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Abstract. Lagrangian particle dispersion models (LPDMs)
have been used extensively to calculate source-receptor rela-
tionships (“footprints”) for use in applications such as green-
house gas (GHG) flux inversions. Because a single model
simulation is required for each data point, LPDMs do not
scale well to applications with large data sets such as flux
inversions using satellite observations. Here, we develop a
proof-of-concept machine learning emulator for LPDM foot-
prints over a ∼ 350 km× 230 km region around an obser-
vation point, and test it for a range of in situ measure-
ment sites from around the world. As opposed to previ-
ous approaches to footprint approximation, it does not re-
quire the interpolation or smoothing of footprints produced
by the LPDM. Instead, the footprint is emulated entirely
from meteorological inputs. This is achieved by indepen-
dently emulating the footprint magnitude at each grid cell
in the domain using gradient-boosted regression trees with a
selection of meteorological variables as inputs. The emula-
tor is trained based on footprints from the UK Met Office’s
Numerical Atmospheric-dispersion Modelling Environment
(NAME) for 2014 and 2015, and the emulated footprints
are evaluated against hourly NAME output from 2016 and
2020. When compared to CH4 concentration time series gen-
erated by NAME, we show that our emulator achieves a
mean R-squared score of 0.69 across all sites investigated be-
tween 2016 and 2020. The emulator can predict a footprint in
around 10 ms, compared to around 10 min for the 3D simula-
tor. This simple and interpretable proof-of-concept emulator
demonstrates the potential of machine learning for LPDM
emulation.

1 Introduction

To monitor the efficacy of climate agreements and under-
stand climate feedbacks, there is an urgent need to quantify
changing greenhouse gas (GHG) fluxes. Flux inference or in-
verse modelling systems are becoming increasingly popular
for GHG flux quantification as they produce estimates of the
spatial distribution of methane sources from atmospheric ob-
servations using an atmospheric transport model and statisti-
cal inversion framework. They have been used, for example,
to evaluate methane emissions of the UK and Europe using in
situ sensors (Lunt et al., 2021; Bergamaschi et al., 2018), for
the investigation of regional CFC-11 emissions from eastern
China (Rigby et al., 2019), and for many other applications.

Flux inference inverse methods were traditionally de-
signed for relatively small data sets based on high-precision
ground-based measurements (tens of sites globally that to-
gether collect∼ thousands of observations per month). How-
ever, the growth of surface networks and space-based obser-
vations mean that the volume of GHG data has increased
by several orders of magnitude in recent years and will con-
tinue to grow in the next decade. For example, the TROPOMI
instrument onboard the Sentinel-5 precursor, which was
launched in 2017, collects around 7 million CH4 soundings
per day (Butz et al., 2012), compared to 10 000 per day from
the GOSAT instrument that was launched in 2009 (Taylor
et al., 2022). This growth is causing increasingly severe com-
putational bottlenecks for GHG flux inference systems. In
particular, systems relying on backward running Lagrangian
particle dispersion models (LPDMs) to solve for atmospheric
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transport are particularly impacted, as the required number of
model evaluations grows with the number of observations.

Flux inference systems primarily use one of two types of
systems to simulate atmospheric transport: Lagrangian par-
ticle dispersion models (LPDMs) or Eulerian models. The
LPDMs simulate trace gas transport by following hypotheti-
cal “particles” as they move according to 3D “analysis” me-
teorology provided by forecasting centres. Their main ad-
vantage for GHG flux evaluation is that transport can be
run backwards in time. This means that the sensitivity of
GHG concentration measurements to upwind emissions, of-
ten called the “footprint” of an observation, can be calculated
directly. This property makes them relatively simple and flex-
ible to apply to GHG flux evaluation, and, when the number
of observations is small, they provide a highly efficient esti-
mate of the sensitivity of those observations to the surround-
ing high-dimensional flux field. Examples of widely used
LPDMs are the Numerical Atmospheric-dispersion Mod-
elling Environment (NAME, Jones et al., 2007), the Stochas-
tic Time-Inverted Lagrangian Transport Model (STILT, Fa-
soli et al., 2018), and the FLEXible PARTicle dispersion
model (FLEXPART, Pisso et al., 2019). Eulerian models,
which calculate concentrations throughout a 3D atmospheric
grid, do not suffer from the same scaling problem as the
number of observations grows. However, because they do
not directly calculate source–receptor relationships, they re-
quire the development of complex “adjoint” model codes
(e.g. Kaminski et al., 1999), low-resolution finite difference
schemes (e.g. Zammit-Mangion et al., 2022), or relatively
expensive ensemble simulations (e.g. Peters et al., 2005). If
LPDMs are to be used in inverse modelling studies using
very large data sets, methods must be developed to overcome
their poor scaling with the number of observations.

