
rection is applied to the detrended series by empirical
quantile mapping using all quantiles to adjust system-
atic distributional biases relative to observation. Then
the mean trend is reintroduced to the bias-corrected se-
ries. As DQM only preserves long-term mean trends, it
does not ensure that the simulated model trends at the
tails of the distribution that define climate extremes are
preserved (Casanueva et al., 2020).

Geosci. Model Dev., 16, 2055-2076, 2023
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Table 1. Details of the CMIP6 GCMs used in the present study.

Model

Institute (country)

Horizontal resolution

CNRM-CM6-1-HR

CNRM-CERFACS (France)

Centre National de Recherches Météorologiques

and

Centre Européen de Recherche et Formation
Avancée en Calcul Scientifique

0.5° x 0.5°

EC-Earth3

EC-Earth Consortium

0.7° x 0.7°

Table 2. Details of the CORDEX and CORDEX-CORE RCMs used in the present study.

Experiment RCM RCM description Contributing CORDEX modeling center Driving CMIP5 GCM
CORDEX RegCM4-4 The Abdus Salam International Cen- Centre for Climate Change Research (CCCR), CCCma-CanESM2
(WAS-44) tre for Theoretical Physics (ICTP) Indian Institute of Tropical Meteorology CNRM-CERFACS
Regional Climate Model version 4 (IITM), India CSIRO-QCCCE-CSIRO
(RegCM4; Giorgi et al., 2012) IPSL-IPSL-CM5A-LR
MPI-M-MPI-ESM
NOAA-GFDL-GFDL-ESM2M
RCA4 Rossby Centre Regional Atmospheric Rossby Centre, Swedish Meteorological and ~CCCma-CanESM2
Model version 4 (RCA4; Samuelsson et ~ Hydrological Institute (SMHI), Sweden CNRM-CERFACS
al., 2011) CSIRO-QCCCE-CSIRO
ICHEC-EC-EARTH
IPSL-IPSL-CM5A-MR
MIROC-MIROCS
MOHC-HadGEM2-ES
MPI-M-MPI-ESM
NCC-NorESM1-M
NOAA-GFDL-GFDL-ESM2M
REMO2009 Max Planck Institute (MPI) Regional Climate Service Center (CSC), Germany MPI-M-MPI-ESM
Model 2009
(REMO2009; Teichmann et al., 2013)
CORDEX- COSMO- COnsortium for Small scale MOdeling ~ Climate Limited-area Modelling (CLM) Com- ICHEC-EC-EARTH
CORE crCLIM-v1-1 model (Baldauf et al., 2011) munity MPI-M-MPI-ESM-LR
(WAS-22) NCC-NorESM1-M
RegCM4-7 The Abdus Salam International Cen- Centre for Climate Change Research (CCCR), MIROC-MIROCS5
tre for Theoretical Physics (ICTP) Indian Institute of Tropical Meteorology NCC-NorESM1-M
Regional Climate Model version 4 (IITM), India MPI-ESM-MR
(RegCM4; Giorgi et al., 2012)
REMO2015 Climate Service Center Germany Climate Service Center Germany (GERICS). MOHC-HadGEM2-ES

(GERICS).

MPI-M-MPI-ESM-LR
NCC-NorESM1-M

2.5.2 Multivariate bias correction methods

The three MBC methods used to adjust the inter-variable
structure in this study are MBCp, MBCr (Cannon, 2016),
and MBCn (Cannon, 2018). The MBCp and MBCr methods
are the combination of two approaches: firstly, quantile delta
mapping is applied to each variable individually in order to
correct the marginal distribution of the variables including
the preservation of absolute (in the case of temperature) or
relative (in the case of non-Gaussian variables like precipita-
tion) raw climate change signal, and, secondly, multivariate
linear rescaling is applied (Biirger et al., 2011) in order to
adjust the dependence structure through an iterative applica-
tion of the Cholesky decomposition of the covariance matrix.
The Pearson correlation and Spearman rank correlation are
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used as the covariance matrix in the MBCp and MBCr meth-
ods, respectively. These two steps are repeated until both the
marginal distributions and specified correlation matrix con-
verge to those of the reference dataset.

The MBCn algorithm, which is based on the N-
dimensional probability density function transform, is
adopted from an image processing algorithm used to trans-
fer color information (Pitie et al., 2005; Pitié et al., 2007).
Unlike the MBCp and MBCr methods, MBCn permits us to
transfer all statistical characteristics of the observed multi-
variate distribution to those of the climate model outputs. In
MBChn, random orthogonal rotation matrices are applied to
the observed and climate model data to partially decorrelate
the climate variables before the QDM. It is then rotated back
with the inverse random matrices. The processes of rotation,
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Table 3. Bias correction approaches and methods employed in the present study.

