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Abstract. The region of southern Africa (SAF) is among the
most exposed climate change hotspots and is projected to ex-
perience severe impacts across multiple economical and soci-
etal sectors. For this reason, producing reliable projections of
the expected impacts of climate change is key for local com-
munities. In this work we use an ensemble of 19 regional cli-
mate model (RCM) simulations performed in the context of
the Coordinated Regional Climate Downscaling Experiment
(CORDEX) – Africa and a set of 10 global climate models
(GCMs) participating in the Coupled Model Intercomparison
Project Phase 5 (CMIP5) that were used as the driving GCMs
in the RCM simulations. We are concerned about the degree
to which RCM simulations are influenced by their driving
GCMs, with regards to monthly precipitation climatologies,
precipitation biases and precipitation change signal, accord-
ing to the Representative Concentration Pathway (RCP) 8.5
for the end of the 21st century. We investigate the degree to
which RCMs and GCMs are able to reproduce specific cli-
matic features over SAF and over three sub-regions, namely
the greater Angola region, the greater Mozambique region,
and the greater South Africa region. We identify that during
the beginning of the rainy season, when regional processes
are largely dependent on the coupling between the surface
and the atmosphere, the impact of the driving GCMs on the
RCMs is smaller compared to the core of the rainy season,
when precipitation is mainly controlled by the large-scale cir-

culation. In addition, we show that RCMs are able to counter-
act the bias received by their driving GCMs; hence, we claim
that the cascade of uncertainty over SAF is not additive, but
indeed the RCMs do provide improved precipitation clima-
tologies. The fact that certain bias patterns during the his-
torical period (1985–2005) identified in GCMs are resolved
in RCMs provides evidence that RCMs are reliable tools for
climate change impact studies over SAF.

1 Introduction

The region of southern Africa (SAF) is among the most
exposed climate change hotspots (Diffenbaugh and Giorgi,
2012) and is projected to experience severe impacts across
multiple economical and societal sectors (Conway et al.,
2015; Masipa, 2017; Shew et al., 2020). Poverty, food inse-
curity, and high levels of malnutrition (Misselhorn and Hen-
driks, 2017) render SAF particularly vulnerable to the im-
pacts of climate change (Casale et al., 2010; Luan et al.,
2013; Wolski et al., 2020). In addition, the population’s re-
liance on rain-fed agriculture makes strategic planning nec-
essary, as it aims to mitigate the impact of climate change on
local communities.

Global climate models (GCMs) participating in the Cou-
pled Model Intercomparison Project Phase 5 (CMIP5) (Tay-
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lor et al., 2012) project a significant decline in annual
precipitation over SAF (IPCC and Stocker, 2013), with
the most pronounced changes projected under Representa-
tive Concentration Pathway 8.5 (RCP8.5) (Sillmann et al.,
2013). This reduction is also identified in the regional cli-
mate model (RCM) simulations performed in the context
of the Coordinated Regional Climate Downscaling Exper-
iment (CORDEX) – Africa domain (Nikulin et al., 2012;
Giorgi and Gutowski, 2015). More specifically, according
to CORDEX-Africa simulations, annual precipitation is ex-
pected to decline by up to 50 % by the end of the 21st cen-
tury (Pinto et al., 2018), while the duration of dry spells is
projected to increase (Dosio et al., 2019). Despite this, ex-
treme rain events are expected to increase in frequency and
intensity (Pinto et al., 2016; Abiodun et al., 2019). Never-
theless, for a global warming level of 2 ◦C, certain parts of
SAF (northern Angola, Zambia, northern Mozambique, and
eastern South Africa) are projected to experience precipita-
tion increase during specific times of the year (Maúre et al.,
2018).

The question of whether or not RCMs produce demon-
strable added value relative to their driving GCMs has of-
ten fuelled debate between the RCM and GCM modelling
communities (Lloyd et al., 2021). The outcome of the de-
bate is not binary. The literature provides ample evidence
that there is indeed evidence of added value in RCMs, but
it is dependent on the region examined, the season, and
the climate mechanisms that are at play (Luca et al., 2016;
Feser et al., 2011). RCM ensembles such as those developed
within CORDEX-Africa endeavour to provide added value
by dynamically downscaling historical and scenario simula-
tions originating from coarse-resolution GCMs (Dosio et al.,
2019). The added value in RCM simulations arises as a re-
sult of their higher horizontal resolution (< 50 km), which
makes it possible for atmospheric waves and synoptic-scale
disturbances to be represented in a more realistic manner.
An additional aspect that further contributes towards this end
is the more accurate representation of land surface charac-
teristics (topography, land use, etc.) in RCMs (Di Luca et
al., 2013). Moreover, the physics of an RCM can be tar-
geted for processes specific to the region it is being run for,
giving it a local advantage over GCMs that may have had
their physics developed for global applications. Nevertheless,
RCMs also are accompanied by a set of model deficiencies
that affect the final output of the downscaled data (Boberg
and Christensen, 2012). In Sørland et al. (2018) it is reported
that although RCM biases are affected by the driving GCMs,
they are nonetheless not additive, a result that counters the
common “cascade of uncertainty” criticism. Still, uncertainty
arising from both the driving GCM (Moalafhi et al., 2017)
and the downscaling RCM affect the final product (Nikulin
et al., 2012), and it is important to diagnose the sources and
causes of these errors (Déqué et al., 2012).

