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Abstract. High-resolution large-scale predictions of hydro-
logic states and fluxes are important for many multi-scale
applications, including water resource management. How-
ever, many of the existing global- to continental-scale hy-
drological models are applied at coarse resolution and ne-
glect more complex processes such as lateral surface and
groundwater flow, thereby not capturing smaller-scale hydro-
logic processes. Applications of high-resolution and phys-
ically based integrated hydrological models are often lim-
ited to watershed scales, neglecting the mesoscale climate
effects on the water cycle. We implemented an integrated,
physically based coupled land surface groundwater model,
ParFlow-CLM version 3.6.0, over a pan-European model
domain at 0.0275◦ (∼ 3 km) resolution. The model simu-
lates a three-dimensional variably saturated groundwater-
flow-solving Richards equation and overland flow with a
two-dimensional kinematic wave approximation, which is
fully integrated with land surface exchange processes. A
comprehensive evaluation of multiple hydrologic variables
including discharge, surface soil moisture (SM), evapotran-
spiration (ET), snow water equivalent (SWE), total water
storage (TWS), and water table depth (WTD) resulting from
a 10-year (1997–2006) model simulation was performed us-
ing in situ and remote sensing (RS) observations. Overall, the
uncalibrated ParFlow-CLM model showed good agreement
in simulating river discharge for 176 gauging stations across
Europe (average Spearman’s rank correlation (R) of 0.77). At
the local scale, ParFlow-CLM model performed well for ET
(R > 0.94) against eddy covariance observations but showed
relatively large differences for SM and WTD (median R val-

ues of 0.7 and 0.50, respectively) when compared with soil
moisture networks and groundwater-monitoring-well data.
However, model performance varied between hydroclimate
regions, with the best agreement to RS datasets being shown
in semi-arid and arid regions for most variables. Conversely,
the largest differences between modeled and RS datasets
(e.g., for SM, SWE, and TWS) are shown in humid and cold
regions. Our findings highlight the importance of including
multiple variables using both local-scale and large-scale RS
datasets in model evaluations for a better understanding of
physically based fully distributed hydrologic model perfor-
mance and uncertainties in water and energy fluxes over con-
tinental scales and across different hydroclimate regions. The
large-scale, high-resolution setup also forms a basis for fu-
ture studies and provides an evaluation reference for climate
change impact projections and a climatology for hydrologi-
cal forecasting considering the effects of lateral surface and
groundwater flows.

1 Introduction

Continental-scale, high-resolution (< 5 km) hydrologic mod-
eling is important to understand and predict water cycle
changes over large scales (Döll et al., 2003) and the spatial
distribution of land–atmosphere moisture and energy fluxes
(Maxwell et al., 2015), including their spatiotemporal vari-
ability (Schwingshackl et al., 2017). Predicting changes in
water cycle processes over larger scales is also necessary to
capture macro-scale processes which can affect water secu-
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rity. Such processes, for example, include high evapotran-
spiration rates, which lead to soil moisture or water storage
deficits and result in mega droughts over large areas (for ex-
ample, the 2018 to 2020 European drought; Rakovec et al.,
2022; Hanel et al., 2018), or an increase in heavy rainfall
events caused by climate change, resulting in soil moisture
surpluses and widespread flooding (e.g., western European
floods in 2021; He et al., 2022). In addition, it is important to
accurately model interactions between surface and ground-
water processes, as they can affect large-scale climatological
and hydrological patterns (Fan, 2015) and exert a major con-
trol on river ecosystems at local to regional scales (Ji et al.,
2017).

Numerical models that attempt to simulate large-scale hy-
drology and associated processes are usually categorized as
land surface models (LSMs) or global hydrological models
(GHMs). These models have been developed for simulat-
ing the land surface water, energy and momentum exchange
(Sellers et al., 1988) to provide water balance estimates at
a global to continental scale (e.g., Döll et al., 2003; Hunger
and Döll, 2008; Gudmundsson et al., 2012; Haddeland et al.,
2011). Despite the extensive work in large-scale hydrology
modeling (e.g., Clark et al., 2015), many of the existing large-
scale hydrological models (both LSMs and GHMs), espe-
cially those intended for continental- to global-scale simula-
tions, are single-column models for which most hydrological
processes are implemented empirically and at a coarse spa-
tial resolution (typically 25 to 100 km). As a result, many of
the important hydrological processes are simplified, includ-
ing groundwater and surface water dynamics, soil moisture
re-distribution, and evapotranspiration (Clark et al., 2017).
In most large-scale continental or global models, the repre-
sentation of the groundwater dynamics is either not included
or oversimplified, which may lead to errors in the predic-
tion of hydrologic states and fluxes (Martínez-de la Torre and
Miguez-Macho, 2019) or an underestimation of total water
storage trends (Scanlon et al., 2018). A physics-based in-
tegrated hydrological model, on the other hand, which can
simultaneously solve surface and subsurface systems with
lateral groundwater flow, may provide better predictions of
both local and global water resources (Beven and Cloke,
2012). Many recent studies have shown the importance of
representing the 3-D groundwater component in GHMs (e.g.,
PCR-GlobWB and WaterGAP (G3M); Verkaik et al., 2022;
Reinecke et al., 2019) and/or lateral transport of subsurface
water and its interaction with land–atmosphere water fluxes
(e.g., Barlage et al., 2021; Keune et al., 2016; Maxwell and
Kollet, 2008; Miguez-Macho and Fan, 2012; Miguez-Macho
et al., 2007; Xie et al., 2012; Zeng et al., 2018). These studies
suggested that explicitly simulating these processes can have
a significant effect on the accuracy of surface energy fluxes
(Keune et al., 2016) and flux partitioning (Maxwell and Con-
don, 2016). It can also affect the accuracy of the spatial re-
distribution of soil moisture through infiltration during lateral
movement of water (Ji et al., 2017). Furthermore, processes-

based integrated hydrologic models can better characterize
spatial heterogeneity in water and energy states and fluxes
when run at a high spatial resolution (< 5 km) due to the
higher-resolved surface properties, providing a more accu-
rate representation of the lateral transports of surface and
subsurface water movements driven by topographic slopes
(Ji et al., 2017; Shrestha et al., 2014; Barlage et al., 2021).
However, the effect of these important processes on water
and energy states and fluxes is still not fully understood, es-
pecially over continental scales, and a more comprehensive
assessment of model performance across different hydrocli-
mates and hydrological characteristics is needed.

In the past decade, there has been a growing interest in
developing and implementing hyperresolution hydrological
modeling over large domains with more realistic representa-
tion of surface and subsurface lateral flow and groundwater
dynamics (e.g., Lawrence et al., 2019; Pokhrel et al., 2021;
Zeng et al., 2018; Grimaldi et al., 2019). It is challenging to
implement and evaluate fully distributed integrated surface
and groundwater models over large spatial domains, particu-
larly given the lack of consistent large-scale hydrogeological
information (de Graaf et al., 2020) and/or the computational
cost to implement such models over larger domains. With
the advancement of computing resources and the availabil-
ity of gridded datasets at a global scale, e.g., soil (Hengl et
al., 2017, SoilGrids) and hydrogeological parameters (Glee-
son et al., 2014; de Graaf et al., 2020), a handful of modeling
studies have fully utilized parallel-computing systems to ex-
plicitly simulate the three-dimensional spatial dynamics of
water fluxes and state variables at higher resolutions (12 to
1 km) over regional and continental scales (e.g., Keune et al.,
2016, 2019; Kollet et al., 2018; Tijerina et al., 2021; O’Neill
et al., 2021). Fully integrated models used in these studies are
often not calibrated, mainly due to the computational cost
to simultaneously solve surface and groundwater equations
and the presence of nonlinear dependencies between differ-
ent subsystems, which makes the parameter calibration more
difficult (Hill and Tiedeman, 2006). For such models, find-
ing global optimum solutions may require efficient nonlin-
ear optimization techniques to perform multivariate, multi-
objective calibration (e.g., Tolley et al., 2019; Rafiei et al.,
2022). Therefore, a comprehensive evaluation of the per-
formance of uncalibrated large-scale fully integrated mod-
els with available in situ and remotely sensed observations
for water balance components serves as an assessment of the
model uncertainty. Simulation performance benchmarks can
be set and met before application of the model in forecast or
projection studies.