Approach Method Name

Reference

Component-wise  Univariate Empirical quantile mapping (EQM)

Parametric quantile mapping (PQM)

Generalized Pareto parametric quantile mapping (GPQM)

Quantile delta mapping (QDM)
Detrended quantile mapping (DQM)

Déqué (2007)

Piani et al. (2010)

Vrac and Naveau (2007)
Cannon et al. (2015)
Cannon et al. (2015)

Multivariate ~ Multivariate bias correction: Pearson version (MBCp) Cannon (2016)
Multivariate bias correction: Spearman version (MBCp) Cannon (2016)
Multivariate bias correction with N-dimensional probability density function transform (MBCn)  Cannon (2018)
Direct Univariate Empirical quantile mapping (EQM) Déqué (2007)

Parametric quantile mapping (PQM)

Generalized Pareto parametric quantile mapping (GPQM)

Quantile delta mapping (QDM)
Detrended quantile mapping (DQM)

Piani et al. (2010)

Vrac and Naveau (2007)
Cannon et al. (2015)
Cannon et al. (2015)

QDM, and back rotation are repeated iteratively until the
multivariate distribution of the historical climate model data
converges to that of the reference data. In the present study,
the MBCn algorithm is iterated 30 times to get the bias-
corrected output. The present study uses the implementation
included in the R package “MBC” (https://cran.r-project.org/
web/packages/MBC, last access: August 2022).

2.6 Experimental framework

In this study, the BC methods presented above are applied
to adjust daily maximum temperature, minimum tempera-
ture, and precipitation of 28 (global and regional) climate
model simulations (Tables 1 and 2) towards the W5E5 ref-
erence dataset. All BC methods are calibrated in the period
1986-2005 using daily time series, the correction functions
being calculated separately for each month in order to ac-
count for biases varying throughout the year. These correc-
tions are then applied to the same period on a monthly basis
in order to evaluate their performance in the present climate.
Although the calibration and evaluation periods are the same,
our approach can be considered independent since the eval-
uated aspect (i.e., SPEI indices) is not directly adjusted by
the BC methods. All analyses are carried out at the spatial
resolution of the W5ES5 grid (regular 50 x 50km). For this
reason, all model simulations are remapped into the W5ES
grid. For this purpose, CORDEX-CORE simulations are con-
servatively remapped into the observational grid in order to
guarantee the representation of areal averages. For CMIP6
and CORDEX simulations, the nearest-neighbor grid box to
each observational grid box is taken, since the resolution
mismatch is small. This interpolation method maintains the
higher spatial variability in the topographical areas, whereas
bilinear or cubic interpolation would smooth the spatial pat-
terns. As a consequence, there will be aspects of the added
value of the higher-resolution WAS-22 experiments (related
to better-resolved, fine-scale processes) that can be smoothed
out, but they may still be present after remapping them onto
a coarse resolution. Thus, we address the added value of the
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high resolution at its skillful scale (Grasso, 2000), which is
coarser than the scale in which the simulation was developed.

For all BC methods, daily maximum temperatures, min-
imum temperature, and precipitation from each GCM and
RCM are corrected independently at each grid box. Due to
the multivariate nature of the SPEI, daily maximum temper-
ature, minimum temperature, and precipitation are corrected
separately (in the case of univariate BC methods) and jointly
(in the case of multivariate BC methods) prior to the SPEI
calculation (i.e., the component-wise approach; Casanueva
et al., 2018). An alternative to this approach is to first calcu-
late the SPEI from the original, biased simulations (i.e., orig-
inal modeled inter-variable relationships remain) and, sec-
ondly, bias-correct the index itself using univariate methods
(direct approach; Casanueva et al., 2018). Note that a normal
distribution is assumed for the direct correction of the SPEI
through the PQM method. In addition to the evaluation of the
performance of BC methods and approaches, the added value
of higher spatial resolution in the modeled data (CORDEX-
CORE over CORDEX and CMIP6) is assessed. Both assess-
ments are performed in terms of the ability to simulate the
mean spatiotemporal distribution of the SPEI and its derived
indices over the study region.

2.7 Evaluation metrics

The performance of the raw and bias-corrected climate
model simulations (component-wise approach) is firstly eval-
uated in terms of univariate indices related to temporal as-
pects not calibrated specifically by any of the BC methods.
For this purpose, we consider indices defined by the EU-
COST Action VALUE (Maraun et al., 2019), representing
day-to-day characteristics (transition probability of a wet day
given that the previous day was dry, longest dry spell, and
longest warm spell) and monthly and annual features (am-
plitude of the annual cycle and interannual variance). Sec-
ondly, we evaluated inter-variable relationships by using two
statistical metrics, namely the correlation coefficient (Pear-
son, 1895; Wilks, 2011) and Perkins skill score (Perkins et
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al., 2007). The correlation coefficient between daily time se-
ries of two variables (Spearman for Pr vs. Tmax and Pr vs.
Tmin and Pearson for Tmax vs. Tmin) is computed at each
grid cell to measure the relationship between pairs of vari-
ables. Since Pearson and Spearman correlation coefficients
imply a linear and nonlinear relationship, respectively, they
are hence recommended for temperature and precipitation,
respectively (Wilcke et al., 2013). The Perkins skill score is
a quantitative measure of the similarity between two prob-
ability density functions (PDFs) by measuring the common
area between them. A value of 0 indicates no overlap, and a
value of 1 indicates distributions are identical. In the present
study, an extended version of the Perkins skill score with two
dimensions is used that accounts for the similarity (overlap)
between the modeled joint distribution of two meteorologi-
cal variables and the observed counterpart (Casanueva et al.,
2019). Further, the raw and bias-corrected climate model data
(component-wise and direct approaches) are evaluated by us-
ing the mean bias (ratio of model to reference) of the SPEI
indices (median duration, median severity, and absolute fre-
quency; see Sect. 2.2).

