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Abstract. Gas-phase oxidation of isoprene by ozone (O3)
and the hydroxyl (OH) and nitrate (NO3) radicals signifi-
cantly impacts tropospheric oxidant levels and secondary or-
ganic aerosol formation. The most comprehensive and up-
to-date chemical mechanism for isoprene oxidation consists
of several hundred species and over 800 reactions. There-
fore, the computational expense of including the entire mech-
anism in large-scale atmospheric chemical transport mod-
els is usually prohibitive, and most models employ reduced
isoprene mechanisms ranging in size from ∼ 10 to ∼ 200
species. We have developed a new reduced isoprene ox-
idation mechanism using a directed-graph path-based au-
tomated model reduction approach, with minimal manual
adjustment of the output mechanism. The approach takes
as inputs a full isoprene oxidation mechanism, the envi-
ronmental parameter space, and a list of priority species
which are protected from elimination during the reduction
process. Our reduced mechanism, AMORE-Isoprene (where
AMORE stands for Automated Model Reduction), consists
of 12 species which are unique to the isoprene mecha-
nism as well as 22 reactions. We demonstrate its perfor-
mance in a box model in comparison with experimental
data from the literature and other current isoprene oxida-

tion mechanisms. AMORE-Isoprene’s performance with re-
spect to predicting the time evolution of isoprene oxida-
tion products, including isoprene epoxydiols (IEPOX) and
formaldehyde, is favorable compared with other similarly
sized mechanisms. When AMORE-Isoprene is included in
the Community Regional Atmospheric Chemistry Multi-
phase Mechanism 1.0 (CRACMM1AMORE) in the Com-
munity Multiscale Air Quality Model (CMAQ, v5.3.3), O3
and formaldehyde agreement with Environmental Protec-
tion Agency (EPA) Air Quality System observations is im-
proved. O3 bias is reduced by 3.4 ppb under daytime con-
ditions for O3 concentrations over 50 ppb. Formaldehyde
bias is reduced by 0.26 ppb on average for all formaldehyde
measurements compared with the base CRACMM1. There
was no significant change in computation time between
CRACMM1AMORE and the base CRACMM. AMORE-
Isoprene shows a 35 % improvement in agreement between
simulated IEPOX concentrations and chamber data over the
base CRACMM1 mechanism when compared in the Frame-
work for 0-D Atmospheric Modeling (F0AM) box model
framework. This work demonstrates a new highly reduced
isoprene mechanism and shows the potential value of auto-
mated model reduction for complex reaction systems.
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1 Introduction

Isoprene is the most abundant non-methane hydrocarbon in
the atmosphere. It has a major impact on tropospheric oxi-
dant levels (Butler et al., 2008) and contributes to secondary
organic aerosol (SOA) formation (and therefore fine partic-
ulate matter, PM2.5) in many parts of the US and the world
(Kroll et al., 2006; Henze and Seinfeld, 2006; Farmer et al.,
2010; Liu et al., 2016; Fu et al., 2009). During the warm
season, isoprene emissions enhance both regional and hemi-
spheric ozone abundances at northern midlatitudes (Fiore
et al., 2011; Guo et al., 2018). Isoprene oxidation chemistry
contributes to natural background ozone and particulate mat-
ter over much of the US during the warm season (Fiore et al.,
2014). Different representations of isoprene chemistry lead
to uncertainty in air pollutant responses to anthropogenic
emission reductions (Carlton et al., 2009) and to differences
in model estimates of the background versus anthropogenic
fractions (Fiore et al., 2005, 2014).

Knowledge of the isoprene oxidation reaction mechanism,
including key pathways for both ozone and aerosol forma-
tion, has advanced rapidly over the last 2 decades (Wennberg
et al., 2018). The full chemical mechanism for isoprene oxi-
dation, as it is currently understood, consists of several hun-
dred species (up to 602 in the Master Chemical Mechanism,
MCM, v3.3.1; Jenkin et al., 2015) and ∼ 1000 reactions (see
Table 1). Due to its size and complexity, including every
known intermediate species and reaction in the isoprene oxi-
dation network in 3-D air quality and atmospheric chemistry
models is not feasible. Therefore, most models employ re-
duced isoprene mechanisms. For reduced mechanisms, there
is a trade-off between mechanism size (i.e., the number of
species and reactions represented) and accuracy. The goal
is to find the smallest possible reduced mechanism that still
provides the accuracy required for the modeling application.
Commonly used reduced isoprene mechanisms range in size
from ∼ 10 to ∼ 200 species. Table 1 shows the size of a se-
lect set of isoprene mechanisms currently being used in at-
mospheric chemistry models. The reduced models, includ-
ing the Common Representative Intermediates (CRI) mech-
anism, the Caltech Reduced Plus mechanism, the Regional
Atmospheric Chemistry Mechanism (RACM), and the Car-
bon Bond (CB) mechanism, have been developed manually
by expert air quality scientists using techniques such as sur-
rogate mechanisms (lumped structure – Yarwood et al., 2005,
or lumped species – Aumont et al., 2005; Goliff et al., 2013;
Jenkin et al., 2019) and empirical parameterization, along
with expert knowledge of the reaction system. While these
approaches have been successful with respect to representing
atmospheric chemistry for the specific chemical and environ-
mental scenarios for which they were developed, the result-
ing models tend to lack flexibility to be adapted to new sce-
narios or to be rapidly updated. Their implementation is also
labor-intensive.

Automated chemical mechanism reduction techniques
provide the opportunity to flexibly and rapidly generate accu-
rate reduced chemical mechanisms, and they lower the bar-
rier to updating the mechanism as new knowledge becomes
available. While automated mechanism reduction has been
applied in limited studies in atmospheric chemistry (White-
house et al., 2004a, b; Watson et al., 2008; Xia et al., 2009;
Nikolaou et al., 2018; Sturm, 2021; Kelp et al., 2022; Lin
et al., 2023), it has been further developed in the field of
combustion (Wei and Kuo, 1969; Tomlin et al., 1992; Tom-
lin et al., 1997; Massias et al., 1999; Lu et al., 2001; Lu and
Law, 2005; Pepiot-Desjardins and Pitsch, 2008; Sun et al.,
2010). Combustion mechanisms have a number of features
in common with the isoprene oxidation mechanism, includ-
ing their complexity and the large number of intermediates
involved. Thus, techniques developed for the application to
combustion mechanisms may be applicable to the isoprene
oxidation mechanism as well.

The methods of model reduction, whether automated or
manual, fall into two main categories. The first is reduction
by removing less-important species or reactions. The other
method is to group species and reactions together which may
participate in similar reaction pathways (chemical lumping).
Each method aims to reduce the computational cost for sim-
ulating the mechanism by reducing the complexity and size
of the reaction network while also retaining accuracy within
a given tolerance.

Graph theory has been used as a framework for many
model reduction algorithms, including the ones used in this
work. An influential method for reduction is the directed rela-
tion graph (DRG) method, developed by Lu and Law (2005).
In this method, a graph representing the reaction mechanism
is created, consisting of nodes (carbon-containing chemical
species) connected to each other by directed edges (reac-
tions). Each edge is given a weight based on the strength of
the relationship between the two nodes, which is a function
of the kinetic rate laws and parameters. In the model reduc-
tion process, edges are removed in order of the weightings.
Other methods include variations on the edge-weighting
calculation to include more indirect relationships between
species. One such method, the directed relation graph with
error propagation (DRGEP), was used to reduce the RACM
(Nikolaou et al., 2018). This method was successful at sig-
nificantly reducing the number of species while maintaining
accuracy for simulating O3. We tested the DRG method and
found it to be unsuitable for application to the isoprene mech-
anism (see Sect. S3). Briefly, the DRG method is successful
when a mechanism features a significant number of species
that can be removed without a major consequence with re-
spect to the desired accuracy. The scale of reduction required
for the isoprene mechanism and the breadth of important pri-
ority species (Sect. 2.2) make it incompatible with the DRG
method.

Here, we present a new reduced isoprene oxidation mech-
anism that we have developed using a novel graph-theory-
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Table 1. Sizes of select isoprene mechanisms, including the mechanism in this work. Larger mechanism sizes are self-reported. For smaller
mechanisms, species and reactions were recounted for this work using the following criteria: (i) only species unique to isoprene chemistry
are included, which excludes species that do not contain the isoprene carbon backbone; (ii) all reactions involving species unique to isoprene
are counted; and (iii) heterogeneous reactions involving isoprene species are not counted.

Mechanism No. of No. of Reference
species reactions

MCM v3.3.1 602 1926 Jenkin et al. (2015)
CRI 2.2 56 186 Jenkin et al. (2019)
Caltech 404 897 Wennberg et al. (2018)
Caltech Reduced Plus 131 220 Wennberg et al. (2018)
RACM2 9 12 Sarwar et al. (2013); Goliff et al. (2013)
CB6r3 10 17 Yarwood et al. (2010); Emery et al. (2015)
AMORE-Isoprene 12 22 This work

based Automated Model Reduction approach (AMORE),
with minimal manual adjustment of the output mechanism
(AMORE-Isoprene). We describe the model reduction algo-
rithm and then demonstrate the performance of AMORE-
Isoprene compared to experimental data in the literature and
other isoprene oxidation mechanisms using a box model as
well as when incorporated into the Community Multiscale
Air Quality (CMAQ) modeling system (US EPA Office of
Research and Development, 2021) as part of the Commu-
nity Regional Atmospheric Chemistry Multiphase Mecha-
nism (CRACMM1AMORE).

