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Abstract. Climate change threatens our ability to grow food
for an ever-increasing population. There is a need for high-
quality soil moisture predictions in under-monitored regions
like Africa. However, it is unclear if soil moisture processes
are globally similar enough to allow our models trained
on available in situ data to maintain accuracy in unmoni-
tored regions. We present a multitask long short-term mem-
ory (LSTM) model that learns simultaneously from global
satellite-based data and in situ soil moisture data. This model
is evaluated in both random spatial holdout mode and conti-
nental holdout mode (trained on some continents, tested on
a different one). The model compared favorably to current
land surface models, satellite products, and a candidate ma-
chine learning model, reaching a global median correlation
of 0.792 for the random spatial holdout test. It behaved sur-
prisingly well in Africa and Australia, showing high corre-
lation even when we excluded their sites from the training
set, but it performed relatively poorly in Alaska where rapid
changes are occurring. In all but one continent (Asia), the
multitask model in the worst-case scenario test performed
better than the soil moisture active passive (SMAP) 9 km
product. Factorial analysis has shown that the LSTM model’s
accuracy varies with terrain aspect, resulting in lower per-
formance for dry and south-facing slopes or wet and north-
facing slopes. This knowledge helps us apply the model
while understanding its limitations. This model is being inte-
grated into an operational agricultural assistance application
which currently provides information to 13 million African
farmers.

1 Background

Soil moisture is a critical variable that influences a num-
ber of natural disasters. As a result, widely available, high-
quality soil moisture products can be vital for regions that
need aid. Too much soil moisture can prime the landscape for
floods (Norbiato et al., 2008), and too little of it for too long
can damage or kill crops and native vegetation (Narasimhan
and Srinivasan, 2005; Sheffield and Wood, 2008). Moreover,
many insect pests lay eggs in soils with certain soil mois-
ture conditions – for example, locusts prefer to lay their eggs
in sandy, wet soils (Hunter-Jones, 1964). In the year 2020,
disastrous locust swarms terrorized large swaths of eastern
Africa and Southeast Asia (Baraniuk, 2020; UN WFP, 2020).
The knowledge of soil moisture levels can be critical in
planning pest control activities, as the immature stages are
the best targets for effective control (Ellenburg et al., 2021;
Nuwer, 2021). Besides insect pests, pathogenic fungi and
bacteria can be heavily influenced by soil moisture, result-
ing in crop losses. In all of these cases, soil moisture products
can be highly valuable in reducing both current and emerging
threats to crops. Finally, the current global crisis in fertilizer
availability following the ongoing war in Europe (Bentley et
al., 2022) necessitates strategies that increase the efficient use
of fertilizer, for which a precise understanding of soil mois-
ture is critical because water availability in the soil affects
both plant uptake of fertilizer and fertilizer loss.

Soil moisture is monitored globally by a number of satel-
lite missions and is simulated globally by multiple land sur-
face hydrologic models, but these products have their respec-
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tive limitations. Satellite missions like Soil Moisture Active
Passive (SMAP) (Entekhabi, 2010) and Soil Moisture and
Ocean Salinity (SMOS) (Kerr et al., 2010) have limited spa-
tial resolution and accuracy. When evaluated in comparison
to in situ data, especially on sparsely instrumented sites that
are outside of the missions’ core calibration and validation
sites, their error can be high (Al-Yaari et al., 2017) (also
demonstrated later in this work). Land surface models can
also produce decent simulations with seamless spatiotempo-
ral coverage (Albergel et al., 2018; Beaudoing and Rodell,
2019; Yang et al., 2011), but they may not be fully exploit-
ing available information, as evidenced by the better perfor-
mance produced by machine learning models where data are
available (Liu et al., 2022a; O and Orth, 2021). Both satellite
and model products may also have a large bias compared to
in situ data.