3 Results
3.1 Evaluation of temporal properties

The ability of the BC methods to represent the marginal
properties of the individual variables is expected, since they
are related to parameters which have been calibrated by the
methods explicitly (Casanueva et al., 2016). They might,
however, deteriorate temporal properties, as is the case for
multivariate BC methods (e.g., Francois et al., 2020), since
they have not been adjusted by any of the methods. Fig-
ures S1-S5 in the Supplement show the overall improvement
in temporal properties after BC, with a systematic reduction
in model biases and no clear benefit of multivariate methods.
Raw models present an overall overestimation of dry-to-wet
transition probability, which is reduced after BC especially
for QDM, MBCn, and MBCp (Fig. S1). Annual longest dry
and warm spells are underestimated and overestimated, re-
spectively, in the raw models, and biases are largely corrected
after most BC methods. Overall, DQM presents the largest
departures from the reference dataset. The above-mentioned
statistics and their inadequate representation in the BC data
might lead to biases in the SPEI, which relies on daily values
of the input variables. Similar conclusions hold for temporal
properties at longer timescales, such as the amplitude of the
annual cycle (Fig. S2) and interannual variance (Figs. S3—
S5). The amplitude of the annual cycle is largely improved
by most BC methods, except for the annual cycle of precipi-
tation which is overestimated by GPQM and underestimated
by DQM (Fig. S2). The interannual variance for monthly pre-
cipitation is well represented after BC, except for the overes-
timation by GPQM in some months (Fig. S3). The large over-
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estimation of the interannual variance of maximum and mini-
mum temperatures is not completely solved by BC, since im-
portant overestimations remain for all BC methods (Figs. S4—
S5).

3.2 Evaluation of inter-variable relationships

To evaluate the inter-variable structures, the correlation co-
efficient (COR) and the Perkins skill score (PSS) between
daily maximum and minimum temperatures are computed at
each grid cell to measure the relationship between the two
physical variables (Fig. 1). The heat map shows the spatially
averaged values of Pearson correlation (size of the marker)
and Perkins skill score (colored scale) for the raw and bias-
corrected model output; i.e., the larger the marker is, the
stronger the relationship between the two variables is, and
the yellower the color is, the more similar the joint PDFs
are to the reference dataset. The Spearman correlation coef-
ficient between the other pairs of variables (Pr vs. Tmax and
Pr vs. Tmin) for the reference dataset is found to be negli-
gible (Fig. S6). Therefore, the ability of the BC methods to
adjust the inter-variable dependencies is evaluated only for
maximum and minimum temperature. Note that we focus on
inter-variable relationships at daily timescales, since this is
when they are expected to be relevant for the SPEI used in the
present work. However, more important correlations between
precipitation and temperatures are found at the monthly scale
in the reference data (up to —0.54; Fig. S7), which are not
present in most of the raw models but are improved after BC
(except for GPQM,; Fig. S8).

Overall, small differences in terms of correlation are found
for raw and bias-corrected model outputs compared to the
reference value (Fig. 1). Maximum and minimum tempera-
ture showed a strong positive correlation exceeding 0.9 in
WSES, which is also evident in the raw models and preserved
after BC. However, one climate simulation (REMO2009
RCM driven by the MPI GCM) shows a weaker correlation
for the raw model output and improves with all BC methods.

Regarding PSS, low values for the raw model outputs show
the differences in the joint PDF of Tmax and Tmin compared
to the reference data, meaning that the inter-variable depen-
dencies in the reference dataset are not well presented by
the raw model output. However, this inter-variable physical
coherence improves to some extent with the application of
all BC methods. Among univariate BC methods, the empiri-
cal ones (EQM, DQM, and QDM) performed better than the
parametric counterparts in terms of the inter-variable phys-
ical coherence between maximum and minimum tempera-
ture. As expected, all MBC methods performed well and im-
prove upon the univariate ones. Among three MBC methods,
MBCn outperformed the other two methods, with a very sim-
ilar joint PDF to the reference data.

All the above holds for most of the different climate model
simulations, regardless of the RCM, driving GCM, origi-
nal spatial resolution (CORDEX vs. CORDEX-CORE), and
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modeling experiment (CMIP vs. CORDEX). Although the
differences among different climate model simulations from
three modeling experiments exist for parametric methods
(PQM and GPQM), no specific pattern is found. Thus, no ev-
ident added value of the higher-resolution experiment models
(WAS-22) is observed over low-resolution experiment mod-
els (WAS-44 and CMIP6) in either correlation or Perkins
skill score. However, a clear added value of multivariate BC
methods is apparent.

