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Abstract. Methane (CH4) is the second major greenhouse
gas after carbon dioxide (CO2) which has substantially in-
creased during recent decades in the atmosphere, raising se-
rious sustainability and climate change issues. Here, we de-
velop a data assimilation system for in situ and column-
averaged concentrations using a local ensemble transform
Kalman filter (LETKF) to estimate surface emissions of
CH4. The data assimilation performance is tested and op-
timized based on idealized settings using observation sys-
tem simulation experiments (OSSEs), where a known surface
emission distribution (the truth) is retrieved from synthetic
observations. We tested three covariance inflation methods
to avoid covariance underestimation in the emission esti-
mates, namely fixed multiplicative (FM), relaxation-to-prior
spread (RTPS), and adaptive multiplicative. First, we assim-
ilate the synthetic observations at every grid point at the sur-
face level. In such a case of dense observational data, the
normalized root mean square error (RMSE) in the analyses
over global land regions is smaller by 10 %–15 % in the case
of RTPS covariance inflation method compared to FM. We
have shown that integrated estimated flux seasonal cycles
over 15 regions using RTPS inflation are in reasonable agree-
ment between true and estimated flux, with 0.04 global nor-
malized annual mean bias. We then assimilated the column-
averaged CH4 concentration by sampling the model simula-
tions at Greenhouse Gases Observing Satellite (GOSAT) ob-
servation locations and time for another OSSE. Similar to the
case of dense observational data, the RTPS covariance infla-
tion method performs better than FM for GOSAT synthetic
observation in terms of normalized RMSE (2 %–3 %) and in-

tegrated flux estimation comparison with the true flux. The
annual mean averaged normalized RMSE (normalized mean
bias) in LETKF CH4 flux estimation in the case of RTPS and
FM covariance inflation is found to be 0.59 (0.18) and 0.61
(0.23), respectively. The χ2 test performed for GOSAT syn-
thetic observations assimilation suggests high underestima-
tion of background error covariance in both RTPS and FM
covariance inflation methods; however, the underestimation
is much higher (>100 % always) for FM compared to RTPS
covariance inflation method.

1 Introduction

Methane (CH4) is the second major greenhouse gas, after
carbon dioxide (CO2), that has anthropogenic sources. Ac-
cording to the contemporary record of the global CH4 bud-
get, the total of all CH4 sources ranged 538–593 Tg yr−1

during 2008–2017 (Saunois et al., 2020). The primary nat-
ural sources are from wetlands (∼ 40 %). The main anthro-
pogenic CH4 emissions are from microbial emissions asso-
ciated with ruminants (livestock and waste), rice cultivation,
fugitive emissions (oil and gas production and use), and in-
complete combustion of biofuels and fossil fuels. The major
fraction of atmospheric CH4 sinks (range: 474–532 Tg yr−1)
occurs in the troposphere by oxidation via reaction with
hydroxyl (OH) radicals (Patra, et al., 2011; Saunois et al.,
2020); other loss processes include oxidation by soil and re-
actions with O1D and Cl. The lifetime of CH4 in the atmo-
sphere is estimated to be 9.1± 0.9 years (Szopa et al., 2021).
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Regional CH4 emissions can be estimated from CH4
concentration fields and chemistry transport models using
Bayesian synthesis approaches based on inverse modeling
techniques (e.g., Enting, 2002). In such approaches, emis-
sions are optimized on a coarse resolution (e.g., for a limited
number of predefined regions) mostly using surface-based
observations. CH4 concentrations are provided by the NOAA
cooperative air sampling network sites (Lan et al., 2022)
and other networks by the World Data Centre for Green-
house Gases (WDCGG) website, hosted by the Japan Me-
teorological Agency. In recent years, satellite measurements
have been made by the Greenhouse Gases Observing Satel-
lite (GOSAT) or the TROPOspheric Monitoring Instrument
(TROPOMI) (Lorente et al., 2021), covering the globe with
fine spatiotemporal scales. GOSAT has provided an exten-
sive global observations of column CH4 concentrations since
2009 (Yoshida et al., 2013). Some of the inverse modeling
studies utilize the satellite observations for CH4 flux estima-
tion (Zhang et al., 2021; Maasakkers et al., 2016), but this re-
quires enormous computational resources as a result of deal-
ing with more flux regions and more observations.

Grid-based CH4 flux optimization is also performed using
adjoint technique (4-D Var data assimilation) and an ensem-
ble Kalman filter (EnKF) but was limited to small sets of
observations (Houweling et al., 1999; Meirink et al., 2008;
Bruhwiler et al., 2014). Bruhwiler et al. (2014) followed
the EnKF method of Peters et al. (2005) to estimate the
CH4 surface fluxes that utilizes an offline atmospheric chem-
istry tracer model (ACTM) framework. Techniques such as
4-D Var and EnKF are important to estimate CH4 fluxes
since they can assimilate a large number of observations and
manage high-resolution fluxes. In the EnKF system, a flow-
dependent forecast error covariance structure is provided by
ensemble model forecasts, while it does not need an adjoint
model, which makes it a simple but powerful tool for flux
estimation. One of the limitations of the EnKF method is
the dependence of the resolution of state vector on ensem-
ble size, which can give spurious results if the number of en-
semble members is much smaller than the rank of the error
covariance matrix (Houtekamer and Zhang, 2016).