Many of the continental- to global-scale modeling stud-
ies solely evaluate streamflow performance of the models,
mostly for large rivers (e.g., Haddeland et al., 2011; Zhou
et al., 2012; Gudmundsson et al., 2012). While these studies
showed robust skill in terms of overall streamflow dynamics
for a range of watershed sizes, little consideration has been
given to other components for water balance closure and
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characterization of hydrologic states, e.g., soil moisture and
groundwater levels. Bouaziz et al. (2021) examined multiple
states and flux variables from 12 hydrological models. They
showed similar streamflow performance but identified sub-
stantial dissimilarities in snow water storage, root zone soil
moisture (SM) and total water storage when compared with
observations. These results suggest that, while most mod-
els show similar performance in simulating streamflow, they
may not realistically simulate other components of the water
balance. Therefore, it is important to assess the model perfor-
mance not only for streamflow but for other hydrologic states
and fluxes with available observations such as SM, evap-
otranspiration (ET), water table depth (WTD), snow water
equivalent (SWE), and total water storage (TWS), especially
for spatially distributed models which are able to simulate
full hydrologic heterogeneity. Furthermore, using additional
variables for an evaluation of fully distributed models with
explicit groundwater lateral-flow representation is also im-
portant to identify uncertainties in surface and groundwater
interactions (e.g., O’Neill et al., 2021) and mismatches be-
tween the spatiotemporal representation of hydrologic fluxes
and states (e.g., Rakovec et al., 2016).

In this study, we implement the ParFlow-CLM model
(Kollet and Maxwell, 2008; Kuffour et al., 2020), which is
a physically based integrated hydrological model that simul-
taneously solves surface and subsurface processes with lat-
eral groundwater flow and assess its performance for multi-
ple variables, hydroclimates and hydrological characteristics
over a pan-European domain. We undertake this thorough as-
sessment in order to perform a holistic model evaluation for
the aforementioned reasons. Building on previous studies,
we follow a similar approach to O’Neill et al. (2021) to as-
sess our model performance over a pan-European domain at
3 km resolution. To the best of our knowledge, this is the first
study to implement ParFlow-CLM over the pan-European
domain at a high resolution (0.0275◦ (∼ 3 km)) with lateral
surface and groundwater flow representation over a timescale
large enough to consider climate variability (10 years). Previ-
ously, the ParFlow-CLM model has been employed over the
pan-European domain at 12 km resolution for the year 2003
within the framework of a fully integrated soil–vegetation–
atmosphere model (e.g., Keune et al., 2016, 2019; Furusho-
Percot et al., 2019; Hartick et al., 2021). However, the
model performance was not rigorously evaluated for all wa-
ter balance components, given the coarser resolution and
the focus on atmosphere–land surface–groundwater feed-
back. Similarly, ParFlow-CLM has been implemented over
the continental US (CONUS) at a 1 km resolution (Maxwell
et al., 2015; Condon and Maxwell, 2015, 2017; Maxwell
and Condon, 2016), where most recently, O’Neill et al.
(2021) provided a comprehensive multi-variable evaluation
of CONUS implementation across a simulation time period
of 4 years. They highlighted the importance of evaluating
the continental-scale water balance as a whole for a process-
based understanding of model performance and bias. In this

study, implementation of the ParFlow-CLM model outside
CONUS is also a step forward towards “Hyperresolution
global land surface modeling” which is considered a “grand
challenge in hydrology”, as described by Wood et al. (2011),
Bierkens et al. (2015) and Condon et al. (2021).

Here, we focus on the application and performance of
ParFlow-CLM for a 3 km resolution pan-European model
domain and perform simulations over a period of 10 years
(1997–2006). For comprehensive model evaluation, we
present a comparison of model results with various in situ
and several remote sensing (RS) products and assess model
performances for multiple hydrologic variables such as sur-
face SM, river discharge, ET, SWE, WTD, and TWS for dif-
ferent hydroclimate regions. Comparisons with a variety of
in situ and satellite-based gridded RS products allows us to
evaluate model performance not only at grid cell scale but
also at large spatial scales to better understand both sea-
sonal and spatial variability for different regions influenced
by different climatic conditions. In addition, to discuss how
our model differs from other existing implementations of
ParFlow-CLM, we compare our results with the CONUS im-
plementation of ParFlow-CLM model (O’Neill et al., 2021)
to highlight model strengths and weaknesses in simulating
continental-scale water balance components. This evaluation
can serve as a benchmark and baseline for future ParFlow-
CLM implementations over Europe and could be used as an
evaluation framework for future model development.

In Sect. 2, we describe the setup and configuration of the
ParFlow-CLM model. In Sect. 3, we assess the model per-
formance over different regions and at point scale and dis-
cuss the model’s reliability and limitations. The summary
and conclusions are presented in Sect. 4.

2 Methods and data

In this section, we describe the ParFlow-CLM model, its con-
figuration, the simulation setup, forcing data, and static input
datasets. Additionally, we describe the metrics, methods and
observational data used for model evaluation.

2.1 Model description, setup, inputs, and
meteorological forcing data

2.1.1 ParFlow-CLM description

ParFlow (v3.6.0) used in this study is an integrated subsur-
face and surface hydrologic model which simulates 3-D vari-
ably saturated groundwater flow using the Richards equa-
tion and incorporates 2-D overland flow via a moving, free-
surface boundary condition (Jones and Woodward, 2001;
Kollet and Maxwell, 2006; Maxwell, 2013; Kuffour et al.,
2020). To incorporate the simulation of energy and water
fluxes at the land surface, the standalone ParFlow is coupled
to the Common Land Model (CLM), which is a modified ver-
sion of the original Common Land Model of Dai et al. (2003)
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and is fully integrated within the ParFlow model structure
(Kollet and Maxwell, 2008; Jefferson et al., 2015, 2017; Jef-
ferson and Maxwell, 2015). Note that the Common Land
Model (CLM) is not the same land surface model as the com-
munity land model, which is the land component of the Com-
munity Earth System Model (CESM). The horizontal land
surface heterogeneity in CLM is represented by tiles for dif-
ferent plant functional types (PFTs), and land surface water
fluxes like evaporation, transpiration and infiltration are com-
puted for each PFT. In addition, the vertical heterogeneity is
represented by a single layer in vegetation, multiple layers of
soil and bedrock with increasing depths towards the model’s
lower boundary, and up to five layers for snow depending
on snow depth to account for snow processes. Evapotranspi-
ration calculations include bare-ground evaporation, which
depends on specific humidity, air density, atmospheric and
soil resistance terms; transpiration, which only occurs on the
dry fraction of the canopy, is computed as a function of leaf
and stem area index, air density, and boundary layer resis-
tance term (Jefferson et al., 2017). In addition, ParFlow-CLM
simulates snow water equivalent using thermal, vegetation,
canopy and snow age processes, which determine the amount
of precipitation falling as snow. Changes in snow through
time are simulated through albedo decay, snow compaction,
sublimation and melt processes (Ryken et al., 2020).

To tackle the computational challenge of simulating 3-
D subsurface flow, ParFlow-CLM is designed for high-
performance computing infrastructures with demonstrated
performance (e.g., Burstedde et al., 2018; Kollet et al.,
2010), where the 3-D variably saturated subsurface and lat-
eral groundwater flow is simulated using a parallel Newton–
Krylov nonlinear solver (Ashby and Falgout, 1996; Jones and
Woodward, 2001) and multigrid preconditioners.

2.1.2 Model parameters and input data

We implemented ParFlow-CLM for the CORDEX (Coordi-
nated Regional Downscaling Experiment) European model
domain with a spatial resolution of 0.0275◦ (∼ 3 km), in-
scribed into the official CORDEX EUR-11 grid at 0.11◦ spa-
tial resolution (Gutowski et al., 2016; Jacob et al., 2020).
The land surface static input data consist of topography,
soil properties (soil color, percentage sand and clay), dom-
inant land use types, dominant soil types in the top lay-
ers, dominant soil types in the bottom layers, subsurface
aquifer and bedrock bottom layers, and physiological vege-
tation parameters (Fig. S1 in the Supplement). Digital eleva-
tion model (DEM) data were acquired from the 1 km Global
Multi-resolution Terrain Elevation Data 2010 (Danielson and
Gesch, 2010, GMTED2010), as shown in Fig. S1a. Using
the 1 km DEM and a pan-European River and Catchment
Database available from the Joint Research Center (Vogt et
al., 2007, CCM), a hydrologically consistent DEM was gen-
erated as input to calculate D4 slopes (in x and y directions)
from topography information using the stream-following al-

gorithm developed by Barnes et al. (2016), which was used to
specify the connected drainage network in the ParFlow-CLM
model. The land cover data were based on the Moderate Res-
olution Imaging Spectroradiometer (MODIS) dataset (Friedl
et al., 2002) (Fig. S1b). The vegetation properties of individ-
ual sub-grid tiles, such as leaf area index, roughness length
and reflectance, stem area index, and the monthly heights of
each land cover, were calculated based on the global com-
munity land model version 3.5 (CLM3.5) surface dataset
(Oleson et al., 2008). The aquifer network was added to the
ParFlow-CLM model in order to better model the relation-
ship between the surface and subsurface water flow where
the aquifer network serves as a conduit for lateral groundwa-
ter transport through the continent. The subsurface aquifer
information was derived from the BGR International Hydro-
geological Map of Europe (Duscher et al., 2015, IHME). For
ParFlow-CLM, bedrock geology was developed by combin-
ing the IHME hydrogeological information with the CCM
river database as a proxy for the alluvial aquifer system,
where the river database was converted from D8 to D4 flow
in order to be compatible for the ParFlow-CLM overland
flow (Fig. S1c). We assume that alluvial aquifers underlay or
are in close proximity to existing rivers. To provide soil tex-
ture data in the model (Fig. S1d–f), sand and clay percent-
ages were prescribed based on pedotransfer functions from
Schaap and Leij (1998) for 19 soil classes derived from the
FAO/UNESCO Digital Soil Map of the World (Batjes, 1997).

