
Geosci. Model Dev., 16, 1697–1711, 2023
https://doi.org/10.5194/gmd-16-1697-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.

D
evelopm

entand
technicalpaper

Fast approximate Barnes interpolation: illustrated by
Python-Numba implementation fast-barnes-py v1.0
Bruno K. Zürcher
Federal Office of Meteorology and Climatology MeteoSwiss, Zurich, Switzerland

Correspondence: Bruno K. Zürcher (bruno.zuercher@meteoswiss.ch)

Received: 24 April 2022 – Discussion started: 19 July 2022
Revised: 14 January 2023 – Accepted: 16 January 2023 – Published: 27 March 2023

Abstract. Barnes interpolation is a method that is widely
used in geospatial sciences like meteorology to remodel data
values recorded at irregularly distributed points into a rep-
resentative analytical field. When implemented naively, the
effort to calculate Barnes interpolation depends on the prod-
uct of the number of sample points N and the number of grid
points W ×H , resulting in a computational complexity of
O(N ·W ·H). In the era of highly resolved grids and over-
whelming numbers of sample points, which originate, e.g.,
from the Internet of Things or crowd-sourced data, this com-
putation can be quite demanding, even on high-performance
machines.

This paper presents new approaches of how very good ap-
proximations of Barnes interpolation can be implemented us-
ing fast algorithms that have a computational complexity of
O(N +W ·H). Two use cases in particular are considered,
namely (1) where the used grid is embedded in the Euclidean
plane and (2) where the grid is located on the unit sphere.

1 Introduction

In the early days of numerical weather prediction, vari-
ous methods of objective analysis were developed to au-
tomatically produce the initial conditions from the irregu-
larly spaced observational data (Daley, 1991), one of which
was Barnes interpolation (Barnes, 1964). However, objective
analysis soon lost its significance in this field against statisti-
cal approaches. Today, the Barnes method is still used to cre-
ate grid-based isoline visualizations of geospatial data, like
in the meteorological workstation project NinJo (Koppert et
al., 2004) for instance, which is jointly developed by the
Deutscher Wetterdienst, the Bundeswehr Geophysical Ser-

vice, MeteoSwiss, the Danish Meteorological Institute and
the Meteorological Service of Canada.

Barnes interpolation f (x) :D −→ R for an arbitrary point
x ∈D and a given set of sample points xk ∈D with observa-
tion values fk ∈ R for k = 1, . . .,N is defined as

f (x)=

∑N
k=1fk ·wk(x)∑N
k=1wk(x)

, (1)

with Gaussian weights

wk(x)= e
−
d(x,xk)

2

2σ2 , (2)

a distance function d :D×D −→ R and a Gaussian width
parameter σ .

If Barnes interpolation is computed in a straightforward
way for a regularly spaced W ×H grid, the computational
complexity is given by O(N ·W ·H) as easily can be seen
from the 3-fold nested loops of Algorithm A given below.
Consequently, for big values of N or dense grids, a naive
implementation of Barnes interpolation turns out to be un-
reasonably slow.

The fact that the Gaussian weight function quickly ap-
proaches 0 for increasing distances leads to a first improve-
ment attempt, which consists of neglecting all terms in the
sums of Eq. (1), for which the weights wk drop below a cer-
tain limitw0, e.g.,w0 = 0.001. This is equivalent to only tak-
ing into account observation points xk that lie within the dis-
tance r0 = σ

√
−2lnw0 from the interpolation point x. Thus,

the described procedure requires the ability to quickly extract
all observation points xk that lie within a distance r0 from
point x. Data structures that support such searches, e.g., are
so-called k–d trees (Bentley, 1975) or quadtrees (Finkel and
Bentley, 1974).

Published by Copernicus Publications on behalf of the European Geosciences Union.

1698 B. K. Zürcher: Fast approximate Barnes interpolation

This improved approach actually reduces the required
computational time by a constant factor, but the computa-
tional complexity remains in the same order. To see this, note
that a specific sample point xk contributes to the interpo-
lation value of exactly those grid points that are contained
in the circular disk Br0(xk)= {q ∈D | d(xk,q) < r0} of ra-
dius r0 around it. Also note that in a regularly spaced grid,
the number of affected grid points is roughly the same for
each sample point. If now the number of grid points W and
H in each dimension is increased by a factor of κ – i.e., the
grid becomes denser – the number of grid points contained in
Br0(xk) grows accordingly, namely by a factor of κ2, which
shows that the algorithmic costs rise in direct dependency
to W and H . Since this is obviously true for the number of
sample points N as well, the improved algorithm also has
complexity O(N ·W ·H).

In this paper, we discuss a new and fast technique to com-
pute very good approximations of Barnes interpolation. The
utilized underlying principle of applying multiple convolu-
tion passes with a simple rectangular filter in order to approx-
imate a Gaussian convolution is well known in computational
engineering. In image processing and computer vision, for
instance, Gaussian filtering of images is often efficiently cal-
culated by repeated application of an averaging filter (Wells,
1986).

The theoretical background of the new approach is pre-
sented in Sects. 2 and 3. Thereafter, we investigate two use
cases for the domain D:

i. D = R2 – the Euclidean plane with the usual distance
d(p,q)=‖p− q‖2 in full detail in Sects. 4 and 5.4,

ii. D = S2
= {p ∈ R3

|‖p‖2 = 1} – the unit sphere, where
d(p,q) is the spherical distance between p and q, as a
broad outline in Sect. 5.5.

2 Conclusions from central limit theorem

For a set {Xk}nk=1 of independent and identically distributed
(i.i.d.) random variables with mean µ and variance σ 2, the
central limit theorem (Klenke, 2020) states that the probabil-
ity distribution of their sum converges to a normal distribu-
tion if n approaches infinity, formally written as

P

[
X1+ ·· ·+Xn
√
n

≤ a

]

−−−→
n→∞

1
√

2πσ

a∫
−∞

e
−

1
2

(
t−µ
σ

)2

dt. (3)

Without loss of generality, we assume in the further discus-
sion thatµ= 0. Let p(x) denote the probability density func-
tion (PDF) of the scaled random variables { 1

√
n
Xk}

n
k=1 that

consequently have the variance σ 2

n
. Since the PDF of a sum

of random variables corresponds to the convolution of their
individual PDFs, we find that on the other hand

P

[
X1+ ·· ·+Xn
√
n

≤ a

]
=

a∫
−∞

p∗n(x)dx,

where p∗n(x) denotes the n-fold convolution of p(x) with
itself (refer to Appendix A). With that result, we can write
the relationship (3) equivalently in an unintegrated form as

p∗n(x) −−−→
n→∞

1
√

2πσ
e
−

x2

2σ2 , (4)

which leads directly to

Approximation 1. For sufficiently large n, the n-fold self-
convolution of a probability density function p(x) with mean
µ= 0 and variance σ 2

n
approximates a Gaussian with mean

0 and variance σ 2, i.e.,

p∗n(x)≈
1

√
2πσ

e
−

x2

2σ2 .

Note that this approximation is valid for arbitrary PDFs
p(x) with mean µ= 0 and variance σ 2

n
.