A local ensemble transform Kalman filter (LETKF) is a
type of square-root EnKF that performs analysis locally in
space without perturbing the observations (Ott et al., 2002,
2004; Hunt et al., 2007). LETKFs are computationally effi-
cient since the observations are assimilated simultaneously
and not serially; it is simple to account for observation er-
ror correlation. Miyazaki et al. (2011) and Kang et al. (2012)
demonstrated the implementation of LETKF data assimila-
tion system by coupling an ACTM for carbon-cycle research
using atmospheric CO2 observations. It is also extensively
applied for the emission estimation of short-lived species us-
ing satellite data (Skachko et al., 2016; Miyazaki et al., 2019;
Sekiya et al., 2021). In this work, we will estimate the CH4
fluxes using a LETKF data assimilation system. Assimila-
tion windows ranging from 6 h (Kang et al., 2012) to sev-

eral months (Bruhwiler et al., 2014) have been used, depend-
ing on the desired time resolution of the estimated emissions,
which is often limited by the observational data density. The
time frame over which the system behaves linearly and in
what time frame the observations respond to the control vari-
ables, such as atmospheric transport, as well as observation
abundance, must also be taken into consideration. Within an
assimilation window, where and when the fluxes would be
constrained by specific observations is to be ascertained by
the correlation between ensemble prior fluxes and the ensem-
ble CH4 concentration simulation from a forward model (Liu
et al., 2016).

The main objective of this work is to develop an advanced
4-D data assimilation system based on a LETKF that si-
multaneously estimates atmospheric distributions and sur-
face fluxes of CH4. Observation system simulation experi-
ments (OSSEs) are conducted to assess the performance of
the LETKF since it is important to test the system against
the known emissions or the truth. The OSSE LETKF setup
of top-down CH4 flux estimation using an online ACTM is
an essential step before implementation in real in situ and
satellite observation.

2 Formulation of the LETKF system

We briefly describe the LETKF in the application of CH4
flux estimation, while detailed derivation of equations and
code implementation are given elsewhere (Hunt et al., 2007;
Miyazaki et al., 2011; Miyoshi et al., 2010). The notation
used here for LETKF formulation is adopted from Kot-
suki et al. (2017). In the LETKF, the background ensem-
ble (columns of matrix xb) in a local region evolved from
a set of perturbed initial conditions. The background ensem-
ble mean, xb, and its perturbation, Xb, are estimated from the
ensemble forecast as

xb
=

1
m

m∑
i=1

xb
i ; Xb

i = xb
i − x

b, (1)

where m indicates the ensemble size. The background error
covariance matrix Pb in the m-dimensional ensemble is de-
fined as

Pb
=

1
m− 1

Xb
[
Xb
]T
. (2)

The analysis ensemble mean xa is derived using background
ensemble mean xb and ensemble perturbations Xb as

xa
= xb

+XbP̃ a
(
Y b
)T
R−1

(
yo
−Hxb

)
= xb

+Xbwa, (3)

where H , Y , R, and P̃ a denote the linear observation oper-
ator, ensemble perturbation matrix in the observation space
(Y ≡Hx), observation error covariance matrix, and analysis
error covariance matrix in the ensemble space, respectively.
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The superscripts “o”, “b”, and “a” denote the observations,
background (prior), and analysis (posterior), respectively. wa

defines the analysis increment (or analysis weight) in obser-
vation space and is derived using the information about ob-
servational increment yo

−Hxb. The analysis error covari-
ance matrix (P̃ a) in the m-dimensional ensemble space is
spanned by ensemble perturbation (Hunt et al., 2007) and
defined as

P̃ a
= {(m− 1)I +

(
HXb

)T
R−1HXb

}
−1. (4)

Finally, the analysis ensemble perturbations Xa at the central
grid point are derived such as

Xa
= Xb

{(m− 1)P̃ a
}
1/2, (5)

where {(m− 1)P̃ a
}
1/2 is a multiple of the symmetric square

root of the local analysis error covariance matrix in ensemble
space and could be computed by a singular vector decompo-
sition method. The LETKF solves the analysis update (Eqs. 3
and 5) at every model grid point independently by assimilat-
ing local observations within the localization cutoff radius.

We have applied a gross error check as a quality control to
exclude observations that are far from the first guess; the ap-
propriate degrees of the gross error check are also examined.
Figure 1 shows the schematic diagram of our LETKF setup
with two ensemble members for three consecutive assimi-
lation cycles with an 8 d assimilation window. The analysis
is obtained at the midpoint time of the assimilation window
(Fig. 1). The analyzed (updated) surface flux is used for the
next data assimilation cycle starting from the midpoint time
of the previous data assimilation window. The state vector
augmentation approach is used to estimate the atmospheric
CH4 surface flux (Kang et al., 2012; Miyazaki et al., 2011).

Assimilation window size and ensemble members are cho-
sen based on computational efficiency and estimation accu-
racy. A larger assimilation window means fluxes are con-
strained by more observations; however, it requires handling
of large matrix optimization which is difficult in cases of
dense observation and introduces sampling errors related to
transport errors. In this study, a few sensitivity experiments
were performed to demonstrate the choice of assimilation
window length and ensemble size when GOSAT synthetic
observations are assimilated in Sect. 4.2.

2.1 Covariance inflation

The LETKF data assimilation needs variance inflation to mit-
igate the underdispersed ensemble. We tested three methods:
fixed multiplicative (FM), relaxation-to-prior spread (RTPS),
and adaptive multiplicative covariance inflation.