Recently, we developed a multiscale time series deep
learning (DL) model that learns simultaneously from satellite
and in situ data and can substantially outperform satellite-
based products, a model trained on in situ data alone, and
traditional land surface model simulations (Liu et al., 2022a).
In a spatial cross-validation test (trained on some sites and
tested on others), the multiscale DL model obtained a me-
dian correlation (R) of 0.901 when evaluated by the sparse
soil moisture network over the conterminous United States
(CONUS), comparing favorably to the SMAP 9 km product’s
R value of 0.762 and the Noah model’s R value of 0.761,
and it had minor bias. This work suggested that many pre-
vious simulations have not fully leveraged the available in-
formation. In addition, it demonstrated that multiple sources
of datasets may each constrain certain aspects of a network
and train models that outperform each one of its supervising
datasets; i.e., learning from two teachers can be better than
one. This multiscale approach can overcome the limitations
with each single dataset.

However, it is uncertain if the robust model performance
from deep networks in the data-dense CONUS can gener-
alize well to other regions in the world where hydrological
variables are of interest due to potential natural disasters.
Typically, the performance of all kinds of models declines
somewhat when applied to neighboring untrained sites (as
in a random holdout test) and then declines more substan-
tially when applied in a large region without training data
(Feng et al., 2021; Gauch et al., 2021; Hrachowitz et al.,
2013). Sequence-to-sequence deep networks like long short-
term memory (LSTM) (Hochreiter and Schmidhuber, 1997)
can give us high predictive performance in a range of hy-
drologic tasks (Fang et al., 2017, 2019; Feng et al., 2020;
Kratzert et al., 2019; Meyal et al., 2020; Rahmani et al.,
2021b; Shen, 2018; Zhi et al., 2021) because they do not
have rigid model structures and can absorb information more
exhaustively from big data. Their functional behaviors are
completely shaped by data, and thus they can be exempt
from many errors in previous models’ assumptions. On the
flip side, in data-sparse regions, there is a chance that such a

strength could potentially become a weakness. In Africa es-
pecially, there are very few in situ sites to constrain a model.
Recent work has trained LSTM-based global soil moisture
models completely on in situ sites, for example, the SoMo.ml
model (O and Orth, 2021), but this only learns from in situ
locations. It was not clear if optimality had been reached by
such models or if a multitask model learning from both satel-
lite and in situ data could provide further advantages.

Regarding the potential for data-driven models in data-
scarce regions, there are two competing hypotheses. The op-
timistic hypothesis is that surface soil moisture dynamics are
relatively simple to grasp (compared to the streamflow pre-
diction problem), quite uniform around the world, and well
described by available surface characterization datasets (soil
texture); as a result, the hundreds of publicly available sites
can thoroughly train a DL model that generalizes well in
space. The more pessimistic hypothesis is that the quality of
available inputs, e.g., soil texture, is low, meaning that the
number of sites in the world is far from being sufficient to
train a global-scale DL soil moisture model. Confirming one
hypothesis or the other not only influences how we choose a
model but may also alter our understanding about the com-
plexity of the soil moisture prediction problem.

Given that we would like to have a high-quality product
in data-sparse regions like Africa, we asked three research
questions regarding not only the performance of a global-
scale LSTM-based soil moisture model but also the nature of
the soil moisture dynamics:

1. How well can a LSTM-based soil moisture model per-
form on the global scale for untrained sites in compar-
ison to existing satellite-based and model-based prod-
ucts?

2. How well can such a model generalize to highly data-
sparse regions; e.g., in an entire continent without data,
are soil moisture processes homogeneous enough to
permit cross-continental model applications?

3. What factors control the success or failure of such a
model; i.e., can we predict, a priori, if this model can
be successful?

We developed and trained a multitask LSTM-based model
that learns simultaneously from both satellite and in situ data.
We tested the model in random holdout and cross-continental
experiments to learn its strengths and weaknesses. We then
used a stratified analysis to diagnose where the model would
likely be successful or challenged. In the end, we produced
a globally operational surface soil moisture product that can
be leveraged by non-profit organizations at 9 km resolution.