To further explore the ability of raw and BC datasets
to reproduce the reference full joint probability distribution
of maximum temperature and minimum temperature, two-
dimensional kernel density plots, together with marginal his-
tograms (Fig. 2), are developed for a single grid box of an
RCM (highlighted red box in Figs. 1 and 2). The selection of
this particular grid box is motivated by the low values of cor-
relation and PSS for the raw simulation and subsequent im-
provement after BC in order to investigate whether low PSS
values can be attributed to biases in maximum temperature,
minimum temperature, or both. Higher density values in the
reference dataset (Fig. 2, first row and second column) take
place around 20 and 7 °C for maximum and minimum tem-
perature, respectively. For the raw model output, the shape
and location of the joint distribution and maximum proba-
bility are biased at both ends of the distributions, as evident
in the low PSS value, i.e., 0.641. This low PSS value of the
raw simulation is attributed to both variables but especially
to the misrepresentation of the minimum temperature distri-
bution. Likewise, the temporal correlation between the two
variables is slightly lower than in the reference. Correlation
and PSS improve after BC regardless of the BC method with
the least improvement in the joint distribution with GPQM
(PSS =0.707). Higher density values are located well with
parametric methods, i.e., PQM and GPQM (this would be
expected because they fit the mean and standard deviation in
the calibration phase), but for GPQM they are not so differ-
entiated as in the reference data. The other three univariate
BC methods (i.e., EQM, DQM, and QDM) and multivariate
methods improve the representation of the joint distribution
in a similar way, although maxima are not so differentiated
as in the reference data.

3.3 Evaluation of SPEI characteristics

The performance of the raw and bias-corrected climate
model simulations is evaluated in terms of mean biases (ra-
tio of model to reference dataset) in SPEI indices (duration,
severity, and frequency; see Sect. 2.2) during the histori-
cal period (1986-2005). The spatial distributions of biases
calculated from multi-model ensemble mean SPEI indices,
separately for CMIP6 (2 simulations), CORDEX (17), and
CORDEX-CORE (9), are presented in Figs. 3—4 and S9-
S12. Results show that the northeast part of the region, lo-
cated at the foothills of the Western Himalayas, is found to
be more affected by wet and dry events with higher sever-
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ity and duration (see the upper left panel in each figure).
The higher susceptibility of the region towards more extreme
events could be explained with the increasing rates of global
warming over mountainous region, i.e., Western Himalayas,
also reported by many researchers (Pachauri et al., 2014; Zaz
et al., 2019; Rashid et al., 2020; Shafiq et al., 2020; Ansari
and Grossi, 2022). Studies by Negi et al. (2018) and Dimri
and Dash (2012) also confirm that most of the Western Hi-
malayan region recorded a significant warming trend espe-
cially from 1975 onwards. This is also supported by the tree-
ring chronologies of the region which indicate rapid growth
of the tree rings in the recent decades especially at higher
altitudes (Borgaonkar et al., 2009).

In the context of biases, different sign biases are found
depending on the location and SPEI. The underestimation
of all SPEI indices is higher in the northeast part of the re-
gion, which shows that raw climate models’ performance is
relatively poor over mountainous regions. Overall, larger bi-
ases are found in frequency indices compared to duration and
severity indices. These under- and overestimations are partly
alleviated by most of the bias correction methods. Regard-
ing severity indices (Figs. 3 and 4), remaining biases after
BC are similar across BC methods, with an underestimation
of WS in the mountainous region and no specific pattern for
DS. In the case of duration indices (Figs. S9 and S10), the
overestimation in the lowlands is improved by all BC meth-
ods; however, that improvement is not only negligible, but it
also degrades the raw CMIP6 ensemble in the northeast of
the basin (mountainous region). The underestimation of fre-
quency indices over high mountains (Figs. S11 and S12) is
partially reduced by all BC methods with slightly better per-
formance under the direct approach. However, bias correc-
tion induces an overestimation in WF over lowlands which is
not present in raw ensembles of all datasets. Overall, GPQM
is found to bring the least improvement for most of the SPEI
indices, and the added value of MBC methods is not evident
in the remaining univariate methods.

The regionally averaged biases in median duration and
severity and the absolute frequency of dry and wet events
for all individual climate simulations (CORDEX-CORE,
CORDEX, and CMIP6) are summarized in Fig. 5. Over-
all, results show that raw models generally underestimate
all SPEI indices, and bias correction alleviates this for fre-
quency and severity indices, but shorter events than in the
reference dataset are found after the corrections. The con-
clusions drawn from the spatial plots also relate to climate
models’ spread. For instance, the small improvement in du-
ration indices over high mountains is in line with a slight
reduction in the model spread after bias correction, yet the
underestimation of the DD and WD remains. Similarly, for
WEF the reduction in the underestimation over high moun-
tains and increase in the overestimation over lowlands by all
BC methods are in agreement with changes in the models’
spread after bias correction (Figs. S12 and 5).
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Figure 1. Pearson correlation coefficient (COR, circle) between maximum and minimum temperatures and Perkins skill score (PSS, colored
scale) of the joint PDFs for the raw and bias-corrected climate model data (only component-wise approach). The correlation for the reference
dataset is shown at the top of the figure. The highlighted RCM (red square) is selected for further analyses in Fig. 2.