The fixed multiplicative (FM) inflation method (Anderson
and Anderson, 1999) inflates the prior ensemble by inflating
the background error covariance matrix Pb defined in Eq. (2)
as

Pb
inf = γPb

tmp, (6)

where Pb
tmp represents the temporary background error co-

variance matrix, which is inflated by a factor γ .
The other inflation methods used to prevent the reduc-

tion of ensemble spread are relaxation-to-prior perturbation
(RTPP) (Zhang et al., 2004) and relaxation-to-prior spread
(RTPS) (Whitaker and Hamill, 2012). The RTPP method re-
laxes the reduction of the ensemble spread after updating the
ensemble perturbations, which blends the background and
analysis ensemble perturbations as

Xa
inf = αRTPPXb

+ (1−αRTPP)Xa
tmp, (7)

where αRTPP denotes the relaxation parameter of the RTPP.
The RTPS inflation method relaxes the reduction of the en-

semble spread by relaxing the analysis spread to prior spread
as

Xa
RLX =

(
αRTPSσ

b
+ (1−αRTPS)σ

a

σ a

)
Xa

tmp, (8)

where σ and αRTPS denote the ensemble spread and relax-
ation parameter of the RTPS, respectively. The range of the
αRTPS parameter is bounded by [0, 1]. This study focuses
mainly on the FM and RTPS covariance inflation methods.

In addition, Miyoshi (2011) applied adaptive inflation
by determining the multiplicative inflation factors at ev-
ery grid point at every analysis step using the observation-
space statistics derived by Daley (1992) and Desroziers et
al. (2005).

< ddT >=HPb
infH

T
+R, (9)

where the operator “< ·>” denotes the statistical expectation
and d = yo

−Hxb (observation minus first guess), and R is
the error observation covariance matrix.

The impact of using the adaptive multiplication inflation
method is discussed in the GOSAT synthetic observation as-
similation experiments in Sect. 4.2.

2.2 MIROC4-ACTM

Model for Interdisciplinary Research on Climate, version 4.0
(MIROC4)-based ACTM (hereafter referred to as MIROC4-
ACTM) (Patra et al., 2018; Bisht et al., 2021) is used
here for CH4 concentration simulations. The model simu-
lations have been performed at a horizontal grid resolution
of approximately 2.8× 2.8◦ latitude–longitude (T42 spectral
truncations) and at hybrid vertical coordinates of 67 levels
(Earth’s surface to 0.0128 hPa; Watanabe et al., 2008). Bisht
et al. (2021) performed multi-tracer analysis and demon-
strated the importance of very well resolved stratosphere
in the MIROC4-ACTM that illustrates better extratropical
stratospheric variabilities and simulated tropospheric dynam-
ical fields. The meteorological fields in MIROC4-ACTM are
nudged to the JMA reanalysis (JRA-55) data (Kobayashi et
al., 2015).
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Figure 1. Schematic represents the temporal evolution of the LETKF cycle. In the first assimilation window (Cycle 1), the dotted lines show
the ensemble forecast of CH4 concentrations (with two ensemble members), the solid line shows the linear combination of the forecasts, and
the filled circles show the observations of CH4 concentration. The data assimilation finds the linear combination of the ensemble forecast
by estimating the weight (wa) that best fits the observations throughout the assimilation window. The analysis weight is applied to obtain
optimal surface fluxes (F ) and the concentration of CH4 at the intermediate time of the data assimilation window. The updated analyzed
concentration ensembles are used as initial conditions after relaxation (Xa,RLX) (Eq. 8) for the next ensemble forecast. The spread of the
ensemble members represents the forecast error. The schematic is adapted from Kalnay and Yang (2010) and Miyazaki et al. (2011).

3 Experimental setup

3.1 Construction of known surface emissions (truth)

Present OSSEs intend to develop basic tuning strategies be-
fore the actual data to be assimilated, which is useful to ac-
celerate the operational use of real observations. The OSSE
has been discussed here by exploiting the known “truth”. The
synthetic observations to be assimilated in the OSSE are gen-
erated from nature runs which use bottom-up surface emis-
sion (true) data to simulate global 3-D CH4 concentrations.
The true surface CH4 emissions are prepared on the monthly
scale using anthropogenic and natural sectors, minus the sur-
face sinks due to bacterial consumption in the soil (Chan-
dra et al., 2021). The anthropogenic emissions were obtained
from the Emission Database for Global Atmospheric Re-
search, version 4.3.2 inventory (EDGARv4.3.2) (Janssens-
Maenhout et al., 2019), which includes the emissions from
the major sectors, such as fugitive sources, enteric fermenta-
tion and manure management, and solid waste and wastewa-
ter handling. The biomass burning emissions are taken from
the Global Fire Database (GFEDv4s) (van der Werf et al.,
2017) and Goddard Institute for Space Studies emissions
(Fung et al., 1991). The wetland and rice emissions are taken
from the process-based model of the terrestrial biogeochem-
ical cycle, Vegetation Integrated Simulator of Trace gases
(VISIT) (Ito, 2019), which is based on Cao et al. (1996).
Other natural emissions, such as those from the ocean, ter-
mites, and mud volcanoes are taken from the TransCom-CH4

inter-comparison experiment (Patra et al., 2011). The total
emissions are taken as the truth for the OSSEs, and the con-
centration simulated by MIROC4-ACTM will be referred to
as synthetic observations.

3.2 Prior flux preparation and LETKF setting

Based on our understanding of CH4 inverse modeling, the
uncertainty in regional flux estimation is found to be 30 % or
lower (Chandra et al., 2021). Therefore, we attempted to re-
produce the true flux by starting with a prior flux that is lower
than the true flux by 30 % (prior flux has the same seasonal
cycles as true flux). The MIROC4-ACTM is initialized with
a spin-up of 3 years (2007–2009) with prior flux distribution.
The initial CH4 distribution on 1 January 2007 was taken
from an earlier simulation of 27 years. An initial perturbation
with standard deviation of approximately 6 %–8 % spread is
applied to the a priori flux as the initial ensemble spread,
whereas no ensemble perturbation was applied to the initial
CH4 concentration. The sensitivity of the initial ensemble
spread to CH4 flux estimation is discussed in Sect. 4.2. The
uncertainty to perturb prior fluxes is generated based on ran-
dom positive values with normal distribution. The monthly
scale prior emission is linearly interpolated at 6-hourly inter-
vals to be used in the MIROC4-ACTM simulation for data
assimilation. This study performs two LETKF data assimi-
lation experiments. In these experiments, we provided initial
perturbation on a regional basis over land (53 different land
regions; Chandra et al., 2021), and at every grid over ocean,
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no spatial error correlation between grid points is considered
among ensemble members. However, in Sect. 4.2.5, we also
discussed the sensitivity of CH4 data assimilation by provid-
ing the initial ensemble spread at every grid by considering
the horizontal spatial error correlation between grid points
among ensemble members, with a global mean correlation
of 20 %.