Attributing total uncertainty to its respective components
is key for a better assessment of the reliability of RCM sim-

ulations (Christensen and Kjellström, 2022). GCMs provide
the lateral boundary conditions to the RCMs and each RCM
receives, absorbs, and modulates the received atmospheric
forcing in different ways, depending on the numerical formu-
lations and parameterization schemes employed. Discerning
between the signal received from the GCM and the signal
produced by the RCM is critical for assessing the robustness
with which different modelling systems are able to accurately
reproduce observed climatologies and generate reliable esti-
mates of the expected climate change. In addition, the man-
ner in which an RCM responds to the atmospheric forcing
provided by a GCM can be region specific (Rana et al., 2020;
Wu and Gao, 2020) (e.g. regions located in close proximity
to the boundaries of the RCM domain can be more severely
affected by the driving GCMs than regions at the centre of
the RCM domain, or there can be region-specific response
around complex topography versus lowlands). Also, the de-
gree to which an RCM is influenced by the driving GCM
can be process specific. For instance, when there is a strong
large-scale circulation signal that is introduced to an RCM
domain (e.g. advective mid-latitude storms), it is likely that
the RCM will be able to reproduce the information that is
received at its lateral boundaries; however, the GCM’s im-
pact on the RCM simulation may also vary depending on
how far a region lies from the RCM domain boundaries (Kim
et al., 2020). If, however, the large-scale forcing is weak,
then the atmospheric conditions simulated within the RCM
domain are more dependent on the dynamic and thermo-
dynamic processes employed by the RCM (e.g. convective
thunderstorms).

In this work we aim to assess whether it is the RCMs
or their driving GCMs that dominate monthly precipitation
climatology, monthly precipitation bias, and climate change
signal over SAF. We take into account the region-specific
characteristics of this question by analysing SAF and three
subregions, namely southeastern Angola, Mozambique, and
South Africa. We also consider the different atmospheric pro-
cesses that are at play over each region by analysing monthly
climatologies. Precipitation over SAF results from various
atmospheric processes that are highly variable during the
rainy season (October–March); thus, by performing the anal-
ysis on a monthly basis, we are able to indirectly study how
certain processes are reproduced by GCM and RCM simu-
lations. In order to differentiate between the signal emanat-
ing from the RCMs and that emanating from their driving
GCMs, we use the analysis of variance (ANOVA) in both the
GCM and the RCM ensembles (Déqué et al., 2007, 2012).
Since the information provided by RCMs will eventually be
used by both climate and non-climate scientists, especially
in light of climate change impact studies, we aim to provide
some information with regard to how much each RCM is af-
fected by its driving GCM and what climate change signals
are consistent in both RCMs and GCMs.
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2 Material and methods

2.1 Data

The data analysed in the current work consist of RCM simu-
lations performed in the context of CORDEX-Africa, a set of
simulations performed in the context of CMIP5, the CHIRPS
satellite rainfall product (Funk et al., 2015), the ERA5 re-
analysis dataset (Hersbach et al., 2020), the CRU gridded
observational dataset (Harris et al., 2020), and the MSWEP
precipitation product (Beck et al., 2019). More specifically,
the CORDEX-Africa simulations selected are those that were
driven by more than two GCMs (at least three simulations
available using the same RCM driven by at least three dif-
ferent GCMs) and for which there are runs available for both
the historical and the future period under RCP8.5. All RCMs
employed a relaxation zone that was either 10 grid points
wide (CCLM4-8-17.v1) or 8 grid points wide (RCA4.v1 and
REMO2009.v1). Relaxation in all RCM simulations was per-
formed using Davies’ method (Davies, 1976, 1983). The
CMIP5 GCMs selected are the ones that were used to drive
the CORDEX-Africa simulations. All RCM and GCM sim-
ulations were retrieved from the Earth System Grid Fed-
eration. The CHIRPS rainfall product is used for calculat-
ing precipitation biases in both the CORDEX-Africa and
CMIP5 ensembles. CHIRPS is available at 5 km spatial res-
olution, and for the calculation of biases it was remapped to
the coarser-resolution grid using conservative remapping. A
fact that is commonly obscured is that observational datasets
are often considered “ground truth”; however, they are also
subject to multiple sources of uncertainty, caused by the un-
derlying station datasets used, the statistical algorithms em-
ployed in spatial interpolation methods, or the algorithms
employed in satellite rainfall products (Le Coz and van de
Giesen, 2020). More specifically, over southern Africa it was
found that gauge-based products employing spatial interpola-
tion methods displayed high uncertainty over regions where
the underlying station network was scarce, mainly over the
Angola region and the northern parts of SAF (Karypidou et
al., 2022). In addition, it was found that this attribute was
inherited by all rainfall satellite products that were using
direct merging techniques with gauge-based datasets. Here,
we display monthly precipitation during the historical period
(1985–2005) across four observational datasets, given in Ta-
ble 1. More specifically, we use the CRUv4.06 dataset (Harris
et al., 2020), which is a purely gauge-based product (employ-
ing station data and a spatial interpolation algorithm to pro-
vide a spatially continuous gridded product), ERA5 (Hers-
bach et al., 2020), which is a reanalysis product, CHRIPS
(Funk et al., 2015), which is a satellite rainfall product, and
finally, MSWEP (Beck et al., 2017), which is a product merg-
ing station data, satellite data, and dynamic model outputs.
All datasets have been analysed using monthly mean val-
ues. The results are displayed in Fig. 1. As shown, there is
a substantial agreement among them, with regard to both the

spatial and temporal patterns of monthly precipitation over
southern Africa.

Our analysis is split into the following two sections: the
qualitative part and the quantitative part. In the qualitative
part, we aim to identify if RCMs exhibit systematic be-
haviour relative to their driving GCMs. For the quantitative
part, we aim to quantify the degree to which monthly precip-
itation climatologies, biases, and climate change signals are
affected by the RCMs or by the driving GCMs. For this pur-
pose, we employ an ensemble of 19 RCM simulations driven
by 10 GCMs and the driving GCMs that were used to provide
the lateral boundary conditions to the RCMs. From the his-
torical simulations we use the period 1985–2005, and from
the projection simulations we use the period 2065–2095 un-
der RCP8.5. All CORDEX-Africa simulations are available
at ∼ 50 km horizontal resolution and are shown in Table 2,
while the horizontal resolution for the driving GCMs is pro-
vided in Table 3.