Geosci. Model Dev., 16, 1553–1567, 2023 https://doi.org/10.5194/gmd-16-1553-2023



J. Liu et al.: Evaluating a global soil moisture dataset from a multitask model 1555

2 Data and methods

2.1 The multitask LSTM model

The multitask model based on the long short-term memory
(LSTM) algorithm can be described succinctly as follows:

y = LSTM(x,A) (1)

L= RMSE(y,ys)+RMSE(y,yin), (2)

where y represents simulated soil moisture, x represents dy-
namic atmospheric forcings, and A represents static land-
scape attributes. L is the loss function the model tries to min-
imize, which is based on root-mean-square error (RMSE). ys

represents satellite-based soil moisture products (SMAP L3,
9 km resolution), and yin represents in situ data (from the In-
ternational Soil Moisture Network, ISMN). This model does
not use recent observations and is thus suitable for long-term
simulations or trend predictions but could be enhanced for
short-term forecasting via data assimilation or data integra-
tion (Fang and Shen, 2020; Feng et al., 2020). This multi-
task loss function means that the simulations will attempt
to respect both in situ data and satellite data. Since LSTM
has been described extensively in previous work (Fang et
al., 2019; Feng et al., 2020; Liu et al., 2022a), we omit its
mathematical descriptions here for brevity. Here, because we
are now applying it on a global scale, we chose this multi-
task scheme over our previous multiscale scheme (Liu et al.,
2022a), which aggregates many fine-resolution grid cells to
match a coarse-resolution grid cell to reduce computational
demand. To avoid over-tuning the hyperparameters, we in-
herited most of the parameters from our multi-scale model.
Our final parameters were as follows: a mini-batch size of
128, a hidden-state size of 256, a dropout rate of 0.5, an
epoch length of 100, and a sequence length (rho) of 365 d.

2.2 The input and training datasets

We used the SMAP Enhanced L3 Radiometer Global and
Polar Grid Daily 9 km EASE-Grid Soil Moisture version 5
(SPL3SMP_E) product (O’Neill et al., 2021) as our satellite
target and the International Soil Moisture Network (ISMN)
product as our in situ target (Dorigo et al., 2011, 2013).
The input data include 18 different meteorological forcings
and 17 different static attributes. We obtained daily leaf
area index (LAI), soil temperature, and surface pressure,
among other variables (Table S1 in the Supplement), from the
ECMWF Reanalysis v5 (ERA5) (Muñoz Sabater, 2019). We
tried multiple sources of precipitation data, including Multi-
Source Weighted-Ensemble Precipitation (MSWEP) (Beck
et al., 2019), Global Precipitation Measurement (GPM)
(Huffman et al., 2019), and ERA5 precipitation data. Our
preliminary results suggested that, in terms of the correla-
tions of the resulting models, we had the following order:
MSWEP+GPM+ERA5≈MSWEP>GPM>ERA5. Thus, to
allow the model to fully absorb the precipitation information,

we include all of MSWEP, GPM, and ERA5 in the input data.
Albedo data included black-sky albedo and white-sky albedo
from the Moderate Resolution Imaging Spectroradiometer
(MODIS) MCD43A3 version 6 (Schaaf and Wang, 2021).
The Land Surface Temperature (LST) dataset includes LST
day and LST night data from MODIS Land Surface Temper-
ature/Emissivity Daily (MYD11A1) version 6.1 (Wan et al.,
2021).

Static terrain attributes included slope, aspect, plane cur-
vature (pcurv), elevation, and roughness from the global 1, 5,
10, and 100 km topography database (Amatulli et al., 2018),
and we changed their resolution from 10 to 9 km using the
bilinear interpolation method. Aspect was determined using
the aspect cosine, which is > 0 for north-facing slopes and
< 0 for south-facing slopes in the Northern Hemisphere. We
further multiplied the aspect cosine in the Southern Hemi-
sphere by −1 to reflect the Sun’s position. Soil physio-
graphic attributes included sand, clay, and silt fractions and
bulk density from the Harmonized World Soil Database v1.2
(HWSD) (FAO et al., 2012; Fischer et al., 2008). Other at-
tributes, including land cover (ESA, 2017) and normalized
difference vegetation index (NDVI; Didan, 2015), were de-
rived from several satellite products. We averaged all NDVI
data from 1 April 2015 to 31 March 2022 to obtain multi-
ple years of static NDVI data and resampled the data to 9 km
using bilinear interpolation. To perform factorial importance
analysis, we also calculated long-term averages of daily LST,
albedo, LST, and SMAP data and used them along with other
static attributes as inputs in the LSTM model and random for-
est model (using R of the tests as the target, and removing du-
plication caused by multi-year average values). All attributes
and their sources are listed in Table S1 in the Supplement.