3.3 Experiment 1: synthetic dense observation
formulation

The OSSE setting with very accurate and dense observation
surface data is an attempt to demonstrate that the data assim-
ilation system works reasonably in the estimation of the true
surface flux. Errors in the estimated flux could arise due to
the insufficient ensemble size and also the implemented in-
flation methods to overcome the undersampling, along with
a simplified forecast process of the emissions. In real data
assimilation, there are additional sources of potential errors,
such as atmospheric transport and inappropriate prior or ob-
servation uncertainties. In our OSSEs, CH4 fluxes as men-
tioned in Sect. 3.2 are used as “true” fluxes in generating syn-
thetic observations (CH4 concentrations). In Experiment 1,
the simulated surface layer CH4 concentrations at each grid
for the entire globe were used as synthetic observations. We
added a constant measurement uncertainty of 5 ppb, which is
typically achieved by the present-day measurement systems
(e.g., Lan et al., 2022).

In this study, the CH4 observations are assimilated by ap-
plying the observation error covariance localization (Kotsuki
et al., 2020) to reduce the spurious spatial correlation due
to a smaller ensemble size than the degrees of freedom of
the system (R← R×exp(− 1

2 {(dh/σh)
2
+(dv/σv)

2
})), where

dh and dv denote the horizontal distance (km) and vertical
difference (log[Pa]) between the analysis model grid point
and observation location. The tunable parameters σh and σv
are the horizontal localization scale (km) and vertical local-
ization scale (log[Pa]), respectively. Using the spatial local-
ization technique, we have estimated the CH4 flux for each
grid by choosing the CH4 observations that influence the grid
point using an optimal cutoff radius (' 3.65σh, v; Miyoshi et
al., 2007) with a horizontal covariance localization (σh) of
2200 km and a vertical covariance localization (σv) of 0.3
in the natural logarithmic pressure (log[Pa]) coordinate. The
localization is performed to improve the signal-to-noise ratio
of ensemble-based covariance. Numerous sensitivity exper-
iments have been performed by varying the horizontal and
vertical localization length in order to obtain the optimized
CH4 flux that best compares with the truth. The LETKF as-
similates the observations within the specified radius to solve
the analysis state at each grid point independently (Liu et al.,
2016; Kotsuki et al., 2020). The state vector of the analy-
sis includes the atmospheric CH4 concentration, which is the
prognostic variable of forecast model, and the state vector
is further augmented by the surface CH4 flux, which is not

a model prognostic variable. This augmentation enables the
LETKF to directly estimate the parameter through the back-
ground error covariance with observed variables (Baek et al.,
2006). The state vector augmentation is implemented similar
to that used by Miyazaki et al. (2011). This approach ana-
lyzes CH4 flux during the analysis step. The purpose of the
simultaneous CH4 emission and concentration optimization
is to reduce the uncertainty of the initial CH4 concentrations
on the CH4 evolution during the assimilation window and to
maximize the observations potential (Tian et al., 2014).

The atmospheric CH4 concentration is changed during
both the analysis and forecast steps. A challenge of this
scheme is that the analysis increment is added to the model
state at each analysis step, without considering the global to-
tal CH4 mass conservation in the model but consistent with
the observed local CH4 abundance.

In this case, the surface flux at every model grid point is
analyzed with an 8 d assimilation window during the year
2010 with 100 ensemble members. The ensemble size and
assimilation window are chosen based on the CH4 flux es-
timation accuracy calculated by performing a sensitivity ex-
periment for the ensemble size (60, 80, and 100) and assimi-
lation window (3 and 8 d), respectively (not shown).

3.4 Experiment 2: synthetic satellite observation
formulation

One way to address the real-world CH4 flux estima-
tion problem is to first make the OSSE dataset like real
observations. In this OSSE, we have assimilated syn-
thetic column-averaged CH4 concentrations with a cov-
erage mimicking GOSAT satellite observations. We pre-
pared a model-simulated column-averaged CH4 concentra-
tion (XCH4) dataset that is spatiotemporally sampled with
GOSAT observations as follows:

XCH4 = XCH4(a priori)+
∑
j

hjaj (CH4(ACTM)−CH4(a priori))j , (10)

where XCH4 is the column-averaged model-simulated CH4
concentration. XCH4(a priori) is a priori column-averaged con-
centration. CH4(ACTM) and CH4(a priori) are the CH4 profile
from ACTM and a priori, respectively. hj is the pressure
weighting function (j is the vertical layer index), and aj rep-
resents the averaging kernel matrix for the column retrieval,
which is the sensitivity of the retrieved total column at the
various (“j”) atmospheric levels. In the next step, we added
the same retrieval (XCH4) error as GOSAT to the XCH4
(ACTM-simulated) to make the OSSE more realistic and
then attempt to estimate the true fluxes.