2.2 Methods

The study region and subregions considered are depicted in
Fig. 2. The subregions are selected based on particular phe-
nomena and processes that are of importance for the seasonal
cycle of precipitation. More specifically, Region A (hereafter,
SAF-All) encompasses the entire SAF region and is defined
as the area extending from 10 to 35◦ S and from 10 to 42◦ E.
Region B (hereafter, Angola region) was selected to capture
the main region of interest with regards to the Angola Low
(AL) pressure system (Howard and Washington, 2018) and
covers the area extending from 11 to 19◦ S and from 14 to
25◦ E. Region C (hereafter, East Coast) covers the eastern
coastline, Mozambique and parts of the surrounding coun-
tries and extends from 10 to 28◦ S and from 31 to 41◦ E.
Lastly, we define the SAfr region, which covers much of
South Africa and extends from 26 to 35◦ S and from 15 to
33◦ E.

One of the primary synoptic-scale features controlling pre-
cipitation over SAF is the Angola Low (AL) pressure sys-
tem (Reason and Jagadheesha, 2005; Lyon and Mason, 2007;
Crétat et al., 2019; Munday and Washington, 2017; Howard
and Washington, 2018), which has a distinct seasonal cy-
cle throughout the rainy season (October–March). This mo-
tivates its selection as a subregion for our study. The AL
exhibits heat low characteristics during October–November
and tropical low characteristics during December–February
(Howard and Washington, 2018). This suggests that during
October–November, since precipitation is thermally induced
and thus tightly dependent on land–atmosphere interactions,
it will be the RCMs that are dominant in controlling pre-
cipitation processes. As the rainy season progresses, the AL
changes to a tropical low-pressure system, and its formation
is controlled by the large-scale circulation that is charac-
terized by easterly winds from the Indian Ocean that enter
SAF via the Mozambique Channel. Since precipitation dur-
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Figure 1. Monthly mean precipitation climatology for the period 1985–2005.

Table 1. Gauge-based, satellite, reanalysis, and merged precipitation products analysed over the study region using monthly mean precipita-
tion for the period 1985–2005.

Dataset Resolution Frequency Type Period

CRU TS4.06 0.5◦ Monthly total Gauge-based 1901–2021
MSWEP 0.1◦ 3-hourly Merged product 1979–present
CHIRPS.v2 0.05◦ Daily totals Satellite 1981–present
ERA5 ∼ 0.25◦ Hourly Reanalysis 1979–present

Table 2. Input RCM and GCM simulations used. The CORDEX-
Africa simulations are given in the columns. The CMIP5 GCMs
used as driving fields are given in the rows.

CCLM4-8-17.v1 RCA4.v1 REMO2009.v1

CanESM2 X
CNRM-CM5 X X
EC-EARTH X X X
HadGEM2-ES X X X
MIROC5 X X
MPI-ESM-LR X X X
IPSL-CM5A-LR X
IPSL-CM5A-MR X
CSIRO-Mk3-6-0 X
GFDL-ESM2M X
NorESM1-M X

ing December–February is caused by the tropical low phase
of the Angola Low pressure system, which is the monthly ag-
gregate of frequent transient low-pressure systems crossing
southern African (Munday and Washington, 2017; Howard
and Washington, 2018; Howard et al., 2019), we hypothe-
size that the impact of the driving GCMs during December–
February is enhanced.

In addition, the wider area of Mozambique is a region
where the majority of tropical cyclones and depressions
make landfall over continental SAF. The occurrence of tran-
sient low-pressure systems is enhanced during the core of the
rainy season (December–February), and thus we are inter-
ested in identifying whether the impact of the driving GCMs
is dominant during December–February. Also, since accord-
ing to Muthige et al. (2018) the number of tropical cyclones
making landfall under RCP8.5 is expected to decline in the
future, we are interested in examining whether the impact of
the driving GCMs to the RCM simulations will be altered un-
der future conditions. Hence, the East Coast region is used as
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Table 3. Horizontal resolution of the CMIP5 GCMs used as driving fields in the CORDEX-Africa simulations.

GCMs Latitude res. Longitude res. References

CanESM2 2.7906◦ 2.8125◦ Canadian Centre for Climate Modelling and Analysis (2023)
NRM-CM5 1.40008◦ 1.40625◦ Voldoire et al. (2013)
CSIRO-Mk3-6-0 1.8653◦ 1.875◦ Jeffrey et al. (2013)
EC-EARTH 1.1215◦ 1.125◦ Hazeleger et al. (2010)
GFDL-ESM-2M 2.0225◦ 2.5◦ Dunne et al. (2013)
HadGEM2-ES 1.25◦ 1.875◦ Collins et al. (2011)
IPSL-CM5A-MR 1.2676◦ 2.5◦

Dufresne et al. (2013)
IPSL-CM5A-LR 1.894737◦ 3.75◦

MIROC5 1.4008◦ 1.40625◦ Watanabe et al. (2010)
MPI-ESM-LR 1.8653◦ 1.875◦ Giorgetta et al. (2013)
NorESM1-M 1.894737◦ 2.5◦ Bentsen et al. (2013)

Figure 2. Study region and subregions over southern Africa.

a region indicative of the tropical cyclones and depressions
making landfall. Lastly, we examine the area encompassing
South Africa (hereafter, SAfr) due to its strong land–ocean
gradients, complex topography, and strong seasonal varia-
tions in rainfall zones.