To train the model and evaluate its performance, we used
soil moisture measurements (m3 m−3) from the International
Soil Moisture Network (ISMN) (Table S2). The ISMN is
an international collaboration where soil moisture measure-
ments are collected from dozens of soil moisture networks
across the world. We selected site data from ISMN with
∼ 5 cm depth and aggregated the hourly data into daily data.
We used a total of 1317 sites, located across Africa (18),
Asia (115), Europe (129), the CONUS (969), Alaska (44),
and Australia (19). The remaining sites are distributed across
some islands. Based on the site clustering in Africa, we di-
vided the data for Africa into northern Africa and southern
Africa according to latitudes 1.8 to 19.3 and−38.9 to−22.0,
respectively.

2.3 The models and products for comparisons

We compared the results with a wealth of data products and
algorithms to put the proposed method into context. These
include the SMAP-L3 enhanced 9 km product (O’Neill et al.,
2021), the SMOS-L3 product (Al Bitar et al., 2017; Support
CATDS, 2022), the LPRM_AMSR2_DS_ A_SOILM3 prod-
uct (de Jeu and Owe, 2013; Owe et al., 2008), the NOAH025
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(10 cm depth) model from the Global Land Data Assimila-
tion System (GLDAS) (Beaudoing and Rodell, 2019; Rodell
et al., 2004), and another machine learning model, SoMo.ml
(O and Orth, 2021). SMAP-L3 and SMOS-L3 are the low-
frequency-pass microwave products that provide a compos-
ite of daily estimates of global land surface soil moisture re-
trieved by the L band at 9 and 25 km resolution, respectively.
LPRM_AMSR2_ DS_ A_SOILM3 (denoted as AMSR2) is
a high-frequency-pass microwave product, and we used the
X-band data to estimate global soil moisture (de Jeu and
Owe, 2013; Owe et al., 2008). GLDAS_NOAH025 integrates
ground-based observation data and satellite data to drive land
surface models to estimate hydrologic variables including
soil moisture. It is to be noted that SMAP and GLDAS prod-
ucts were not optimized to match the sparse in situ networks,
meaning that this comparison is not entirely fair, but they
were shown to provide context.

Another machine-learning-based model, SoMo.ml, ob-
tained by an LSTM model trained solely on global in situ
networks (O and Orth, 2021), has been evaluated on global
in situ networks using the spatial cross-validation method.
Notably, the SoMo.ml product provides soil moisture esti-
mation from 0–10 cm depth rather than 0–5 cm depth. Its fi-
nal product was obtained by retraining the model using all
available sites and times rather than by using spatial cross-
validation (spatial cross-validation is regarded as a more rig-
orous test, so this comparison puts our model at a disadvan-
tage). The SoMo.ml model also differs from the multitask
model as it uses different input data, only in situ data in cal-
culating the loss function, and a sequence-to-one structure.
Despite these differences, we still think a best effort at com-
parison could be useful to the community. The model per-
formance under different experiments is compared with the
ISMN in situ data, while the final product input and output
data are both global 9 km grid data. All of the comparison
datasets and results are listed in Tables S3 and S4, respec-
tively. We also resampled the model’s input data and the other
products to retrain a new model. They were compared at the
same resolution of 0.25◦. The model’s performance dropped
slightly, but the results supported the same conclusions as the
9 km resolution (Table S5).

2.4 The experiments

To understand the model’s performance for short-distance
spatial interpolation, we ran random 5-fold cross-validation
for random spatial tests. To understand performance for long-
distance spatial extrapolation, we slightly modified this pro-
cedure and ran cross-continental tests. We also ran a 7-fold
cross-validation experiment. However, there was no signif-
icant difference in their results. To save computational re-
sources, we showed the results from the 5-fold experiments.
We randomly separated the in situ and satellite data into five
groups. In each round, we used four of the five groups to
train the multitask model and used the remaining one for

testing. We repeated this for a total of five rounds so that
each point was tested. In the cross-continental test, we di-
vided the global data into seven large regions. In each round,
we kept one region’s data as the test set and used the rest as
the training dataset. We repeated this process seven times so
that each region was treated as the test region once. Both the
spatial training and test periods were from 1 April 2015 to
31 December 2020. We also ran temporal tests, for which the
training period was from 1 April 2016 to 31 December 2020,
and the test period was from 1 April 2015 to 31 March 2016.