Machine learning has been shown to be useful for ef-
ficiently addressing a number of problems in studies us-
ing atmospheric dispersion models, including the correc-
tion of bias (Ivatt and Evans, 2020) and urban-scale pollu-
tion modelling (Mendil et al., 2022). The LPDM emulators
have been developed to simulate volcanic ash plumes or re-
leases from nuclear plants. For example, Gunawardena et al.
(2021) use linear regression to predict footprints for a range
of model configurations, Lucas et al. (2017) use Gradient-
boosted regression trees (GBRTs) to predict outputs for a
WRF-FLEXPART ensemble, Francom et al. (2019) use em-
pirical orthogonal functions to reduce dimensionality and
Bayesian adaptive splines to model the plume coefficients for
different release characteristics, and Harvey et al. (2018) use
polynomial functions to estimate average ash column loads
in nearby locations for different model parameters. These
studies all have two main factors in common: they all model
forward dispersion rather than backwards, and they focus on
a single point source and a single emissions event, looking at
the ensemble members produced by different LPDM config-
urations.

A small number of methods have been developed to effi-
ciently approximate LPDM footprints, mostly using interpo-
lation or smoothing: Fasoli et al. (2018) proposed a method
to run the LPDM with a small number of particles and use
kernel density estimations to infer the full footprint, Roten
et al. (2021) suggested a method to spatially interpolate foot-
prints using nonlinear-weighted averaging of nearby plumes,
and Cartwright et al. (2023) developed an emulator that is
capable of reconstructing LPDM footprints given a “known”
set of nearby footprints, using a convolutional variational
auto-encoder for dimensionality reduction and a Gaussian
process emulator for prediction. Though more computation-
ally efficient than LPDMs alone, these methods still require
running the LPDM a number of times for new predictions.
An emulator that is capable of making footprint predictions
without needing nearby simulator runs would allow substan-
tial further efficiency gains.

Here, we present a machine learning emulator for back-
ward running LPDM simulations based purely on meteoro-
logical inputs. Our emulator outputs hourly footprints for a
small (approx. 350 km× 230 km) region around an obser-
vation point. Once trained, it does not require any further
3D simulator runs for footprint prediction. The emulator can
only be constructed for fixed measurement locations, and
therefore it is not applicable for satellite retrievals. However,
we present it as a proof-of-concept emulator with a simple
and interpretable design that can be built upon to be used for
a wider range of measurement platforms. We train and eval-
uate the emulator by comparing it to NAME for seven sites
around the world, training with data from 2014 and 2015 and
evaluating predictions for 2016 and 2020. In Sect. 2, we de-
scribe NAME, the training and testing data sets, and the ob-
servation locations. Section 3 outlines the machine learning
model and its characteristics, and Sects. 4 and 5 demonstrate
and evaluate the predictive capabilities of the emulators. In
Sect. 6, we discuss the applicability of our methodology and
potential avenues for further development.

2 Data and observations

2.1 Measurement locations

Our emulator is designed to be applied to the calculation of
LPDM footprints for in situ measurement stations. Here, we
emulate the NAME model at seven locations. These loca-
tions were chosen to emulate a national network so that in-
verse modelling of national emissions could be performed,
and two other locations in different meteorological regimes
were chosen to demonstrate versatility. The seven measure-
ment locations are shown in Fig. 1. Five of these sensors, lo-
cated in the UK and Ireland, belong to the UK DECC (Deriv-
ing Emissions linked to Climate Change) Network (Stanley
et al., 2018), and the other two sensors belong to the AGAGE
(Advanced Global Atmospheric Gases Experiment) network
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(Prinn et al., 2018). The stations in the DECC network have
previously been used for evaluating the UK methane emis-
sions using inverse modelling (Lunt et al., 2021), and the
AGAGE stations, Trinidad Head and Gosan, have been used
in various inverse modelling studies (e.g. Ganesan et al.,
2014). In Sect. 4.3, we further detail the characteristics of
the CH4 measurements and follow the method used by West-
ern et al. (2021) to infer monthly UK emissions using the
predicted footprints and compare the findings to those of the
NAME-produced footprints.

2.2 NAME model

The Met Office’s NAME model is used to produce the foot-
prints to train and test emulators. Each footprint is produc-
ing by releasing 20 000 model particles from the inlet height,
following them backwards in time for 30 d and tracking the
time particles spent near the surface (defined as being below
40 m a.g.l. as used in Lunt et al., 2016, 2021). Output foot-
prints have a resolution of 0.352◦× 0.234◦ (approximately
35× 23 km resolution in mid-latitudes) and cover a domain
of 10× 10 cells around the measurement site.