A particularly simple PDF is given by the uniform dis-
tribution. We therefore define a family of uniform PDFs as
{un(x)}

∞

n=1, of which each member un(x) has mean 0 and

variance σ 2

n
. These uniform PDFs can be expressed by means

of elementary rectangular functions:

rn(x)=

{
1 for |x| ≤

√
3
n
σ

0 otherwise
where n= 1,2, · · · , (5)

such that

un(x)=
1

2
√

3
n
σ

rn(x)=


1

2
√

3
n
σ

for |x| ≤
√

3
n
σ

0 otherwise
,

Geosci. Model Dev., 16, 1697–1711, 2023 https://doi.org/10.5194/gmd-16-1697-2023

B. K. Zürcher: Fast approximate Barnes interpolation 1699

where n= 1,2, · · ·. From this definition, it is clear that un(x)
is actually a PDF with mean E[un] = 0 and variance

Var(un)=

∞∫
−∞

x2
· un(x)dx =

1

2
√

3
n
σ

√
3
n
σ∫

−

√
3
n
σ

x2 dx

=
1

2
√

3
n
σ

·
1
3
x3

∣∣∣∣∣∣
√

3
n
σ

−

√
3
n
σ

=
1

2
√

3
n
σ

·
2
3

(√
3
n
σ

)3
=
σ 2

n
,

as postulated. According to the convergence relation (4) and
Approximation 1, the series of the n-fold self-convolutions
{u ∗nn (x)}∞n=1 converges to a Gaussian with mean 0 and vari-
ance σ 2. The converging behavior can actually be examined
visually in Fig. 1, which plots the n-fold self-convolution of
the first few family members.

The central limit theorem can also be stated more gener-
ally for i.i.d. m-dimensional random vectors {Xk}nk=1, refer
for instance to (Muirhead, 1982; Klenke, 2020). Supposing
that theXk has a mean vector µ= 0 and a covariance matrix
6, we can follow the same line of argument as in the one-
dimensional case. Let p(x) be the joint PDF of the scaled
random variables { 1

√
n
Xk}

n
k=1, which therefore have a zero

mean vector and the covariance matrix 1
n
6. Then the limit

law in m dimensions becomes

p∗n(x) −−−→
n→∞

1

(2π)
m
2
√

det6
e−

1
2x

T6−1x .

For the remainder of the discussion, we fix the number of
dimensions tom= 2 and for the sake of readability, we write
the vector argument x in its component form (x,y), if it is
appropriate. In case the random vectorsXk are isotropic, i.e.,
do not have any preference in a specific spatial direction, the
covariance matrix is a multiple of the identity matrix 6 =
σ 2I and, in two dimensions, the limit law simplifies to the
following:

p∗n(x) −−−→
n→∞

1
2πσ 2 e

−
1

2σ2 ‖x‖
2
. (6)

In the following step, we are aiming to substitute p(x)
with the members of the family {u(2)n (x)}∞n=1 of two-
dimensional uniform distributions over a square-shaped do-
main, which are defined as

u(2)n (x,y)= un(x) · un(y)=
n

12σ 2 rn(x) · rn(y)

=

{
n

12 σ 2 for |x|, |y| ≤
√

3
n
σ

0 otherwise
for n= 1,2, · · · .

With this definition, the members u(2)n have a mean vector 0
and an isotropic covariance matrix σ 2

n
I, and hence satisfy the

prerequisite of the limit law in Eq. (6). Also note that u(2)n (x)
is separable because u(2)n (x,y)= un(x) · un(y). As a conse-
quence of the latter, the n-fold self-convolution of u(2)n (x) is
itself separable, i.e.,(
u(2)n

)∗n
(x,y)= (un(x) · un(y))

∗n

= un
x
∗ n(x) · un

y
∗ n(y)

=

(n

12σ 2

)n
rn

x
∗ n(x) · rn

y
∗ n(y), (7)

where the operators
x
∗ and

y
∗ denote one-dimensional con-

volution in the x and y direction, respectively (refer to Ap-
pendix B). Substituting p(x) in Eq. (6) with the right-hand
side (RHS) of Eq. (7), we obtain(n

12σ 2

)n
rn

x
∗ n(x) · rn

y
∗ n(y) −−−→

n→∞

1
2πσ 2 e

−
1

2σ2 ‖x‖
2
,

or expressed as

Approximation 2. For sufficiently large n, the n-fold self-
convolution of the two-dimensional uniform probability den-
sity function n

12 σ 2 rn(x) · rn(y) approximates a bivariate
Gaussian with mean vector 0 and covariance matrix σ 2I, i.e.,(n

12σ 2

)n
rn

x
∗ n(x) · rn

y
∗ n(y)≈

1
2πσ 2 e

−
1

2σ2 ‖x‖
2
,

where rn(x) is an elementary rectangular function defined as

rn(x)=

{
1 for |x| ≤

√
3
n
σ

0 otherwise
for n= 1,2, · · · .

3 Barnes interpolation as series of convolutions

Let ϕµ,σ (x) denote the PDF of a two-dimensional normal
distribution with mean vector µ and isotropic variance σ 2,
i.e.,

ϕµ,σ (x)=
1

2πσ 2 e
−

1
2σ2 ‖x−µ‖2

.

Note that ϕ0,σ (x) corresponds to the RHS of Approxima-
tion 2. Further, let δa(x) denote the Dirac or unit impulse
function at location a with the property δa ∗f (x)= f (x−a).
Then we can write

ϕµ,σ (x)=
1

2πσ 2 e
−

1
2σ2 ‖x−µ‖2

= δµ ∗

(
1

2πσ 2 e
−

1
2σ2 ‖x‖

2
)

= δµ ∗ϕ0,σ (x).

Thus, a Gaussian-weighted sum as found in the numerator of
Barnes interpolation (1) for the Euclidean plane R2 can be
written as convolutional operation

https://doi.org/10.5194/gmd-16-1697-2023 Geosci. Model Dev., 16, 1697–1711, 2023

1700 B. K. Zürcher: Fast approximate Barnes interpolation

Figure 1. From left to right, blue indicates the plot of the PDFs of the uniform distributions u1(x), u2(x), u3(x) and u4(x) for σ = 1; black
shows their self-convolutions u ∗22 (x), u ∗33 (x) and u ∗44 (x). The area covered by the PDF of the normal distribution is indicated in gray.

N∑
k=1

fk · e
−

1
2σ2 ‖x−xk‖

2
= 2πσ 2

N∑
k=1

fk ·ϕxk,σ (x)

= 2πσ 2
N∑
k=1

fk · (δxk ∗ϕ0,σ)(x),

and due to the distributivity and the associativity with scalar
multiplication of the convolution operator, Eq. (8) follows:

= 2πσ 2
N∑
k=1

(
fk · δxk

)
∗ϕ0,σ (x)

= 2πσ 2

(
N∑
k=1

fk · δxk

)
∗ϕ0,σ (x). (8)

Substituting ϕ0,σ (x) with Approximation 2, we obtain the
following for sufficiently large n:

N∑
k=1

fk · e
−

1
2σ2 ‖x−xk‖

2

≈ 2πσ 2
(n

12σ 2

)n(N∑
k=1

fk · δxk

)
∗

(
rn

x
∗ n(x) · rn

y
∗ n(y)

)
.

For the denominator of Barnes interpolation (1), we can use
the same expression but set the coefficients fk to 1. Since
the common factors in the numerator and the denominator
cancel each other, we can state

Approximation 3. For sufficiently large n, Barnes interpo-
lation for the Euclidean plane R2 can be approximated by

f (x,y) ≈

(∑N
k=1fk · δxk

)
∗

(
rn

x
∗ n(x) · rn

y
∗ n(y)

)
(∑N

k=1δxk

)
∗

(
rn

x
∗ n(x) · rn

y
∗ n(y)

) , (9)

provided that the quotient is defined.

In other words, Barnes interpolation can very easily be ap-
proximated by the quotient of two convolutional expressions,
both consisting of an irregularly spaced Dirac comb, fol-
lowed by a sequence of convolutions with a one-dimensional
rectangular function of width 2σ

√
3/n, executed n times in

the x direction and n times in the y direction. As the convolu-
tion operation is commutative, the convolutions can basically
be carried out in any order. The sequence shown in Approx-
imation 3, evaluated from left to right, is however especially
favorable regarding the computational effort.

Approximation 3 can be stated in a more generalized con-
text as well, i.e., also for non-uniform PDFs. In the special
case of using a normal distribution with mean 0 and variance
σ 2, we can even formulate a convolutional expression that is
equal to Barnes interpolation. Refer to Appendix C for more
details.