2.5 Analysis of controls of model performance

We used a stratified analysis to explain which variables may
have had control over the model’s performance. We first
trained a random forest model from the scikit-learn library
(Pedregosa et al., 2011) in order to identify the first few
important factors influencing correlation (R) of the LSTM
model in these experiments. A random forest (RF) model is
a classification and regression algorithm consisting of many
decision trees that use bagging and randomness of features
to create a series of decision trees. It is suitable for nonlinear
data and reduces the risk of overfitting. Briefly, RF uses a col-
lection of decision trees to predict the R values. At the nodes
of each tree, the data are split into two bins to minimize the
variance of the bins after the split. Therefore, we could cal-
culate the average contribution of each factor to the reduction
in variance and then obtain the ranking of importance. Note
that the importance ranking is not about factor A being im-
portant for predicting soil moisture, but rather whether there
are certain ranges of a factor, or joint ranges of multiple fac-
tors, where the model behaves more poorly than other ranges.
From the importance results, we chose two importance fac-
tors and plotted R as a function of these factors to explore
and interpret how they controlled model performance. The
goals were to gain a physical interpretation of why the model
sometimes produced lower-quality outputs and offer some
possible guidance about when to be more cautious in rely-
ing on model results.

2.6 Evaluation metrics

The metrics used to evaluate the multitask model’s per-
formance include Pearson’s correlation coefficient (Corr),
bias, root-mean-square error (RMSE), and unbiased RMSE
(ubRMSE), in which RMSE is calculated after bias is re-
moved. These metrics are the median value of all satellite
grids and in situ measurements. When we calculated these
metrics, we removed the observed and predicted data when
there was a “nan” value (not a number; an error) in the ob-
servation.
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3 Results and discussion

3.1 Error types and temporal tests

Before we dive into the results, we first need to discuss sev-
eral error types so it is easier to interpret the results. We can
roughly separate soil moisture modeling errors into multiple
components: (i) climatic forcing errors, (ii) training data lim-
itations and nonstationarity (e.g., the model being unable to
learn the correct response to drastic changes that have never
been seen before), (iii) errors due to uncaptured spatial het-
erogeneity in soil properties, and (iv) model training errors
(i.e., overfitting or underfitting to the training data resulting
in mismatches for the testing data). Among these, compo-
nents (i) and (ii) are likely to manifest as errors in the tempo-
ral tests. Component (ii) especially appears as large temporal
test errors when compared to the spatial test errors, which
would indicate strong nonstationarity. Components (ii) and
(iii) can both be reduced when there are more numerous or
more accurate training data. Component (iii) appears as a
large error in the spatial test, indicating either that the avail-
able soil property data are not accurate or diverse enough to
reflect the impacts of soil texture or that there are local hydro-
logic processes, e.g., riverine inundation or irrigation, that are
unknown to the LSTM (not contained in the inputs). Com-
ponent (iii) will also modestly decrease as data density in-
creases (as training sites inherently become closer together)
but typically cannot be removed entirely. Component (iv) ap-
pears as a large difference between training and testing met-
rics. It is worthwhile to note that LSTM models typically (al-
though not always) perform better for each site when given
data from more numerous or more diverse sites due to a “data
synergy” effect (Fang et al., 2022).