In general, all BC methods under the direct approach
present similar improvements for all SPEI indices, except
PQM for dry extremes which shows smaller improvements
for some simulations. Regarding the component-wise ap-
proach, the empirical BC methods, i.e., EQM, DQM, and
QDM, performed relatively better than PQM and GPQM for
most of the models and SPEI indices. Small differences are
found in the performance of three MBC methods.

Regarding the spatial resolution, no obvious benefit of
the higher resolution (CORDEX-CORE vs. CORDEX and
CMIP6) is apparent. Raw model outputs from CORDEX-
WAS44 show more spread than the CMIP6 and CORDEX-
CORE experiment models, which could be due to the num-
ber of simulations. After BC, the spread of CORDEX and
CORDEX-CORE is similar, and thus, no clear added value
of higher resolution is found.

Overall, the performance of BC methods and climate mod-
els is found to be relatively better for drought indices than for
flood indices. Most of the models underestimate wet duration
and severity over the region before and after bias correction.

Geosci. Model Dev., 16, 2055-2076, 2023

3.4 Effect of bias correction on the spatial pattern of
SPEI characteristics

The ability of the BC methods under both approaches to rep-
resent the spatial structure of SPEI indices (median duration
and severity and absolute frequency of dry and wet events)
in the historical period (1986-2005) for the UJB is explored
by Taylor diagrams (Fig. 6). These Taylor diagrams (Tay-
lor, 2001) show the degree of agreement between the spa-
tial pattern of raw and bias-corrected data and the observed
counterpart for SPEI indices by means of spatial Pearson
correlation coefficient (dotted lines), (centered) root mean
square error (blue curves), and normalized standard deviation
(black curve denotes perfect performance). Note that corre-
lations below 0.5 might not be statistically significant given
the small sample size (30 grid boxes; Bujang and Baharum,
2016).

The Taylor diagrams indicate that overall, all BC methods
improve upon the raw model output for all datasets and SPEI
indices. The correlation coefficient is much lower for dura-
tion and severity SPEI indices (typically lies between 0.1 and
0.8), whereas it amounts to between 0.5 and 0.9 for WF and
over 0.8 for DF. Concerning the normalized standard devia-
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Figure 2. Two-dimensional kernel density plots for the highlighted grid box (red box). Blue histograms (and x axis) refer to minimum
temperature, and red histograms (and y axis) refer to maximum temperature. Shadings represent the two-dimensional density distribution
for the reference, raw, and eight BC methods. Contour lines represent the probabilities in the reference dataset, which are overlaid on the
model probabilities for the sake of comparison. COR depicts the Pearson correlation coefficient between daily minimum and maximum
temperatures, and PSS represents the two-dimensional Perkins skill score of distributional similarity.

tion (nSD) most of the bias-corrected results underestimate
the spatial variability in all SPEI indices. This underestima-
tion amounts up to 50 % (nSD between 0.5 to 1.0) except for
WD and DF, which show maximum and minimum underes-
timation, respectively. The centered root mean square errors
between BC and reference SPEI indices are found to be in the
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range of 0.3 to 1.2, the lowest being for frequency indices es-
pecially for DF (0.3 to 0.6). Overall, the spatial pattern for
the frequency SPEI indices indicates better agreement with
the reference dataset than for the duration and severity SPEI
indices for most of the BC methods and datasets.
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Figure 3. Median dry severity (DS) in the reference dataset expressed in accumulated SPEI units (first row, left), digital elevation model in
meters above sea level (first row, center) and location of sub-basins (first row, right), and biases (as a ratio of model to reference) of DS for
the multi-model raw and bias-corrected ensembles for the two bias correction approaches and all methods (columns).

The performance of BC methods is rather consistent for
most of the SPEI indices regardless of the statistical mea-
sure (i.e., correlation coefficient, normalized standard devia-
tion, and centered root mean square error). More specifically,
all BC methods under the direct approach show better agree-
ment than the component-wise approach for most of the SPEI
indices and datasets. The EQM, PQM, and QDM under the
direct approach are grouped together for all SPEI indices and
datasets. For the component-wise approach, no systematic
difference between the best-performing univariate methods
and the multivariate ones is found.

Regarding the spatial resolution of the original model data,
no clear benefit of the higher resolution (CORDEX-CORE
vs. CORDEX and CMIP6) is found, and results vary with the
SPEI indices and depend more on the BC method than on the
model ensemble. The degree of agreement of CORDEX and
CORDEX-CORE experiments with reference data is com-
parable, and they tend to group together for the frequency
indices; however, differences exist with CMIP6 models. For

Geosci. Model Dev., 16, 2055-2076, 2023

the best-performing BC methods, the CORDEX ensemble
presents the largest correlation and smallest root mean square
error for dry events and WD, whereas the CORDEX-CORE
ensemble represents better the spatial variability. For the
dry SPEI indices, CMIP6 falls behind both CORDEX ex-
periments, even for the best-performing BC methods. For
WS, most datasets present correlation coefficients of 0.4-0.6,
and the spatial variability is larger for CORDEX-CORE and
CMIP6. For WF, datasets group by BC method regardless
of the model ensemble. Note that here the multi-model en-
semble mean is considered, which might hinder the potential
added value of individual simulations.