2.2.1 Monthly precipitation climatology and bias

In order to assess whether or not the RCMs improve the
monthly precipitation climatologies relative to their driving
GCMs, we employ a method initially described in Kerkhoff
et al. (2015) and later employed by Sørland et al. (2018),
which displays the RCM increment as a function of the GCM

bias in scatterplot form. More specifically, the RCM incre-
ment is described as the difference between each RCM sim-
ulation and its driving GCM (RCM−GCM). The RCM in-
crement is plotted against the GCM bias (GCM-OBS). This
plot displays whether or not the RCM increment counter-
acts the GCM bias. If the RCM increment reduces the GCM
bias, then points are expected to lie along the y =−x line
(negative correlation). In contrast, if the RCM increment in-
creases the GCM bias, then points are expected to lie along
the y = x line (positive correlation). If the RCM increment
and the GCM bias are independent, then points are expected
to be scattered randomly.
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2.2.2 Climate change signal

The climate change signal (CCS) is identified as the monthly
mean difference between the future period (2065–2095) mi-
nus the historical period (1985–2005). As an exploratory
method of inspecting the differences between each RCM
simulation from its respective driving GCM for monthly pre-
cipitation during both the historical and the future period, we
subtract the downscaled precipitation field (RCMDRI) from
its driving (DRI) GCM, as in Eq. (1):

DIFF= RCMDRI−DRI. (1)

If DIFF > 0 (monthly precipitation), then we assume that the
RCM enhances precipitation, relative to its driving GCM,
while if DIFF < 0 then we assume that the RCM reduces
precipitation, relative to its driving GCM. This method is em-
ployed in the qualitative part of the analysis.

2.2.3 Analysis of variance

Additionally, we employ an ANOVA decomposition (Déqué
et al., 2007, 2012), in order to understand whether it is the
RCMs or their respective driving GCMs that are responsible
for controlling precipitation over the historical (1985–2005)
period and the future period (2065–2095). For this purpose,
we use two quantities, namely the “inter-RCM” variance and
the “inter-GCM” variance, as in Déqué et al. (2012). More
specifically, the inter-RCM variance is the variance between
all the RCM simulations that are driven by the same GCM.
Subsequently, all variances obtained for all driving GCMs
are averaged.

RCMvar =
1

NRCM
6RCMj

(
Pj −P j

)2
(2)

The quantity Pj is the monthly precipitation obtained from
all RCMs (j ) that were driven by the same GCM. The quan-
tity Pj is the mean monthly precipitation obtained by all
RCMs (j ) that share a common driving GCM. As a final step,
the average of all variances is calculated.

Inter_RCMvar=
∑

GCMj

N
(3)

Similarly, the inter-GCM variance describes the variance be-
tween all the GCMs that were used to drive a single RCM and
then averaged over all the variances obtained for all driven
RCMs. N refers to all available simulations contributing to
either the inter-RCM or inter-GCM variance.

GCMvar =
1

NGCM
6GCMi

(
Pi −P i

)2
(4)

Likewise, the average of all variances is calculated.

Inter_GCMvar=
∑

RCMi

N
(5)

Both inter-RCM and inter-GCM variances are normalized
by the total variance obtained for all months, as in Vautard
et al. (2021), so that all values for historical and projec-
tion runs and RCM and GCM simulations are comparable.
A schematic of the process described above is provided in
Fig. S1.

3 Results

The October and January precipitation climatologies for the
period 1985–2005 are displayed in Figs. 3 and 4, respec-
tively. We use October and January climatologies because
these 2 months may be considered representative of the dis-
tinctive processes controlling precipitation over SAF (see
Sect. 2.2). We avoid using seasonal means, since the tem-
poral averaging of precipitation often obscures attributes
that are better identified on a monthly level. The remain-
ing months of the rainy season are shown in the Supplement.
More specifically, we use October as it is the month that her-
alds the onset of the rainy season and is often associated with
weak precipitation and convective processes that are mainly
due to excess surface heating. Also, it is during October that
the most intense formations of the heat low expression of the
AL are observed. Likewise, we use January as it represents
the core of the rainy season, with very strong large-scale pre-
cipitation, mainly from the southeastern (SE) part of SAF,
through transient synoptic-scale low-pressure systems.

As is displayed in Fig. 3, precipitation during October oc-
curs in the northwestern (NW) part and the SE part of SAF.
Precipitation in the NW part is associated with the south-
ward migration of the rainband (Nicholson, 2018), while
precipitation over the SE part is associated with an early
formation of the tropical temperate troughs (TTTs). As is
evident from Fig. 3, CCLM4-8-17.v1 reduces precipitation
amounts (approximately 4–5 mm d−1) in both the NW and
SE parts of SAF relative to the lateral boundary forcing it
receives. In contrast, RCA4.v1 systematically enhances pre-
cipitation amounts, regardless of the driving GCM. Also,
precipitation according to RCA4.v1 displays a very local-
ized spatial pattern with very strong spatial heterogeneity.
This attribute is indicative of specific structural model bi-
ases related to how high-resolution elevation affects precipi-
tation in RCA.v1 (Van Vooren et al., 2019). This is particu-
larly evident in the mountainous region over coastal Angola.
REMO2009.v1 also enhances precipitation amounts regard-
less of the driving GCM; however, this is in a much more
spatially homogeneous way than RCA4.v1.

As is shown in Fig. 4, high precipitation amounts dur-
ing January are observed over the northern and eastern re-
gions of SAF. During January, differences among the driv-
ing GCMs become more pronounced; however, all models
agree on the dry conditions observed over the southwest-
ern (SW) part of SAF. With regard to the downscaled prod-
ucts, CCLM4-8-17.v1 produces high precipitation amounts
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Figure 3. Monthly precipitation climatologies (mm d−1) during
October for the period 1985–2005. The first column (from the left)
displays precipitation from the driving GCMs, and columns 2–4 dis-
play the downscaled precipitation output from RCA4.v1, CCLM4-
8-17.v1, and REMO2009.v1.

Figure 4. Monthly precipitation climatologies (mm d−1) during
January for the period 1985–2005. The first column (from the left)
displays precipitation from the driving GCMs, and columns 2–4 dis-
play the downscaled precipitation output from RCA4.v1, CCLM4-
8-17.v1, and REMO2009.v1.
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over the central part of northern SAF but displays varying
amounts of precipitation over the coastal parts, depending
on the driving GCM. RCA4.v1 downscales precipitation in a
very localized pattern and enhances precipitation over areas
with steep terrain. Also, precipitation over the Lake Malawi
region is particularly enhanced, regardless of the driving
GCM. REMO2009.v1 displays similar precipitation amounts
to its driving GCMs; however, it enhances precipitation over
the coastal part of Angola and Mozambique and yields ex-
cess precipitation over Lake Malawi when it is driven by
HadGEM2-ES and IPSL. The monthly climatologies for the
rest of the rainy-season months are shown in the Supplement
(Figs. S2–S5).