In this case, the CH4 flux has been estimated for each
grid by choosing the CH4 observation with a cutoff radius
(' 3.65σh,v), with a horizontal covariance localization (σh)
of 5000 km and a vertical covariance localization (σv) of 0.35
in the natural logarithmic pressure (log[Pa]) coordinate. The
optimal horizontal and vertical covariance localization values

https://doi.org/10.5194/gmd-16-1823-2023 Geosci. Model Dev., 16, 1823–1838, 2023



1828 J. S. H. Bisht et al.: Estimation of CH4 emission based on an advanced 4D-LETKF assimilation system

are chosen based on a trial-and-error method (those with the
best fits to estimate the CH4 flux when compared with truth).
A long cutoff radius has been chosen due to sparse observa-
tional coverage of GOSAT. Covariance localization is nec-
essary to remove long-range erroneous correlations and for
mitigating sampling errors in the ensemble-based error co-
variance with a limited ensemble size (Miyoshi et al., 2007;
Greybush et al., 2011; Kotsuki et al., 2020). The surface flux
is analyzed at every model grid point with an 8 d assimilation
window and 100 ensemble members; they are chosen based
on the sensitivity experiments discussed in Sect. 4.2.

4 Results and discussion

4.1 Experiment with dense OSSEs

The time series of normalized root mean square error

(RMSE;
√∑n

i=1(x
a
i − x

t
i)

2/n/x̃t, where xa
i and xt

i are the
analysis and true state at ith model grid point, n is the to-
tal number of grid points, and x̃t represents the mean of true
flux) in the analyses over the global landmass region is shown
in Fig. 2. The normalized global RMSE is calculated using
FM and RTPS inflation methods (Fig. 2) after assimilating
synthetic observation at every grid (Sect. 3.4). Noteworthy
is that the experiment with the FM inflation method shows
10 %–15 % larger error in estimating the atmospheric surface
CH4 flux compared to the RTPS inflation method. One of the
reasons of the better RMSE using the RTPS inflation method
is the higher number of degrees of freedom provided by re-
laxation (αRTPS) in the ensemble spread (Eq. 8) that could
nudge the ensemble of CH4 concentrations towards observa-
tions. The initial flux analysis spread using RTPS and FM is
shown in the Supplement (Fig. S1) and shows larger initial
analysis flux spread over Brazil, tropical America, and Asia
in RTPS inflation compared to the FM inflation method. We
performed numerous sensitivity tests with the RTPS infla-
tion method and found that uniform relaxation is not sub-
stantial for some of the regions. Figure 2 shows the RMSE
for FM, fixed RTPS (αRTPS = 0.4; applied globally, the op-
timized value is obtained by manual fine-tuning), and condi-
tional RTPS (αRTPS = 0.3–0.7 applied different αRTPS values
regionally by manual fine-tuning). In the case of conditional
RTPS, the optimal values of αRTPS, i.e., 0.6, 0.3, and 0.7 for
the regions south of 20◦ S, 20◦ S–20◦ N, and north of 20◦ N,
respectively, were obtained from data assimilation sensitivity
calculations with varying αRTPS values for the three regions
separately to best match the true states. We find that the con-
ditional RTPS method improves the accuracy by∼ 5 % com-
pared to fixed RTPS and 10 %–15 % compared to FM. In the
following, we discuss the results obtained using the condi-
tional RTPS and FM inflation methods.

We have also shown the RMSE (not normalized) of the
surface flux in the Supplement (Fig. S2). The flux RMSE has
been estimated globally for both the inflation methods and

Figure 2. Time series of normalized RMSE of surface CH4 flux
analysis, for 1 year of data assimilation using FM, fixed RTPS, and
conditional RTPS inflation methods over the global landmass re-
gion.

also for the region south of 20◦ N (by considering only those
land grids which fall in the region south of 20◦ N; Fig. S2)
for comparative purposes. It was noticed that (Fig. S2 in the
Supplement), above north of 20◦ N, the flux estimation er-
ror is higher, specifically during spring–summer when CH4
emissions peak over most of the northern hemispheric re-
gions (Fig. 3). The high uncertainty during spring–summer
(Fig. S2) in the flux estimation over these regions could ap-
pear due to the attenuation of surface observations as a result
of active vertical mixing. The RMSE during autumn (Fig. S2)
is comparable in the case of the global region and the re-
gion south of 20◦ N, which indicates that the RMSE is aris-
ing from southern hemispheric regions, likely over Brazil, as
it peaks during autumn (Fig. 3).

Figure 3 shows a regional total flux seasonal cycle com-
parison of the estimated fluxes for 15 terrestrial regions with
the cycles of the prior and true fluxes. The estimated flux re-
trieved using RTPS inflation method over different regions
agrees well with that of the true flux. We intend to show the
capability of LETKF-estimated fluxes over these regions us-
ing surface observations to mimic the true fluxes in our un-
derstanding of the terrestrial biosphere CH4 cycle. These re-
sults are consistent with Fig. 2, with an annual global normal-
ized mean bias (

∑n
i=1(x

a
i − x

t
i)/
∑n
i=1

(
xt
i

)
) of −0.04. It can

also be noticed from Fig. 3 that estimated fluxes converge to
true fluxes over most of the regions after about 2–3 months.

To see the degree of similarity in the flux distribution be-
tween the estimated and true fluxes, we show monthly mean
spatial flux distribution for June and November in Figs. 4
and 5, respectively, along with the bias in the prior and esti-
mated flux. As shown in Figs. 4 and 5, the general spatial pat-
terns of the true flux are estimated well. These results suggest
that our LETKF system is capable of reproducing continen-
tal spatial flux patterns by using such idealized dense surface
observational data. However, some clear differences in flux
estimation could be noticed from the FM and RTPS inflation
method (Figs. 4 and 5); e.g., over the Eurasian and Ameri-
can continent, analysis with RTPS shows clear improvement
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Figure 3. The 1-year CH4 total flux seasonal cycles of the true flux (black), prior flux (blue), and flux estimated from the LETKF (orange)
conditional RTPS inflation method in 15 regions after assimilating dense synthetic surface CH4 observations.

compared to the FM covariance inflation method. We calcu-
lated the global mean normalized bias with the RTPS and FM
covariance inflation method, which is found to be −0.04 and
−0.11, respectively, over land regions, and this showed that
RTPS significantly improved the flux estimation compared to
the FM covariance inflation method.