4 Discretization

In a straightforward way, Approximation 3 leads to a very ef-
ficient algorithm for an approximate computation of Barnes
interpolation on a regular grid 0 that is embedded in the Eu-
clidean plane R2. Let

0 = { (i ·1s, j ·1s) ∈ R2
| 0≤ i < W, 0≤ j < H }

be a grid of dimension W ×H with a grid-point spacing 1s.
Without loss of generality, we assume that all sample points
xk are sufficiently well contained in the interior of 0. In what
follows, we differentiate discrete functions from their con-
tinuous function counterparts by enclosing the arguments in
brackets instead of parentheses and write, for instance, g[i]
for g(x) in the one-dimensional case and g[i,j] for g(x,y)
in the two-dimensional case.

In an iterative procedure, we now compute the convolu-
tional expression that corresponds to the numerator (or de-
nominator) of Approximation 3 simultaneously for all points

Geosci. Model Dev., 16, 1697–1711, 2023 https://doi.org/10.5194/gmd-16-1697-2023

B. K. Zürcher: Fast approximate Barnes interpolation 1701

[i,j] of grid 0. The intermediate fields that result from this
iteration are denoted by F (m), wherem indicates the iteration
stage.

The first step consists of discretizing the expression
∑
fk ·

δxk , i.e., by injecting the values fk at their respective sam-
ple points xk into the underlying grid. For this purpose, the
field F (0) is initialized with 0. From the definition of Dirac’s
impulse function in two dimensions,

δ0(x,y)= lim
α→0

1
α2 rα(x,y)

where rα(x,y)=
{

1 for |x|, |y| ≤ 1
2α

0 otherwise
,

we deduce for its discrete version that the grid cell contain-
ing the considered sample point receives the weight 1/1s2,
while all other cells are left unchanged with weight 0. Since
a sample point xk in general does not coincide with a grid
point (refer also to Fig. 2) and in order to achieve a good
localization, the Dirac impulse δxk is distributed in a bilinear
way to its four neighboring grid points according to step 5 of
Algorithm B.1.

Note that if a grid point [i,j] is affected by several sam-
ple points, the determined weight fractions are accumulated
accordingly in the respective field element F (0)[i,j]. For the
final calculation of quotient (9), the factor 1/1s2 cancels out
and can therefore be omitted in Algorithm B.1, but for rea-
sons of mathematical correctness, it is shown here. Since we
have N input points and we perform a fixed number of oper-
ations for each of them, the complexity of Algorithm B.1 is
given by O(N).

The other algorithmic fragment we require, which is im-
plemented by Algorithm B.2, is the computation of a one-
dimensional convolution of an arbitrary function g(x) with
the rectangular function rn(x) as defined in Eq. (5). Employ-
ing the definition of convolution, we obtain

Figure 2. The nearer a sample point xk is located to a grid point,
the larger the weight assigned to it. Grid point [i,j], e.g., receives a
weight of (1−wx) · (1−wy).

h(x)= g ∗ rn(x)=

∞∫
−∞

g(x− t) · rn(t)dt

=

τ∫
−τ

g(x− t)dt =

x+τ∫
x−τ

g(t)dt, (10)

where τ = σ
√

3/n. In other words, the convolution g ∗ rn at
point x is simply the integral of g(x) in the window [x−
τ,x+τ]. Transferred to a one-dimensional grid with spacing
1s, the rectangular function rn(x) reads as rectangular pulse:

rT [k] =

{
1 for |k| ≤ T
0 otherwise k ∈ Z ,

with a width parameter T ∈ N0 that is gained by rounding
τ/1s to the nearest integer number:

T =

⌊
τ

1s
+

1
2

⌋
=

⌊√
3
n

σ

1s
+

1
2

⌋
. (11)

Then, Eq. (10) translates in the discrete case to

h[k] = g ∗ rT [k] =

∞∑
i=−∞

g[k− i] · rT [i] ·1s

=

T∑
i=−T

g[k− i] ·1s =

k+T∑
i=k−T

g[i] ·1s,

where element h[k] corresponds to h(k ·1s) and g[i] to
g(i ·1s). Equivalently to the continuous case, the value h[k]
results up to a factor 1s from putting a window of length
2T + 1 centrally over the sequence element g[k] and sum-
ming up all elements covered by it.

https://doi.org/10.5194/gmd-16-1697-2023 Geosci. Model Dev., 16, 1697–1711, 2023

1702 B. K. Zürcher: Fast approximate Barnes interpolation

Assuming that we already computed h[k− 1], it is imme-
diately clear that the following value h[k] results from mov-
ing the window by one position to the right and thus can be
obtained very easily from h[k− 1] by adding the newly en-
closed sequence element g[k+ T] but subtracting element
g[k− T − 1] that falls outside the window.

As in the earlier case of Algorithm B.1, the factor 1s
cancels out in the final calculation of Eq. (9) and can
therefore also be omitted here. Thus, Algorithm B.2 has 2T
additions in step 1 and another 2(L− 1) additions in the
loop of step 3. Assuming that T is much smaller than L, an
algorithmic complexity of O(L) results.

Now we are able to formulate Algorithm B.3 that com-
putes convolutional expressions as found in the numerator
and denominator of Approximation 3.

Note that due to the commutativity of
x
∗ and

y
∗, the outer

loop over index k can be moved inward within the loops
over the rows and the columns, respectively. With this al-
ternate loop layout, the field is first traversed row-wise in a
single pass, where each row is convolved n times with rT in
one sweep. Subsequently, the field is traversed column-wise
and each column is convolved n times. In such a way, more
economic strategies with respect to memory access can be
achieved and moreover, this loop order is very well suited
for parallel execution, such that Algorithm B.3 can be com-
puted very efficiently. Since in practice n is chosen constant
(proven values for n lie between 3 and 6), the algorithmic
complexity is O(W ·H).

Algorithms B.1 and B.3 now allow us to state the final Al-
gorithm B, which implements the approximate computation
of Barnes interpolation Eq. (9).

If the denominator Q(n)
[i,j] in step 8 is 0, which is the

case if the grid point [i,j] has a greater distance than 2nT
from the nearest sample point in at least one dimension, the
corresponding field value F [i,j] is undefined and set to NaN.

Since Algorithms B.1 and B.3 are invoked twice and step
8 employs another W ·H divisions, the overall algorithmic
complexity of the presented approach is limited to O(N+W ·
H), which is a drastic improvement compared to the costs of
O(N ·W ·H) of the naive implementation.

5 Results and further considerations

5.1 Test setup

The described Algorithm B – hereinafter denoted with “con-
volution” – was tested on a dataset that contained a total of
3490 QFF values (air pressure reduced to mean sea level)
obtained from measurements at meteorological stations dis-

Geosci. Model Dev., 16, 1697–1711, 2023 https://doi.org/10.5194/gmd-16-1697-2023

B. K. Zürcher: Fast approximate Barnes interpolation 1703

tributed over Europe and dating from the 27 July 2020 at
12:00 UTC. More specifically, we considered the geographic
areaD = [−26◦ E, 49◦ E]×[34.5◦ N, 72◦ N] ⊂ R2, equipped
with the Euclidean distance function defined on D×D, i.e.,
we measured distances in a first examination directly in
the plate carrée projection neglecting the curved shape of
the earth. The values of the QFF data range from 992.1 to
1023.2 hPa.

The convolution interpolation algorithm is subsequently
compared with the results of two alternate algorithms. The
first of them – referred to as “naive” – is given by the naive
Algorithm A as stated in the Introduction. The second one –
denoted with “radius” – consists of the improved naive algo-
rithm that considers in its innermost loop only those observa-
tion points whose Gaussian weightsw exceed 0.001 and thus
are located within a radius of 3.717σ around the interpola-
tion point. For this purpose, the implementation performs a
so-called radius search on a k–d tree, which contains all ob-
servation points. Such a radius search can be achieved with a
worst-case complexity of O(

√
N).