2 Methods

In this section, we describe our approach for model reduction
and inputs to the process as well as the procedure used for
testing the reduced mechanism.

In brief, an algorithm was developed to reduce the full
isoprene mechanism to a smaller more manageable mecha-
nism that can be used in 3-D chemical transport models. The
output mechanism from the AMORE algorithm was subse-
quently adjusted manually to optimize its performance for
use in atmospheric modeling. In order to test the AMORE-
Isoprene mechanism, a mechanism error metric was devised.

The AMORE-Isoprene mechanism was the product of this
methodology. Our novel algorithm was essential in the cre-
ation of this mechanism, but it requires further work before
it can be used for other mechanisms and without manual ad-
justment.

2.1 Full mechanism input

A “full” chemical mechanism is required for the input to
the reduction algorithm. The full mechanism also serves as
a benchmark for the accuracy of the reduced mechanism. In
this study, the reference isoprene oxidation mechanism was
based on Wennberg et al. (2018). The Wennberg mechanism
is a comprehensive compilation of isoprene oxidation chem-
istry from laboratory and computational studies published

up to 2018, including the formation of isoprene epoxydiols
(IEPOX) (Paulot et al., 2009), intramolecular RO2 chemistry
(autoxidation) (Teng et al., 2017), and recent advances in
isoprene nitrate chemistry (Schwantes et al., 2015). Despite
its size and complexity, some branches of the oxidation cas-
cade are truncated in the Wennberg et al. (2018) mechanism
due to a lack of published experimental constraints, specif-
ically degradation pathways for some later-generation inter-
mediates with two, three, or four functional groups (Bates
and Jacob, 2019). Therefore, modeled on the approach used
by Wennberg et al. (2018) in preparing the Caltech Re-
duced Plus mechanism, we expanded the Wennberg mech-
anism to include degradation of these species. Further details
are available in Sect. S1 in the Supplement, including box
model comparisons of original and extended mechanisms
to EUROCHAMP data (Muñoz and Gómez-Alvarez, 2008;
Muñoz, 2021a, b). In addition, the extended mechanism is
listed in its entirety in Sect. S18. Briefly, the intermediates
were mapped to lumped species in the Caltech Reduced Plus
mechanism or to species in MCM v.3.3.1 and were assigned
the corresponding degradation pathway, products, and rate
constants from that mechanism. For the rest of this paper, we
refer to this updated mechanism as the Caltech full mecha-
nism. This mechanism was chosen instead of the MCM iso-
prene mechanism (Jenkin et al., 2015), which is of a similar
size, because it includes the results of more-recent isoprene
chamber studies which were not yet published at the time
that the current MCM mechanism was developed (e.g., Teng
et al., 2017).

2.2 Priority species

Given that model reduction necessarily involves removing or
lumping chemical species from the mechanism, we identi-
fied a set of nine important organic species and eight im-
portant oxidant and nitrogen oxide species to be protected
from elimination during the model reduction process. This
priority species list was an input to the model reduction al-
gorithm. A full table of these species is available in Sect. S2.
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Besides isoprene, these species were chosen for their im-
portance for SOA or brown carbon formation and/or ex-
pected impact on gas-phase photochemistry (isoprene epoxy-
diols (lumped), isoprene nitrates (lumped), glyoxal, methyl-
glyoxal, methacrolein, methyl vinyl ketone, peroxyacetyl ni-
trate, methyl radical, and peroxyacetyl radical). Formalde-
hyde was also included in the protected species list due to its
status as an air toxic (EPA, 2018; Zhu et al., 2017; Scheffe
et al., 2016) and for its potential to indicate oxidant levels
(Travis et al., 2022). Other species such as NOx , HOx , O3,
and other oxidants are included in the mechanism as well.
The accuracy of the reduced isoprene mechanism is mea-
sured by its ability to simulate the time evolution of the con-
centrations of the priority species and of oxidants and nitro-
gen oxides under different conditions.

2.3 Reduction algorithm development

In general, a new reduced isoprene oxidation mechanism will
be a good candidate for application in large-scale models if it
provides gains in accuracy or computational efficiency. As a
trade-off exists between mechanism size (and therefore com-
putational efficiency) and accuracy, improvements in one as-
pect are sought which avoid sacrifices in the other. Thus, the
mechanism should be of similar size and complexity to ex-
isting mechanisms (or smaller) as well as of equal or bet-
ter accuracy. The most compact isoprene mechanisms, in-
cluding those currently used in the CMAQ modeling suite
(version 2 of the Regional Atmospheric Chemistry Mecha-
nism, RACM2, and revision 3 of Carbon Bond 6, CB6r3),
include roughly 10 species unique to the isoprene mecha-
nism and up to 20 reactions (Table 1). Note that this list of
species does not include all priority species; some, such as
IEPOX and isoprene nitrates, are included, whereas others,
such as formaldehyde and glyoxal, which lack the isoprene
carbon backbone and are also formed through non-isoprene
pathways, are not. Thus, an isoprene mechanism of compara-
ble size to existing reduced mechanisms will have around 10
isoprene-specific species, around 4 of which (isoprene, iso-
prene nitrates, IEPOX, and methyl vinyl ketone), are already
priority species. The remaining six species are isoprene in-
termediates which are not considered priority species them-
selves but play an important role in the dynamics of the iso-
prene mechanism and the production of priority species.

The AMORE algorithm represents the full mechanism as
a graph. Many prior works have utilized graph theory to an-
alyze chemical mechanisms (Ratkiewicz and Truong, 2003;
Lu and Law, 2005; Pepiot-Desjardins and Pitsch, 2008; Sun
et al., 2010; Nikolaou et al., 2018; Silva et al., 2021). In this
work, nodes represent species, and edges represent a directed
relationship between two species, in which one is a reactant
and the other a product of the same set of reactions. Prior
graph-based reduction methods have focused solely on re-
moving nonessential components of the mechanism (“prun-
ing” the graph). This work focuses instead on determining

the optimal graphical structure of the final reduced mecha-
nism, as constrained by target mechanism size. This is done
by determining the essential mechanistic pathways needed to
accurately represent the full mechanism in a reduced struc-
ture, as discussed below.

A mechanistic pathway consists of a set of reactions joined
by intermediate species. For a path of N reactions, there are
N − 1 intermediates. With the constraint of six intermediate
species, this allows for roughly six paths with two reactions,
each with one intermediate, or for three paths with three reac-
tions, each with two intermediates, with both options having
six intermediates. If some pathways are able to share inter-
mediates, then more pathways can be included. It is also our
goal that the reduced mechanism structure maps as closely as
possible to known reactions with measured rates.

A new algorithm was designed specifically to develop op-
timal mechanisms of roughly 10 total species, 6 intermediate
species, and 20 reactions. At a high level, the algorithm iden-
tifies a small set of the most important mechanistic pathways
in the full mechanism and concatenates them in order to re-
duce the number of intermediate species. The algorithm esti-
mates the importance of a given mechanistic pathway by de-
termining the impact each possible pathway has on the yields
of priority species. The mechanism reduction algorithm has
four main components: (1) a sub-algorithm to rapidly esti-
mate the yields from isoprene of priority species under con-
stant oxidant and nitrogen oxide concentrations and atmo-
spheric conditions (yield estimation algorithm; Sect. 2.3.1),
(2) a sub-algorithm to assess the importance of different path-
ways given the yields of priority species (pathway impor-
tance algorithm; Sect. 2.3.2), (3) a sub-algorithm for opti-
mally combining pathways to reduce intermediate species
(pathway combination algorithm; Sect. 2.3.3), and (4) a sub-
algorithm to estimate yields of priority species for each path-
way in the mechanism (priority species yield determination;
Sect. 2.3.4). The overall AMORE algorithm process is shown
in Fig. 1. All sub-algorithms are described in detail in the fol-
lowing sections.

2.3.1 Yield estimation algorithm

The yield estimation algorithm utilizes graph theory and
takes advantage of the relatively small number of cycles (a
path in the graph that starts and ends at the same species) and
the small number of reactions with two carbon-containing re-
actants in the isoprene oxidation scheme. It rapidly estimates
the yields of all species from isoprene in the full mechanism,
assuming the complete oxidation of isoprene and its prod-
ucts. The algorithm emulates the full mechanism so that the
numerical simulation need not be run repeatedly during sen-
sitivity testing. The algorithm begins by representing the full
mechanism as a directed graph. The directed nature of the
representative graph delineates the direction of the flow of
carbon over time. Cycles are unique instances in this con-
text, in which carbon flows in two different directions and

Geosci. Model Dev., 16, 1801–1821, 2023 https://doi.org/10.5194/gmd-16-1801-2023



F. Wiser et al.: AMORE-Isoprene v1.0 1805

Figure 1. Schematic of the AMORE algorithm. The sub-algorithms
are shown in order of implementation. Brackets are used specify a
pathway within the mechanism, with each oxidant or nitrogen oxide
within the brackets representing a reaction in a sequence involving
that oxidant. For example, the pathway {OH, NO} represents a se-
quence of two reactions joined by an intermediate, in which OH
and NO are reactants in the two reactions. The pathway {OH, NO}
is shown as an example for sub-algorithms 2–4.

it is not necessarily evident which direction dominates. The
algorithm takes oxidant and nitrogen oxide concentrations
(OH, HO2, O3, MO2, NO, NO2, and NO3), which are treated
as constant, solar intensity, temperature, and pressure as in-
puts, and calculates the flux of carbon through the mecha-
nism pathways using the rate law information provided. As
this algorithm is dependent on oxidant and nitrogen oxide
concentrations as well as other atmospheric parameters, it
can be used to determine how yields are impacted by rele-
vant atmospheric conditions.