4.2 Experiment by mimicking the real satellite
observational dataset

In this section we discuss the LETKF flux estimation by as-
similation of GOSAT synthetic CH4 concentration observa-
tions. Figure 6 shows the model-simulated mean XCH4 con-
centration sampled spatiotemporally with GOSAT observa-
tions during January and July for the year 2010 (sampling
method discussed in Sect. 3.4). In this case we have shown
different LETKF sensitivity experiments, such as LETKF
sensitivity to (1) FM, RTPS, and adaptive multiplicative in-
flation; (2) the assimilation window; (3) the ensemble size;
(4) the χ2 test; and (5) the prior ensemble spread. In the
LETKF sensitivity experiments from 1–4, the initial ensem-
ble spread employed a similar method to Experiment 1, and
conditional RTPS inflation method is used. A conditional
RTPS method is also used in Sect. 4.2.6 for CH4 flux esti-
mation.

4.2.1 LETKF sensitivity to FM, RTPS, and adaptive
multiplicative inflation

This study mainly emphasizes FM and RTPS inflation meth-
ods used in CH4 LETKF data assimilation. The annual aver-
age normalized RMSE (absolute bias) with RTPS and FM
covariance inflation is found to be 0.59 (0.18) and 0.64
(0.22), respectively. The RTPS inflation method performs
better than the FM inflation method overall. In addition to
RTPS inflation, a sensitivity test is also performed using an
adaptive multiplicative inflation method.

In the adaptive inflation, we need to provide an initial mul-
tiplicative inflation factor at the beginning of data assimi-
lation cycle (Cycle 1 in Fig. 1). Following the method of
Miyoshi (2011), the multiplication inflation factor informa-
tion calculated in the previous cycle (i.e., Cycle 1 in Fig. 1)
is used for the next data assimilation cycle at every grid point
(Cycle 2 in Fig. 1). We perform two sensitivity experiments.
In the first (second) case, we provided 50 % (40 %) initial in-
flation in the beginning of Cycle 1 (Fig. 1). The normalized
RMSE in the both the adaptive inflation sensitivity experi-
ments is comparable (0.65, Supplement Fig. S3a) till July,
but from the beginning of August, the RMSE increases ex-
ponentially in the first experiment. However, in terms of the
χ2 distribution, CH4 flux estimation with the first sensitivity
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Figure 4. Spatial distribution of surface CH4 fluxes (true; top left panel, FM analysis; middle left panel, RTPS analysis; bottom left panel)
and the associated bias in prior (prior-true; top right panel) and estimated (FM-true; middle right panel, RTPS-true; bottom right panel) fluxes
during June 2010.

adaptive multiplicative inflation experiment (50 % initial in-
flation case) is better than with the second sensitivity experi-
ment (Supplement Fig. S3b; χ2 test described in Sect. 4.2.4).
To identify the regions of high estimated CH4 flux error, we
have shown the background error spread in CH4 flux estima-
tion over 15 regions (Supplement Fig. S3c) and found that the
spread over west and southeast Asia rises exponentially post-
July, which indicates the rise of estimated CH4 flux error over
these regions in the first sensitivity adaptive multiplicative
inflation experiment. Our analysis suggests that CH4 flux es-
timation depends on the initial inflation factor provided in
the beginning of the data assimilation cycle (Cycle 1, Fig. 1)
in the adaptive multiplication method. Also, we need to be
very careful to monitor the background error spread evolu-
tion with time to estimate the CH4 flux with adaptive infla-
tion; the χ2 distribution analysis is not sufficient.

In the case of RTPP inflation, we found the parameter
αRTPP is very difficult to fine-tune due to its very high sen-
sitivity to estimating the CH4 flux. We fail to obtain an op-
timized αRTPP value to estimate the CH4 flux. Whitaker and
Hamill (2012) also demonstrated the better accuracy of the
LETKF meteorological data assimilation with RTPS com-
pared to the RTPP covariance inflation method. They found

the RTPP method produces very large errors if the inflation
parameter exceeds the optimal value.

4.2.2 Assimilation window

The LETKF data assimilation window length determines the
time span of the observations assimilated in each assimila-
tion cycle. We have shown the sensitivity of two assimila-
tion window size configurations, 3 and 8 d, in the Supple-
ment Fig. S4. Our sensitivity experiments with window size
configurations show that the 8 d long assimilation window
estimates the CH4 flux with better accuracy (∼ 10 %) com-
pared to the 3 d assimilation window because more observa-
tional information is incorporated into the system with the
8 d long assimilation window. This study uses an 8 d assimi-
lation window for CH4 LETKF data assimilation.

4.2.3 Ensemble size

Figure 7a shows the RMSE using different ensemble mem-
bers. The RMSE stabilizes gradually as the ensemble size in-
creases from 60 to 80 to 100 ensemble members. The ensem-
ble size dependency of flux estimation suggests the further
scope of the improvement in flux estimation by increasing
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Figure 5. Same as Fig. 4 but for November 2010.