In Fig. 5 the monthly precipitation bias for October over
SAF is shown. Biases are calculated using the CHIRPS
satellite rainfall product as a reference. With the excep-
tion of IPSL-CM5A (LR/MR) and CanESM2, all other
GCMs display a consistent wet bias that ranges from 0.1 to
30 mm d−1 (in isolated areas), with most values over SAF
falling between 0.1 and 3 mm d−1. Overall, the same pat-
tern generally holds for RCA4.v1 and REMO2009.v1, while
CCLM4-8-17.v1 displays a systematic dry bias that reaches
2 mm d−1, when forced with EC-EARTH, MPI-ESM-LR,
and HadGEM2-ES. More specifically, concerning RCA4.v1,
the region where the highest wet bias is observed is over the
Angola region and over the NW parts of coastal Angola. The
dry bias regions in RCA4.v1 are identified over the northeast-
ern (NE) and southern parts of SAF and they rarely exceed
−1.5 mm d−1.

The monthly precipitation biases for January over SAF are
shown in Fig. 6. There is a prevailing wet bias identified in
almost all GCMs that typically reaches 3–3.5 mm d−1; how-
ever, in MIROC5, NorESM, and GFDL-ESM2M the biases
exceed 5 mm d−1 over a major part of SAF. Another feature
that systematically appears in GCMs is a dry bias over the
NE part of SAF. This bias pattern is also identified in almost
all RCMs with a systematic wet bias over central and western
SAF and a region of dry bias in the NE part. More specifi-
cally, in RCA4.v1 and REMO2009.v1, there is a dry bias
over the NE and the southern coast of SAF, while in CCLM4-
8-17.v1 the dry bias over the eastern region extends inland
to cover almost the whole of Mozambique. Another inter-
esting feature is identified around the Angolan coast, where
wet biases exceed 5 mm d−1, while over an adjacent region
there is a strip of dry biases that reaches 2 mm d−1. Consid-
ering the abrupt increase in elevation and the steep escarp-
ment over the coastal Angola–Namibia region, this is possi-
bly caused by local circulation driving excess moisture trans-
port from the Atlantic Ocean and overly aggressive orograph-
ically triggered precipitation on the windward side of the to-
pography (wet bias strip) that leads to dry conditions in the
lee side (dry bias strip) (Howard and Washington, 2018). It is
noted that the wet bias over the coastal region is identified in
most of the RCA4.v1 simulations and in all REMO2009.v1
simulations; however, the dry bias in the lee side is seen in

Figure 5. Monthly precipitation bias (model–CHIRPS, in mm d−1)
during October for the period 1985–2005. The first column (from
the left) displays the biases in the driving GCMs, and columns 2–4
display the biases in the downscaled precipitation output according
to RCA4.v1, CCLM4-8-17.v1, and REMO2009.v1.
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Figure 6. Monthly precipitation biases (model–CHIRPS, in
mm d−1) during January for the period 1985–2005. The first col-
umn (from the left) displays precipitation biases from the driving
GCMs used, and columns 2–4 display the biases in the downscaled
precipitation output according to RCA4.v1, CCLM4-8-17.v1, and
REMO2009.v1.

CCLM4-8-17.v1 only. The monthly precipitation biases for
the rest of the rainy season months are shown in the Supple-
ment (Figs. S6–S9). Monthly precipitation biases averaged
over southern Africa (SAF-All), and the three subregions ex-
amined are displayed in Fig. S10.

A more detailed look into specific subregions over SAF
where certain climatological features and processes are at
play can help us gain a more in-depth insight into how the
precipitation biases are distributed during each month of the
rainy season and whether or not the RCMs display any im-
provement relative to their driving GCMs. For this reason,
we plot the RCM increments (RCM−GCM) as a function
of the GCM biases (GCM-OBS). The results for October
over SAF and the three subregions are displayed in Fig. 7.
In general, all points are identified close to the y =−x line;
hence, there is a tendency that RCMs systematically coun-
teract GCM biases. There are nonetheless substantial differ-
ences between the four regions. For instance, over the SAF-
All region the IPSL-MR GCM has a wet bias equal to al-
most 1 mm d−1, which is counteracted by RCA by an incre-
ment of −0.4 mm per month. Other RCA simulations when
driven by HadGEM2-ES, CNRM-CM5, or EC-EARTH dis-
play an RCM increment similar to that of the GCM bias,
hence RCMs mitigate the GCM bias. Over the Angola region
most of the RCMs display an RCM increment that is nearly
equal to the GCM bias. Similar conclusions are drawn for
the East Coast and the South Africa regions. The RCM incre-
ments as a function of the GCM biases for January are shown
in Fig. 8. For all regions except for the SAfr region points lie
close to the y =−x line; hence, RCM increments counter-
act the GCM biases overall. The scatterplots for the rest of
the months of the rainy season are shown in the Supplement
(Figs. S11–S14). In general, although precipitation in RCMs
is strongly dependent on the driving GCMs, the RCM incre-
ments are anticorrelated to the GCM biases. The anticorrela-
tions are particularly strong for the December–March period
of the rainy season over the SAF-All region and the Angola
and East Coast subregions but not over the SAfr subregion
(Fig. S15).