The full mechanism is approximated using a directed
acyclic graph (DAG). In order for a mechanism to be rep-
resented as a DAG, it must contain no cycles and reactions
with two reactants must be broken into two sets of edges for
each reactant, because edges can only represent the relation-
ship between two species. For example, a reaction with two
reactants and one product would become two edges, one for
each reactant connecting to the product. Oxidant and nitro-
gen oxide concentrations are approximated to be constant,
so reactions involving them are treated as pseudo-first-order
reactions. Cycling in the isoprene oxidation system mainly
takes place among oxidant and nitrogen oxide species, which
are only represented implicitly in the graph. For cycles in-
volving isoprene oxidation products, all species in the cycle

are combined into one “super node”. The incoming and out-
going edges of the super node include all edges of all species
that it represents. The method used to reduce cycles to super
nodes is described in Sect. S4.1.

The DAG structure is then utilized to calculate the parti-
tioning of carbon between branches within the graph, ulti-
mately giving an estimated yield for each oxidation product
species. This novel approach takes advantage of the graphi-
cal representation of the mechanism to rapidly approximate
yields which would otherwise require a box model to calcu-
late. The resulting time savings allow a much larger set of in-
put conditions to be tested than would be feasible with a box
model. The yield is defined as the moles of each species pro-
duced per mole of isoprene reacted. Starting from a species
of known yield, the yield of a direct product can be calculated
as the rate constant involving said product over the sum of all
rate constants reacting with the starting species. The yield for
a species A from isoprene, YA, is calculated as follows:

YA =

N∑
i=1,i 6=A

Yi,isopYA,i, (1)

YA,i =

∑R
r=1k

I
rmax(νA,r,0)(−min(νi,r,0))∑R
r=1k

I
r(−min(νi,r,0))

. (2)

Here, Yi is the yield of species i from isoprene, YA,i is the
yield of species A from species i,N is the number of species,
R is the number of reactions, νi,r is the stoichiometric coef-
ficient of species i in reaction r, and kI is the (pseudo-) first-
order rate constant, that is, kI

= kII
[oxidant] for oxidation re-

actions, or else the first-order rate constant for photolysis and
isomerization reactions. The yield of any species can be es-
timated once the yields of all its parent species in the graph
are determined. Thus, with the assumptions and inputs out-
lined above, an estimate of the yield of all species from iso-
prene can be obtained for a given set of inputs. Running in a
Jupyter notebook environment on a personal computer with
a 1.8 GHz dual-core Intel Core i5 processor, it takes roughly
0.06 s for the algorithm to estimate all yields for a given set
of conditions (50× shorter than a box model runtime of the
full mechanism). This is a valuable tool for rapidly probing
large mechanisms to study their outputs under a variety of
inputs.

The yield estimation algorithm was tested for accuracy by
comparing estimated yields to box model simulated yields
for the range of conditions used for model development. A
detailed analysis of the yield estimation algorithm accuracy
is available in Sect. S4.2. A visualization of the yield estima-
tion algorithm is shown in Fig. S7 in the Supplement.

2.3.2 Pathway importance algorithm

With the yield estimation algorithm in place, we developed
a method to identify and evaluate the importance of paths
within the mechanism. Given the constraints on the size of
the final reduced mechanism discussed, the total number of
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paths will vary depending on the number of intermediates
that can be shared between paths. The full mechanism con-
tains long, highly branched paths with multiple end products.
Thus, no existing pathways within the full mechanism sat-
isfy the design constraints. Instead, model paths were cre-
ated in which each path was represented by a sequence of
reactions with one of the possible oxidants or nitrogen ox-
ides: OH, NO, NO2, NO3, HO2, O3, methyl peroxy radical
(MO2), or else photolysis. There was no requirement for a
given path to be in the full mechanism; rather, paths recre-
ate the oxidant- and nitrogen-oxide-dependent outcomes for
the priority oxidation products. Each path was constrained
to contain only irreversible reactions, with each oxidant or
nitrogen oxide appearing no more than once (this constraint
was lifted during the manual adjustment process). The jus-
tification for these simple paths is that isoprene oxidation
product concentrations can be thought of as functions of iso-
prene, oxidant, and nitrogen oxide concentrations, and each
path represents a scenario in which a set of oxidants and ni-
trogen oxides are favored. Thus, by containing multiple dif-
ferent paths, the priority species yields can be varied based
on the oxidant and nitrogen oxide concentrations. For exam-
ple, a path of {OH, NO} represents the reaction of OH or NO
with isoprene to create a hypothetical intermediate and the
reaction of the other oxidant or nitrogen oxide (either NO or
OH) with that intermediate to form isoprene oxidation prod-
ucts. This path would be favored when OH and NO concen-
trations are high, and it allows for a unique distribution of pri-
ority species yields under these conditions. There were 256
possible paths, represented by non-duplicate combinations of
the possible oxidants or nitrogen oxides. Temperature and
pressure are other parameters that significantly influence iso-
prene chemistry. However, these parameters are implicit to
the graph as inputs to calculate rate constants. Thus, temper-
ature and pressure were not represented explicitly in the algo-
rithm, leaving rate constants to be determined either through
calibration or through direct reaction analogues in the full
mechanism. The default temperature and pressure for yield
estimates were 292 K and 1000 hPa, respectively.

Using the yield estimation algorithm, a measure of the im-
portance of each path was determined by evaluating the prod-
uct yields for a sequence of inputs designed to probe the sen-
sitivity to each oxidant, nitrogen oxide, or photolysis. Each
oxidant and nitrogen oxide was assigned a baseline concen-
tration or intensity, determined from atmospherically rele-
vant ranges in which rates of reactions involving each species
were similar. For example, the baseline concentrations of O3,
OH, and NO3 were set such that the rate of reaction of iso-
prene with each oxidant or nitrogen oxide would be the same.
Input sequences were created in which the concentration of
each oxidant or nitrogen oxide within the path, or photolysis
intensity, is elevated in turn, roughly 1 order of magnitude
above the baseline. Table 2 shows the input values used for
the path importance algorithm. All possible combinations of
each high and low value were used as an input space, re-

Table 2. Baseline and elevated values of input parameters used in
the pathway importance algorithm, a component of the AMORE
algorithm.

Parameter Baseline value Elevated value

Temperature (K) 292 –
Pressure (hPa) 1000 –
Solar intensity (unitless) 0 1
OH (ppb) 1× 10−6 1× 10−4

NO (ppb) 1.17× 10−6 0.53
NO2 (ppb) 1× 10−4 0.01
NO3 (ppb) 2.3× 10−4 0.02
HO2 (ppb) 0.04 0.2
O3 (ppb) 16.7 100
MO2 (ppb) 0.1 0.2

sulting in 256 different input conditions. The goal in select-
ing input conditions was to find values that were relatively
low and relatively high without biasing the algorithm with
extreme values. They do not represent the full range of val-
ues that each input takes. The AMORE-Isoprene mechanism
performs satisfactorily under more extreme conditions than
those that were used as input conditions to the algorithm, but
it would be possible to create a mechanism optimized for
a more extreme scenario using the AMORE algorithm. We
conducted a sensitivity test of the pathway importance algo-
rithm to a select set of changes to the inputs shown in Ta-
ble 2. Specifically, elevated concentrations of OH, NO, and
NO2 were adjusted to reflect realistic upper values for these
species. The results of this test are given in Sect. S12 and
Table S5.

For each hypothetical path, the yield of priority species
from that path was determined by elevating the input values
of the oxidants or nitrogen oxides in the path. A path was
considered important if this process resulted in yield esti-
mates that differed significantly from the baseline. Multistep-
path yields were evaluated in comparison to paths with one
less elevated oxidant or nitrogen oxide step. For example,
the path {OH, HO2, NO} was compared to the paths {OH,
HO2}, {OH, NO}, and {HO2, NO}. If the yield of priority
species differed significantly from all of the compared paths,
then the path was deemed important. The importance of each
path was ranked in terms of the magnitude of difference
in yield of the path to the least different shorter path. This
method ensured that every component of the path was nec-
essary to produce unique yields compared with the baseline.
Equation (3) shows the importance metric used to choose the
most important paths:

I =min

(
N∑
i=1

abs(Y 0
i,isop−Y

x
i,isop)

max(Yi,isop)
,∀x ∈ path list

)
, (3)

where I is the path importance,N is the number of species in
the important species list, i is an individual important species
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in the list, Y 0
i,isop is the yield of species i from isoprene for the

path being measured, Y xi,isop is the yield of species i from iso-
prene in path x, max(Yi,isop) is the maximum yield obtained
by species i from the yields of all paths, and the path list is
the set of paths with one less elevated oxidant or nitrogen
oxide than the path being measured.

2.3.3 Pathway combination algorithm

Using this path analysis, the following eight paths were iden-
tified and incorporated in the mechanism: {O3}, {NO3},
{NO3, HO2}, {NO3, HO2, photolysis intensity (hv)}, {NO3,
NO}, {OH}, {OH, HO2}, and {OH, NO}. The number of
paths was chosen based on the desired mechanism size, but
the paths were determined by the pathway importance algo-
rithm above. In order to reduce the number of intermediates,
paths were joined together such that any shared oxidant or
nitrogen oxide within paths had a shared intermediate. For
example, all paths involving OH were structured so that the
first reaction was with isoprene and OH which then formed a
shared intermediate. The reaction paths were algorithmically
structured to share as many intermediates as possible. The
pathway combination algorithm started by grouping paths by
a shared intermediate. For example, the paths {NO3}, {NO3,
HO2}, {NO3, HO2, hv}, and {NO3, NO} all share a common
NO3 reaction step. There are instances in which there are
multiple ways to group pathways. For example, {OH, NO}
can either be grouped with other OH-containing pathways or
with NO pathways. There was no algorithmic way to prior-
itize these two options. This is an instance in which manual
intervention is required to assign preference between path-
way groupings. This can be done by simply choosing the or-
der in which the pathway reactions should occur. For exam-
ple, choosing the order {OH, NO} would group this pathway
with other OH pathways, whereas choosing the order {NO,
OH} would group this pathway with other NO pathways.