NAME was run using UKV meteorology (a UK-specific
mesoscale meteorological analysis) over the UK, and global
meteorology fields from the UK Met Office’s Unified Model
(UM, Cullen, 1993) everywhere else. The UKV has a reso-
lution of 1.5 km and 1 h with 57 vertical levels up to 12 km,
and UM meteorology has a resolution of 3 h and 25 km up to
July 2014, 17 km from then until July 2017 and 12 km there-
after, with 59 vertical levels up to 29 km. The surface meteo-
rology used as inputs is extracted from the UKV meteorology
(Met Office, 2013a, 2016a) for UK sites and the global UM
meteorology (Met Office, 2013b, 2016b) for the other sites,
and the vertical gradients used across all sites are also ex-
tracted from the UM. Data from both models are interpolated
linearly in time to increase resolution hourly and in space to
the same resolution as the footprint, 0.352◦× 0.234◦.

We use the computational domains to produce footprints
with NAME used in previous studies (e.g. Lunt et al., 2021;
Rigby et al., 2019). The computational domain for Europe
(used for all UK and Ireland sites) covers 10.7–79.1◦ N and
97.9◦W–39.4◦ E, the USA domain (used for the Trinidad
Head site) covers 8–59◦ N and 140–39.7◦W, and the East
Asia domain (used for the Gosan site) covers 5.2◦ S–74.1◦ N
and 54.5◦ E–168.2◦W.

The data set consists of NAME footprints calculated ev-
ery hour throughout 2014, 2015, 2016, and 2020 for each
site. We divide this data set into a training set, comprising
2014 and 2015 for all sites, and a testing set used to evaluate
the emulators, comprising of data immediately consecutive
to the training data (2016) and 5 years after (2020). Each
hourly footprint takes about 10 min to be produced.

3 Emulator design

3.1 Formalization

An LPDM f produces a footprint yφt for receptor φ and time
t , given the location and height of the receptor, the topogra-
phy around it (both receptor location and topography summa-
rized as φ), and a time series of 3D meteorological features
(xt ), so that yφt = f (φ,xt ).

An LPDM emulator f̂ is a statistical approximation of f ,
built using simulator runs f (φm,xn). As this analysis com-
prises seven independent sites, we instead build site-specific
emulators f̂ φ(xt ), each trained with data for a single loca-
tion.

There are many potential approaches to inferring f̂ using
machine learning techniques: designing a model that can di-
rectly output 2D images, like neural networks; using a di-
mensionality reduction method to decompose y into a set of
features and coefficients and training a model to output coef-
ficients given new inputs (e.g. Francom et al., 2019); or train-
ing a number of simple regressors where each one outputs
the value at a single location in y (e.g. Gunawardena et al.,
2021). Each of these approaches has certain advantages and
disadvantages. Models that are able to output 2D images di-
rectly involve deep learning, which can be difficult to design,
train, and interpret and are computationally expensive. De-
composing the data to reduce the problem’s dimensionality
is a common method in the Earth sciences, particularly using
empirical orthogonal functions (EOFs). However, Cartwright
et al. (2023) demonstrate that EOFs are not able to retain the
structural information of footprints as well as a deep learning
alternative, which in turn requires additional complexity, in-
cluding longer training and predicting times and rotating the
footprints to reduce spatial variability. A grid-cell-by-grid-
cell approach is simpler to design, train and interpret, but it
does not implicitly capture the spatial and temporal structure
of the output.

3.2 Model design

As the work presented here is of a proof-of-concept emula-
tor demonstrating that a few selected meteorology inputs can
be used to produce footprints with reduced computational
expense, we demonstrate the use of a grid-cell-by-grid-cell
model. As each footprint yφt is a 2D grid, the value of the em-
ulated footprint ŷφt at each cell (i,j) is predicted by an inde-
pendent regression model r

φ
i,j using a subset of the meteoro-

logical inputs, such that ŷφt,i,j = r
φ
i,j (zt,i,j ), where zt,i,j ⊆ xt .