In addition to the above static input data, the high-
resolution atmospheric reanalysis COSMO-REA6 dataset
(Bollmeyer et al., 2015) from the German Weather Service
(DWD; Simmer et al., 2016) was used as the atmospheric
forcing for ParFlow-CLM. The essential meteorological vari-
ables applied in this study, such as barometric pressure, pre-
cipitation, wind speed, specific humidity, near-surface air
temperature, downward shortwave radiation, and downward
longwave radiation were downloaded at 1 h temporal reso-
lution for the 1997–2006 time period (https://opendata.dwd.
de/climate_environment/REA/COSMO_REA6/, last access:
30 June 2021). The COSMO-REA6 reanalysis is based on
the COSMO model and is available at 0.055◦ (about 6 km)
covering the CORDEX EUR-11 domain and was produced
through the assimilation of observational meteorological data
using the existing nudging scheme in COSMO with bound-
ary conditions from ERA-Interim reanalysis data.

2.1.3 Simulation setup

We performed a 10-year simulation using the ParFlow-CLM
model to evaluate the model performance of hydrologic
states and fluxes over the EURO-CORDEX domain (Fig. 1).
The model was run at an hourly time step and at a horizon-
tal resolution of 3 km, resulting in 1592× 1540 grid cells.
Vertically, the model consisted of 15 layers (upper 10 soil
and bottom 5 bedrock layers) of variable depths, with a to-
tal depth of 60 m. Distributed parameters describing the soil
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properties, saturated hydraulic conductivity, van Genuchten
parameters and porosity were assigned to each soil class and
were based on the pedotransfer functions from Schaap and
Leij (1998). Using this modeling setup, a steady-state sim-
ulation of the hydrological variables of ParFlow-CLM was
first conducted (spinup run) to reach a dynamic equilibrium.
A spinup of 9 years, by simulating the year 1997 nine times,
was performed in order to obtain a stable and reasonable dis-
tribution of the initial state variables. We followed a similar
approach to that used in previous studies (Maxwell and Con-
don, 2016; O’Neill et al., 2021; Shrestha et al., 2015, 2018)
to continuously run the ParFlow-CLM model until the total
water storage change was less than 2 % from the previous
years. The steady-state initial conditions were then used for
model simulations over the period from 1997 to 2006. It is
worth noting that we did not perform a priori model cali-
bration due to difficulties in capturing parameter uncertain-
ties associated with nonlinearities in the integrated hydrolog-
ical models and/or due to high computational cost and lack
of consistent, long-term, high-resolution observations. How-
ever, the majority of the ParFlow-CLM model parameters
were derived from observation-based data using the physical
characteristics of surface and subsurface information.

2.2 Performance metrics and datasets used for model
evaluation

2.2.1 Performance metrics

To assess model performance in simulating hydrological
variables, we used percentage bias (PBIAS), Spearman cor-
relation coefficient (R) and modified Kling–Gupta efficiency
(KGE’). These metrics were calculated as follows:

PBIAS= 100×
(∑n

i=1(Si −Oi)∑n
i=1Oi

)
, (1)

where Si andOi are simulated and observed monthly values,
respectively. The PBIAS in Eq. (1) was only calculated for
months when observations were available.

The Spearman’s rank correlation (R) is a nonparametric
measure of correlation which assesses the monotonic rela-
tionship between two variables and is therefore less sensitive
to outliers. It was calculated as follows:

R = 1−

(
6
∑
d2
i

n(n2− 1)

)
, (2)

where di is the difference in paired ranks for a given value
of i, and n is the total number of values. For evaluating
streamflow, we use the modified Kling–Gupta efficiency met-
ric (KGE’; Gupta et al., 2009; Kling et al., 2012), which
is a commonly used measure to assess the similarity be-
tween simulated and observed discharge. The modified KGE
(KGE’) values range from −∞ to 1, where a value of 1 in-
dicates perfect agreement between observations and simula-

tion. It is calculated as follows:

KGE’=
√
(r − 1)2+ (β)2+ (γ )2, (3)

where r is the Pearson correlation coefficient; β and γ are
bias ratio and variability ratio, respectively and are calculated
as follows:

β =
µs

µo

and

γ =

(
σs

µs

)
/

(
σo

µo

)
,

where µs and µo are the mean simulated and observed dis-
charge, and σs and σo are the standard deviation of simulated
and observed discharge, respectively.

Using metrics defined in Eqs. (1)–(3), we compared river
flow, surface SM, ET, WTD, TWS, and SWE variables with
in situ, remote sensing observations and reanalysis datasets
to discuss the model performance at different spatial and tem-
poral scales over different regions, as described in Sect. 3.
For the regional analysis, the results are presented for eight
predefined regions from the “Prediction of Regional scenar-
ios and Uncertainties for Defining European Climate change
risks and Effects” (PRUDENCE) project (Christensen and
Christensen, 2007), as shown in Fig. 1a, commonly referred
to as the “PRUDENCE” regions.

2.2.2 Streamflow data

Daily river flow observations over Europe were obtained
from the Global Runoff Data Center (GRDC, obtained
via https://www.bafg.de/GRDC/EN/Home/homepage_node.
html, last access: 2 May 2018) for more than 2000 gaug-
ing stations. Because of the inconsistencies in the real and
modeled stream networks due to the relatively coarse reso-
lution of the model grid, the gauging station locations were
first adjusted to the nearest locations on the model river net-
work (center of the 0.0275◦ cell). This was accomplished
using nearest-neighbor mapping and through comparison of
the actual drainage areas with the modeled drainage areas.
Only those stations were selected for model validation where
drainage area differences were less than 20 % and where
more than 50 % of data are available for the time period of
1997–2006. Additionally, we only selected stations where
the upstream drainage area is greater than 1000 km2. This
resulted in a selection of 176 gauging stations which were
then used for comparison with simulated streamflow.

2.2.3 Soil moisture data

The simulated surface SM in the top two layers of the
ParFlow-CLM model (∼ 3 cm) was evaluated by means of
comparison with the global satellite observations of SM from
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Figure 1. Maps of EURO-CORDEX domain at 3 km resolution (1544× 1592 grid cells) showing spatially averaged distribution of (a)
elevation, (b) discharge, (c) surface soil moisture, (d) water table depth and (e) evapotranspiration (1997–2006), along with close-ups of the
Po River basin in the Alpine (AL) region simulated by ParFlow-CLM model. Red color in (d) indicates deeper water table with maximum
of 51 m depth. The black boxes in (a) correspond to PRUDENCE regions, with their common abbreviations indicating names of the regions
(FR: France; ME: mid-Europe; SC: Scandinavia; EA: eastern Europe; MD: Mediterranean; IP: Iberian Peninsula; BI: the British Isles; AL:
Alpine).

the European Space Agency Climate Change Initiative (ESA
CCI; Dorigo et al., 2017). The globe ESA CCI SM product
was created at 0.25◦ resolution by combining the active and
passive microwave sensors, providing a homogeneous and
the longest time series of SM data to date, starting from 1979.
The dataset has been widely used in various Earth system
research studies and has shown good performance in com-
parison to in situ soil moisture measurements (Gruber et al.,
2019). The ParFlow-CLM model results of surface SM were
also evaluated with the 3 km European surface SM reanaly-
sis (ESSMRA) datasets (Naz et al., 2020), which were cre-
ated through assimilation of the ESA CCI data into the land
surface model CLM3.5, driven with the same meteorological
forcing and static model inputs as those used for ParFlow-
CLM. For comparison with model-simulated SM and the ES-
SMRA dataset, we interpolated the ESA CCI SM data from
0.25 to 0.0275◦ (∼ 3 km) resolution using the first-order con-
servative interpolation method (Jones, 1999).