In Fig. 9 the analysis of variance of all RCMs driven by
the same GCM and of all GCMs driving the same RCM
is shown. Values are spatially averaged for southern Africa
and the three subregions examined (land grid points only)
and refer to the period 1985–2005. In the SAF-All re-
gion, monthly precipitation during October and November
is dominated by the RCMs, while during January–March,
it is the GCMs that play a dominant role in formulating
precipitation over SAF. This is indicative of the impact
that RCMs exert on the formulation of precipitation during
October–November–December and the fact that the contri-
bution from the GCMs becomes secondary during January–
February–March. The fact that the contribution of RCMs
during October–November–December dominates can be at-
tributed to the fact that precipitation during these months
is the result of regional processes that are largely depen-
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Figure 7. Scatterplots of the RCM increment (RCM−GCM) for precipitation (mm d−1) as a function of the GCM bias (GCM-OBS) for
October. Colours indicate the driving GCM, and shapes indicate the downscaling RCMs. The four panels indicate spatial averages over
southern Africa (SAF-All region), the Angola region, the East Coast region, and the SAfr region, respectively.

dent on the coupling between the surface and the atmo-
sphere. The land–atmosphere coupling is a characteristic re-
solved by the RCMs, through mechanisms simulated by land
surface models, planetary boundary layer schemes, convec-
tion schemes, etc., making the contribution of the large-
scale drivers from the GCM less important. However, during
January–February–March we observe that the contribution
from the RCMs is reduced, and it is the GCMs that control
the monthly precipitation variability. This can be attributed to
the fact that during January–February–March it is the large-
scale circulation that modulates precipitation over SAF and
that the GCMs control the transient synoptic-scale systems
that enter SAF. Over the Angola region, the pattern is sim-
ilar; however, October and November precipitation is closer
to the diagonal, indicating an almost equal contribution by
both RCMs and GCMs. While the December–February pe-
riod moves closer to the diagonal, precipitation during March
is mainly formulated by GCMs. Over the East Coast re-
gion, October remains equally influenced by both RCMs and
GCMs; however, November and December are dominated by
the influence of the RCMs. Over the SAfr region, precipita-
tion for all months except October is influenced by GCMs.

In Fig. 10 the climate change signal for October precip-
itation over SAF is depicted. All GCMs agree that Octo-
ber precipitation will decline by approximately 2 mm d−1

over the regions that experience precipitation during this
period, namely the NW and SE parts of SAF. In addi-
tion, some GCMs display a minor precipitation increase (0–
0.5 mm d−1) over the SW part of SAF, while some others
display a slightly larger (1.5 mm d−1) precipitation increase
over the eastern parts of South Africa. Moreover, it is seen
that the precipitation change signal is replicated by almost
all the downscaling RCMs; nevertheless, there are some con-
siderable differences between the RCMs and their driving
GCM. More specifically, RCA4.v1 displays a larger reduc-
tion of the precipitation change signal relative to its driving
GCM in almost all simulations, both in magnitude and in spa-
tial extent. Precipitation changes in CCLM4-8-17.v1 seem
to closely follow the driving GCMs, with a clear exception
when CNRM-CM5 is used (the NW part of SAF experiences
precipitation decline almost 4 mm d−1 larger than in the driv-
ing GCM). The case for when CCLM4-8-17.v1 is driven by
CNRM-CM5 may be partly caused by the fact that the his-
torical simulation had erroneously used lateral boundary con-
ditions from a different simulation member of CNRM-CM5
(Vautard et al., 2021). In REMO2009.v1, a precipitation de-
cline region is identified in the NW part of SAF, whereas
a minor precipitation increase over eastern South Africa is
identified. This pattern for REMO2009.v1 appears to be con-
sistent, regardless of the driving GCM, which could be partly

Geosci. Model Dev., 16, 1887–1908, 2023 https://doi.org/10.5194/gmd-16-1887-2023



M. C. Karypidou et al.: Impact of lateral boundary forcing in the CORDEX-Africa ensemble over SAF 1897

Figure 8. Scatterplots of the RCM increment (RCM−GCM) for precipitation (mm d−1) as a function of the GCM bias (GCM-OBS) for
January. Colours indicate the driving GCM, and shapes indicate the downscaling RCMs. The four panels indicate spatial averages over
southern Africa (SAF-All region), the Angola region, the East Coast region and the SAfr region, respectively.

explained by the fact that precipitation during October is
thermally driven, and thus the impact of the driving GCMs
is not dominant. The precipitation increase in the SE part of
SAF is seen over a localized region and could be associated
with an increase in the precipitation caused by the Tropical
Temperate Troughs (TTTs) (Ratna et al., 2013; Macron et al.,
2014; Shongwe et al., 2014).

In Fig. 11 the climate change signal for precipitation dur-
ing January is displayed. The precipitation change displays
a very strong regional heterogeneity. It is also observed that
although there is a strong precipitation change signal in all
driving GCMs, not all RCMs downscale the signal uniformly.
It is also notable that, even among the GCMs, there are
substantial differences in the spatial extent and sign of the
change. Nevertheless, there are some features that appear
in most of the simulations. For instance, almost all GCMs
project drying conditions over the SW part of SAF, espe-
cially the coastal zone. The precipitation decline is equal
to −1 mm d−1. This could be explained by a consistent in-
crease in frequency of the Benguela coastal low-level jet
events (Lima et al., 2019; Reboita et al., 2019), causing
oceanic upwelling and a subsequent reduction in precipita-
tion. In addition, there are a subset of GCMs that identify
a severe precipitation decline over the Angola region that
reaches −5 mm d−1. Furthermore, in many GCMs a region

of precipitation increase is identified, extending from cen-
tral SAF towards SE SAF. This is particularly identifiable in
HadGEM2-ES and the RCM simulations forced by it. The
monthly precipitation changes for the rest of the rainy season
months is shown in the Supplement (Figs. S16–S19).