Once the groupings are formed, an initial reaction step is
created in which isoprene reacts with the commonly shared
oxidant or nitrogen oxide to form an intermediate that is
shared by all of the pathways. For example, in the NO3
pathway grouping, the reaction of isoprene with NO3 is
shared with all pathways, which subsequently branch from
each other. Pathways that share two oxidants or nitrogen
oxides, such as {NO3, HO2} and {NO3, HO2, hv}, share
two intermediates. By grouping pathways by shared oxidants
and nitrogen oxides, and creating sub-groupings for multiple
shared oxidants and nitrogen oxides, the pathway combina-
tion algorithm creates a reduced mechanism structure. This
algorithm does not allow for the recombination of branched
pathways, meaning that the resulting reduced graphs are,
necessarily, trees. Figure S5 in Sect. S5 demonstrates the
combination of all of the identified paths to form the reduced
mechanism structure.

2.3.4 Priority species yield determination

The yield of each priority species is measured for each path
using the yield estimation algorithm (see Sect. 2.3.1). These
yields are used as stoichiometric coefficients for the prod-
uct terms of the terminal reaction of each path. All prior-
ity species are considered eligible as product terms of the
terminal reaction of a given path. For each path, the termi-
nal reaction is defined as the reaction in which no additional
intermediates were produced. For example, the path {OH}
contains the reaction of isoprene with OH to form isoprene
hydroxy peroxy radical as an intermediate (Reaction SR1 in
Table S2). This pathway was then given a terminal reaction,
involving the first-order decomposition of the isoprene per-
oxy radical in order to produce the final priority oxidation
products (Reaction SR2 in Table S2). The stoichiometric co-
efficients of each oxidation product were the yields as esti-
mated by the yield estimation algorithm.

This algorithm completed the automated portion of the
mechanism development process. The fully automated mech-
anism is described in Table S2. The assignment of reaction
rate constants and species naming are discussed in the fol-
lowing section. The subsequent manual optimization process
for direct implementation into 3-D atmospheric models is de-
scribed in Sect. 2.4.

2.3.5 Rate parameter identification and species naming

Once the skeletal reduced mechanism was established, rate
parameters and species names were identified manually. The
first step was to identify any direct analogues between mech-
anisms in the reduced mechanism and known reactions (i.e.,
those in the Caltech full mechanism). There were many reac-
tions with direct analogues, including all reactions involving
isoprene. In these cases, the rate law and parameters assigned
were identical to the original.

For reactions without direct analogues, the reaction was
typified by the oxidant or nitrogen oxide involved. In the Cal-
tech full mechanism, reaction rate laws with the same oxidant
or nitrogen oxide tend to have a similar form and fall under
a limited range of parameter values. Where there were mul-
tiple possible reaction forms, the most common form was
chosen. After choosing the form of the rate laws, parameters
were tuned by running box model simulations under condi-
tions that favored the reaction being tested. The parameters
were calibrated to match the concentration profiles of domi-
nant products in comparison to the Caltech full mechanism.
A list of all rate laws and parameters, their analogues, and
the method of selection is given in Table S3.

All species names listed in the AMORE-Isoprene mech-
anism were manually identified after the completion of the
automated mechanism reduction process. As with the rate
law selection process, the first step was to identify direct
analogues in the full mechanism. As the AMORE-Isoprene
mechanism is highly reduced, all species with the excep-
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tion of isoprene represent groups of species in the Caltech
full mechanism. Thus, direct analogues were generally anal-
ogous groups of species. For species without a clear ana-
logue, naming was based on the oxidants and nitrogen ox-
ides that reacted to form the species. From this information, a
name was assigned based on the predicted functional groups
present in the species. For CMAQ modeling, the naming con-
vention is different for some species due to their prior exis-
tence in the model. Table S4 gives each species name for this
paper and for CMAQ, the analogues that the species repre-
sents, and the functional groups involved.

2.4 Manual mechanism optimization and evaluation

The algorithmically generated isoprene mechanism was
manually optimized for use in the CMAQ modeling envi-
ronment and evaluated for its performance compared to other
reduced mechanisms. The optimization process was done us-
ing the Framework for 0-D Atmospheric Modeling (F0AM)
box model (Sect. 2.4.1) and the CMAQ testing environ-
ment (Sect. 2.4.2), and the manual optimization process is
described in Sect. 2.4.3. The graph theoretical framework
helped inform our decisions in this process. For example, the
conceptualization of the mechanism as a set of unique path-
ways connected by sequences of reactions, which is rooted in
graph theory, helped us to categorize reactions and how ad-
justments to their parameters would impact end results under
different testing conditions.

In the process of evaluating the mechanism, an error met-
ric was developed and used for quantitative comparisons
between mechanisms (Sect. 2.4.4). In the optimization and
evaluation phase, the Caltech full mechanism was used as a
baseline for comparison, along with experimental chamber
data for further corroboration (Paulot et al., 2009).

Higher priority was put on mechanism accuracy rather
than retention of the original algorithmically generated
mechanism structure. Thus, changes were made that deviated
from the algorithmically generated mechanism; however, the
core components of the algorithmically generated mecha-
nism, including a majority of the identified important paths,
were retained, and the algorithmically generated mechanism
provided an essential functional starting point from which to
improve the final mechanism performance.

2.4.1 Box model testing

F0AM (Wolfe et al., 2016) was used to simulate isoprene
mechanisms for the purpose of evaluating the AMORE-
Isoprene mechanism. The 0-D box model testing was done in
two primary phases. The first phase was aimed at optimizing
the AMORE-Isoprene mechanism. The Caltech full mecha-
nism was taken as the most accurate mechanism for ground
truth, and RACM2 was used as a benchmark for comparison.
Simulated concentration profiles of key species such as NOx ,
HOx , IEPOX, O3, and formaldehyde were analyzed in order

to assess the AMORE-Isoprene mechanism. The goal was to
match both the magnitude and form of each species concen-
tration in the Caltech full mechanism. A detailed description
of the matching process is provided in Sect. 2.4.3.

The second phase of box model testing involved quantita-
tive comparisons between mechanisms for demonstration of
the performance of the AMORE-Isoprene mechanism. The
mechanism was tested in the F0AM environment alongside
the Caltech full mechanism, the RACM2 isoprene mecha-
nism used in base CRACMM1, CB6r3, and the Caltech re-
duced isoprene mechanism. An error metric was created to
determine the degree of matching between two concentration
curves. This error metric was averaged over many species
and conditions to create an overall mechanism error metric.
Section 2.4.3 gives a detailed description of the error metric
developed for this study.

A set of six input conditions was devised to simulate the
mechanisms. Given that isoprene oxidation is split into three
main pathways of reaction with OH, NO3, and O3, these
three pathways must be represented in the chosen testing
conditions. Subsequent oxidation with NO is particularly im-
portant in the OH pathway, and low-light conditions are im-
portant in the NO3 pathway. Given this, the first five con-
ditions were low NOx , high NOx , high O3, high NO3, and
high NO3 with low hv. The final input condition was set to
simulate the chamber study of Paulot et al. (2009), allowing
for the pairing of box model results with experimental re-
sults. In that study, H2O2 photolysis was used as the source of
OH, and small amounts of NOx were measured as well. For
all F0AM simulations, H2O2 was used as the source of OH
(which allowed for OH to be a dynamic quantity), and NO
was used as a source of NOx . For ozone and NO3 the concen-
trations were set directly. Due to the lack of NO3 cycling and
the resulting rapid decay of NO3, NO3 concentrations were
held constant for high-NO3 conditions in order to favor this
pathway for the duration of the simulation. Temperature and
pressure were held at 292 K and 1000 hPa for all conditions.
This corresponds to low-elevation, warm conditions that are
most relevant for isoprene chemistry. The rate of photolysis
reactions are scaled by a unitless parameter labeled as hv.
The value of this parameter was calibrated to match the re-
sults of Paulot et al. (2009) chamber data for high-photolysis
conditions. Table 3 shows the inputs for each of the six con-
ditions.

2.4.2 CMAQ modeling

CMAQ v5.3.3 (Appel et al., 2021) with additional updates,
as outlined in Place et al. (2023), was used to conduct
simulations over the northeastern US for June through Au-
gust 2018 (2–31 May used as spin-up) at a 4 km× 4 km hori-
zontal resolution. Baseline gas- and aerosol-phase chemistry
was specified by version 1 of CRACMM (Pye et al., 2022)
which uses the RACM2 representation of isoprene chem-
istry (Sarwar et al., 2013). Additional simulations were con-
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Table 3. F0AM box model testing input conditions used for calculating the error metric and evaluating the AMORE-Isoprene mechanism.
Bold values represent species concentrations that were held constant. All other concentrations varied with time after initiation of the simula-
tion.