To reduce computational expense, we calculate the foot-
print only in a sub-domain of 10× 10 cells centred around
the receptor, so that i,j = 1,2,3. . .10 with the receptor lo-
cated at (5,5). Therefore, each emulator is formed by 100
regressors.
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Figure 1. Measurement sites in (a) the UK and Ireland and (b) the rest of the world. Sensors are located at Mace Head (MHD, Ireland,
53.326◦ N, 9.904◦W, inlet is 10 m a.g.l. (metres above ground level)), Ridge Hill (RGL, UK, 51.997◦ N, 2.540◦W, 90 m a.g.l.), Bilsdale
(BSD, UK, 54.359◦ N, 1.150◦W, 250 m a.g.l.), Heathfield (HFD, UK, 50.977◦ N, 0.230◦ E, 100 m a.g.l.), Tacolneston (TAC, UK, 52.518◦ N,
1.139◦ E, 185 m a.g.l.), Gosan (GSN, Korea, 33.292◦ N, 126.161◦ E, 10 m a.g.l.), and Trinidad Head (THD, USA, 41.054◦ N, 124.151◦W,
10 m a.g.l.).

We use gradient-boosted regression trees (GBRTs) as re-
gressors since they are easy to build, can handle multi-
collinearity in the inputs, are highly interpretable, and have
been used repeatedly in atmospheric science (e.g. Ivatt and
Evans, 2020; Sayegh et al., 2016; Lucas et al., 2017). We use
the GBRT implementation from the scikit-learn library (Pe-
dregosa et al., 2011). The GBRTs are built of regression trees,
a nonlinear, nonparametric predictive model also known as
decision trees. Regression trees partition the input space re-
cursively, once per node, making binary splits on the input
data (i.e. for sample z, is the value of feature xz bigger than
value k?). The input space is therefore divided into regions,
where each region corresponds to a terminal node or leaf. For
any new data point, the value predicted will be a combination
of the all the training samples in that leaf – for example, the
mean if using mean squared error as a loss function and the
mode if using mean absolute error. Though useful, regres-
sion trees alone can be inaccurate and unstable. The GBRTs
use boosting to create a more robust regressor: they are a se-
quence of regression trees, where each tree attempts to pre-
dict the errors of the sequence before it (Friedman, 2001).

3.3 Model inputs

Each individual regressor takes meteorological variables
(zt,i,j ) as inputs from grid cells at two sets of locations: (i) at
the cell it is predicting (i,j) and the eight adjacent cells and
(ii) at the measurement site (5,5) and the eight adjacent cells.
Therefore, each regressor r

φ
i,j will have inputs from 18 loca-

tions (which might overlap). This selection of meteorological
inputs was chosen because these two regions will dominate
the footprint value at a given cell, with the meteorology at
the measurement site dictating the overall footprint direction
and the local dynamics around a cell affecting the specific
behaviour. Testing indicates that this selection produces bet-
ter predictions than providing the meteorological inputs at all

locations or at a fixed reduced set of locations for all cells.
The meteorological inputs used are the x (west–east) and y
(south–north) wind vectors at 10 m a.g.l.; planetary boundary
layer height (PBLH), all taken both at the time of the foot-
print and 6 h before; as well as vertical gradients in tempera-
ture and x and y wind speed (between 150 and 20 m), taken
only at the time of the footprint. Other potential inputs, like
sea level pressure and absolute temperature were not used as
they did not substantially increase the predictive power of the
model.

An efficient emulator should train with as few samples as
possible, while observing sufficient examples of the poten-
tial meteorological configurations. We study the data needs
of the model by training and evaluating emulators using all
the training data set, a half, a quarter, and a sixth of the data
set (hourly, 2-hourly, 4-hourly, and 6-hourly footprints, re-
spectively), where the hourly data set has 17 520 samples. We
find that there is no difference in emulation quality between
training with hourly and 2-hourly data, that the 4-hourly data
produce noisier footprints, and that the 6-hourly data have lit-
tle prediction power. We therefore choose to train the model
with 2-hourly data, needing around 8700 footprints to train
at each site. As it takes around 10 min to produce one foot-
print with NAME, the training data set for each site takes
around 60 d of CPU time. The predictor for each cell takes
under 1 min to train in a 24-core CPU, meaning that the em-
ulator described here for a 10× 10 cell domain takes around
90 min and once trained, it can produce a footprint in 10 ms
(1.5 min for 1 year of hourly footprints). Therefore, if more
than approximately 8700 footprints are needed for a par-
ticular site (around 1 year of hourly averages), it becomes
more efficient to train the emulator than to perform further
3D model simulations (notwithstanding uncertainties as dis-
cussed in Sect. 4).
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3.4 Evaluation metrics

This section outlines the evaluation metrics used to assess
the quality of the footprints predicted by the emulators and
where each of them is applied.

– R-squared score (R2): Also known as the coefficient of
determination, R2 represents the proportion of the vari-
ance in the dependent variable that is explained by the
independent variables (Chicco et al., 2021). It is defined
as R2(a, â)= 1−

∑m
i=1(âi−ai)

2/
∑m

i=1(a−ai)
2, where

â denotes the predicted values and a the real values.
It can range between −∞ and 1, where 1 represents
perfect predictions, 0 means none of the variance is ex-
plained (the model predicts the mean of the data at all
points), and below 0 means an arbitrarily worse model.