In addition to the satellite-based ESA CCI data, the in
situ SM data from the International Soil Moisture Network
(ISMN; Dorigo et al., 2011), which provides globally avail-
able in situ SM measurements, were also used. Because of
the availability of the ISMN SM data covering the study
period of 1997–2006, only data from 19 stations from four
networks were used for model validation. The surface SM
data from these stations for the top 5 cm of surface layer
were collected to evaluate the model results in the top two
ParFlow-CLM soil layers (about 3 cm). For comparison with
model monthly estimates, the measurements with an hourly

timescale were aggregated to a monthly timescale. In the case
where more than one station was located within one 3 km
grid cell, the average of those stations was used for compari-
son.

2.2.4 Evapotranspiration data

For validation of simulated ET with in situ measurements,
ground-based observations of ET were obtained from the
FLUXNET2015 dataset (Pastorello et al., 2020), which com-
piled ecosystem data from the eddy covariance towers. For
each FLUXNET site, the latent heat flux (in Wm−2) was
converted to ET and mmd−1 using the factor of 0.035, as-
suming ET= LEλ−1, with λ as constant latent heat of va-
porization of 2.45 MJkg−1. For the simulation time period,
we used data from 60 FLUXNET sites over Europe, with
more than half of the stations concentrated in central Europe
(31 out of 60) and only 3 located in eastern Europe.

For evaluation of the model-simulated ET over the pan-
European domain, Global Land Surface Satellite (GLASS;
Liang et al., 2021) and Global Land Evaporation Amsterdam
Model (GLEAM; Martens et al., 2017) datasets were used.
The ET data from GLASS are calculated by a multimodel
ensemble approach merging five process-based ET datasets
(Liang et al., 2013), while GLEAM is based on the water
balance method and uses the Priestley–Taylor equation and
other algorithms to estimate ET separately for both soil and
vegetation (Martens et al., 2017).
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2.2.5 Water table depth and total water storage data

To validate the model outputs for WTD, we collected
monthly well observations at 5075 groundwater-monitoring
wells (Fig. S2 in the Supplement) distributed over Europe
from 1997 to 2006. The groundwater level measurements
were obtained either from web services or by request from
governmental authorities in eight countries (France, Spain,
Portugal, the Netherlands, the UK, Sweden, Denmark, and
Germany), with most stations concentrated in Germany.
The detailed information about the sources of European
groundwater-monitoring wells is given in Table S1 in the
Supplement. The WTD measurements were first converted
to 3 km gridded WTD data by averaging WTD data from all
the wells that lie within the same 3 km grid cell. This re-
sulted in 2738 grid cells which were then used to evaluate
the ParFlow-CLM results. Reported water table depth data
across Europe are poorly quality controlled, with inconsis-
tent methodology and standards employed for the calcula-
tion of the depth (Fan et al., 2013). For example, ground-
water levels (meters above sea level) are provided for most
groundwater-monitoring wells (i.e., 2018 grid cells out of
2738, located mostly in Germany), but no reference sur-
face elevation information is given. This makes it difficult
to convert groundwater levels to WTD or to calculate mod-
eled groundwater levels for direct comparison of absolute
values. Because of these inconsistencies in reporting water
table depth data, we compared the anomalies. Thus, we used
standardized anomalies of groundwater table depth in order
to remove errors related to the scale mismatch between the
simulated groundwater depths and observations and to the
differences in reference surface elevations that were used by
different countries. The standardized anomalies were calcu-
lated for observations and model outputs by first calculat-
ing the temporal anomalies and then dividing by the standard
deviation of each WTD time series for the time period of
1997–2006. In addition to anomalies, we also compared ab-
solute values of simulated WTD for 720 locations (mostly
located in the Netherlands, France and Sweden), where com-
plete WTD data were available.

In addition to WTD, model performance in simulating
TWS is evaluated by comparing with satellite-based TWS
anomalies from the Gravity Recovery and Climate Experi-
ment (GRACE) with simulated TWS anomalies for the pe-
riod of 2003–2006. GRACE measures the Earth’s gravity
field changes and provides global monthly land or terres-
trial water storage anomalies, which include water storage
anomalies of canopy water, snow water, surface water, soil
water and groundwater. In this study, we compared the time
series of ParFlow-CLM TWS changes with GRACE release
06 Mascone solution (RL06M) provided by the NASA Jet
Propulsion Laboratory (JPL).

2.2.6 Snow water equivalent data

The model-simulated SWE was validated using the Glob-
Snow (v3.0) reanalysis gridded monthly SWE data which
are provided by the European Space Agency. The dataset is
available for the Northern Hemisphere (non-mountainous) at
25 km resolution from 1980–2018 (Takala et al., 2011; Pul-
liainen et al., 2020). The GlobSnow SWE dataset is devel-
oped through a data assimilation approach by combining the
ground-based synoptic snow depth stations with satellite pas-
sive microwave radiometer data and using the HUT snow
emission model (Takala et al., 2011). Compared to previous
versions of GlobSnow, Luojus et al. (2021) further improved
this dataset through bias correction of monthly SWE data us-
ing the snow-course SWE measurements independently from
the snow depth data used in the assimilation. For compar-
ison with model-simulated SWE, we interpolated the bias-
corrected monthly time series of SWE from 25 to 3 km reso-
lution using the first-order conservative interpolation method
(Jones, 1999).

3 Results and discussion

The ParFlow-CLM model simulations for the time period of
1997—2006 provide pressure head and saturation values for
the variably saturated subsurface layers, as well as energy
balance estimates for the land surface at an hourly time step
for each grid cell in the study domain. An example of some
of the useful downstream model outputs, such as those used
for water resource management, are shown in Fig. 1. The
top panels show domain extent hydroclimate regions plus
elevation and the spatial distribution of mean annual sim-
ulated river flow, SM, ET, and WTD. In addition, bottom
panels in Fig. 1 show a close-up of the aforementioned vari-
ables for the Po River basin in the Alpine region, highlight-
ing the model’s ability to resolve small-scale spatial vari-
ability in these variables associated with the river network
and topography. For WTD, deeper water table values near
the large rivers are probably due to the fact that large rivers
were carved into the digital elevation model data in order to
hydrologically correct the topographic slopes and to ensure
European river network connectivity. Enforcement of river
network appears to make the valleys more steep, resulting in
a deeper WTD in those areas. This is a limitation of the cur-
rent model setup implementation, which can be improved by
using a more advanced approach of topographic processing
for integrated hydrologic models (e.g., Condon and Maxwell,
2019a).

In the following section, we discuss the performance of
the model for these variables in detail using different per-
formance metrics and comparison with a variety of in situ
and remote sensing and reanalysis products. Because of the
sparse coverage of in situ observations, comparing with other
satellite-based gridded products helps to evaluate model per-
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formance for spatial signature over different regions influ-
enced by different (mesoscale) climatic characteristics. Ad-
ditionally, we compared our results with the CONUS imple-
mentation of the ParFlow-CLM model (O’Neill et al., 2021),
as summarized in Table S2 in the Supplement. Note that
comparisons of our model results with CONUS implemen-
tation are limited given the differences in domains, resolu-
tion, available observation data (the pan-European domain
has more data-sparse areas) and hydroclimate regions. Thus,
a direct quantitative comparison is not possible; even so, the
model strengths and weaknesses in simulating water states
and fluxes are highlighted.