To further explore the inner-ensemble variability and po-
tential added value of individual simulations of CORDEX
and CORDEX-CORE experiments, Fig. 7 shows the perfor-
mance of bias-corrected (using D-EQM) individual climate
model simulations from the two experiments. Interestingly,
there is no clear best-performing driving GCM or RCM for
all SPEI indices, and large discrepancies in the reference
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Figure 4. Same as Fig. 3 but for median wet severity (WS), expressed in accumulated SPEI units.

data remain for some individual simulations after bias cor-
rection. In general, CORDEX simulations show a higher cor-
relation coefficient and smaller root mean square error, and
CORDEX-CORE presents more accurate spatial variability.
The RCM and GCM combination also matters. For exam-
ple, the performance of REMO2015 is poor when driven by
MPI (which is its typical driving GCM), but it is one of the
best with HadGEM?2 for most of the indices. On the other
hand, the HadGEM2-driven RCM in the CORDEX-CORE
experiment (REMO2015) performed well compared to in the
CORDEX experiment (RCA4). Similarly, the added value of
higher spatial resolution (CORDEX-CORE over CORDEX)
can also be seen with RegCM4 driven by MPI in both ex-
periments (filled and non-filled dark brown circle). However,
the added value of the CORDEX-CORE experiment does not
hold for all simulation pairs. For instance, NorESM1-driven
RCMs in both experiments do not show a clear behavior
(filled and non-filled dark green shapes).
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4 Discussion and conclusion

This study assesses the performance of two BC approaches
(direct and component-wise) and eight methods (univariate
and multivariate) for an impact-relevant, multivariate drought
index (SPEI) that characterizes wet and dry extreme events
over the Upper Jhelum Basin in the Western Himalayas.
From obtained results, most of the univariate BC meth-
ods under both direct and component-wise approaches ex-
hibit a comparable performance in the current climate, with
a slightly better performance for the direct approach. The di-
rect approach with univariate methods also provides com-
parable results to more sophisticated multivariate methods,
which could be due to the weak relationship among the input
variables of the SPEI in this region at daily timescales. The
spatial pattern is better reproduced by the direct approach
than the component-wise approach (see Taylor diagrams in
Sect. 3.4). This is expected from the experimental design,
since under the direct approach, the SPEI is corrected as a
single variable, regardless of the biases in the input essen-
tial climatic variables and in their interdependencies. Con-
cerning univariate methods, the performance of parametric
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Figure 5. Biases (as a ratio of model to reference) in spatially averaged SPEI indices over Upper Jhelum Basin computed from the raw (first
box in each panel) and bias-corrected data (rest of the boxes; CW: component-wise; D: direct). Each box represents the interquartile range of
biases across all models, which are depicted individually with colored dots (CMIP6 in red, CORDEX in green, CORDEX-CORE in blue),
and whiskers expand the full range of biases. Horizontal red lines depict perfect performance, for reference.

methods (i.e., PQM and GPQM) is found to be the worst
especially in terms of inter-variable physical dependencies.
Among the univariate empirical BC methods, both QDM and
DQM exhibit a similar performance for the SPEI indices and
inter-variable physical dependencies. Regarding the perfor-
mance multivariate BC methods, all methods show compa-
rable performance. Overall, the best-performing univariate
(i.e., empirical) methods are comparable to the multivari-
ate ones. Overall, biases are reduced with all BC methods
to some extent, but still SPEI indices are not well resolved.
Reasons for this could be the remaining biases after BC in
temporal properties of the individual variables (Figs. S1-S5
in the Supplement), which have not been calibrated by any of
the methods, together with the nonlinear, multivariate nature
of the SPEI, which is not directly calibrated by BC either.
Findings on the limited performance of a few univari-
ate BC methods, especially parametric (PQM and GPQM),

Geosci. Model Dev., 16, 2055-2076, 2023

under both approaches are admittedly based on the inade-
quate representation of temporal properties and inter-variable
physical relationships. The direct correction of the SPEI us-
ing univariate BC methods that does not consider the de-
pendencies between variables has the advantage of adjusting
a single variable instead of several variables with different
statistical properties, and in this work it shows slightly bet-
ter performance than correcting individual climatic variables
prior to the SPEI calculation. Nevertheless, the advantages
of the direct approach over the component-wise approach,
the multivariate over univariate BC methods, and the trend-
preserving over non-trend-preserving methods still need to
be evaluated for the projected future conditions (Casanueva
et al., 2018). Moreover, our findings may differ from other
multivariate hazard or impact-related indices in different re-
gions of the world. Since the individual variables in a multi-
variate hazard index are interlinked differently, the contribu-

https://doi.org/10.5194/gmd-16-2055-2023



R. Ansari et al.: Evaluation of bias correction methods for a multivariate drought index 2069

Dry Duration Wet Duration

01 g2 53

1.5
1.5

0.1 02 03

Standard Deviation (Normalized)
Standard Deviation (Normalized)