All algorithms were implemented in Python using the
Numba just-in-time compiler (Lam et al., 2015) in order to
achieve compiled code performance using ordinary Python
code. The tests were conducted on a computer with a custom-
ary 2.6 GHz Intel i7-6600U processor with two cores, which
is in fact only of minor importance since the tested code was
written in single-threaded manner. All time measurements
were performed 10 times and the best value among them was
set as the final execution time of the respective algorithm.

5.2 Visual results

In general, the Barnes method yields a remarkably good in-
terpolation and results in an aesthetic illustration for regions
where the distance between the sample points has the same
order of magnitude as the used Gaussian width parameter σ .
However, if the distance between adjacent sample points is
large compared to σ , this method exhibits some shortcom-
ings because then the interpolation converges towards a step
function with steep transitions. This effect can be clearly
identified, for example, in the generation of plateaus of al-
most constant value over the Atlantic Ocean in Fig. 3a. In the
limit case, if σ → 0, the interpolation produces a Voronoi tes-
sellation with cells of constant value around a sample point
that are bordered by discontinuities towards the neighboring
cells.

The comparison of the isoline visualizations in Fig. 3a and
b shows an excellent agreement between the two approaches
in the well-defined areas. The result for the radius algorithm
is consistently similar to the other two and is therefore not
depicted.

Note that the shaded, i.e., the undefined areas of Fig. 3b
correspond to those areas where Barnes interpolation pro-
duces the plateau effect. In this sense, one can state that the

Figure 3. Panel (a) shows exact Barnes interpolation with the naive
algorithm for 3490 sample points depicted in red, a 2400× 1200
grid with a resolution of 32 grid points per degree and σ = 1.0◦.
Panel (b) shows approximate Barnes interpolation with the convo-
lution algorithm for the same settings as for the naive algorithm
above. The applied 4-fold convolution uses a rectangular mask of
size 57. Areas where the denominator of Eq. (9) drops below a value
of 0.001 or is even 0 are rendered with a darker shade.

convolution algorithm filters out the problematic areas in an
inherent way.

5.3 Time measurements

For a grid of constant size, the measured execution times in
Table 1 show a linear dependence to the number N of con-
sidered sample points for the naive and the radius algorithms,
while they are almost constant for the presented convolution
algorithm. The costs of the injection step are obviously more
or less inexistent compared to the costs of the subsequent
steps of the algorithm. This fact is in total agreement with the
deduced complexity O(N +W ·H), since in our test setup,
the grid size W ×H clearly dominates over N .

Also note that between the naive and the convolution al-
gorithms, the speed-up factor roughly ranges between 25 and
1000 for the considered number of sample points.

If the grid size is varied, all considered algorithms reveal a
linear-like dependence to the number of points in the grid as
can be seen in Table 2 and Fig. 5. For smaller grid sizes, the
convolution algorithm provides a speed-up factor of around

https://doi.org/10.5194/gmd-16-1697-2023 Geosci. Model Dev., 16, 1697–1711, 2023

1704 B. K. Zürcher: Fast approximate Barnes interpolation

Table 1. Execution times (in s) of the investigated algorithms for
varying numbers of sample points. The grid size of 2400× 1200
points with a resolution of 32 points per degree and the Gaussian
width σ = 1.0◦ are kept constant. The convolution algorithm ap-
plied a 4-fold convolution.

Number of
sample points

Algorithm

Naive Radius Convol.

54 6.198 0.961 0.247
218 21.558 1.776 0.248
872 78.407 4.097 0.245
3490 280.764 11.840 0.247

Figure 4. Plot of execution times from Table 1 against number of
sample points. Both axes use a logarithmic scale.

2000 compared to the naive implementation, but for bigger
grids, the factor drops below 1000.

This effect can be explained by the fact that the crucial
parts of the convolution algorithm access memory for smaller
grids with a high spatial and temporal locality and thus make
optimal use of the highly efficient CPU cache memory (Pat-
terson and Hennessy, 2014). For bigger grids, the number of
cache misses increases, which result in a slightly degraded
performance.

As is to be expected, the Gaussian width parameter σ has
no decisive impact on the execution times measured for the
naive and the convolution algorithms (refer to Table 3 and
Fig. 6). The radius algorithm, on the other hand, shows a
quadratic dependence, since the relevant area around a grid
point – and thus also the average number of sample points to
be considered – grows quadratically with the radius of influ-
ence, which in turn depends linearly on σ .

The unstable time measurements for the naive algorithm
are caused by a peculiar execution time behavior of the expo-
nential function. Although the value of Eq. (2) is less than the
smallest representable float and therefore results in 0 for dis-
tances d > 38.6σ , its computational cost increases to a mul-
tiple of the time needed for shorter distances. With growing
σ , this computational overhead is less and less noticeable in
the test series.

Table 2. Execution times (in s) of the investigated algorithms for
varying grid sizes and resolutions, respectively. The number of sam-
ple pointsN = 3490 and the Gaussian width σ = 1.0◦ are kept con-
stant. The convolution algorithm applied a 4-fold convolution.

Grid size Resolution Algorithm

Naive Radius Convol.

300× 150 4 pt per degree 4.415 0.203 0.002
600× 300 8 pt per degree 17.626 0.782 0.011
1200× 600 16 pt per degree 70.871 3.031 0.047
2400× 1200 32 pt per degree 283.735 11.881 0.247
4800× 2400 64 pt per degree 1134.265 47.044 1.261

Figure 5. Plot of execution times from Table 2 against number of
grid points. Both axes use a logarithmic scale.

5.4 Algorithm fine tuning

In the discretization step, we round off the window width
parameter T ∈ N0 to the nearest integer, i.e., we set

T =

⌊√
3
n

σ

1s
+

1
2

⌋
, (11 recap)

and then repeatedly convolve the input fields with a rectangu-
lar pulse signal rT [k] that has a length 2T +1. In the extreme
case, if n exceeds 12σ 2/1s2 and hence T = 0, the under-
lying pulse signal degrades to r0[k], which is identical to the
discrete unit pulse, the neutral element with respect to convo-
lution. Under these circumstances, the algorithm stops ren-
dering a meaningful interpolation. Since normally σ > 1s,
the respective bound for n can go into the hundreds, which is
why the described extreme case is typically not encountered
for real applications.

Nevertheless, a general consequence of the rounding oper-
ation is that the effectively obtained Gaussian width σeff for
our algorithm only approximates the desired width σ . For the
following considerations, let uT [k] be the uniform probabil-
ity distribution that corresponds to rT [k], i.e.,

uT [k] =
1

2T + 1
rT [k].

Geosci. Model Dev., 16, 1697–1711, 2023 https://doi.org/10.5194/gmd-16-1697-2023

B. K. Zürcher: Fast approximate Barnes interpolation 1705

Table 3. Execution times (in s) of the investigated algorithms for
varying Gaussian width parameters σ . The number of sample points
N = 3490 and the grid size of 2400×1200 points with a resolution
of 32 points per degree are kept constant. The convolution algorithm
applied a 4-fold convolution.

Gaussian width σ Algorithm

Naive Radius Convol.

0.25◦ 652.025 2.376 0.247
0.5◦ 560.094 4.579 0.246
1.0◦ 280.477 11.864 0.245
2.0◦ 126.241 37.244 0.244
4.0◦ 125.848 122.956 0.245

Figure 6. Plot of execution times from Table 3 against Gaussian
width parameter. Both axes use a logarithmic scale.