Species Chamber comparison Low NOx High NOx High NO3, low hv NO3 High O3

Isoprene (ppb) 92.5 10 10 10 10 10
H2O2 (ppb) 1660 200 200 0 100 200
NO (ppb) 1 0.5 5 2 1 0.5
O3 (ppb) 0 0 0 0 0 100
NO3 (ppb) 0 0 0 0.02 0.02 0
hv (unitless) 3.5 3.5 3.5 0.5 3.5 3.5

ducted in which CRACMM’s isoprene chemistry was re-
placed with AMORE-Isoprene. Meteorology was obtained
from v4.1.2 of the Weather Research and Forecasting (WRF)
model (Torres-Vazquez et al., 2022) and processed through
version 5 of the Meteorology–Chemistry Interface Proces-
sor (Otte and Pleim, 2010). Boundary and initial condi-
tions were mapped from previous work using CB6r3 (Torres-
Vazquez et al., 2022), and emissions were respeciated for
CRACMM with additional updates for volatile chemical
products (Seltzer et al., 2021). Biogenic emissions were esti-
mated with the Biogenic Emission Inventory System (BEIS)
(Bash et al., 2016) with M3dry (Pleim et al., 2019) used for
deposition. CMAQ output was compared to EPA Air Quality
System (AQS) and other monitoring network data using the
Atmospheric Model Evaluation Tool (AMET) (Appel et al.,
2011). CRACMM was selected as a baseline mechanism
due to concurrent development of AMORE-Isoprene and the
CRACMM mechanism for use in EPA research. CRACMM
indicated relatively consistent predictions of gas-phase ozone
chemistry compared to other current mechanisms (Place et
al., 2023), signifying that the choice of CRACMM as the
baseline mechanism for 3-D modeling was unlikely to con-
found the AMORE-Isoprene results.

IEPOX has heterogeneous chemistry in CMAQ (reactive
uptake leading to SOA) following Pye et al. (2013) with up-
dates in Pye et al. (2017, 2022). The first-generation isoprene
organic nitrate heterogeneous chemistry (leading to HNO3
and gas-phase alcohols) was implemented in this work and is
specific to AMORE (not in base CRACMM1).

In CMAQ, the species in AMORE undergo deposition. All
species that were already present in the base CRACMM1
mechanism were treated the same as in CRACMM1. IPN
and IPC (briefly described in Sect. 3) were both wet de-
posited with Henry’s law coefficients predicted by OPERA
(Mansouri et al., 2018). In addition, the species were dry de-
posited using species-specific diffusivities, mesophyll resis-
tances, and LeBas molar volumes (Pye et al., 2017).

2.4.3 Manual mechanism adjustment

In this section, we discuss manual adjustments to the al-
gorithmically generated mechanism. To make adjustments,

Figure 2. The original AMORE algorithmically generated mecha-
nism prior to manual adjustment (a) and the final AMORE-Isoprene
mechanism (b). Changes are highlighted in blue.

we tested the AMORE mechanism in box model simula-
tions (Sect. 2.4.1) and 3-D chemical transport simulations
(Sect. 2.4.2). The testing process highlighted issues with the
mechanism initially produced by the reduction algorithm that
could be corrected via manual adjustments. This process has
informed future algorithm development, as the ultimate goal
is to automatically generate mechanisms which require no
manual adjustment. The structural differences between the
automated (labeled as AMORE-NoAdjust) and manually ad-
justed (labeled as AMORE-final) mechanisms are shown in
Fig. 2. The corresponding reaction numbers from Table 4
are shown in the AMORE-final structure. Reactions (R13)–
(R17) are not shown in the structure because they represent
degradation schemes for end product species (IEPOX; iso-
prene hydroxy nitrate, IHN; and lumped multifunctional iso-
prene nitrates, ISON) or are used for oxidant and nitrogen
oxide cycling and do not directly contribute to the produc-
tion of priority species (Reaction R13).

The first issue to be addressed was that, because of the
DAG assumptions, mechanistic pathways were constrained
to have only forward reactions, and, because of the path-
way identification algorithm, each oxidant or nitrogen ox-
ide was only able to appear once. Adjustments were made to
the mechanism to allow reversible reactions and repeat ap-
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Table 4. The AMORE-Isoprene mechanism reactions and rate constants. Mechanism-specific species are listed in the text.

No. Reaction Rate constant

R1 ISO+O3= 0.07 MACR+ 0.189 MVK+ 0.25 HO+ 0.25 HO2+ 0.58
HCHO+ 0.08 MO2+ 0.1 ACO3+ 0.09 H2O2+ 0.1 MACP+ 0.461
MACR+ 0.14 CO+ 0.28 ORA1+ 0.15 OLT

1.58×10−14 exp(−2000/T ) cm3 mol−1 s−1

R2 ISO+NO3= INO2+ 0.3 HCHO+ 0.3 NO2+ 0.3 ISON 2.95×10−12 exp(−450/T ) cm3 mol−1 s−1

R3 ISO+HO= ISOP+ 0.02 MO2 2.69×10−11 exp(390/T ) cm3 mol−1 s−1

R4 ISOP+HO2= ISHP+ 0.6 HO2+ 0.15 HCHO 4.5×10−13 exp(1300/T ) cm3 mol−1 s−1

R5 ISOP+NO= 0.14 IHN+ 0.7 HCHO+ 0.44 MVK+ 0.88 HO2+ 0.78
NO2+ 0.28 MACR+ 0.021 GLY

2.7×10−12 exp(350/T ) cm3 mol−1 s−1

R6 ISHP+HO= ISOP 4.6×10−12 exp(200/T ) cm3 mol−1 s−1

R7 INO2+HO2= IPN+HO 3.14×10−14 exp(580/T ) cm3 mol−1 s−1

R8 INO2+NO= 0.2 ISON+ 0.9 HCHO+ 0.5 MGLY+ 0.8 MVK+ 0.5
NO2+HO2+ 0.1 MO2

9.42×10−16 exp(580/T ) cm3 mol−1 s−1

R9 IPN+HO2= 0.2 ISON+ 0.8 NO2+ 0.4 HCHO+ 0.05 GLY+ 0.1
MGLY+ 0.4 MACR+HO2+ 0.94 MVK+ 0.1 MO2

3.4×10−11 exp(390/T ) cm3 mol−1 s−1

R10 IHN+HO= ISON+HO+ 0.2 IEPOX 2.4×10−7 exp(580/T ) cm3 mol−1 s−1

R11 ISHP+HO= 0.05 IPC+ 0.15 HCHO+ 0.05 MGLY+ 0.15 MACR+ 0.02
GLY+ 0.2 MVK+ 0.4 NO2+ 0.58 IEPOX+ 0.8 HO

2.97×10−11 exp(390/T ) cm3 mol−1 s−1

R12 ISHP= 0.4 HCHO+ 0.1 MGLY+ 0.06 ACO3 Photol(HCHO_RAD_RACM2) s−1

R13 IPC+NO= 0.35 NO2+ 0.8 NO 1×10−10 cm3 mol−1 s−1

R14 ISON+HO=CO+ 0.12 NO2 5×10−11 cm3 mol−1 s−1

R15 ISON+NO3=CO 2×10−14 cm3 mol−1 s−1

R16 IHN=HNO3 2.3×10−5 s−1

R17 IEPOX+HO =HO 5×10−11 exp(−400/T ) cm3 mol−1 s−1

R18 ISOP+MO2=HO2+ 1.31 HCHO+ 0.159 MACR+ 0.250 MVK+ 0.250
MOH+ 0.250 ROH+ 0.023 ALD+ 0.018 GLY+ 0.016 HKET

3.4×10−14 exp(221/T ) cm3 mol−1 s−1

R19 ISOP+ACO3= 0.5 HO2+ 0.5 MO2+ 1.048 HCHO+ 0.219 MACR+ 0.305
MVK+ 0.5 ORA2

8.4×10−14 exp(221/T ) cm3 mol−1 s−1

R20 ISOP+APIP2= 0.96 HOM+ 0.48 ROH+ 0.48 HCHO+ 0.48 MVK+ 0.48
HO+ 0.48 HO2+ 0.04 ELHOM

1×10−10 cm3 mol−1 s−1

R21 ISOP+APINP2= 0.96 HOM+ 0.48 ROH+ 0.48 HCHO+ 0.48 MVK+ 0.48
NO2+ 0.48 HO2+ 0.04 ELHOM

1×10−10 cm3 mol−1 s−1

R22 ISOP+LIMNP2= 0.96 HOM+ 0.48 ROH+ 0.48 HCHO+ 0.48 MVK+ 0.48
NO2+ 0.48 HO2+ 0.04 ELHOM

1×10−10 cm3 mol−1 s−1

A complete species list can be found in Table S1 in the Supplement.

pearances of a single oxidant or nitrogen oxide where there
was a strong case for the adjustment based on the Caltech
full mechanism. One of the most important instances of this
is the isoprene OH oxidation pathway. In this pathway, OH
and HO2 are the most important oxidants as predicted by

the AMORE algorithm; however, there is a reversible OH
reaction (Reaction R6 in Table 4) which plays a significant
role in the cycling of HO2 and OH. This reversible reaction
was added and was instrumental in improving the accuracy
of the AMORE-Isoprene mechanism. The change is shown
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in the {OH, HO2} pathway of Fig. 2. This reversible reac-
tion is absent from RACM2 but present in CB6r3. In order
for the reversible reaction to terminate into final products,
a reaction of the second intermediate with OH was added.
The addition of these two reactions did not change the over-
all nature of the path {OH, HO2} in terms of the oxidants
present but added necessary complexity to the dynamics of
the path, resulting in more accurate product differentiation in
OH-dominant conditions.