– Mean bias error (MBE): MBE measures any systematic
errors in the predictions and is defined as MBE(a, â)=
1
m

∑m
i=1(âi − ai). A positive MBE indicates that the

model tends to overpredict the output, and a negative
MBE means the opposite.

– Mean absolute error (MAE) and normalized MAE
(NMAE): NMAE is the MAE normalized by the mean
of the true data, so the metric can be comparable
across data sets of different scales. It is defined as
NMAE(a, â)= 1

ma

∑m
i=1

∣∣ai − âi

∣∣. Lower values repre-
sent better predictions.

– Accuracy (AC): Accuracy is used to calculate the spatial
agreement of the footprints, measuring which percent-
age of cells is correctly emulated to be above or below
an absolute threshold b. A binary mask is created where
the values of the footprint surpass b, such that

Yφt,i,j =

{
1 if yφt,i,j > b

0 otherwise
(1)

and similarly Ŷφt,i,j using ŷφt,i,j . The accuracy of an

emulated footprint ŷφt is therefore calculated with

AC= 100%×

∣∣∣Yφt ==Ŷφt
∣∣∣∣∣∣Yφt ∣∣∣ accuracy indicates better spa-

tial agreement above threshold b of the better spatial
agreement above threshold b of the emulated and real
footprint.

The emulated footprints are evaluated in three different
ways: (1) footprint-to-footprint comparison, (2) convolving
the footprints with a surface emissions inventory to obtain the
above-baseline mole fraction, and (3) conducting a flux in-
version to estimate UK methane emissions. We do footprint-
to-footprint comparison using accuracy to measure the spa-
tial agreement of the footprints and NMAE. We use R-
squared score, NMAE, and MBE to evaluate the predicted
mole fractions. The monthly UK methane emissions from the

emulated footprints and the real footprints are compared us-
ing MAE.

3.5 Training the model

We tune the hyperparameters for each of the emulators opti-
mizing the R-squared score between the true footprint value
at a particular cell and its prediction. This metric is chosen
as opposed to other common metrics like mean square error
(MSE) or mean absolute error (MAE) because the range of
values in each cell varies with its position with respect to the
release point. As the R-squared score does not depend on
the distribution of the ground truth, it is easily interpretable
across regressors.

We use 3-fold validation for 10 random regressors in each
site, finding that the chosen parameters barely change across
cells and sites, and therefore we select the hyperparameters
to be equal throughout the emulators. As expected, we find
that deeper trees perform better as they are able to capture
better high-order interactions than shallow trees (Friedman,
2001). In this case, we require a maximum depth of at least
50 nodes. We find that at least 150 trees in each GBRT with
a learning rate of 0.1 is preferred, with the first trees having
most of the predictive power and the bulk of the trees pro-
viding small improvements to the R-squared score. We also
find that the absolute error is a better loss function than the
mean-squared error. This is likely because the data are ap-
proximately exponential in distribution, with most of the val-
ues for each regressor being 0 or near 0, except a few spikes
or outliers. The MAE is a more appropriate metric for the
Laplacian-like errors often produced by exponentially dis-
tributed variables (Hodson, 2022). Moreover, as shown of-
ten in literature, adding randomness to the GBRT also in-
creases the score (Friedman, 2002). We find that training
each tree with randomly selected

√
n features, where n is the

total number of features, increases the training score signifi-
cantly as well as reducing the computational expense. How-
ever, there is no benefit to using data subsampling.

4 Results and discussion

The emulator is trained for the seven locations shown in
Fig. 1 using footprints every 2 h from 2014 and 2015. In
this section, we evaluate the hourly footprints that these em-
ulators produce for 2016 and 2020 (i.e. there is no overlap
between the meteorology used to train the emulators and
that used to test them) in three different ways: footprint-
to-footprint comparison, predicted mole fraction evaluation,
and UK inversion results. Figure 2 shows an example of five
emulated footprints for the DECC network sites at a particu-
lar date. We also train a linear baseline model with the same
data and structure, to demonstrate the benefit of using GBRTs
compared to a simpler model. More details and the full re-
sults are shown in Supplement Sect. S1.
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Figure 2. NAME-generated footprints (a) and emulator-generated footprints (b) for the same date (3 May 2016, 10:00:00 GMT) and the
five sites in the UK and Ireland (Mace Head, Bilsdale, Ridge Hill, Heathfield, and Tacolneston, marked with a white dot). In the cells where
domains for different emulators overlap, the sensitivity represents the maximum value across emulators for that cell.