By algorithmic design, σ 2
eff is the variance of uT [k], which

is convolved n times with itself and which is employed on a
grid with point spacing 1s. Therefore,

σ 2
eff = nVar(uT)= n

T∑
k=−T

1
2T + 1

(k1s)2

=
2n1s2

2T + 1

T∑
k=1

k2
=
n

3
T (T + 1)1s2. (12)

For T ≥ 1, the integer number T can be fixed by Eq. (11) to
the unit interval√

3
n

σ

1s
−

1
2
< T ≤

√
3
n

σ

1s
+

1
2
,

which in turn allows us to derive sharp bounds for σeff when
substituted into Eq. (12):

σ 2
−
n

12
1s2 < σ 2

eff ≤ σ 2
+ 2

√
n

3
σ 1s+

n

4
1s2.

The last relation reveals that the range of possible values for
σeff grows with increasing n until σeff collapses to 0 when
n > 12σ 2/1s2, as we have seen further above.

In summary, there are two diametrically opposed effects
that determine the result quality of the presented algorithm.
From the perspective of the central limit theorem, the approx-
imation performance is better for large n, while on the other
hand, σeff tends to be closer to the target σ for small n.

If full accuracy is required for the Gaussian width and the
grid spacing1s is not strictly given in advance, one can tune
the spacing such that the resulting width σeff corresponds ex-
actly to the desired σ . For T ≥ 1, Eq. (12) then allows us to
determine the necessary grid step as

1s =

√
3

nT (T + 1)
σ.

If, however, the grid is fixed a priori and cannot be modi-
fied, the only option to attain the requested σ exactly is to re-
frain from using a stringent rectangular pulse and to employ
a slightly more complicated signal (Gwosdek et al., 2011).
For this purpose, we set this time as follows:

T =

1
2

√1+
12
n

σ 2

1s2 − 1

 ,
which is gained from taking the positive solution of the
quadratic Eq. (12) for T . Now we have nVar(uT)≤ σ 2 <

nVar(uT+1) and we define the linearly blended signal for
0≤ α < 1:

rT ,α[k] = (1−α)rT [k] +α rT+1[k]

=

 1 for |k| ≤ T
α for |k| = T + 1
0 otherwise

k ∈ Z . (13)

This modified signal rT ,α[k] is basically the pure rectan-
gular signal rT [k] of unit elements with a trailing element
α appended at both ends. Due to the continuity of the vari-
ance, there must be a specific α̃ for which nVar(uT ,α̃)= σ 2,
whereas uT ,α[k] = 1

2(T+α)+1 rT ,α[k] designates the probabil-
ity distribution of rT ,α[k]. With

Var(uT ,α)=
1

2(T +α)+ 1

T+1∑
k=−T−1

rT ,α[k] (k1s)
2

=
1s2

2(T +α)+ 1

(
2α(T + 1)2+ 2

T∑
k=1

k2

)

=
1s2

2(T +α)+ 1

(
2α(T + 1)2+

1
3
T (T + 1)(2T + 1)

)
,

we conclude that the wanted α̃ is given by

α̃ =
(2T + 1)

(
σ 2
−

1
3T (T + 1)n1s2

)
2
(
(T + 1)2 n1s2− σ 2

) . (14)

The respective expression for α̃ derived in (Gwosdek et al.,
2011) corresponds to a special case of Eq. (14) when setting
1s = 1.

https://doi.org/10.5194/gmd-16-1697-2023 Geosci. Model Dev., 16, 1697–1711, 2023

1706 B. K. Zürcher: Fast approximate Barnes interpolation

Figure 7. Plot of execution times from Table 4 against number of
performed convolutions for both the original and the optimized con-
volution algorithms.

Figure 8. Root mean square error with respect to the exact Barnes
interpolation in dependency of the number of performed convolu-
tions for both the original and the optimized convolution algorithms.

Remember now that the central limit theorem is valid for
any PDF, which means that the mathematical framework pre-
sented in the previous chapters is also valid for the modi-
fied signal rT ,α̃[k]. Therefore, we receive an optimized ap-
proximate Barnes interpolation by marginally adapting Al-
gorithm B.2 to compute the convolution with rT ,α̃[k] instead
of rT [k]. To do so, steps 2 and 5 of it have to be rewritten to
h[k] = (w+α̃·(g[k+T+1]+g[k−T−1]))·1s. Although the
optimized approach requires 2L additions and L multiplica-
tions more than the original one, the adapted Algorithm B.2
remains in the complexity class O(L). Measurements (refer
to Table 4 and Fig. 7) show that the optimized interpolation
in fact needs only about 10 % to 30 % more time for the de-
picted range of convolution rounds than the original one.

The unstable behavior of the original convolution algo-
rithm with respect to the number of performed convolutions
can be best observed in the RMSE plot of Fig. 8, where the
baseline is given by the exact interpolation of the naive algo-
rithm. A corresponding unsteady feature is also visible in the
upper row of the maps shown in Fig. 9a, more precisely in
the fluctuating diameter of the small high-pressure area west
of the Balearic Islands.

In contrast to that, the optimal convolution algorithm
shows a stable convergence towards the exact interpolation
obtained by the naive algorithm, which manifests in strictly
monotonic decreasing RMSE values. These results suggest
that three or four performed convolution rounds already
achieve a very good approximation of Barnes interpolation

Figure 9. Results for a different number of performed convolutions
n. Upper row (a) with results for the original convolution algorithm
and lower row (b) with results for the optimized convolution algo-
rithm.

when used to visualize data, as done in this paper. For other
applications, which require a higher precision, a 10-fold con-
volution or even more might make sense.

5.5 Application on sphere geometry

So far, we applied the convolution algorithm on sample
points contained in the plane R2 and used the Euclidean dis-
tance measure. For geospatial applications, this simplifica-
tion is acceptable as long as the considered area is sufficiently
small enough. If we deal with a dataset, which is distributed
over a larger region – as it is actually the case in our test setup
– it becomes necessary to take the curvature of the earth into
account.

The adaptation of the naive Barnes interpolation algorithm
to the spherical geometry on S2 merely comprises the ex-
change of the Euclidean distance with the spherical distance.
Since the calculation of the spherical distance between two
points involves several trigonometric function calls, the price
of such a switchover is accordingly high and consequently,
the exact Barnes interpolation for a spherical geometry is
roughly a factor of 2.5 times slower in our tests than that with
the Euclidean approach. In other words, an already costly al-
gorithm becomes even more expensive.

However, the distance calculation does not occur explic-
itly in the convolution algorithm, since the latter by virtue of
the central limit theorem is inherently tied to the Euclidean
distance measure. Therefore, the convolution algorithm has
to be transferred to the spherical geometry with a different
method.

The chosen approach is to first map the sample points to
a map projection, which distorts the region of interest as
minimal as possible and then to apply the convolution algo-
rithm directly in that map space. The resulting field is finally
mapped back to the original map projection and provides an

Geosci. Model Dev., 16, 1697–1711, 2023 https://doi.org/10.5194/gmd-16-1697-2023

B. K. Zürcher: Fast approximate Barnes interpolation 1707

Table 4. Signal width parameter T and the effective Gaussian width σeff for the original convolution algorithm and the tail value α̃ for the
optimized convolution algorithm as a function of the number of performed convolutions n, where N = 3490, grid size is 2400× 1200, with
a resolution of 32 points per degree and σ = 1.0◦. The root mean square error RMSE is computed for the sub-area displayed in Fig. 9 and
with respect to the exact results of the naive algorithm. The execution times texec are measured in seconds.