It was also observed that NOx concentrations were rela-
tively low compared with the Caltech full mechanism in low-
NOx regimes in which the {OH, HO2} pathway was domi-
nant. To ameliorate the lower NOx concentrations, an addi-
tional intermediate called IPC was created for the purpose of
reacting with NO to create additional NO2 and NO. This ad-
dition is shown in Reaction (R11) (Table 4) where IPC is a
product, and Reaction (R13) (Table 4), where NO and NO2
are cycled. The effect of this addition is to increase NOx un-
der low-NOx conditions, and thus increase ozone, leading to
reduced ozone underestimation compared with the Caltech
full mechanism.

In addition to box model testing, 3-D chemical transport
modeling using CMAQ (Sect. 2.4.2) informed structural ad-
justments to the AMORE mechanism. These adjustments
centered on the treatment of IHN (isoprene hydroxy nitrate,
the intermediate of the reaction of ISOP (isoprene hydroper-
oxy radical) and NO (Reaction R5 in Table 4, as part of the
{OH, NO} pathway) in the mechanism. IHN was not ini-
tially identified as a priority species during algorithm devel-
opment and, thus, was not included as an intermediate. In-
stead, the reaction of ISOP and NO contained no intermedi-
ates and led directly to the production of priority end prod-
ucts. However, it was determined that IHN should be given
priority based on recent research highlighting its importance
in NOx cycling (Vasquez et al., 2020). Thus, IHN was added
as an intermediate, and an additional decomposition reaction
with OH was added (Reaction R10 in Table 4). This decom-
position reaction led to the production of IEPOX and iso-
prene nitrates, which were originally produced directly from
the reaction of ISOP with NO. Thus, the {OH, NO} path-
way was expanded on by adding an additional OH reaction
step for the decomposition of IHN. This change is shown
in the {OH, NO} pathway with the addition of an OH reac-
tion step in Fig. 2. In addition to decomposition into other
organics, IHN acts as a sink for NOx . This was represented
by the addition of Reaction (R16) in Table 4, which did not
involve any oxidants or nitrogen oxides as reactants. It was
observed that the reaction of IPC with NO (Reaction R13 in
Table 4) outcompeted IHN for NO, and thus the yield of IPC
(Reaction R11) was changed from 0.3 to 0.05 from isoprene
hydroxy peroxide (ISHP). This change came at the expense
of NOx cycling under low-NOx conditions; however, it was
observed that simulated NOx levels were largely the same
between AMORE-Isoprene and the base CRACMM mecha-
nism, suggesting that this adjustment would be a net benefit

to the overall performance. Further discussion of IHN can be
found in Sect. S7.

Additional reactions of the OH pathway with organic rad-
icals (methyl radical, peroxyacetyl radical, and lumped ter-
pene radicals) were added directly from the RACM2 mecha-
nism. They were not identified as important by the AMORE
mechanism, likely a result of the inputs chosen, but came
at little additional computational cost because they did not
require the addition of any intermediates. These added or-
ganic radical reactions allowed for product differentiation in
environments where organic radical concentrations are sig-
nificant.

Finally, the {NO3, HO2, hv} path was determined to be
unnecessary due to the relatively small amount of flux carbon
directed to it. Instead, the paths {NO3, HO2, HO2} and {OH,
HO2, hv} were used in its place. The {NO3, HO2, HO2} path
was a variant on the existing {NO3, HO2} path. The {OH,
HO2, hv} path was added to represent any potential variation
attributed to photolysis in the low-NOx regime. All of the
above changes are shown in Fig. 2.

The stoichiometric coefficients of the products in the re-
duced mechanism were initially assigned based on the esti-
mates given by the yield estimation algorithm and were then
optimized manually. Notably, stoichiometric coefficients for
oxidant and nitrogen oxide species as products, although
clearly important, were not treated in the algorithm due to
their implicit representation in the mechanism graph. Thus,
while oxidants and nitrogen oxides were included in the al-
gorithm as reactants, they were omitted as products, which
reduced their overall accuracy. In particular, the relationship
between HOx , NOx , and O3 is very sensitive to changes
in the isoprene mechanism and is important for determin-
ing yields of many other species. These oxidants and nitro-
gen oxides are of a high order of importance for mecha-
nism accuracy, and so the manual adjustment of their pres-
ence in the mechanism was critical. Two clear examples
of this are shown in Fig. 3. Prior to the adjustment shown
in Fig. 3a, HO2 was significantly reduced in the AMORE-
Isoprene mechanism under low-NOx conditions. It was ob-
served that Reaction (R4) (Table 4) involving the isoprene
hydroxy peroxy radical (ISOP) was the main sink for HO2
and that the accuracy was significantly increased by adding
HO2 to the product term. This original discrepancy likely
reflects a cycling achieved by multiple reactions in the full
mechanism that it was not possible to include in the re-
duced mechanism. Adding HO2 to the product term was the
only available way to have good agreement with the full
mechanism. The reaction of isoprene hydroxy peroxy radical
(ISOP) with NO was another reaction for which oxidant and
nitrogen oxide cycling was very impactful. The addition of
NO2 and HO2 to the products of Reaction (R5) (Table 4) was
used to improve the accuracy of the AMORE-Isoprene mech-
anism. A demonstration of the adjustment improvements is
shown in Fig. 3b. Further tests of the adjustments in Fig. 3
are given in Sect. S16.
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Figure 3. Box model simulations (T = 292 K, p = 1000 hPa)
showing the improvement in performance of the AMORE mecha-
nism for HO2 and NOx after adding these species to the products of
Reactions (R4) (b) and (R5) (a). The original and updated reactions
are shown above the plots. Inputs are (a) 200 ppb H2O2, 1 ppb NO,
10 ppb isoprene, and moderate-photolysis conditions (F0AM pho-
tolysis parameter = 1) and (b) 200 ppb H2O2, 1 ppb NO, 10 ppb
isoprene, and high-photolysis conditions (F0AM photolysis param-
eter = 3.5).

All of the above adjustments were motivated by a clear
improvement in mechanism performance that accompanied
the change. See Sects. S8 and S9 and Tables S3 and S4 for a
description of rate constants and species names.

All product stoichiometric coefficients were optimized for
the accuracy of all priority species in a method similar to that
shown for oxidants and nitrogen oxides in Fig. 3.

2.4.4 Mechanism error metric

For intercomparison of reduced mechanisms, full mecha-
nisms, and experimental data, it was necessary to devise an
accuracy metric based on the priority species and other mea-
surable parameters. In the case of the isoprene mechanism,
we focus on atmospheric oxidants and nitrogen oxides, or-
ganic aerosol, and other pollutants, namely formaldehyde
and ozone.

In order to measure these parameters and create an accu-
racy metric, three steps were taken. The first was to define an
error function for comparing the concentration of a species
between two mechanisms in a box model simulation. The
second was to determine the set of input conditions needed
to capture the desired range of performance in the mecha-
nism. The third step was to average errors across species and
conditions in order to come up with a final metric. The error

function for the comparison of concentration profiles of one
species between two mechanisms formed the basis of the ac-
curacy metric. The goal was to devise an error function which
is bounded, so the natural choice was to normalize the error.
In addition, for the purpose of averaging, the error function
needed to always be positive to avoid canceling out errors.
From this, an error metric was defined, as shown in Eq. (4):

E =

∫ tf
t0

abs(T (t)−R(t))dt∫ tf
t0

max(T (t),R(t))dt
, (4)

where E is the error, t0 is the initial time, tf is the final time,
T (t) is the concentration profile being tested, and R(t) is the
reference concentration profile. This concentration error met-
ric ranges from zero to one, where zero is no error and one
is infinite error. Figure S6 illustrates the behavior of the error
metric for a sample set of profiles.

Although many important species are tracked in the iso-
prene mechanism, not all species contribute equally to ob-
servable parameters. A weighting scheme was devised to
capture the relative importance of some species over others.
The three main groupings that were included in the weight-
ing scheme were oxidants and nitrogen oxides, priority pollu-
tants, and isoprene SOA species. Each grouping was given an
equal contribution to the overall error. The primary oxidant
and nitrogen oxide species are OH, HO2, NO, and NO2. NO3
is not involved in any significant cycles and is excluded from
the oxidant and nitrogen oxide weighting scheme, but it still
participates in the mechanism. The organic oxidants methyl
radical and peroxyacetyl radical are of lesser importance than
the primary oxidants and nitrogen oxides and are, thus, given
a lower weighting. NO, NO2, OH, and HO2 are all given a
7 % weighting for the overall accuracy. The methyl radical
and peroxyacetyl radical are given a weighting of 2.5 % each
for a total of 33 % for oxidants and nitrogen oxides. Ozone
and formaldehyde are classified as pollutants, and both are
given a weighting of 17 % for a total weighting of 34 %. The
formaldehyde error is multiplied by the fraction of the maxi-
mum formaldehyde concentration for a given input condition
over the average maximum formaldehyde concentration over
all input conditions. This gives formaldehyde more weight-
ing as its relative concentration increases.

According to Bates and Jacob (2019), the average iso-
prene SOA contribution is divided up into 33 % IEPOX, 30 %
isoprene nitrates, 30 % tetrafunctional isoprene compounds,
2.5 % glyoxal, and 4.5 % other. Most small isoprene mecha-
nisms exclude tetrafunctional compounds, leaving IEPOX as
a 50 % contribution, isoprene nitrates as a 45 % contribution,
and glyoxal as a 4.5 % contribution. As with formaldehyde,
each of these are scaled relative to their average maximum
concentration. Thus, in our calculations SOA contributes
33 % to the total accuracy, with IEPOX contributing 16.5 %,
isoprene nitrates contributing 15 %, and glyoxal contributing
1.5 %. Isoprene is omitted from the error metric, as its error is
represented by the accuracy in the other parameters. Methyl
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Table 5. Species used in the calculation of the mechanism error
metric and their corresponding weight.