3.1 Streamflow evaluation

ParFlow-CLM streamflow was evaluated against observed
monthly river flow for a selection of 176 gauging sta-
tions located along many rivers which are mostly concen-
trated in central Europe (Fig. 2). In evaluating model perfor-
mance pertaining to mean flow, comparison of the observed
and simulated mean flow in the simulation period showed
that ParFlow-CLM appropriately reproduced the mean flow,
where the PBIAS is below 20 % for 48 % of stations, with
only eight stations showing a higher bias (PBIAS> 50 %)
between the observed and simulated monthly river flow
(Fig. 2a). To better understand the seasonal variability of the
simulated streamflow, 16 stations along large rivers across
different climatic zones, with a total drainage area upstream
of the gauging station greater than 5000 km2, were selected
and compared with monthly observed streamflows for the
simulation period (Fig. 2b). Overall, the comparison shows
that the streamflow dynamics are well captured for the se-
lected 16 large rivers; however, there is an overestimation
of the winter flow by the model and an underestimation of
summer flow for most gauging stations. The overestima-
tion of peak flow is more pronounced in wet years (for ex-
ample, years 2001 and 2002), whereas low flows in sum-
mer are mostly underpredicted in dry years (for example,
years 2003 and 2004). The discrepancy between the sim-
ulated and observed flow may be related to the follow-
ing: coarse river resolution in the model and/or human im-
pacts on discharge regimes – particularly for highly regulated
rivers through reservoir regulations and power generation or
groundwater extraction (e.g., in the case of the Rhine, Elbe,
and Danube rivers). In addition, the simulated flow is over-
predicted for both River Kemijoki (Finland) and the Nemu-
nas River (Lithuania) in northeastern Europe across all years
(Fig. 2a).

To further evaluate model performance in terms of stream-
flow peak times and flow variability, the Spearman correla-
tion coefficient, R, and Kling–Gupta efficiency index, KGE’,
were calculated for all 176 gauge stations and plotted in
Fig. 3. Overall, R and KGE’ values ranged from 0.24 to 0.93
and −9.5 to 0.8, respectively, for all 176 stations. ParFlow-
CLM performs well for 30 % of stations (54) with a KGE’

value greater than 0.5, and only 18 % of basins have a KGE’
value less than zero. Regionally, the simulated streamflow
results are in good agreement with the observed streamflow
over the British Isles, central Europe and France, but model
performance in the northern and south eastern regions is rel-
atively poor with KGE’ values below zero (Fig. 3b). Com-
parison of the KGE’ and PBIAS shows that a majority of
the stations with negative KGE’ values have positive bi-
ases between the simulated and observed monthly stream-
flow (Fig. 3c); these are mostly located in northeastern Eu-
rope in the EA and SC regions (Fig. 2a). Given that the over-
prediction of peak flow for northern rivers may also be af-
fected by the overestimation of SWE or from earlier onset
of snowmelt in the model, we compared the time-averaged
ParFlow-CLM-simulated SWE over winter months with the
satellite-based ESA GlobSnow SWE for the low-relief ar-
eas (See Fig. S3 in the Supplement). Our comparison shows
that ParFlow-CLM simulated higher SWE across the do-
main, which is particularly noticeable in northeastern Eu-
rope. However, it has been shown that GlobSnow data tend to
underestimate SWE in the Northern Hemisphere (Luojus et
al., 2021), so the overestimation in ParFlow-CLM may not be
as large as this comparison suggests. Overall, the ParFlow-
CLM northern Europe streamflow performance results agree
with previous pan-European studies which showed that most
hydrological models perform worse in northeastern Europe,
primarily due to forcing data errors and/or a coarse topo-
graphic resolution of these models that misrepresent the ef-
fects of topography on snow dynamics in these regions (Gud-
mundsson et al., 2012).

Furthermore, the cumulative distribution of KGE’ was cal-
culated separately for medium (between 25th and 75th per-
centile), high (over 75th percentile) and low (less than 25th
percentile) flows to examine ParFlow-CLM’s performance
in simulating different hydrological characteristics and cli-
mate variability, namely, medium, high and low flows. Re-
sults show that most stations have higher KGE’ values for
high flows than for normal and low flows (Fig. 3c). For exam-
ple, 50 % of stations have KGE’ values above 0.5, 0.32 and
0.1 for high, normal and low flows, respectively. The higher-
biased gauges are more concentrated towards the eastern do-
main where the model overestimated peak flows and could
be attributed to the higher amount of snow predicted by the
ParFlow-CLM model (as shown in Fig. S3). This may indi-
cate that strongly biased gauges in the eastern domain may
be a result of positive biases in the meteorological forcing
(Goergen and Kollet, 2021). Bollmeyer et al. (2015) com-
pared the COSMO-REA6 precipitation data with the precipi-
tation data from the Global Precipitation Climatology Center,
which also showed overestimation of precipitation in north-
ern and eastern European regions (Scandinavia, Russia, and
along the Norwegian coast). However, it should be noted that
the coverage of gauging stations is very sparse in eastern Eu-
rope, and it is difficult to evaluate the reliability of the model
results in this part of the domain. Nevertheless, for many of
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Figure 2. (a) Comparison of observed and simulated average discharge and the percentage bias in monthly discharge (PBIAS) for 176
gauging stations. (b) Comparison of time series of observed and simulated discharge for selected large rivers with drainage areas greater than
50 000 km2. Locations of selected gauges in (b) are indicated with corresponding numbers in the left panel of (a).

the gauging stations, a relatively good performance of the
model for high flow, especially over central Europe, also
suggests that the reanalysis meteorological drivers have rel-
atively low precipitation biases over central Europe, as also
suggested in Bollmeyer et al. (2015).

Conversely, the strong low-flow biases, which may not be
sensitive to variations in first-order precipitation drivers, are
more likely to be attributed to factors such as model struc-
tural errors or errors in the stream network or model topog-
raphy. In this context, two factors may contribute to the poor
performance of the model for low flows. Firstly, a 3 km grid
cell size might still be too coarse to represent realistic stream
network of smaller rivers and convergence zones along river
corridors. Secondly, ParFlow-CLM allows for a two-way
overland flow routing, potentially causing more water losses
under dry conditions from channels to groundwater or over-
bank flow. This may lead to a complete drying of some rivers
during summer, further exacerbated by the (comparatively)
coarse resolution of the model. Other continental-scale stud-

ies that used ParFlow-CLM over the CONUS domain also
found underestimation of low flows, particularly in the sum-
mer months (O’Neill et al., 2021; Tijerina et al., 2021) where
stream segments go dry due to more water losses from the
stream channels. A study by Schalge et al. (2019) proposed
a method to improve overland flow parameterizations in the
ParFlow-CLM model, but more work is needed to identify
sources of uncertainties in the overland flow parameters, such
as Manning’s coefficient or hydraulic conductivity at a con-
tinental scale. In any case, an evaluation framework such as
this can highlight where model improvements can be under-
taken.

3.2 Soil moisture evaluation

To evaluate the ability of ParFlow-CLM to simulate large-
scale spatial patterns of surface SM over the study domain,
the ParFlow-CLM-simulated SM was compared to ESA CCI
datasets (Dorigo et al., 2017). In addition to ESA CCI, we
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Figure 3. Evaluation of ParFlow-CLM-simulated monthly streamflow with observed streamflow for 176 gauging stations. (a) Spearman
correlation coefficient (R); (b) modified KGE efficiency index (KGE’); (c) comparison of PBIAS vs. KGE’; (d) cumulative distribution of
KGE’ for Q50 (between 25th and 75th percentile), Q75 (over 75th percentile) and Q25 (less than 25th percentile) flows. Note that the color
code in panel (c) is the same as in (b).

also compared ParFlow-CLM SM with a soil moisture re-
analysis dataset (ESSMRA, which is the assimilated soil
moisture simulated by CLM3.5; Naz et al., 2020). Surface
soil moisture from the ESA CCI dataset was assimilated
into the CLM3.5 model to generate the ESSMRA dataset,
as described in detail by Naz et al. (2020). We compared
ParFlow-CLM SM with the ESSMRA dataset because both
models use identical surface information (topography, soil
and vegetation) and forcing datasets, and any differences in
SM are results of different treatment of groundwater pro-
cesses or of data assimilation. Since ESSMRA data are avail-
able from the year 2000 onward, the comparisons of surface
SM from ParFlow-CLM with ESSMRA and ESA CCI were
made for the simulation period of 2000–2006. As shown in
Fig. 4, ParFlow-CLM shows slightly higher SM than both
ESSMRA and ESA CCI over most parts of Europe (humid
regions) and underestimates SM in the arid southern areas of
the domain. Our comparison of SM simulated by ParFlow-
CLM with CLM3.5-simulated SM without any assimilation
of ESA CCI (not shown here) also shows positive bias over

humid regions. This behavior of the ParFlow-CLM model
was seen by O’Neill et al. (2021) over the CONUS domain
where the model showed higher surface SM over more hu-
mid regions and lower amplitude in the arid southwestern
regions relative to the ESA CCI data product. While we can-
not rule out biases in other fluxes, it is possible that over-
estimation of surface SM simulated by ParFlow-CLM could
be due to the shallow groundwater system which contributes
to the saturation of the deeper soil layers, leading to higher
soil water content. In more humid regions, where soils are,
in general, wetter, the coupling between groundwater and
soil moisture through lateral flow may lead to an overesti-
mation of SM in valleys which may be exacerbated by the
(still) coarse resolution of the model with respect to very lo-
cal hydrologic processes. The influence of resolution on SM
has been shown in previous studies – for example, a 3-D
groundwater-modeling study where the influence of lateral
surface and subsurface flow on SM was more significant at a
finer resolution (i.e., <1 km), particularly in wet areas (Ji et
al., 2017). Furthermore, Fig. 4b shows the comparison of the