4.1 Footprint-to-footprint comparison

We compute the normalized mean absolute error (NMAE)
for every predicted footprint, averaging the error through-
out the cells. We find that across all footprints and sites,
the NMAE is 0.689 for 2016 and 0.701 for 2020. We also
compute the accuracy of the footprints; this estimates which
percentage of the cells is correctly emulated to be above or
below a footprint value threshold b (see Sect. 3.4). We find
that across sites, the emulated footprints have an accuracy of
67.3 % and 64 % for 2016 and 2020 respectively with b = 0,
and of 88.1 % and 87.8 %, respectively for b = 0.01. Figure 3
shows the NMAE and accuracy for each of the sites.

4.2 Predicted mole fractions

The LPDM footprint can be convolved with a map of grid-
ded emissions to provide the expected above-baseline mole
fraction for that measurement location and time. This is cal-
culated doing element-wise multiplication (Hadamard prod-
uct) of the two grids and summing over the area. Here, we
generate pseudo-time series of atmospheric methane, but our
evaluation could readily have used any other species. When
applied to the emulated footprints, this produces an emulated
time series of expected CH4 concentration in the area that can
be compared to the NAME-generated CH4. Figure 4 shows
two month-long examples, March 2016 and October 2020,
of the time series obtained from the emulated and NAME-
generated footprints.

We use EDGARv6.0 (Crippa et al., 2021) for 2016 as the
gridded emissions for both 2016 and 2020 because the 2020
data set has not been released yet. EDGARv6.0 represents
the mean yearly emissions on a 0.1◦× 0.1◦ resolution, which

is regridded using an area-weighted scheme to the same res-
olution as the footprints.

We calculate the NMAE, R-squared score and MBE for
every time series. We find that across all sites, the NMAE
is 0.308 for 2016 and 0.308 for 2020, the R-squared score
is 0.694 and 0.697, respectively, and the MBE is −0.0125
and−0.0043 µmol mol−1, respectively. Figure 5 shows these
metrics for each of the sites.

Although the MBE for the emulator is small, Fig. 4 shows
that the highest mole fractions are often not well predicted.
We show how the bias changes across values by dividing the
yearly real data into 10 quantiles (10 equal-sized, ordered
subsets) and taking the MBE of each. Figure 6 shows that
the bias is small for lower molar fraction values, but that the
model tends to highly underpredict the higher range, with a
similar behaviour across sites.

4.3 UK emissions inversion

To evaluate the performance of the emulator in a common
application, we carry out a UK methane flux inversion that
has recently been performed in Lunt et al. (2021, 2016) and
Western et al. (2020). We follow a hierarchical Bayesian
Markov chain Monte Carlo (MCMC) method and use in-
put parameters described by Western et al. (2021) to estimate
monthly UK methane emissions for 2016 using the predicted
footprints. We use the DECC network sensors, which have
measured CH4 continuously for the period analysed here:
Mace Head (Prinn et al., 2022), Ridge Hill, Bilsdale, Heath-
field, and Tacolneston (O’Doherty et al., 2020) (Fig. 1). De-
tails on the prior and instruments used for measurements can
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Figure 3. Evaluation of emulators with footprint-to-footprint comparison, using metrics NMAE and accuracy with b = 0 (all footprint values)
and b = 0.01 (high values), shown per site and year.

be found in Lunt et al. (2021), but note that a slightly differ-
ent inversion method is used in that paper.

Since our emulator is predicting footprints in a small do-
main around the sensor and the inversion requires a bigger
domain, we produce an estimate of the total footprint by us-
ing the NAME-calculated footprint in the rest of the domain
not within our emulated region. Therefore, while our emula-
tor calculates the most important part of the footprint (i.e. the
part with the highest values), it should be noted that there will
be some influence of the “true” footprints on the final results
for this comparison. We conduct a sensitivity test in Sect. 2
which demonstrates that the inversion is highly sensitive to
the emulated area but less outside of this region.

Using the NAME-generated footprints, we find a UK mean
for 2016 of 2.03 (1.90–2.16) Tg yr−1 (uncertainty represents
95 % high density interval), consistent with top-down esti-
mates in Manning et al. (2020) and Lunt et al. (2021) and
with the 2016 inventory (Brown et al., 2020). Using the full-
domain emulated footprints, the UK mean for 2016 is 2.15
(2.02–2.30) Tg yr−1, 5.9 % higher than inferred with the real
footprints. The monthly emission rates can be seen in Fig. 7,
with a mean monthly difference between the real and pre-
dicted inversion of 0.130 Tg or 6.32 %. This increase in in-
ferred emissions, compared to the inversion using the real
footprints, is consistent with the emulator generally underes-
timating the highest mole fractions.