Species Fractional
contribution

OH 0.07
HO2 0.07
NO 0.07
NO2 0.07
Methyl radical (MO2) 0.025
Peroxyacetyl radical (ACO3) 0.025
HCHO 0.17
O3 0.17
IEPOX 0.165
Isoprene nitrates 0.15
Glyoxal 0.015

vinyl ketone, methacrolein, peroxyacetyl nitrate, and methyl
glyoxal were omitted from the accuracy metric due to their
relatively lower importance compared with the other species
and owing to their coupling to species already present in the
error metric. However, these four species are represented in
AMORE-Isoprene, and information on the performance of
each mechanism with respect to these species and all other
important species can be found in Sect. S13 and Table S6.
Table 5 shows each species and its contribution to the total
error metric.

The error metric is calculated by running box model sim-
ulations of the Caltech mechanism and the test mechanism
under all six conditions, calculating each individual species
error and averaging them using the weights shown in Table 5,
and then averaging between each of the six conditions to ar-
rive at a single value. The error metric ranges from zero to
one, with lower values corresponding to less error. This al-
lows for the numerical comparison of various isoprene mech-
anisms to the Caltech full mechanism.

3 Results and discussion

The final AMORE-Isoprene mechanism consists of 9 species
and 22 reactions. A full outline of the reactions is shown
in Table 4. The nine isoprene species were isoprene (ISO),
isoprene hydroxy peroxy radical (ISOP), isoprene hydroxy
peroxide (ISHP), isoprene nitrooxy peroxy radicals (INO2),
isoprene hydroxy nitrates (IHN), the lumped species IPC
and IPN, isoprene epoxydiol (IEPOX), and lumped multi-
functional isoprene nitrates (ISON). IPC and IPN are named
based on the reactions they participate in, but they have no
true analogues in the full mechanism, as they are used pri-
marily to expand the range of outputs and cycle oxidants
and nitrogen oxides. In the following sections, AMORE-
Isoprene’s performance will be compared in box model sim-
ulations to the Caltech full mechanism (Sect. 3.1), compared

to chamber data (Sect. 3.2), and compared to the CRACMM-
baseline mechanism in CMAQ simulations (Sect. 3.3).

3.1 Ambient box model simulations

Using F0AM box model simulations and the error metric de-
fined in Sect. 2.4.4, we were able to demonstrate the high ac-
curacy of the AMORE-Isoprene mechanism relative to other
mechanisms of similar size. Formaldehyde and HO2 were
chosen as exemplary species for visual comparison, as they
demonstrate the high performance of AMORE-Isoprene rel-
ative to other isoprene mechanisms.

Figure 4 shows the concentration of HO2 under the six
conditions listed in Table 3. For HO2, AMORE-Isoprene has
stronger agreement with the Caltech full mechanism than
the RACM2 isoprene mechanism. Under low-NOx condi-
tions, the steady-state concentration of HO2 was 0.054 ppb
for the Caltech full mechanism, 0.045 ppb for the AMORE-
Isoprene mechanism, 0.042 ppb for the CB6r3 mechanism,
and 0.026 ppb for the RACM2 mechanism. Under high-NOx
conditions, all mechanisms had similar concentrations of
HO2. Under high-O3 conditions, the steady-state concen-
tration of HO2 was 0.05 ppb for the Caltech full mecha-
nism, 0.04 ppb for AMORE-Isoprene, 0.04 ppb for CB6r3,
and 0.02 ppb for RACM2. Under high-NO3 concentrations,
steady-state HO2 concentrations were low for all mecha-
nisms, and the peak concentration was 0.029 ppb for the
Caltech full mechanism, 0.017 ppb for AMORE-Isoprene,
0.049 ppb for CB6r3, and 0.016 ppb for RACM2. In all cases,
the steady-state and/or peak concentrations were closer to
the Caltech full mechanism for AMORE-Isoprene than for
RACM2. Simulated HO2 concentration profiles are similar
between AMORE-Isoprene and CB6r3, although AMORE-
Isoprene tends to underestimate HO2 under high-NO3 con-
ditions, whereas CB6r3 tends to overestimate HO2 under
the aforementioned conditions. As expected, the Caltech Re-
duced Plus mechanism has strong agreement with the Cal-
tech full mechanism for HO2.

Figure 5 shows the simulated concentration of formalde-
hyde under the six conditions listed in Table 3. For formalde-
hyde, AMORE-Isoprene consistently outperforms RACM2.
For example, under low-NOx conditions, the peak formalde-
hyde concentration was just over 3 ppb for the Caltech
full mechanism, 2.6 ppb for the AMORE-Isoprene mecha-
nism, 2.1 ppb for the CB6r3 mechanism, and 0.6 ppb for
the RACM2 mechanism. In addition, the mechanism per-
forms similarly to CB6r3. The accuracy tends to be higher
than CB6r3 for the first few hours of the simulation, with
less accuracy later in the simulation due to a steeper de-
cay of the formaldehyde concentration. This pattern can be
seen clearly in Fig. 5a. These differences arise from the
sources of formaldehyde, where AMORE-Isoprene produces
more formaldehyde from first-generation oxidation interme-
diates, whereas CB6r3 has a higher contribution from later-
generation oxidation intermediates. Formaldehyde is over-
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Figure 4. Box model predictions of HO2 from multiple mechanisms (292 K and 1000 hPa) under the following conditions: (a) low NOx ;
(b) high NOx ; (c) high O3; (d) high NO3; (e) high NO3, low hv; and (f) Paulot et al. (2009) chamber.

Figure 5. Box model predictions of formaldehyde from multiple mechanisms (292 K and 1000 hPa) under the following conditions: (a) low
NOx ; (b) high NOx ; (c) high O3; (d) high NO3; (e) high NO3, low hv; and (f) Paulot et al. (2009) chamber.

estimated under high-NO3 conditions, although other small
mechanisms significantly underestimate formaldehyde under
the same conditions. This difference is primarily due to the
slower rate of decay of formaldehyde under high-NO3 condi-
tions coupled with high initial production from the oxidation
of isoprene. In contrast, the Caltech full mechanism displays
a slower rate of formaldehyde production, as it is spread
out over many more oxidation reactions at longer timescales.
The other small reduced mechanisms (CB6r3 and RACM2)

have lower formaldehyde production, due to fewer formalde-
hyde production pathways under high-NO3 conditions, with
RACM2 having over an order of magnitude lower formalde-
hyde concentrations.

Figure 6 shows the simulated concentration of the hy-
droxyl radical under the six conditions listed in Table 3. The
AMORE-Isoprene mechanism performs similarly to other
highly reduced mechanisms. As with other small mecha-
nisms, AMORE-Isoprene is biased low compared with the
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full Caltech mechanism. Under low-NOx conditions, the
AMORE-Isoprene mechanism has near-equal behavior to
CB6r3 and RACM2 at short time frames and has a more ac-
curate steady-state value at longer time frames. Under high-
NOx conditions, the RACM2 mechanism is the most accu-
rate small mechanism, with AMORE-Isoprene having close
but slightly lower OH concentrations. Under high-O3 condi-
tions, AMORE-Isoprene has the closest agreement with the
Caltech full mechanism. The Caltech Reduced Plus mecha-
nism has strong agreement with the full mechanism under all
tested conditions, as would be expected. The main reason for
the discrepancy in between AMORE-Isoprene and the Cal-
tech full mechanism with respect to hydroxyl radical con-
centrations is that the Caltech full mechanism has a greater
quantity of intermediate species which produce and consume
the hydroxyl radical. This leads to slightly higher hydroxyl
radical concentrations, and, given that the AMORE-Isoprene
mechanism is a much smaller mechanism, there are limita-
tions to the extent that this can be corrected. This is further
evidenced by the fact that the other small mechanisms have
similarly low-biased hydroxyl radical concentrations. Over-
all, the AMORE-Isoprene mechanism performs consistently
well at predicting OH concentrations and is in line with sim-
ilarly sized mechanisms in this regard.

In addition to these plots, a quantitative comparison was
made between each of the mechanisms tested based on the
overall mechanism error metric defined in Sect. 2.4.4. Fig-
ure 7 shows the mean accuracy of AMORE-Isoprene for a
selection of species under each of the six simulation con-
ditions. Lower values correspond to higher accuracy. The
AMORE-Isoprene mechanism shows very high accuracy un-
der all conditions, and it performed the best under high NOx ,
high O3, and in comparison to the chamber data from Paulot
et al. (2009), which is relatively low with respect to NOx , and
OH oxidation dominates.