Geosci. Model Dev., 16, 1617–1639, 2023 https://doi.org/10.5194/gmd-16-1617-2023



B. S. Naz et al.: Continental-scale evaluation of the ParFlow-CLM hydrologic model 1627

spatial distribution of SM simulated by ParFlow-CLM with
ESA CCI and ESSMRA as violin plots. The spatial distribu-
tions of SM simulated by ParFlow-CLM over PRUDENCE
regions show consistently higher SM than both CLM3.5 and
ESA CCI, except over the IP region, where SM simulated
by ParFlow-CLM is lower than both datasets (Fig. 4b). We
observed that the spread of the distribution of ParFlow-CLM
SM is quite large when compared to both ESSMRA and ESA
CCI in many regions, indicating that higher spatial variabil-
ity is simulated by ParFlow-CLM. To highlight the differ-
ences in spatial variability between the two models (ParFlow-
CLM and CLM3.5), we compared the simulated spatially
distributed surface soil moisture. We found that the spatial
structures simulated by the two models are starkly differ-
ent (Figs. S4 and S5 in the Supplement). CLM3.5 shows
much larger spatial patterns of SM, which are mostly related
to the soil properties (e.g., soil texture information), while
ParFlow-CLM simulates more spatial variability, which can
be attributed to the effects of 3-D flows in river networks and
across topography. Note that both models used identical sur-
face information (topography, soil and vegetation) and forc-
ing datasets, indicating that these differences are explained
by the fine-scale processes (such as surface and subsurface
lateral transport of water movements and the shallow ground-
water system) simulated only by ParFlow-CLM. An example
is shown in the Supplement for January and August months
in 2000 for two regions (Alpine and mid-Europe) with the
ESSMRA dataset (Naz et al., 2020) (See Figs. S4 and S5).

To further evaluate model performance in simulating cli-
mate variability, namely, simulating average, wet and dry pe-
riods, a comparison of monthly time series of SM anomalies
at an aggregated regional scale is undertaken. The SM stan-
dardized monthly anomalies were calculated by subtracting
the long-term mean of the complete time series from each
month and then dividing by the long-term standard deviation
for the period of 2000–2006. Our results show that ParFlow-
CLM agrees well with both ESSMRA and ESA CCI anoma-
lies over the simulation period (Fig. 4c). Upon examination
of the R values for different regions, the results show that the
correlation of ParFlow-CLM with ESSMRA (red) is higher
than with ESA CCI (black) – i.e., R ranging from 0.70 to
0.89 and 0.25 to 0.87 for ESSMRA and ESA CCI, respec-
tively – primarily due to the direct impact of identical forcing
used for both modeling setups. Regionally, ParFlow-CLM-
simulated SM anomalies agree well with both ESSMRA and
ESA CCI for MD, BI, and IP regions (R > 0.8). However, in
the drought year (2003), ESSMRA shows much stronger dry
anomalies than both ParFlow-CLM and ESA CCI (Fig. S6
in the Supplement), suggesting that stronger differences be-
tween the models occur during the dry periods. In addi-
tion, the low value of R (i.e., 0.25) between ParFlow-CLM
and ESA CCI over the Scandinavian region might be due
to higher uncertainties in the ESA CCI product for this re-
gion, which are observed for regions with limited data, dense
vegetation, complex topography and frozen soil (Dorigo et

al., 2017). These results are in agreement with the CONUS
(O’Neill et al., 2021), which showed lower correlation val-
ues for regions with dense vegetation, complex topography,
snow cover and frozen soil due to uncertainties in the ESA
CCI data for areas with such surface conditions.

The simulated seasonal variability of the monthly volu-
metric SM content is further evaluated with in situ observa-
tions. For the time period of 2000–2006, in situ data from the
ISMN network are only available for 41 stations (e.g., Ta-
ble 3 of Naz et al., 2020) in four countries (France, Spain,
Germany and Italy). However, if there is more than one sta-
tion located within a single 3 km grid cell, then the average of
those stations was used, resulting in 19 grid cells for model
evaluation over Europe. This comparison demonstrates that
both the ESSMRA and ParFlow-CLM models at these lo-
cations generally reproduced well the seasonal variability of
the surface SM at most stations. For stations with longer ob-
servational SM data records (such as SM stations in MOL-
RAO in Germany and in the ORACLE network in France),
ParFlow-CLM-simulated SM and measured values show bet-
ter agreement than with the ESSMRA dataset. This might be
related to the fact that ParFlow-CLM is better able to resolve
small-scale features strongly affected by lateral soil water
transport between grid cells and by river network and to-
pography. However, additional in situ observations would be
needed to fully evaluate the spatial heterogeneity in surface
soil moisture. The comparison is shown in Figs. S7–S10 in
the Supplement, which present the monthly time series of the
top 5 cm SM from the ParFlow-CLM simulation, ESSMRA
and in situ observations for 19 grid cells.

3.3 Evapotranspiration evaluation

Figure 5 compares the simulated monthly ET from ParFlow-
CLM with observed ET from 60 eddy covariance tower sta-
tions from the FLUXNET database (Pastorello et al., 2020)
in order to evaluate the model’s ability to capture seasonal
ET dynamics. The ParFlow-CLM model performs well and
shows reasonable consistency for all stations with respect to
monthly ET, with R values greater than 0.6 (Fig. 5a) for all
stations. To better understand the agreement between sea-
sonal dynamics of simulated ET with observations, we com-
pared the cumulative distribution of monthly ET for differ-
ent seasons with observations over all stations in Fig. 5b.
The differences between ParFlow-CLM-simulated ET and
FLUXNET are smaller for winter (DJF), spring (MAM),
and autumn (SON) seasons (on average 0.11, 0.18 and
0.13 mmd−1, respectively) but larger for the summer (JJA)
season (0.39 mmd−1) over most stations.

During the summer season, the positive ET bias might be
due to higher water availability in surface soil for vegeta-
tion transpiration and from the bare-soil evaporation simu-
lated by ParFlow-CLM. Previous studies of ParFlow-CLM
also indicate that, during dry months, ET is more sensitive
to soil resistance parameterization (Jefferson and Maxwell,
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Figure 4. (a) Evaluation of time-averaged surface soil moisture (SM) simulated by ParFlow-CLM with ESSMRA and ESA CCI datasets
over the time period of 2000–2006. (b) Violin plots showing comparison of spatial distribution of time-averaged surface SM simulated
by ParFlow-CLM with ESSMRA (upper plot) and ESA CCI (lower plot) over PRUDENCE regions. The violin plots show the estimated
kernel density distribution, as well as the median, lower and upper quartiles (white lines). (c) Comparison of spatially aggregated surface
SM monthly anomalies estimated by ParFlow-CLM with ESSMRA and ESA CCI datasets for PRUDENCE regions. The SM standardized
monthly anomalies in (c) were calculated by subtracting the long-term mean of the complete time series from each month and then dividing
by long-term standard deviation for the simulation period of 2000–2006.

2015) and may overestimate ground evaporation when the
ground temperatures are higher. Kollet (2009) showed that
soil heterogeneities have greater influence on latent heat flux
in the ParFlow-CLM model during dry months, and any bias
in the soil hydrologic properties such as soil texture, which
also determines the hydraulic conductivity values, will likely
contribute to ET biases in summer months. Moreover, ET
biases can also be attributed to biases in meteorological forc-
ing such as wind speed and vapor pressure. Nevertheless,
for most of the stations, the positive bias is relatively small
(i.e., +0.39 mmd−1 in summer), and we expect that biases
in the soil hydrologic properties and/or in the meteorolog-
ical forcing are low and do not contribute to any large er-
rors in ET, especially at these locations. While ParFlow-CLM
shows acceptable performance for all stations, the relatively

small number of stations limits a comprehensive evaluation
of model performance over the study domain. Therefore,
ParFlow-CLM performance in simulating the spatial vari-
ation in ET is further evaluated with the remotely sensed
derived GLASS and reanalysis GLEAM datasets. The spa-
tially distributed ET simulated by ParFlow-CLM and its dif-
ference compared to both GLASS- and GLEAM-estimated
ET are shown in Fig. 6. The ParFlow-CLM-simulated ET is
lower than both GLASS and GLEAM ET over most areas
in the EURO-CORDEX domain. However, the difference is
smaller between ParFlow-CLM and GLEAM ET (i.e., av-
erage difference is −0.09 mmd−1) than between ParFlow-
CLM and the GLASS ET (i.e., the average difference is about
−0.30 mmd−1) over the study domain.
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Figure 5. Evaluation of ParFlow-CLM-simulated monthly evapotranspiration (ET) with ground-based observations from 60 eddy covariance
FLUXNET stations. (b) Comparison of cumulative distribution of seasonal ET estimated by ParFlow-CLM with FLUXNET stations.