0.0 0.5 1.0 15 0.0 0.5 1.0 1.5
Standard Deviation (Normalized) Standard Deviation (Normalized)
Dry Severity Wet Severity
" 01 02 4,
< T :

Standard Deviation (Normalized)
Standard Deviation (Normalized)

0.0 0.5 1.0 1.5 0.0 0.5 1.0 1.5
Standard Deviation (Normalized) Standard Deviation (Normalized)
Dry Frequency Wet Frequency
0 01 g2

0.3

Standard Deviation (Normalized)
Standard Deviation (Normalized)

0.0 05 10 15 0.0 0.5 1.0 1.5
Standard Deviation (Normalized) Standard Deviation (Normalized)
® CORDEX A CORDEX-CORE ¢ CMIP6

= D-EQM = D-PQM = D-GPQM = D-DQM = D-QDM
0O CW-EQM 0O CW-PQM 0O CW-GPQM 0O CW-DQM O CW-QDM
O MBCn MBCp MBCr u RAW

Figure 6. Taylor diagrams showing the performance of BC methods (colors) and datasets (markers) with respect to the spatial variability
in the SPEI indices in the historical period (1986-2005) for the UJB. Each marker represents the evaluation measures for the multi-model
ensemble mean SPEI indices for the three modeling experiments (CORDEX in circles, CORDEX-CORE in triangles, CMIP6 in diamonds).
Filled markers: direct BC approach; non-filled markers: component-wise BC approach; black marker: raw model output. Note: in the case of
CMIP6, D-EQM (filled grey diamond) and D-PQM (filled dark blue diamond) are grouped together for all SPEI indices. Note: in the case of
CMIP6, D-QDM (filled pink diamond) and D-DQM (filled dark green diamond) are grouped together for all SPEI indices. Note: in the case
of CORDEX and CORDEX-CORE experiments, D-EQM (filled grey marker), D-PQM (filled dark-blue marker), and D-QDM (filled pink
marker) are grouped together for all SPEI indices.
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Figure 7. Taylor diagrams showing the performance of individual simulations of CORDEX and CORDEX-CORE experiments bias-corrected
using the D-EQM method with respect to the spatial pattern of SPEI indices in the historical period (1986-2005) for the UJB. Filled markers:
CORDEX models; non-filled markers: CORDEX-CORE models. Three different markers show the three RCMs in both experiments (i.e.,
RegCM4, RCA4, and REMO02009 from CORDEX and COSMO, and REMO2015 and RegCM4-7 from CORDEX-CORE); colors show
the driving GCMs (same color means same driving GCM); plus marker and cross in black show the multi-model ensemble mean (MMEm)
for CORDEX and CORDEX-CORE experiments, respectively. Note: RCA4 driven by CSIRO (filled blue triangle) and ICHEC-EC-EARTH
(filled maroon triangle) are grouped together for all SPEI indices. Note: RCA4 driven by MIROC (filled yellow triangle), RCA4 driven by
MOHC-HadGEM?2 (filled grey triangle), RCA4 driven by MPI (filled cyan triangle), and REMO2009 driven by MPI (filled cyan square) are
grouped together for all SPEI indices. Note: RegCM4 driven by MPI (filled brown circle) and RCA4 driven by NCC-NorESM1 (filled dark
green triangle) are grouped together.
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tion of their individual biases to the associated multivariate
hazard index may lead to different results. For instance, bi-
ases in wet-bulb globe temperature (WBGT) are found to be
smaller than in the Chandler burning index (CBI) for a given
model output, yet both indices are based on temperature and
relative humidity (Villalobos-Herrera et al., 2021). This is at-
tributed to the construction of the index, since bias in CBI is
mainly driven by the bias in relative humidity, whereas bias
in WBGT interplays between biases in temperature and rela-
tive humidity, which compensate each other.

Contrasting conclusions are found in the literature about
the added value of multivariate BC methods over univari-
ate ones in impact-relevant studies. For example, Guo et
al. (2020) reported the regionally dependent added value
of MBC methods over univariate methods in reproducing
observed inter-variable dependencies and observed stream-
flow using the GR4J hydrological model. Similar findings
also have been identified with the Canadian fire weather in-
dex (Cannon, 2018), heat stress (WBGT) and fire risk (CBI)
indicators (Zscheischler et al., 2019), and snowmelt-driven
streamflow (Meyer et al., 2019). On the other hand, Eum et
al. (2020) reported marginal improvements in MBC methods
in reproducing the extreme climatic indices and hydrologi-
cal indicators over Alberta, Canada. Rity et al. (2018) also
indicated that it is difficult to demonstrate that multivariate
methods may significantly reduce biases in hydrologic in-
dicators. Van de Velde et al. (2022) stated that the simpler
univariate BC methods are better to use for climate change
impact assessment, as the MBC methods failed to handle
non-stationary climate conditions. Francois et al. (2020) re-
ported the added value of multivariate BC methods over uni-
variate ones and concluded that also multivariate methods
can deteriorate temporal aspects and that the choice of the
BC method should be based on the end user’s goal. In the
present study, the added value of multivariate BC methods
over univariate ones is only evident for inter-variable physi-
cal coherence, whereas comparable results are found in terms
of biases in temporal properties and SPEI indices. The com-
parable performances for SPEI indices could be attributed
to the weak relationship among the input variables (precip-
itation and temperature) of the SPEI in this region for the
daily timescale and to biased temporal properties. In com-
parison to the direct BC approach, Chen et al. (2021) found
a similar performance of MBC and the direct correction of
hydrological model output, i.e., streamflow in the present
climate; however, both are sensitive to non-stationary bi-
ases during the validation period. They recommended the
MBC especially for streamflow projections under a strong
anthropogenic signature on the climate. They also reported
that biases in streamflow simulations depend on the climate
model output, hydrological model, streamflow metrics, and
region. Similar conclusions were also made by Casanueva et
al. (2018), who state that the direct correction of the Cana-
dian fire weather index (FWI) presents a similar performance
to the FWI calculated from individually corrected climate
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variables in the present climate but found a more robust be-
havior for the component-wise approach under future climate
change.