In Fig. 12 the spatial average of the RCMDRI–DRI dif-
ference (DIFF) is shown for the whole of SAF (land grid
points only). If DIFF > 0, it indicates that the RCMs en-
hance precipitation relative to their driving GCM, while if
DIFF < 0 then RCMs reduce precipitation relative to their
driving GCM. As is shown, DIFF values for October are
symmetric around zero and do not exceed the range −1 to
1 mm d−1 for either the historical or future period. The DIFF
values for November are also almost symmetric; however,
their spread increases, reaching values that range between
(−2) and 2 mm d−1. During both months, CCLM4-8-17.v1
always reduces precipitation amounts relative to the lateral
boundary forcing it receives, regardless of the driving GCM
or the period examined. During December, the precipita-
tion reduction in all RCMs becomes more pronounced and
reaches values equal to −3 mm d−1. In January, only one
RCM enhances precipitation (∼ 0.5 mm d−1), with all the
rest displaying precipitation reduction. During February and
March, some positive DIFF values reappear for some simu-
lations. Overall, there is a strong linear relationship between
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Figure 9. Analysis of variance for monthly precipitation during 1985–2005 for southern Africa (SAF-All region) and the three sub-regions
examined, namely the Angola region, East Coast region, and the SAfr region, respectively. The x and y axes display standardized precipitation
variances.

DIFF in 1985–2005 and DIFF in 2065–2095, which further
implies that if an RCM is drier than its driving GCM during
the historical period, then it will also retain this attribute dur-
ing the future period. Nonetheless, we highlight that RCMs
preserve precipitation change signal generated by the GCMs.
Considering that one primary shortcoming of the GCMs over
SAF is their wet bias and that RCMs systematically reduce
this bias, we gain increased confidence that RCMs can be
reliably used for assessments of future precipitation change.

In Fig. 13 the spatial average of the precipitation change
signal from RCMs and their driving GCMs relative to 1985–

2005 for SAF and the three subregions is displayed. Con-
cerning SAF-All region, all models during October identify
a precipitation reduction at the end of the 21st century that
can reach −0.9 mm d−1. The precipitation decline signal is
also identified during November, indicating a later onset of
the rainy season over SAF, as it has already been shown for
CMIP5 (Dunning et al., 2018). During December and Jan-
uary there is a variability in the spatial averages of the change
signal that ranges from−0.8 to 0.8 mm d−1. A similar pattern
is also seen for February and March. The distribution of the
ensemble members for both RCMs and GCMs over the An-
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Figure 10. Monthly precipitation change (future–present, in
mm d−1) during October for the period 2065–2095 relative to
1985–2005. The first column (from the left) displays the precipi-
tation change for the driving GCMs used, and columns 2–4 display
the downscaled products according to RCA4.v1, CCLM4-8-17.v1,
and REMO2009.v1.

Figure 11. Monthly precipitation change (future–present, in
mm d−1) during January for the period 2065–2095 relative to
1985–2005. The first column (from the left) displays precipitation
change for the driving GCMs used, and columns 2–4 display the
downscaled products according to RCA4.v1, CCLM4-8-17.v1, and
REMO2009.v1.
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Figure 12. Monthly RCMDRI–DRI spatial averages over southern Africa for the historical period (1985–2005) on the x axis and the future
period (2065–2095) under RCP8.5 on the y axis.
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Figure 13. Spatial average of the precipitation change signal (mm d−1) from RCMs and their driving GCMs relative to 1985–2005 for
southern Africa and the three sub-regions examined.

gola and the East Coast subregions is similar to that of SAF-
All region; however, over the Angola and the East Coast sub-
regions precipitation change values display a considerably
larger spread. Over the SAfr region the climate change sig-
nal is symmetric around 0 for all months, except March.

The impact of the RCMs and GCMs on monthly precip-
itation for the period 2065–2095 under RCP8.5 is shown
in Fig. 14. The SAF-all region and the Angola subregion
show a similar behaviour as in the historical period (Fig. 9);
however, over the East Coast subregion, precipitation during
March is more strongly dominated by GCMs. The same ob-
servation also holds over the SAfr subregion. In general, re-
gional processes continue to dominate contributions to vari-
ability during October–November, while large-scale features
dominate during December–March.

4 Discussion and conclusions

In this work we investigate whether it is the RCMs or the
driving GCMs that control the monthly precipitation vari-
ability, monthly precipitation biases, and climate change sig-
nal over southern Africa and how these relationships vary
from month to month throughout the rainy season. Our work
examines monthly precipitation variance caused by the lat-
eral boundary conditions and does not examine parameter
and structural uncertainty separately in the multi-RCM and
the multi-GCM ensembles analysed. More specifically, we
use an ensemble of 19 RCM simulations performed in the
context of CORDEX-Africa and their driving GCMs. Ac-
cording to the literature (Munday and Washington, 2018),
precipitation in the CMIP5 simulations is characterized by a
systematic wet bias over southern Africa. In the CORDEX-
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Figure 14. Analysis of the variance of monthly precipitation during 2065–2095 for southern Africa (SAF-All region) and the three sub-
regions examined, namely the Angola region, East Coast region, and the SAfr region, respectively. The x and y axes display standardized
precipitation variances.

Africa RCM simulations there is also a persistent wet bias,
especially during the core of the rainy season (December–
January–February, DJF); however, it is of smaller magnitude
and of smaller spatial extent. It is found that RCMs reduce
monthly precipitation compared to their driving GCMs for
both historical (1985–2005) and future periods (2065–2095)
under RCP8.5.

The Angola region, which encompasses the activity of the
Angola Low pressure system, displays the highest wet bi-
ases with regards to mean monthly precipitation among all
subregions examined. The month with the largest wet biases

(for the Angola region) is found to be November, while the
month with the largest precipitation bias spread is found to
be March. In all months except October, the CMIP5 GCMs
display biases that are approximately 1–1.5 mm d−1 wetter
than the wettest CORDEX-Africa RCM ensemble members.
Over the East Coast region, representing the wider area over
Mozambique, the bias signal is reversed after January, with
most of the RCMs displaying a dry bias. Over the SAfr re-
gion, the majority of models display a consistent wet bias
for all months of the rainy season. All models (CMIP5 and
CORDEX-Africa) display an intense dry bias in the NE part
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of SAF, which can be related to the misrepresentation of the
moisture transport entering the region from the Indian Ocean
(Munday and Washington, 2018). In general, although RCMs
display an improvement in precipitation biases relative to
their driving GCMs, some bias patterns still persist even in
RCMs, calling for a process-based evaluation of specific cli-
matological features such as the formulation of the Angola
Low and the transport of moisture from the NE part of SAF
towards the central SAF.