Figure 6. Monthly mean ACTM-simulated XCH4 (ppb) sampled with GOSAT observations to be assimilated (valid during the year 2010).
The actual retrieval errors are added in the synthetic GOSAT observations. Data are shown for 2 representative months, depicting the Southern
and Northern Hemisphere differences in data coverage.
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the ensemble members. In this study we stick to 100 ensem-
ble members due to high computational cost while solving
large covariance matrices. The larger error in flux estimation
in the case of column-averaged synthetic GOSAT CH4 obser-
vations assimilation compared to dense observations (Fig. 2)
is likely due to the weaker constraint on surface fluxes pro-
vided by satellite observations and sparse observations.

4.2.4 χ2 test

We have carried out a χ2 test for the evaluation of back-
ground error covariance matrix (Miyazaki et al., 2012). For
the χ2 test, the innovation statistics are diagnosed from the
observation minus forecast

(
yo
−Hxb), the estimated error

covariance in the observation space (HPbHT
+R), and the

number of observations k as

Y =
1
√
k

(
HPbHT

+R
)−1/2(

yo
−Hxb

)
. (11)

Using this statistic, the χ2 is defined as follows:

χ2
= traceYYT. (12)

The performance of the background error covariance matrix
is determined based on the high and lower value of χ2. The
χ2 value should converge to 1; a value higher (lower) than
1 indicates underestimation (overestimation) of the back-
ground error covariance matrices. Our results suggest that
the background error covariance matrix is highly underes-
timated in both RTPS and FM covariance inflation methods
(Fig. 7b). However, the χ2 values’ convergence towards 1
is better in the case of RTPS compared to the FM covari-
ance inflation method, which indicates the improved repre-
sentation of background errors and then more appropriate
data assimilation corrections in the case of the RTPS inflation
method. The χ2 distribution starts saturating after the month
of March. Post-March analysis shows the background error
covariance matrix underestimation is much higher (>100 %)
in the case of FM compared to the RTPS covariance inflation
method.

4.2.5 CH4 LETKF sensitivity to the initial ensemble
spread

A test case for CH4 LETKF data assimilation has been per-
formed, where the initial spread is provided by considering
the initial perturbation on each model grid with spatial error
correlation between grid points among ensemble members,
with a global mean correlation of 20 %. In this case, we found
that the analysis fluxes are extremely sensitive to the initial
ensemble spread if prior fluxes are perturbed with more than
5 % prior uncertainty. Therefore, we used initial ensemble
perturbation with only 2 % prior uncertainty. Reducing the
initial ensemble spread reduces the CH4 flux estimation sen-
sitivity (>60 %). However, it also poses a challenge to miti-
gate the underdispersed background error covariance matrix.

We performed LETKF data assimilations in this case with the
RTPS covariance inflation method (αRTPS = 0.9 optimized
value is used here uniformly) with an 8 d long assimilation
window and 100 ensemble members and calculated the nor-
malized RMSE between the analysis and true fluxes (Supple-
ment Fig. S5). It is noteworthy that the estimated error be-
tween the analysis and true fluxes (Fig. S5) with this setting
(grid-wise initial ensemble spread) is still larger (25 %) than
the case when the region-wise initial ensemble spread is used
(Fig. 7a; 100 ensemble size). It suggests that initial ensemble
spreads among ensemble members need to be meticulously
chosen so that they best represent CH4 variability among en-
sembles to estimate the CH4 flux.

Note that the OSSEs used in this study did not consider
the effects of model errors other than CH4 fluxes, such as
model transport errors. In real situations, model errors can
have a substantial impact on flux estimates (Locatelli et al.,
2013), which needs to be taken into account in background
covariances. Therefore, the optimal data assimilation setting
can differ between the OSSEs presented in this study and
real observation cases. Further efforts, e.g., by conducting a
more comprehensive OSSE that accounts for various model
errors and by performing various sensitivity calculations in
real cases, would provide an improved understanding of the
optimal inflation settings to improve CH4 flux estimates in
following study.

4.2.6 Estimated CH4 flux analysis

Figure 8 shows the regional flux seasonal cycle comparison
for the estimated fluxes over 15 terrestrial regions with the
cycles of the prior and true fluxes. We have also shown as-
similation results in the case of the FM inflation method in
the Supplement (Fig. S6), which shows the flux estimation
disagreement over more regions compared to the RTPS infla-
tion method, e.g., for tropical and North America, the whole
African continent, and Australia–New Zealand.

We have shown the GOSAT observations in Figs. 6 and
S7. We found very marginal flux estimation improvement
over Central Africa after May (Fig. 8), which could be as-
sociated with the lower GOSAT coverage over this region
(Fig. 6). On the other hand, over northern Africa, no improve-
ment in flux estimation is found. In the case of dense OSSEs
too (Fig. 3), we did not find satisfactory flux estimation over
northern Africa, which is most probably related to the insuf-
ficient initial spread among ensemble members over this re-
gion (we used the same initial ensemble spread in both OSSE
cases). Over Europe, GOSAT observations are remarkably
fewer, specifically for the first few months (January–April;
Supplement Fig. S7). Therefore, the flux update over Europe
would be influenced by the observations from neighboring
regions falling under the chosen cutoff radius that are mainly
in northern Africa, where the flux estimation itself not satis-
factory. It could also be noticed that the retrieval error added
in this OSSE case is high over Europe (September–October;
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Figure 7. (a) Flux estimation RMSE using different ensemble sizes with RTPS covariance inflation. (b) χ2 distribution using FM and RTPS
covariance inflation methods, with an ensemble size of 100.

Figure 8. Same as Fig. 3 but after assimilating synthetic GOSAT observations.

Supplement Fig. S7) and its adjacent sea (Mediterranean Sea;
June–August), which could also affect the surface CH4 flux
estimation.