5 Feature evaluation

The design of the emulator, with one regressor per cell,
means we can evaluate which input variables are more rel-
evant at each cell and therefore understand the spatial dis-
tribution of the feature importance scores, and check if they
are physically coherent. Tree-based models like GBRTs are
highly interpretable as they can rank the inputs in terms of
how much they contribute to building the trees. However,
when working with multi-collinearity in the inputs, feature

importance scores are not reliable, as similar information is
present across correlated features.

Another common way to rank the features in a model is by
calculating the feature permutation importance. In this ap-
proach, the values of one or more inputs in a data set are
shuffled, effectively adding noise to that feature, and the pre-
diction error of the new data set is compared to the prediction
error of the original data set, called baseline error (Molnar,
2022). This approach has similar issues to calculating the im-
portance with the GBRT if it is used on single features that
have high correlation to other inputs. However, it can be run
on multiple features at a time, meaning that we can calculate
the importance of blocks of correlated features.

To calculate the feature importance scores across the do-
main, we divide the input data for each regressor into nine
blocks, one per meteorological input across all locations: x
wind (west–east), y wind (south–north), and PBLH at the
time of the footprint, the same three inputs 6 h before the
sampling time, the x and y wind vertical gradients and the
temperature gradient. We calculate the baseline NMAE for
each regressor using data for 2016 and then calculate the
NMAE when shuffling each of the blocks. The difference
between the two, the added error, is a proxy for feature im-
portance scores – the more a regressor relies on a feature,
the higher errors it will produce when that feature is noisy.
As an example, Fig. 8 shows the most important feature at
each cell for Mace Head. We propose that the distribution of
importance can be interpreted in physical terms as follows:
cells on the S–N axis are more affected by the W–E wind,
as low W–E winds would mean higher concentrations in said
axis and vice versa, and similarly for the W–E axis and S–
N winds. Moreover, winds 6 h before the footprint become
increasingly relevant towards the edges of the domain, con-
sistent with the dispersion running backwards in time.
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Figure 4. Mole fractions from NAME-generated footprints and predicted footprints for March 2016 (left column) and October 2020 (right
column) around each measurement site.

6 Conclusions

We have presented a proof-of-concept emulator for LPDMs,
which can efficiently produce footprints using only meteoro-
logical inputs, and we demonstrated its performance on seven
measurement stations around the world. The emulator offers
a considerable speed-up with respect to both normal LPDM
runs and interpolation-based methods, because once trained,
it does not require further LPDM runs. The emulator can
produce footprints that resemble those generated by NAME,
with high correlations and low bias for the predicted above-
baseline mole fraction at the seven sites investigated here.
An inversion of UK methane fluxes performed using our em-
ulated footprints was not statistically different to an inver-
sion using the LPDM footprints. Since there is no decrease in

performance between 2016 and 2020, the emulator appears
to have inference capabilities for at least 5 years after the
training data, making it a long-term tool that does not require
retraining often. Moreover, we use meteorology at different
resolutions in different sites (high-resolution, national UKV
and coarse-resolution, global UM), but we see no differences
in scores across several metrics, meaning the model can be
trained and used with different input resolutions. Although
not validated in this work, it is likely that performance will
be similar when training with different LPDMs, like STILT
or FLEXPART.

There are limitations in our emulator that will need to be
overcome before it could be used to replace LPDM model
evaluations in applications such as inverse modelling. Our
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Figure 5. Evaluation of emulators with mole fraction comparison, using metrics NMAE, R-squared score, and MBE, shown per site and
year.

Figure 6. Mean bias error in the above-baseline mole fraction predictions for each of the 10 quantiles of the true data, across sites for 2016.
An MBE above 0 indicates overprediction while an MBE below 0 indicates underprediction.

emulator predicts only a small domain around the receptor,
which is not big enough for most national-scale inversions.
The domain size could be increased by using extra regres-
sors. However, as the training time increases linearly with
the number of regressors, strategies to keep training times
feasible should be considered. This could include coarsen-
ing the grid towards the edges of the domain, as demon-
strated in Supplement Sect. S2 or parallel training. Further
work would be required to select the most appropriate com-
bination of input data for the added regressors, including, for
example, meteorology further back in time. The design of
the emulator, chosen due to its simplicity to set up and train,
could also be improved by making the regressors dependent,
either across time (a regressor’s inputs include data from the
previous footprint) and/or across space (a regressor’s inputs
include predictions from nearby regressors).