Despite the differences in spatial patterns, the time series
of spatially aggregated ET simulated by ParFlow-CLM over
PRUDENCE regions is highly correlated with both GLASS
(black) and GLEAM (red) datasets (R > 0.9), as shown in
Fig. 5b. The main differences in ET are mostly detected
in summer, where GLASS-estimated ET is larger than both
GLEAM- and ParFlow-CLM-simulated ET (Table S3 in the
Supplement). But the fact that GLASS has large positive bias
over summer when compared with FLUXNET data (Fig. S11
in the Supplement) suggests that GLASS ET data have rel-
atively large uncertainties (Liang et al., 2021). We also note
relatively large negative differences upon examination of the
GLEAM dataset in areas of complex topography, which may
be partly caused by the downscaling of GLEAM data from a
coarse spatial resolution (0.25◦).

3.4 Terrestrial water storage and water table depth
evaluation

To assess model performance in simulating terrestrial wa-
ter storage variations, we compared ParFlow-CLM total wa-
ter storage (TWS) anomalies against GRACE monthly stor-
age anomalies. For the comparison, the TWS anomalies over
all storage components (i.e., sum of all surface, subsurface,
canopy and snow water stores) from ParFlow-CLM were first
calculated for each pixel and then aggregated over PRU-
DENCE regions. Figure 7 shows the monthly variations in
TWS anomaly from both the model and GRACE dataset
over eight PRUDENCE regions. Overall, the ParFlow-CLM

model represents TWS anomaly adequately well, and a good
agreement is achieved for most regions, with correlation val-
ues ranging from 0.76–0.91, with higher values being ob-
served in dry regions (i.e., R value of 0.87, 0.85, and 0.91
for IP, FR, and MD, respectively). A relatively lower R is ob-
served in the northern European regions (i.e., R value of 0.74
and 0.76 for BI and SC, respectively). This mismatch could
be the result of bias in other simulated variables. For exam-
ple, ParFlow-CLM underestimates SM anomaly and over-
estimates ET in the dry regions but overestimates SWE in
the snow-dominated regions, as discussed previously. Addi-
tionally, the mismatch in TWS anomalies relative to GRACE
data can also be partly attributed to uncertainties and errors
associated with post-processing and filtering of the coarse-
resolution GRACE dataset. Nevertheless, the model perfor-
mance for TWS over Europe is consistent with findings
of other continental-scale hydrologic model studies (e.g.,
Rakovec et al., 2016; O’Neill et al., 2021).

Furthermore, the ability of ParFlow-CLM to accurately
reproduce water table dynamics is evaluated by comparing
the simulated WTD anomalies for 2738 grid cells where
groundwater-monitoring wells were located. As previously
noted, the reference surface elevations provided with the
groundwater observational data were not consistent across
regions, which makes it difficult to derive the absolute val-
ues of WTD for comparison with the model-simulated WTD.
Therefore, standardized anomalies were calculated from ob-
served groundwater data in order to reduce errors related to
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Figure 6. (a) Evaluation of time-averaged surface evapotranspiration (ET) simulated by ParFlow-CLM with GLEAM and GLASS datasets
over the time period of 1997–2006. (b) Comparison of spatially aggregated monthly ET estimated by ParFlow-CLM with GLEAM and
GLASS datasets over PRUDENCE regions (black boxes in a). R values in red color show the correlation of ParFlow-CLM with GLEAM,
and R values in black color represent the correlation between ParFlow-CLM and GLASS dataset.

inconsistencies in the observations. Figure 8 shows the tem-
poral correlation coefficients between the monthly time se-
ries of WTD anomalies from ParFlow-CLM and observa-
tions over Europe. Overall, the ParFlow-CLM model appro-
priately captures the seasonal cycles with R values above
zero for 80 % of locations and 20 % showing satisfactory
performance with R > 0.5 (inset Fig. 8b). The performance
of ParFlow-CLM in simulating WTD anomalies also varies
across PRUDENCE regions, with an average R value rang-
ing between 0.21 to 0.34 (Fig. S12 in the Supplement). As an
example of ParFlow-CLM performance with the highest and
lowest R values across different regions, we showed the time
series comparison of selected individual stations (Figs. S13
and S14 in the Supplement). This comparison indicates that
the weaker correlations in WTD anomalies by ParFlow-CLM

for some locations are related to fewer fluctuations in the ob-
served WTD anomalies in ParFlow-CLM. These discrepan-
cies might be related to uncertainties in aquifer parameteriza-
tion used in the ParFlow-CLM or to limitations in model res-
olution such that local aquifers in areas with complex topog-
raphy cannot be captured. Additionally, model evaluation can
be hampered by the challenges associated with groundwater
monitoring (e.g., Gleeson et al., 2021). For example, the ob-
servations might be biased if they are located towards rivers,
in low elevations, in areas with confined or perched aquifer
systems, or in coastal areas. The comparison of the resolved
simulated head, averaged across 3 km, with the point-scale
observation head, which is highly governed by local surface
elevation, can bring about misleading results and amplify in-
accuracies. Water table depth observations can also be im-
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Figure 7. Comparison of monthly time series of total water storage anomalies simulated by ParFlow-CLM with GRACE dataset over
PRUDENCE regions.

pacted by pumping, which may not be known for many loca-
tions and is not captured in the model setup.

To further evaluate model performance in terms of ab-
solute error in the WTD, we compared the model and ob-
servations for only those grid cells (720) where complete
WTD data are provided and excluded all the other loca-
tions. WTD bias for the 720 locations is shown in Fig. 9.
For these locations, we found a good agreement between the
ParFlow-CLM and observed WTD, with a mean difference
of −3.60 m, RMSE of 4.25 m and R value of 0.41. The 25th,
50th and 75th quantiles for simulated minus observed WTD
are −2.6, −1.37 and −0.84 m, respectively. Negative values
in WTD difference indicate shallower WTD simulated by
ParFlow-CLM (i.e., positive bias). However, despite this pos-
itive bias, the model is able to capture the temporal dynamics
well, with R > 0.5 for more than 50 % of locations. Stud-
ies by O’Neill et al. (2021) and Maxwell and Condon (2016)
over the CONUS domain also found a positive bias in simu-
lated WTD for most well locations, which they found to co-
incide with aquifers which experienced depletion in ground-
water through extractions. In Europe, a few studies also sug-
gest a groundwater decline in past 2 decades, partly related
to groundwater abstractions for agriculture and domestic use,
particularly in the western and southern European countries
(e.g., Xanke and Liesch, 2022); however, in the current study,

it is difficult to directly attribute the shallow WTD bias to
aquifer depletion because of the sparse observations.

4 Summary and conclusions

In a changing climate, there is a growing need to apply
physically based, fully distributed models at higher resolu-
tion over large domains and for long timescales for water
security, adaptation and resilience purposes. This study per-
forms an extensive evaluation of a pan-European ParFlow-
CLM model to investigate its accuracy and reliability in re-
producing high-resolution hydrological states and fluxes over
Europe at multiple spatial and temporal scales using a wide
range of in situ measurements and remotely sensed obser-
vations. While this study was focused mainly on evaluat-
ing model performance over a pan-European model domain,
it highlights both strengths and limits of the modeling ap-
proach, as well as the feasibility of implementing physically
based models over a large domain in comparison to simpli-
fied models that are more commonly used. For an evaluation
period of 10 years, we assess biases in analyzed hydrological
variables associated with model inputs, model structure, or
observations used for model evaluation, accounting for cli-
mate variability and different climate characteristics.
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Figure 8. (a) Correlation map between in situ water table depth
(WTD) anomalies and ParFlow-CLM model. (b) Cumulative distri-
bution function (CDF) of correlation coefficient of ParFlow-CLM
with observed WTD anomalies. The inset in (a) shows a zoom of
the mid-Europe (ME) region.