Convolution with rT [k] Convolution with rT ,α̃[k]

n T σeff RMSE texec T α̃ RMSE texec

1 55 1.0013 0.3557 0.161 54 0.9260 0.3551 0.175
2 39 1.0078 0.1334 0.188 38 0.6868 0.1327 0.216
3 32 1.0155 0.0628 0.216 31 0.4922 0.0606 0.257
4 28 1.0282 0.0492 0.243 27 0.2083 0.0367 0.298
5 25 1.0286 0.0431 0.270 24 0.2799 0.0266 0.337
6 23 1.0383 0.0496 0.297 22 0.1256 0.0213 0.378
7 21 1.0260 0.0356 0.324 20 0.4372 0.0178 0.419
8 20 1.0458 0.0549 0.351 19 0.0956 0.0154 0.459
9 18 1.0010 0.0137 0.378 17 0.9804 0.0136 0.500
10 18 1.0551 0.0639 0.405 17 0.0316 0.0121 0.539
20 12 1.0078 0.0111 0.676 11 0.8922 0.0059 0.943
50 8 1.0825 0.0916 1.488 7 0.3125 0.0024 2.159

Figure 10. Exact Barnes interpolation with the naive algorithm for
the same setup as for Fig. 3 but using spherical distances from S2

instead of Euclidean distances from R2. The generated isolines are
notably different in the northern part, while they are quite similar in
the south.

approximation of Barnes interpolation there with respect to
the spherical geometry of S2.

Projection types that are considered suitable for this pur-
pose are conformal map projections. Conformal maps pre-
serve angles and shapes locally, while distances and areas
underlie a certain distortion. Conformal maps used often are
(Snyder, 1987)

– Mercator projection for regions of interest that stretch
in east–west direction around the Equator,

– transverse Mercator projection for regions with north–
south orientation,

– Lambert conformal conic projection for regions in the
mid-latitudes that stretch in east–west direction or

– polar stereographic projection for polar regions.

Figure 11. The effective scale of a Lambert conformal conic map in
dependency of the latitude if the scale at 42.5 and 65.5◦ N is set to
1.0. The minimum scale of 0.98 is reached at a latitude of 54.5◦ N.

In order to replicate Fig. 10 with our fast optimized con-
volution algorithm, we therefore use a Lambert conformal
conic map projection for our test setup with sample points in
the mid-latitudes. We choose the two standard parallels that
define the exact projection at latitudes of 42.5 and 65.5◦ N,
such that our region of interest is evenly captured by them.
By nature of Lambert conformal conic maps, the chosen map
scale is exactly adopted along these two latitudes, while it is
too small between them and too large beyond them. Simi-
larly, for a grid with a formal resolution of 32 grid points per
degree that is embedded into this map, the specified resolu-
tion only applies exactly along the standard parallels, while
the effective resolution between them is smaller and larger
beyond them.

We now employ the optimized convolution algorithm with
a nominal Gaussian width parameter σ = 1.0◦ on the Lam-
bert conformal conic map grid postulated above, in which
we injected the given sample points beforehand. The result-

https://doi.org/10.5194/gmd-16-1697-2023 Geosci. Model Dev., 16, 1697–1711, 2023

1708 B. K. Zürcher: Fast approximate Barnes interpolation

Figure 12. Optimized Barnes interpolation algorithm applied on the
Lambert conformal map on a 2048× 1408 grid with a resolution of
32 grid points per degree along the standard parallels at 42.5 and
65.5◦ N, σ = 1.0◦ and a 4-fold convolution.

Figure 13. Resulting field from Fig. 12 projected back to a plate
carrée map.

ing field shown in Fig. 12 thereby experiences a 2-fold ap-
proximation, the first one caused by the distortion of the map
and the second one due to the approximation property of the
convolution algorithm.

In a last step, the result field is mapped back to the target
map, which uses a plate carrée projection in our case. In or-
der to do this, the location of a target field element is looked
up in the Lambert map source field and subsequently its ele-
ment value is determined by bilinear interpolation of the four
neighboring source field element values. This last operation
performs an averaging and thus adds a further small error to
the final result shown in Fig. 13. Similar to the case for the
Euclidean distance, the comparison with the exact Barnes in-
terpolation on S2 in Fig. 10 yields a very good correspon-
dence. This perception is also supported by measurement of
the RMSE, which adds up for the same sub-area as investi-
gated in Table 4 to 0.0467, which is negligibly larger than the
corresponding 0.0367 measured for the Euclidean case.

Figure 14. Constellation of QFF values over Iceland with generated
isolines for σ = 0.75◦. Note the 980.0 hPa observation value in the
northeast of Iceland, which triggers the creation of the faulty isoline
for the same value. By increasing the quantization degree of the
resulting field values, the visual appearance is gradually improved.

5.6 Round-off error issues

Computing the convolution of a rectangular pulse in floating-
point arithmetic using the moving window technique as de-
scribed in Algorithm B.2 of Sect. 4 is extremely efficient,
but it is also prone to imprecisions since round-off errors
are steadily accumulated during the progress. Different ap-
proaches are known to reduce this error. The Kahan summa-
tion algorithm (Kahan, 1965), for instance, implements an
error-compensation scheme at the expense of requiring es-
sentially more basic operations than used for ordinary addi-
tion.

Another error-reduction technique that is effective in the
context of Barnes interpolation is to center the numbers to be
added around 0.0, where the mesh density of representable
floating-point numbers is highest. For this purpose, an offset

f̄ =
1
2

(
min

1≤k≤N
fk + max

1≤k≤N
fk

)
is initially subtracted from the sample values fk , such that
their range is exactly located around 0.0. The presented con-
volution algorithm is then applied to the shifted sample val-
ues. In a final step, the elements of the resulting field F [i,j]
are shifted back to the original range by adding f̄ to each
of them. This modification basically needs N +W ·H extra
additions, such that the computational complexity of the con-
volution algorithm is not harmed and stays unchanged.

Minimal numerical round-off errors can generate surpris-
ingly prominent artifacts when areas of constant or near-
constant data are rendered with an isoline visualization. In
such cases, the value obtained by the convolution algo-
rithm fluctuates seemingly randomly around the true constant
value, and if it happens that one of the rendered isolines rep-

Geosci. Model Dev., 16, 1697–1711, 2023 https://doi.org/10.5194/gmd-16-1697-2023

B. K. Zürcher: Fast approximate Barnes interpolation 1709

Table 5. Execution times (in s) for the naive and the optimized convolution algorithms using spherical distances on S2 for varying grid
sizes. The number of sample points N = 3490 and the Gaussian width σ = 1.0◦ are kept constant. The convolution algorithm applied a
4-fold convolution and was executed on a Lambert map grid of the indicated size. The two split time columns show the separated execution
times for the actual convolution and the subsequent back projection to the plate carrée map. For the investigated scenarios, the optimized
convolution algorithm is more than 1000 times faster than the naive one.

Target map
grid size

Resolution S2 Algorithm Split times Lambert map
grid size

Naive Convol. Actual Back
Convol. Proj.

300× 150 4 pt per degree 10.792 0.005 0.004 0.001 256× 176
600× 300 8 pt per degree 42.987 0.020 0.016 0.004 512× 352
1200× 600 16 pt per degree 174.081 0.089 0.070 0.019 1024× 704
2400× 1200 32 pt per degree 700.089 0.408 0.326 0.082 2048× 1408
4800× 2400 64 pt per degree 2802.574 1.828 1.493 0.335 4096× 2816

resents exactly this value, the visualized result may appear
like a fractal curve as shown in Fig. 14. A counter measure
against this effect is to apply a quantization scheme to the re-
sulting values, which basically suppresses a suitable number
of least significant bits and rounds the value off to the nearest
eligible floating point number. After this operation, the ob-
tained values in areas of constant data are actually constant
and thus result in a more pleasant isoline visualization. In ar-
eas with varying data values, the quantization of the result
data has no harmful impact.

6 Summary and outlook

We presented a new technique for computing very good ap-
proximations of Barnes interpolation, which offers speed-up
factors for realistic scenarios that can reach into the hundreds
or even into the thousands when applied on a spherical geom-
etry. The underlying convolutional algorithm exhibits a com-
putational complexity of O(N+W ·H), in which the number
of sample points N is decoupled from the grid size W ×H .
This is a major improvement over the computational com-
plexity of the naive algorithm of O(N ·W ·H). Our tests sug-
gest that four to six iteration rounds of convolutions lead to
approximations of Barnes interpolation that achieve highly
satisfactory results for most applications.