The added value of higher climate model resolution
(CORDEX-CORE vs. CORDEX and CMIP6) is not evident
in the evaluation step in terms of either inter-variable phys-
ical coherence or SPEI indices. There is some indication of
added value of CORDEX-CORE with respect to CORDEX
and CMIP6 in terms of the representation of spatial vari-
ability. However, the CORDEX ensemble performs best in
terms of correlation and root mean square error in the spa-
tial patterns. Nevertheless, the absence of obvious benefits of
a finer grid resolution in the present work does not rule out
such an added value in general. For instance, a study con-
ducted by Maharana et al. (2021) on Indian summer mon-
soon precipitation found improved representation of mean
precipitation in individual CORDEX-CORE models from the
CORDEX experiment. Moreover, the 0.5° resolution of the
gridded observational reference (W5ES), coarser than that of
the 0.22° CORDEX-CORE simulations, allows us to draw
conclusions concerning a lack of large-scale bias improve-
ments by the 0.22° CORDEX-CORE experiments but hin-
ders the identification of benefits at a smaller scale. The
added value of finer spatial resolution could be more ob-
vious if the evaluation is carried out at the original resolu-
tion (Prein et al., 2016; Casanueva et al., 2019) especially
for the processes over complex terrains where abrupt oro-
graphic changes cause much larger spatial variability. Al-
though the uncertainty due to the spatial resolution of the ref-
erence dataset is out of the scope of the present study due to
limited availability of reliable finer-resolution observational
datasets for the studied region, many other studies acknowl-
edge its greater impact especially for extreme precipitation
indices (Casanueva et al., 2019, 2020). Kotlarski et al. (2014)
also stated that the obvious added value of finer-resolution
simulations over its coarser counterpart is strongly depen-
dent on the availability and accessibility of fine-gridded and
high-quality observational datasets.

To summarize, there is some added value of multivari-
ate bias correction with respect to univariate BC methods in
the representation of the inter-variable structures, but com-
parable results to the best-performing univariate BC meth-
ods are found in terms of biases in SPEI indices. Present cli-
mate evaluation shows limited added value of higher-spatial-
resolution simulations mainly due to the experimental design
(both resolutions are remapped onto the 50 x 50 km observa-
tional grid). Future work will explore to what extent current
results of bias correction are robust under projected climate.
Moreover, the application of bias-corrected climate model
outputs to identify geographical hotspots prone to wet and
dry extreme events, as well as their temporal compounding
under different warming levels, will be very useful for stake-
holders (researchers, local authorities, policy makers, relief
agencies, non-governmental organizations (NGOs), and (re-
)insurance companies) working on potential risk and the
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associated development of adaptation strategies to climate
change in this region.

Code availability. All calculations and plots were produced us-
ing R (version 3.3.2) and ArcMap (version 10.8) by mak-
ing use of open-source R packages. For univariate bias cor-
rection, the present study uses the implementation included in
the R package “downscaleR” (version 3.3.3) which is part of
the R bundle “climate4R” (Bedia et al., 2020a; Iturbide et
al.,, 2019) available from a GitHub repository (https://github.
com/SantanderMetGroup/downscaleR, last access: August 2022,
https://doi.org/10.5281/zenodo.5070432, Bedia et al., 2020b).
R package “MBC” version 0.10-5 (https://rdocumentation.org/
packages/MBC/versions/0.10-5) is used for the multivariate bias
correction methods (Cannon, 2018, 2016; Cannon et al., 2015).
The potential evapotranspiration (PET) and standardized precipi-
tation evapotranspiration index (SPEI) were calculated with the R
package “SPEI” (version 1.7) available from a GitHub repository
(https://github.com/sbegueria/SPEI, last access: August 2022, Be-
gueria et al., 2017). All the code to perform the derived analyses,
calculations, and plots is also based on R scripts and ArcMap, which
are available at https://doi.org/10.5281/zenodo.7296744 (Ansari et
al., 2022a).
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