Overall, the model was able to realistically capture the
hydrologic behavior (spatial distributions, temporal dynam-
ics, ranges) of different hydrologic variables with reason-
able accuracy, as assessed by correlation, relative bias, and
Kling–Gupta efficiency metrics. Considering the ParFlow-
CLM model was not calibrated for streamflow, the model
shows good agreement in simulating river discharge for 176
river basins across Europe (0.24<R < 0.93; KGE’> 0.5
for 30 % of river basins). Although simulated high flows are
comparable with observed discharge, low flows are predom-
inately underestimated. Regionally, the model shows better
performance for stream gauges located in central Europe and
in the British Isles than for those in northern regions. Our
results show that streamflow performance deteriorates in the
snow-dominated regions and for highly regulated river basins
(e.g., Rhine and Danube river basins). Despite the model’s
poor performance in simulating discharge for some stations
over Europe (especially low flows), the ParFlow-CLM model
shows relatively good performance for other variables such
as SM, ET and groundwater storage when compared with
in situ and remote sensing observations. Overall, the model
shows the best agreement, with median R of 0.94 and 0.91,
for ET against FLUXNET eddy covariance observations and
GLEAM and GLASS datasets, respectively. We found satis-
factory performance for other variables, with R values rang-
ing between 0.76 and 0.91 for TWS anomalies relative to
the GRACE dataset over PRUDENCE regions, median R of

0.70 for SM relative to ESA CCI, and median R of 0.50 for
WTD anomalies relative to groundwater well observations.
However, our analysis shows several differences when spatial
comparisons were conducted with remotely sensed and re-
analysis data products. ParFlow-CLM simulates higher sur-
face SM in comparison to ESA CCI data but shows small
differences for ET relative to the GLEAM dataset. It is im-
portant to note here that these products are susceptible to er-
rors, which makes the spatial comparisons more challenging.
However, when aggregated at the regional scale, ParFlow-
CLM shows good agreement for SM, ET, and TWS for semi-
arid to arid regions (such as IP, FR, and MD) but shows rela-
tively weak correlations for cold and wetter regions (i.e., BI,
ME, SC, and AL). This also suggests that groundwater and
lateral surface and subsurface flow maintain wetter soils in
arid regions or during dry seasons, thus improving SM, ET,
and TWS patterns.

Our results are consistent with a comparable continental-
scale study by O’Neill et al. (2021) which evaluated wa-
ter balance components over the CONUS domain using
ParFlow-CLM (PfCONUSv1). While a direct quantitative
comparison is not possible due to different domains, reso-
lutions and climatic conditions, we found striking similari-
ties for many variables assessed here. For example, for ET,
both model implementations showed overall good agreement
against observations but overpredicted ET in the dry regions
(e.g., southwest region in CONUS and IP region in Europe)
and underpredicted ET in wetter and snow-dominated re-
gions (i.e., in the northern and eastern parts of the CONUS
domain and in the SC region in Europe). In addition, both
model implementations show an underestimation of ET in
mountainous regions, regardless of which product is used
for validation. Similarly, for surface soil moisture, both the
EU-CORDEX and PfCONUSv1 setups show similar perfor-
mance, with Spearman correlation (R) values between 0.17–
0.77 and 0.25–0.77, respectively, across different regions. In-
terestingly, both model implementations show an underesti-
mation of surface SM in the arid regions and an overesti-
mation in wetter regions. In terms of storage, both imple-
mentations show good agreement for seasonal TWS anoma-
lies relative to GRACE satellite data, but overall, they un-
derpredicted water storage in most areas. For WTD compar-
ison, both model implementations simulated shallower water
table depths when compared with groundwater wells data,
which could be attributed to the fact that the ParFlow-CLM
model does not account for anthropogenic impacts such as
groundwater withdrawals, which may lead to overprediction
of water table depth in the regions experiencing aquifer de-
pletion (Condon and Maxwell, 2019b). In terms of observa-
tion coverage, the CONUS domain consists of a single coun-
try and has consistently good coverage. Given that the Eu-
ropean model domain consists of many individual countries,
observations across regions are not all of the same quality
or coverage, which could be a contributing factor for poor
model performance in some regions of the EU-CORDEX do-
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Figure 9. (a) Difference in observed and ParFlow-CLM-simulated WTD at filtered locations (N = 720), (b) RMSE values at filtered locations
and (c) Spearman correlation (R) values at selected locations. Histogram plots show the distribution of (d) simulated minus observed WTD
and (e) RMSE values. (f) Cumulative distribution function (CDF) of Spearman correlation of ParFlow-CLM with observed WTD data.

main. Nevertheless, the rigorous evaluation of the ParFlow-
CLM model over both the EU-CORDEX and CONUS do-
mains paves the way towards a global application of fully
distributed, physically based hydrologic models. The proto-
col of evaluation metrics and methods presented in this study
and in O’Neill et al. (2021) can be used as a framework to
benchmark future ParFlow-CLM model implementations to
further improve model simulations in the areas that have been
identified in these studies. For models such as the ParFlow-
CLM integrated hydrologic model, which are more complex
and therefore more computationally expensive than land sur-
face models or lumped hydrologic models and thus typically
not calibrated, quantifying uncertainties in hydrology model
simulations is important for further applications such as fore-
casts or projections.

While this is the first study to provide 10 years of hydro-
logical simulations at 3 km resolution over Europe using a
fully distributed ParFlow-CLM model with lateral ground-
water flow representation, some inevitable limitations in the
model implementation of this study should be noted. First,
uncertainties in the static input data (such as hydrogeolog-
ical information, land cover and soil information) can con-
tribute to errors in the model. While we use the best avail-
able consistent datasets as a whole for Europe (and globally

as well), in this study, we did not analyze the contribution of
errors in hydrological variables that come from uncertainties
in the model input datasets. As the quality of these inputs
increases, so too will the simulations. Similarly, while the
meteorological forcings used in this study (COSMO-REA6)
are produced through the assimilation of observational mete-
orological data, the quality of the data in some data-sparse
regions (e.g., in eastern Europe) may suffer from inaccu-
racies. The COSMO-REA6 is, to our knowledge, the only
high-resolution reanalysis dataset for all of Europe available
as of today. Our comparison of simulated SWE with RS ob-
servations reveals an overprediction of SWE in the eastern
regions, which is more likely to be related to the uncertainties
in forcing datasets or model structure errors in simulating the
snow and energy balance. Using an ensemble atmospheric
forcing dataset would be highly desirable, albeit computa-
tionally expensive.

Second, in this study, we did not address the uncertain-
ties in the model parameters that are required for model sim-
ulations, such as hydraulic conductivity, porosity, and soil
and vegetation parameters, which may introduce biases in
our results. Because of the associated computational cost of
ParFlow-CLM, studies of the sensitivity of water balance
variables to these parameters are difficult. With the ongoing
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model developments and collaborative efforts to improve the
computational efficiency of ParFlow with its GPU version
(e.g., Hokkanen et al., 2021) and ensemble-based sensitiv-
ity analysis tools (e.g., Friedemann and Raffin, 2022), it will
be possible in the future to also conduct continental-scale
ensemble-based sensitivity analyses for quantifying model
parameter uncertainties.

In this study, comparison with observations to evalu-
ate the ParFlow-CLM model’s performance provides first-
order confidence of the model’s ability to realistically sim-
ulate multiple hydro-climates, along with climate variability,
across multiple water balance components in a pan-European
domain. The results from this study can also be used as a
baseline for future ParFlow-CLM implementations over Eu-
rope. Future work will consist of extending the dataset out
to recent years, which will allow us to evaluate model out-
puts with more recent high-resolution RS products. Further
research should also focus on inter-model comparison analy-
sis of a coarser-resolution implementation of ParFlow-CLM
or other land surface models without lateral flow for further
tuning of the model parameters or to identify sources of un-
certainties in model outputs related to the effects of ground-
water and surface water lateral flow.

Code and data availability. The latest version of the open-source
ParFlow-CLM is freely available on GitHub at https://github.com/
parflow/parflow.git (last access: 30 June 2022). The ParFlow-
CLM version 3.6 used in this study is archived on Zen-
odo at https://doi.org/10.5281/zenodo.4639761 (Smith et al.,
2019). The model outputs, which are approximately 20 TB of
data (including atmospheric forcings and post-processed out-
puts), are available upon request. Selected model outputs are
available at https://doi.org/10.5281/zenodo.7716900 (Naz, 2023).
The run control framework used in this study is archived at
https://doi.org/10.5281/zenodo.1303424 (Sharples, 2018).
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