Figures 9 and 10 show spatial patterns of the true and esti-
mated fluxes by assimilating the column-averaged CH4 con-
centrations during June and November (Fig. 6). It may be
noticed that the RTPS covariance inflation method is more
able to estimate the true flux pattern compared to the FM co-
variance inflation method. The spatial pattern shown using
the RTPS inflation method emphasizes the positive and neg-
ative bias in the estimated flux (Figs. 9 and 10) but generally
agrees with the flux seasonal cycle plots shown in Fig. 8.

Our LETKF CH4 data assimilation experiment by assimi-
lating GOSAT synthetic observation with the implementation
of the advanced RTPS covariance inflation method better es-
timates the time-evolving surface CH4 fluxes compared to
the FM covariance inflation method. The difficulty to esti-
mate the surface CH4 flux over a few regions may be over-
come by applying additional methodologies, such as the as-
similation of surface observations simultaneously and the use
of information about the CH4 flux climatology. A correc-
tion factor derived based on empirical formulation that could
use CH4 flux climatology information is needed to apply to
maintain the CH4 mass conservation. This could be imple-
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Figure 9. Monthly mean true (true; top left panel) and estimated (FM analysis; middle left panel, RTPS analysis; bottom left panel) CH4 flux
after assimilating column-averaged synthetic CH4 concentrations (Fig. 6) during June using FM and RTPS inflation methods. The associated
bias with prior and estimated fluxes is also shown (prior-true; top right panel; FM-true; middle right panel, RTPS-true; bottom right panel).

mented by checking the simulated CH4 burden gain between
years in comparison with the observed CH4 growth rates.

5 Summary

In this study, we have introduced a 4D-LETKF data assim-
ilation system that utilizes MIROC4-ACTM as a forward
model for CH4 flux estimation. This study has extensively
tested both FM and RTPS inflation methods for the LETKF
CH4 flux estimation. We have conducted two experiments
to demonstrate the ability of LETKF system to estimate the
CH4 surface flux globally. In Experiment 1, we have assim-
ilated the synthetic dense surface CH4 observations, while
in Experiment 2, synthetic GOSAT CH4 observations are as-
similated. Based on the results of the sensitivity tests using
FM and RTPS inflation methods in Experiment 1, we have
found that RTPS inflation produces significantly less nor-
malized RMSE (10 %–15 %) compared to the FM inflation
method. In Experiment 2, we discussed LETKF parameters,
such as different inflation techniques, ensemble size, assim-
ilation window, initial ensemble spread sensitivity, and χ2

test. The ensemble size (this study uses maximum 100 en-
semble members) sensitivity test suggests that more ensem-

ble members could help to accurately represent the covari-
ance matrix with a higher number of degrees of freedom. The
assimilation window sensitivity test shows that an 8 d assim-
ilation window reduces the normalized flux RMSE by about
10 % compared to a 3 d assimilation window in the case of
GOSAT synthetic observations assimilation.

Our approach of assimilation with RTPS inflation could
provide a higher number of degrees of freedom to fit the en-
semble of CH4 concentrations to the observed ones, resulting
in the improved analyzed fluxes. The RTPS inflation method
is capable of obtaining reasonable flux estimates with a nor-
malized annual mean bias of 0.04 and 0.61 in the case of
dense surface synthetic observations and GOSAT synthetic
observations, respectively. We demonstrated in our sensi-
tivity OSSE with synthetic GOSAT observations that, over
American and African continents and also over Australia–
New Zealand, the LETKF data assimilation with the FM in-
flation method does not show much improvement in the true
flux estimation, but the RTPS inflation method reasonably
estimates the true flux over most of these regions. One of
the reasons for better flux estimates with the RTPS inflation
method is the drastic prevention of analysis spread. In the
CH4 LETKF flux estimation, the surface CH4 flux is not a
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Figure 10. Same as Fig. 9 but for November.

prognostic state vector in the ACTM, which results in the
continuous decay of spread in analysis steps. The RTPS in-
flation method could mitigate such an underdispersed spread
problem. This study finds that spatially homogeneous relax-
ation is not sufficient. It needs to be fine-tuned and applied
conditionally.

The sensitivity of LETKF CH4 flux estimation to the ini-
tial ensemble spread needs to be carefully dealt with when
applied to real data assimilation system. A future OSSE with
an additive covariance inflation technique could be interest-
ing while applied with the RTPS inflation method for CH4
LETKF data assimilation since in additive covariance infla-
tion, initial estimated flux error cannot propagate. The state
vector augmentation technique used here updates the flux af-
ter each data assimilation cycle, but it does not conserve the
total atmospheric CH4 amount, which is one of the limita-
tions of this work. A correction factor needs to be imple-
mented to conserve the total atmospheric CH4 amount after
completion of a few data assimilation cycles. We have not ac-
counted for the transport error due to meteorological fields in
this work (Patra et al., 2011); in the case of real observation
data assimilation, a week-long window may introduce trans-
port errors in CH4 analysis because of the nonlinear growth
of ensemble perturbations.

Code and data availability. The LETKF source codes can be ac-
cessed from https://doi.org/10.5281/zenodo.7127658 (Bisht et al.,
2022a). All the scripts for running the LETKF data assimilation
software and the input and output result data files are available at
https://doi.org/10.5281/zenodo.7098323 (Bisht et al., 2022b). The
CH4 ACTM simulation module coupled with MIROC4-AGCM can
be accessed from https://doi.org/10.5281/zenodo.7118365 (Bisht et
al., 2022c). The source code of MIROC4-AGCM is archived at
https://doi.org/10.5281/zenodo.7274240 (Patra et al., 2022) with re-
striction because of the copyright policy of the MIROC developer
community. This work did not contribute to the MIROC4 source
code development.
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