The usage of the algorithm is not restricted to R2 or S2 and
it can easily be extended to higher dimensional spaces Rn.
The algorithm allows us to incorporate quality measures that
assign each sample point xk a weight of certainty ck , which
specifies how much this point shall contribute to the overall
result. To achieve this, the terms in the two sums in Eq. (1)
are simply multiplied by the additional factor ck , and likewise
the same factors then also appear in Approximation 3.

Barnes interpolation is often used in the context of suc-
cessive correction methods (Cressman, 1959; Bratseth, 1986)
with or without a first guess from a background field. In this
technique, the interpolation is not performed just once, but
applied several times with decreasing Gaussian width param-

eters to the residual errors in order to minimize them succes-
sively. Needless to say that instead of exact Barnes interpola-
tion, the convolutional algorithm can equally be used for the
method of successive correction.

Since the presented solution for spherical geometries is
only suitable for the treatment of local maps, we plan to gen-
eralize the approach to global maps in a next step. This could
for instance be done by smoothly merging local Barnes inter-
polation approximation patches into a global approximation.

Furthermore, we also want to provide a statement about
the quality of the calculated approximation depending on the
number of performed convolutions by deriving a theoretical
upper bound for the maximum possible error. It will also be
of interest, in a similar way to Getreuer (2013), to consider
other distributions for the approximation and investigate their
behavior in terms of computational speed and accuracy.

Appendix A: n-fold self-convolution

For an integrable function f (x) ∈ L1(R)= {f : R→ R |∫
∞

−∞
| f (t) | dt <∞}, the n-fold convolution with itself

f ∗n(x) is recursively defined by

f ∗(n+1)(x)= f ∗f ∗n(x)

=

∞∫
−∞

f (t) · f ∗n(x− t) dt for n= 1,2, · · ·, (A1)

with f ∗1(x)= f (x). The equivalent closed form representa-
tion

f ∗(n+1)(x)

=

∞∫
−∞

· · ·

∞∫
−∞

f (t1)· · ·f (tn)f (x− t1− ·· ·− tn) dt1· · ·dtn

is in most cases only of formal interest, since in practice the
effective calculation of the multiple integral will lead to the
recursive definition (A1) again.

https://doi.org/10.5194/gmd-16-1697-2023 Geosci. Model Dev., 16, 1697–1711, 2023

1710 B. K. Zürcher: Fast approximate Barnes interpolation

Analogously, in the case of an integrable func-
tion of two variables f (x,y) ∈ L1(R2)= {f : R2

→ R |∫
∞

−∞

∫
∞

−∞
| f (s, t) | ds dt <∞}, the n-fold convolution

with itself f ∗n(x,y) is recursively given by

f ∗(n+1)(x,y)= f ∗f ∗n(x,y)

=

∞∫
−∞

∞∫
−∞

f (s, t) · f ∗n(x− s,y− t) ds dt (A2)

for n= 1,2, · · · and with f ∗1(x,y)= f (x,y).

Appendix B: Separable functions

A function of two variables g(x,y) ∈ L1(R2) is called sepa-
rable if two functions of one variable g1(x) and g2(y) exist,
both in L1(R), such that the following equality holds:

g(x,y)= g1(x) · g2(y). (B1)

The convolution of f (x,y) with a separable function can be
decomposed into two unidirectional convolutions that only
act along one of the coordinate axis. In order to make this

clear, we define two left-associative operators
x
∗ and

y
∗ that

map from L1(R2)×L1(R)→ L1(R2) by setting

f
x
∗g1 (x,y)=

∞∫
−∞

f (s,y) · g1(x− s) ds, (B2)

f
y
∗g2 (x,y)=

∞∫
−∞

f (x, t) · g2(y− t) dt, (B3)

where
x
∗ convolves along the x axis and

y
∗ along the y axis.

With these definitions, we then find

f ∗g (x,y)=

∞∫
−∞

∞∫
−∞

f (s, t) · g(x− s,y− t) ds dt

=

∞∫
−∞

 ∞∫
−∞

f (s, t) · g1(x− s) ds

g2(y− t) dt

=

∞∫
−∞

(
f
x
∗g1(x, t)

)
· g2(y− t) dt = f

x
∗g1

y
∗g2 (x,y).

From the fact that we can change the order of integration, we
finally infer the following:

f ∗g (x,y)= f ∗
(
g1(x) · g2(y)

)
= f

x
∗g1

y
∗g2 (x,y)= f

y
∗g2

x
∗g1 (x,y). (B4)

Hence, the two operands g1 and g2 commute, but note here
that the unidirectional operators to their left have to be

swapped with them as well. The n-fold convolution with a
separable function thus decomposes into

f ∗g∗n (x,y)= f ∗
(
g1(x) · g2(y)

)∗n
= f

x
∗g1

y
∗g2 · · ·

x
∗g1

y
∗g2 (x,y).

Due to the commutation law (B4), we can basically write
the operands on the RHS of f in any order, but we prefer to
group them as

f ∗g∗n (x,y)= f
x
∗g1 · · ·

x
∗g1

y
∗g2 · · ·

y
∗g2 (x,y)

= f
x
∗g1

x
∗n y
∗g2

y
∗n (x,y). (B5)

Because the last formula looks a bit cumbersome, we again
use Eq. (B4) to join the two n-fold self-convoluted operands
to a separable function, which then reads as

f ∗g∗n (x,y)= f ∗
(
g1

x
∗n(x) · g2

y
∗n(y)

)
. (B6)

Throughout the paper, we use the concise representation of
Eq. (B6) but keep in mind that it is equivalent to Eq. (B5),
where each convolution operand is expressed separately, and
thus indicates clearly how this expression is to be calculated.

Appendix C: Generalized approximate Barnes
interpolation

For the derivation of Approximation 3, we used a sepa-
rable two-dimensional PDF that consists of two uniform
one-dimensional distributions. This result can be broadened,
if more general marginal distributions are employed. For
this purpose, let p1(x) and p2(x) be two one-dimensional
PDFs with mean 0 and variance σ 2

n
. Now, we define the

separable two-dimensional PDF p(x,y)= p1(x) ·p2(y),
which has a mean vector 0 and a covariance matrix σ 2

n
I.

Consequently, the PDF p(x,y) constructed in this way
satisfies the assumptions of the central limit theorem (6) and
thus, after performing the same conversion steps as taken in
Sect. 3, follows the generalized

Approximation 4. For sufficiently large n, Barnes interpo-
lation on the Euclidean plane R2 can be approximated by

f (x,y) ≈

(∑N
k=1fk · δxk

)
∗

(
p1

x
∗ n(x) ·p2

y
∗ n(y)

)
(∑N

k=1δxk

)
∗

(
p1

x
∗ n(x) ·p2

y
∗ n(y)

) , (C1)

provided that the quotient is defined.
In practice, p1(x) and p2(x) will most often be chosen

to be identical. Using the normal distribution ϕ0,σ (x) with
mean value 0 and variance σ 2, i.e.,

ϕ0,σ (x)=
1

√
2πσ

e
−

x2

2σ2 ,

Geosci. Model Dev., 16, 1697–1711, 2023 https://doi.org/10.5194/gmd-16-1697-2023

B. K. Zürcher: Fast approximate Barnes interpolation 1711

it is clear from Eq. (8) that we can formulate Barnes interpo-
lation based on a convolutional expression where even equal-
ity holds.

Theorem 1. Let ϕ0,σ (x) be the normal distribution with
mean value 0 and variance σ 2. For Barnes interpolation on
the Euclidean plane R2, the following then holds:

f (x,y) =

(∑N
k=1fk · δxk

)
∗

(
ϕ0,σ (x) ·ϕ0,σ (y)

)
(∑N

k=1δxk

)
∗

(
ϕ0,σ (x) ·ϕ0,σ (y)

) . (C2)

Note that in the case of the normal distribution, it is suffi-
cient to apply the convolution just once.