More specifically, we found that CCLM4-8-17.v1 pro-
duces the smallest bias when the whole of SAF is exam-
ined; however, it displays a systematic dry bias over the East
Coast region (greater Mozambique region); hence, CCLM4-
8-17.v1 should be used with caution over eastern SAF, es-
pecially if it is exploited within drought-related climate ser-
vices. Concerning RCA4.v1, we find a very regionally het-
erogeneous – almost pixelated – spatial pattern for precipi-
tation, which can be attributed to the sharp topography used
(Van Vooren et al., 2019). RCA4.v1, due to the large size
of its ensemble, is optimal for analysing its behaviour under
different driving GCMs. In general, we find that RCA4.v1
is more prone to follow the signal received from the driv-
ing GCMs, contrary to what is observed for CCLM4-8-
17.v1. REMO2009.v1 presents a compromise between the
behaviours of RCA4.v1 and CCLM4-8-17.v1.

It is highly recommended that when RCM simulations are
used for the whole of SAF or a subregion thereof, the spread
and statistical properties of all available RCMs and their driv-
ing GCMs should be examined, and an ensemble of RCMs
should be employed based on their ability to reproduce key
climatic features of the region of interest. Increasing evi-
dence is provided that not all models are fit for construct-
ing an ensemble mean (or median) for all regions (Her et
al., 2019; Raju and Kumar, 2020; Tebaldi and Knutti, 2007).
Lastly, a very important aspect when the calculation and
characterization of biases is discussed for GCMs and RCMs
is that biases are assessed based on a satellite- or gauge-
based product, which are often erroneously regarded as “the
ground truth” (Harrison et al., 2019; Alexander et al., 2020).
Of course, the climate community is bound to work with the
state-of-the-science products that are available; however, bi-
ases and errors in the “observational datasets” should be kept
in mind when the biases of climate models are discussed. In
this work we use the CHIRPS precipitation product, as it has
been shown to outperform other satellite precipitation prod-
ucts (Toté et al., 2015; Ayehu et al., 2018; Dinku et al., 2018).

Concerning the climate change signal, there is a strong
agreement among all GCMs and RCMs that precipitation
during October will decrease by (−0.1)–(−1) mm d−1, a fact
associated with a projected later onset of the rainy season,
which is further linked with a northward shift of the trop-
ical rain belt (Dunning et al., 2018; Lazenby et al., 2018).
The topic of reduced early rainfall over southern Africa for
the end of the 21st century under all emission scenarios and
pathways has been examined extensively for the CMIP3 and

CMIP5 GCM ensembles (Seth et al., 2011; Cook and Vizy,
2022; Lazenby et al., 2018; Howard and Washington, 2020).
A common observation in all CMIP5 GCMs for the early
rainy season by the end of the 21st century is that the insta-
bility over southern Africa reduces, the surface temperature
increases, and the heat low phase of the Angola Low pres-
sure system is strengthened (Howard and Washington, 2020).
However, rainfall decline in the CMIP5 ensemble over south-
ern Africa should be additionally considered in the context
of the systematic precipitation biases already diagnosed in
the historical simulations (Munday and Washington, 2018;
Howard and Washington, 2020). Considering that the sys-
tematic wet precipitation bias is significantly reduced in the
CORDEX-Africa ensemble relative to their driving CMIP5
GCMs (Karypidou et al., 2022), we gain confidence that
future precipitation projections according to the CORDEX-
Africa ensemble provide a more plausible future scenario.
For the rest of the months, the results are variable, indicating
the need for a multi-model approach when climate change
impacts are assessed. A feature that is identified in some
GCMs and transferred to the downscaling RCMs is a pre-
cipitation increase that extends from the central SAF region
towards the southeast. This result is consistent with previous
work that shows an increase in frequency of cyclones mak-
ing landfall along the eastern seaboard of SAF (Muthige et
al., 2018). Since tropical cyclones are a particular cause of
severe flooding events over Mozambique, there is an urgent
need for planning and mitigation strategies in the region.

Concerning precipitation variability and whether it is the
RCMs or the driving GCMs that dominate monthly precipita-
tion, we find that over the whole of SAF (SAF-All region), as
expected, October and November are dominated by RCMs,
while during December–March it is the GCMs that mainly
formulate the precipitation climatologies. This is explained
by the fact that after December there is a strong large-scale
forcing, which is provided to the RCMs by the lateral bound-
ary conditions given through the GCMs. The results for the
historical period are comparable to that for future projec-
tions.

Lastly, it is imperative to highlight that the impact of
the lateral boundary conditions on RCM simulations com-
prise only a portion of the potential sources of uncertainty in
the CORDEX-Africa ensemble examined; therefore, attribut-
ing entirely the variance of RCM simulations to the driving
GCMs would be erroneous. Therefore, we note that uncer-
tainty in RCM simulations can have a plethora of sources
that are mainly categorized as parameter or structural uncer-
tainty (Günther et al., 2020; Howland et al., 2022). These
types of uncertainty sources may relate to the parameteriza-
tion schemes employed by each RCM or assumptions and
numerical choices involved in the dynamics of each specific
RCM. However, since within CORDEX-Africa only a lim-
ited number of variables are being made available to the com-
munity, it would be impossible to meticulously comment on
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all possible sources of uncertainty and assess the impact of
their variance on monthly precipitation.

Code and data availability. For the data processing and statis-
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ing (https://www.r-project.org/; R Project, 2022), the Climate
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ing scripts are available via Zenodo under the following DOI:
https://doi.org/10.5281/zenodo.5569984 (Karypidou et al., 2021).
CMIP5 and CORDEX-Africa precipitation data were retrieved from
the Earth System Grid Federation (ESGF) portal (https://esgf-data.
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