As well as the known design limitations, the performance
of the emulator highlights opportunities for improvement.
The high-value bias, present in all sites, could be reduced

with approaches such as bias-reduction methods. Identifying
the meteorological conditions in which the model performs
more poorly would also be useful, particularly to relate them
to conditions usually filtered out in inversions or in which
the LPDM is also considered less reliable. For example, low
wind conditions, which usually cause high local influence,
could coincide with the badly predicted events. Creating a
training data set with a more balanced distribution of meteo-
rological conditions may also help to reduce the differences
in performance across different situations.

The difference in prediction quality across sites could also
provide insights into potential areas of improvement for the
model. We find that there are no noticeable differences in
accuracy with b = 0 across sites, meaning that the spatial
distribution of footprints is captured similarly. The improve-
ment in accuracy between thresholds b = 0 and b = 0.01
likely indicates that the emulators are better at capturing the
main shape of the footprint, composed of higher values (i.e.
b = 0.01), but that the background (captured with b = 0) tend
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Figure 7. Monthly UK methane emission estimates using the NAME-generated footprints for the five sites in the DECC network (UK and
Ireland sites) and the emulator-generated footprints (with NAME-generated values outside of the emulated region) for the same sites.

Figure 8. Most important block of meteorological features at each
cell for Mace Head, as calculated with the block permutation im-
portance.

to be less well predicted – for example, in Fig. 2, it can be
seen that the model confuses very small values with 0. How-
ever, we find a difference in performance across sites when
evaluating the values predicted with NMAE. We find that the
receptors close to ground level (MHD, GSN, and THD are at
10 m a.g.l.) are significantly better predicted than those with
higher inlets (TAC is 185 m a.g.l. and BSD is 250 m a.g.l.),
both when doing footprint-to-footprint comparison and when
evaluating the predicted mole fractions. As most of the inputs
are provided at 10 m a.g.l. when the PBLH is low, this mete-
orology may not be representative of the state of the atmo-
sphere around the taller sensors and therefore lead to higher
errors.

To more fully exploit the possibilities of machine learning,
it would be desirable to generalize the emulator to any loca-
tion. For the emulators built here, the effect of the surface
surrounding each site is implicitly captured by using site-
specific training data. For the emulator to be applied at an
arbitrary location, it should have knowledge of the effect of
topography and other surface characteristics on dispersion.
A well-designed emulator that is trained with data for some

locations should therefore be able to produce footprints for
similar, unseen locations. Use of additional variables (e.g.
vertical wind speed) and designing the model to read and
exploit 2D, 3D, or 4D meteorological fields may improve
prediction accuracy. Ideally, more advanced models should
also estimate an uncertainty in the predictions, either directly
through the model or by choosing a probabilistic method that
can be used to build ensembles.

Code and data availability. Code used to train and evaluate
the models is available as a free access repository at DOI
https://doi.org/10.5281/zenodo.7254667 (Fillola, 2022b). Sample
data to accompany the code, including the trained emulator
for Mace Head and inputs/outputs to test it, can be found at
DOI https://doi.org/10.5281/zenodo.7254330 (Fillola, 2022a). The
NAME III v7.2 transport model is available from the UK Met Office
under licence by contacting enquiries@metoffice.gov.uk. The me-
teorological data used in this work from the UK Met Office’s oper-
ational NWP (Numerical Weather Prediction) Unified Model (UM)
are available from the UK Centre for Environmental Data Anal-
ysis at both resolutions: UKV (http://catalogue.ceda.ac.uk/uuid/
292da1ccfebd650f6d123e53270016a8, Met Office, 2013a; https://
catalogue.ceda.ac.uk/uuid/f47bc62786394626b665e23b658d385f,
Met Office, 2016a) and global (http://catalogue.ceda.ac.uk/uuid/
220f1c04ffe39af29233b78c2cf2699a, Met Office, 2013b; https://
catalogue.ceda.ac.uk/uuid/86df725b793b4b4cb0ca0646686bd783,
Met Office, 2016b). The software used for the inversion can be
found at DOI https://doi.org/10.5281/zenodo.6834888 (Rigby et al.,
2022). Measurements of methane for the Mace Head station are
available at http://agage.mit.edu/data (Prinn et al., 2022) and mea-
surements of methane from the UK DECC network sites Tacolne-
ston, Ridge Hill, Heathfield, and Bilsdale are available at https:
//catalogue.ceda.ac.uk/uuid/f5b38d1654d84b03ba79060746541e4f
(O’Doherty et al., 2020).

Supplement. The supplement related to this article is available on-
line at: https://doi.org/10.5194/gmd-16-1997-2023-supplement.
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