Table 6 shows the overall error of each reduced mecha-
nism as defined in Sect. 2.4.4 with species weightings de-
scribed in Table 5. The numerical errors shown in Table 6
represent weighted averages of the error across multiple pri-
ority species and the six conditions shown in Table 3. As
a result, this error metric quantifies the overall performance
of the mechanism in box model simulations, The results
show that AMORE-Isoprene performs very well compared
with mechanisms of a similar size. AMORE-Isoprene has
an error of 0.17, which is much lower than that of CB6r3
(0.3) and RACM2 (0.44) but very close to that of Caltech
Reduced Plus (0.13), the latter of which is a significantly
larger mechanism. The main drivers of the low error for the
AMORE-Isoprene mechanism are oxidant, nitrogen oxide,
IEPOX, and formaldehyde concentrations. For example, the
average error for IEPOX is 0.17 for AMORE-Isoprene com-
pared with 0.27 for CB6r3 and 0.60 for RACM2. The average
error for NOx species is 0.16 for AMORE-Isoprene, 0.29 for
RACM2, and 0.35 for CB6r3. For HOx species, the average
error is 0.25 for AMORE-Isoprene, 0.55 for RACM2, and

Table 6. Total error (individual species error described in Eq. 4,
species weighting shown in Table 5, and further discussion in
Sect. 2.4.4) and mechanism size for four reduced isoprene mech-
anisms with the Caltech full mechanism as a basis of comparison.
Individual species error shown averaged over the six tested condi-
tions.

AMORE Caltech Reduced RACM2 CB6r3
Plus

Species 12 131 9 10
Reactions 22 220 12 17
Total error 0.17 0.13 0.44 0.3
O3 0.12 0.02 0.15 0.12
NO 0.12 0.06 0.22 0.28
NO2 0.19 0.08 0.38 0.42
HO 0.20 0.17 0.44 0.30
HO2 0.29 0.11 0.67 0.29
NO3 0.36 0.09 0.47 0.25
ISOP 0.14 0.06 0.18 0.11
IEPOX 0.17 0.12 0.60 0.27
HCHO 0.22 0.11 0.79 0.30
MO2 0.53 0.20 0.59 0.56
ACO3 0.56 0.27 0.72 0.44
PAN 0.53 0.21 0.85 0.52
ISOPN 0.43 0.26 0.61 0.77
GLY 0.64 0.60 0.86 0.57
MGLY 0.63 0.14 0.79 0.23

A complete species list can be found in Table S1 in the Supplement.

0.29 for CB6r3. For formaldehyde, the average error is 0.22
for AMORE-Isoprene, 0.79 for RACM2, and 0.3 for CB6r3.
The error information for each mechanism can be found in
Sect. S13 and Table S6. Additional box model plots can be
found in Figs. S14–S19. These results validate the AMORE
reduction process as a useful method of mechanism reduction
and demonstrate that small mechanisms can retain significant
accuracy compared to a much larger reference mechanism.

3.2 Chamber box model simulations

In order to determine the accuracy of the Caltech full mecha-
nism, which was augmented in this work, chamber data were
used for comparison. These data come from Paulot et al.
(2009) and contain concentration profiles for isoprene, iso-
prene hydroxy peroxides (ISHP), and IEPOX. The conditions
of the chamber study were replicated using the F0AM box
model to determine the accuracy of the Caltech full mech-
anism and the reduced isoprene mechanisms. As expected,
the Caltech full mechanism matched the concentrations of
all measured species from the chamber study.

Figure 8 shows the results for IEPOX. The AMORE-
Isoprene mechanism is in good qualitative and quantitative
agreement with the Caltech full mechanism and the Paulot
et al. (2009) chamber data concentration profile for IEPOX.
The peak IEPOX concentration is roughly 27 ppb accord-
ing to the chamber data, compared to 25 ppb for the Cal-
tech full mechanism, 25 ppb for the AMORE-Isoprene mech-
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Figure 6. Box model predictions of the hydroxyl radical from multiple mechanisms (292 K and 1000 hPa) under the following conditions:
(a) low NOx ; (b) high NOx ; (c) high O3; (d) high NO3; (e) high NO3, low hv; and (f) Paulot et al. (2009) chamber.

Figure 7. Measured error (Eq. 4) of the AMORE-Isoprene mecha-
nism under six different conditions for seven select species groups.
Errors are averaged between species for multiple-species groups.

anism, and 50 ppb for the RACM2 mechanism. In addition,
the timing of the peak matches closely with the chamber data.
The chamber data IEPOX peak occurs at around 10.5 h, com-
pared to 9.5 h for the Caltech full mechanism, 10.5 h for the
AMORE-Isoprene mechanism, and over 12 h for the RACM2
mechanism. Model evaluation with chamber data is particu-
larly important for this species because (a) it is a key species
for SOA formation from isoprene and (b) relatively few am-
bient measurements of IEPOX exist for validation.

3.3 CMAQ Testing

When AMORE-Isoprene is included in the CRACMM
scheme of CMAQ (CRACMM1AMORE), improvements in

Figure 8. IEPOX concentration comparison between chamber data
from Paulot et al. (2009) and F0AM box model simulations us-
ing the reported chamber conditions. The Caltech full mechanism
closely matches the measured values, as does the AMORE-Isoprene
mechanism.

O3 and formaldehyde bias are observed compared with AQS
ambient observations. Figure 9 shows the bias of CRACMM-
baseline and AMORE-Isoprene compared with AQS data.
Both formaldehyde and ozone observations were underes-
timated by CMAQ, particularly at higher concentrations of
each species. AMORE-Isoprene predicted higher ozone and
formaldehyde than CRACMM-baseline, thereby reducing
the bias for both species.

The mean bias of formaldehyde decreased by 0.27 ppb
with the implementation of AMORE-Isoprene, for all
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Figure 9. Binned mean bias of AMORE-Isoprene and baseline CRACMM for (a) formaldehyde and (b) ozone compared with AQS data for
the northeastern US during summer 2018. Numbers for box plots indicate the number of data points in each observed range.

formaldehyde concentrations. The CRACMM-baseline sim-
ulation tended to underestimate formaldehyde, especially at
increasing formaldehyde concentrations. In all concentra-
tions, AMORE-Isoprene increased the simulated formalde-
hyde concentration by roughly 0.25 ppb. This is in line with
the box model simulations shown in Fig. 5, where AMORE-
Isoprene (yellow) had consistently higher formaldehyde con-
centrations than the RACM2 mechanism (green), which is
used in the CRACMM-baseline isoprene mechanism, under
a wide range of conditions.

The mean bias of ozone for concentrations above 50 ppb
during the daytime was decreased by 3.4 ppb with the imple-
mentation of AMORE-Isoprene. AMORE-Isoprene slightly
increased the bias at low ozone concentrations, as ozone is
overpredicted at low concentrations. At higher concentra-
tions, where health implications are presumably more seri-
ous, AMORE-Isoprene yielded significantly higher accuracy.
AMORE-Isoprene generally tended to increase ozone con-
centrations by roughly 2–3 ppb for all ozone concentrations.
AMORE-Isoprene tends to have higher ozone concentrations
and better agreement with the Caltech full mechanism than
RACM2 in low-NOx box model simulations. Thus, the dif-
ference may be attributable a higher prevalence of low-NOx
conditions.

The CMAQ implementation also included heterogeneous
chemistry for IEPOX and first-generation isoprene organic
nitrates as well as deposition for all species. These pro-
cesses, while not included in our box models, did not sig-
nificantly impact the overall performance of the mecha-
nism, as organic carbon (OC) values were similar between
AMORE-Isoprene and the base CRACMM1 mechanism (see
Sect. S15). No significant changes were identified for other
observed species such as NOy , and isoprene (Sect. S15). The
CMAQ model runtime did not increase substantially with
AMORE-Isoprene.

4 Conclusions

We have developed a new reduced isoprene oxidation mecha-
nism for application in large-scale atmospheric models, using
a novel, semiautomated, graph-theory-based approach. Rig-
orous testing has demonstrated that the AMORE-Isoprene
mechanism’s performance is very good for its size, with im-
proved accuracy compared with CB6r3 and RACM2.

A small, accurate isoprene oxidation mechanism would
improve the performance of many large-scale models, as we
have demonstrated with CMAQ-CRACMM1AMORE simu-
lations, where there was a noticeable improvement in both
ozone and formaldehyde bias. In the future, we plan addi-
tional testing of AMORE-Isoprene in other chemical trans-
port models to characterize the impacts of this mechanism
more broadly.

During the algorithmic and manual adjustment process,
several useful concepts were developed. First, for a small
number of desired measurable outputs, small mechanisms
can reach high levels of accuracy if properly structured and
optimized. Second, the optimization of oxidants and nitrogen
oxides, which are highly coupled to the isoprene mechanism,
takes precedence over the optimization of other species, as
inaccuracies in coupled species ultimately propagate to un-
coupled species. In addition, the observation that methods
reliant on removing aspects of the full mechanism would not
work for this application was very important. The path-based
approach that we have developed to “summarize” the mech-
anism may be a more sensible starting point for the reduction
of other atmospheric reaction networks as well.

The AMORE-Isoprene mechanism demonstrates that
there is a significant potential advantage in the use of al-
gorithms for model reduction. Additional development, in-
formed by the experiences of this study, is underway to more
fully automate the model reduction process and further re-
duce the need for manual adjustments. Future work will ex-
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tend this work to application to the reduction of a wide range
of atmospheric chemical mechanisms in addition to the iso-
prene oxidation mechanism.

Code and data availability. CMAQv5.3.3 is available at https://
github.com/USEPA/CMAQ (last access: 16 March 2023) and is
archived at https://doi.org/10.5281/zenodo.5213949 (US EPA Of-
fice of Research and Development, 2021). The exact CMAQ
code used in this work and the CMAQ output are available at
https://doi.org/10.23719/1527975 (Pye, 2023).

Code and data for the AMORE algorithm are available
at https://github.com/fcw2110/AMORE_supplementary_files
(last access: 16 March 2023) and are archived at
https://doi.org/10.5281/zenodo.7106505 (fcw2110, 2022).
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