Code and data availability. The formal algorithms introduced in
this paper are provided as Python implementation on GitHub https:
//github.com/MeteoSwiss/fast-barnes-py (last access: 11 March
2023) under the terms of the BSD 3-clause license and
are archived on Zenodo https://doi.org/10.5281/zenodo.7651530
(Zürcher, 2023a). The sample dataset and the scripts are also in-
cluded, which allow us to reproduce the figures and tables presented
in this paper. The interpolation code is available as well as Python
package fast-barnes-py on https://PyPI.org/project/fast-barnes-py
(Zürcher, 2023b).

Competing interests. The author has declared that there are no
competing interests.

Disclaimer. Publisher’s note: Copernicus Publications remains
neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Acknowledgements. The author would like to thank the topical ed-
itor Sylwester Arabas and the two anonymous reviewers for their
valuable comments and helpful suggestions. All map backgrounds
were made with Natural Earth, which provides free vector and raster
map data at https://naturalearthdata.com (last access: 11 March
2023).

Review statement. This paper was edited by Sylwester Arabas and
reviewed by two anonymous referees.

References

Barnes, S. L.: A Technique for Maximizing Details
in Numerical Weather Map Analysis, J. Appl. Me-
teorol., 3, 396–409, https://doi.org/10.1175/1520-
0450(1964)003<0396:ATFMDI>2.0.CO;2, 1964.

Bentley, J. L.: Multidimensional Binary Search Trees Used
for Associative Searching, Commun. ACM, 18, 509–517,
https://doi.org/10.1145/361002.361007, 1975.

Bratseth, A. M.: Statistical interpolation by means
of successive corrections, Tellus A, 38, 439–447,
https://doi.org/10.3402/tellusa.v38i5.11730, 1986.

Cressman, G. P.: An Operational Objective Analysis System,
Mon. Weather Rev., 87, 367–374, https://doi.org/10.1175/1520-
0493(1959)087<0367:AOOAS>2.0.CO;2, 1959.

Daley, R.: Atmospheric Data Analysis, Cambridge Univer-
sity Press, Cambridge, https://doi.org/10.1002/joc.3370120708,
1991.

Finkel, R. A. and Bentley, J. L.: Quad Trees, a Data Struc-
ture for Retrieval on Composite Keys, Acta Inform., 4, 1–9,
https://doi.org/10.1007/BF00288933, 1974.

Getreuer, P.: A Survey of Gaussian Convolution Al-
gorithms, Image Processing On Line, 3, 286–310,
https://doi.org/10.5201/ipol.2013.87, 2013.

Gwosdek, P., Grewenig, S., Bruhn, A., and Weickert, J.: Theoretical
foundations of Gaussian convolution by extended box filtering,
International Conference on Scale Space and Variational Meth-
ods in Computer Vision, 447–458, https://doi.org/10.1007/978-
3-642-24785-9_38, 2011.

Kahan, W.: Further remarks on reducing truncation errors, Com-
mun. ACM, 8, 40, https://doi.org/10.1145/363707.363723, 1965.

Klenke, A.: Probability Theory: a Comprehensive Course, 3rd
Edn., Universitext, Springer, https://doi.org/10.1007/978-3-030-
56402-5, 2020.

Koppert, H. J., Pedersen, T. S., Zürcher, B., and Joe, P.: How to
make an international meteorological workstation project suc-
cessful, Twentieth International Conference on Interactive In-
formation and Processing Systems for Meteorology, Oceanog-
raphy, and Hydrology, 84th AMS Annual Meeting, Seattle,
WA, 11.1, https://ams.confex.com/ams/84Annual/techprogram/
paper_71789.htm (last access: 11 March 2023), 2004.

Lam, S. K., Pitrou, A., and Seibert, S.: Numba: A LLVM-based
Python JIT Compiler, LLVM ’15: Proceedings of the Second
Workshop on the LLVM Compiler Infrastructure in HPC, 1–6,
https://doi.org/10.1145/2833157.2833162, 2015.

Muirhead, R. J.: Aspects of Multivariate Statistical Theory, Wiley
Series in Probability and Mathematical Statistics, John Wiley &
Sons, Inc., https://doi.org/10.1002/9780470316559, 1982.

Patterson, D. A. and Hennessy, J. L.: Computer Organization
and Design: the Hardware/Software Interface, 5th Edn., Else-
vier, https://dl.acm.org/doi/book/10.5555/2568134 (last access:
11 March 2023), 2014.

Snyder, J. P.: Map Projections: A Working Manual, US Geological
Survey Professional Paper 1395, US Government Printing Of-
fice, Washington, https://doi.org/10.3133/pp1395, 1987.

Wells, W. M.: Efficient Synthesis of Gaussian Filters by Cas-
caded Uniform Filters, IEEE T. Pattern Anal., 8, 2, 234–239,
https://doi.org/10.1109/TPAMI.1986.4767776, 1986.

Zürcher, B.: MeteoSwiss/fast-barnes-py: fast-barnes-py v1.0.0
(v1.0.0), Zenodo [code], https://doi.org/10.5281/zenodo.
7651530, 2023a.

Zürcher B.: fast-barnes-py 1.0.0, PyPI [code], https://PyPI.org/
project/fast-barnes-py, last access: 11 March 2023b.

https://doi.org/10.5194/gmd-16-1697-2023 Geosci. Model Dev., 16, 1697–1711, 2023

https://github.com/MeteoSwiss/fast-barnes-py
https://github.com/MeteoSwiss/fast-barnes-py
https://doi.org/10.5281/zenodo.7651530
https://PyPI.org/project/fast-barnes-py
https://naturalearthdata.com
https://doi.org/10.1175/1520-0450(1964)003<0396:ATFMDI>2.0.CO;2
https://doi.org/10.1175/1520-0450(1964)003<0396:ATFMDI>2.0.CO;2
https://doi.org/10.1145/361002.361007
https://doi.org/10.3402/tellusa.v38i5.11730
https://doi.org/10.1175/1520-0493(1959)087<0367:AOOAS>2.0.CO;2
https://doi.org/10.1175/1520-0493(1959)087<0367:AOOAS>2.0.CO;2
https://doi.org/10.1002/joc.3370120708
https://doi.org/10.1007/BF00288933
https://doi.org/10.5201/ipol.2013.87
https://doi.org/10.1007/978-3-642-24785-9_38
https://doi.org/10.1007/978-3-642-24785-9_38
https://doi.org/10.1145/363707.363723
https://doi.org/10.1007/978-3-030-56402-5
https://doi.org/10.1007/978-3-030-56402-5
https://ams.confex.com/ams/84Annual/techprogram/paper_71789.htm
https://ams.confex.com/ams/84Annual/techprogram/paper_71789.htm
https://doi.org/10.1145/2833157.2833162
https://doi.org/10.1002/9780470316559
https://dl.acm.org/doi/book/10.5555/2568134
https://doi.org/10.3133/pp1395
https://doi.org/10.1109/TPAMI.1986.4767776
https://doi.org/10.5281/zenodo.7651530
https://doi.org/10.5281/zenodo.7651530
https://PyPI.org/project/fast-barnes-py
https://PyPI.org/project/fast-barnes-py

	Abstract
	Introduction
	Conclusions from central limit theorem
	Barnes interpolation as series of convolutions
	Discretization
	Results and further considerations
	Test setup
	Visual results
	Time measurements
	Algorithm fine tuning
	Application on sphere geometry
	Round-off error issues

	Summary and outlook
	Appendix A: n-fold self-convolution
	Appendix B: Separable functions
	Appendix C: Generalized approximate Barnes interpolation
	Code and data availability
	Competing interests
	Disclaimer
	Acknowledgements
	Review statement
	References