The temporal tests (trained on some sites in one time pe-
riod and tested on the same sites in another time period),
which are used to establish a reference performance level,
showed a strong ability for LSTM to capture soil moisture
dynamics around the world, posting a global median corre-
lation (R) of 0.837 (Table 1a and the sky-blue box, Multi-
task_temporal, in Figs. 1 and 2). Because LSTM has learned
from the history of the sites, these test-region-aggregated
temporal test metrics are normally higher than spatial tests
(except for Alaska, which is to be discussed below) and re-
flect the inherent and geographically varying difficulties of
soil moisture modeling in different regions. The temporal test
R values for different regions are organized in the following
order: Africa_North > Australia > Asia > CONUS > Eu-
rope > Africa_South ∼= Alaska. One immediately apparent
observation is that this order is not related to the number
of sites in each region or the density of sites. For example,
the highest-ranking (in terms of R) regions are Africa_North,
Australia, and Asia, which all are among the regions with the
lowest counts of sites. Alaska has a relatively high site den-
sity but had the lowest median R, which could be attributed to
the unique difficulties associated with frozen soil and thaw-

ing permafrost. This observation suggests that more train-
ing sites in these regions may not result in significantly bet-
ter temporal test results at existing sites. Africa_South was
more difficult than Africa_North, presumably because more
sites are located in arid environments (LSTM has previously
shown lower performance in such regions in the CONUS,
as discussed in Feng et al., 2020). While these results show
that there are some regions in the world that are more diffi-
cult to capture than others for the prediction of soil moisture,
the overall results are encouraging. The model’s performance
over these regions indicates that the quality of the forcing
(MSWEP+GPM+ERA5 precipitation) and soil characteri-
zation data is globally consistent.

Apart from Alaska, there were no particularly strong spa-
tial patterns in either R or RMSE in the random spatial
(cross-validation) tests (Fig. 3). Over the CONUS, there was
a mild concentration of poorly performing sites in the north-
west. In Europe, we found poorly performing sites in the
central region, e.g., Hungary and Romania. Other than that,
poorly performing sites were interspersed among the well-
performing sites, suggesting that most of the causes of poor
performance are local rather than climatic effects, which we
will explore in Sect. 3.3. The cross-continental tests led to a
widespread decrease in R, in comparison to the random spa-
tial tests (Fig. 4). While some African sites, like those imme-
diately south of the Sahara (Fig. 4c), had noticeably deteri-
orated performance, some other sites in fact improved, such
as the three most southern sites in Africa_South (Fig. 4f).

3.2 Randomly sampled spatial cross-validation

The random spatial (randomly sampled cross-validation)
tests, which examined the effect of spatial interpolation,
showed record-breaking results despite their slight perfor-
mance decline compared to the temporal tests. The global
median R was 0.792, ubRMSE was 0.056, and RMSE was
0.075, all of which were slightly better than the CONUS
median values (Table 1b and the wheat-colored box, Mul-
titask_spatial, in Figs. 1 and 2). In contrast, the SMAP 9 km
product and GLDAS had global median R values of 0.621
and 0.608, respectively. It should be noted that the numbers
are not entirely comparable: SMAP 9 km and GLDAS were
not calibrated fully on the sparse in situ sites. As expected, at
the global scale, the training metrics were slightly better and
had a smaller spread than those for the temporal and spatial
tests. The LSTM-based SoMo.ml model obtained a median
R of ∼ 0.6 for spatial cross-validation (Fig. 7 in O and Orth,
2021), while the downloadable SoMo.ml product (0.805, as
shown in Figs. 1 and 2) was obtained based on training on
all the sites and time periods and thus should in fact be com-
pared to the our training period results (the rightmost box in
each panel, Multitask_train; R = 0.853). It should be noted
that SoMo.ml has soil moisture for multiple depths, but we
only explored the 5 cm product here. The closest model to
the multitask LSTM is the one from Beck et al. (2021) (we
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Table 1. Model performance in three scenarios. (a) The model’s temporal testing in different regions. (b) The model’s spatial cross-validation
testing in different regions. (c) The model’s continental cross-validation testing in different regions.

(a) Temporal testing

Median metrics CONUS Europe Africa_North Alaska Asia Africa_South Australia Global

Bias 0.003 −0.005 −0.014 0.001 −0.007 −0.044 0.001 0.001
RMSE 0.051 0.058 0.031 0.075 0.049 0.056 0.055 0.051
ubRMSE 0.043 0.037 0.026 0.056 0.035 0.048 0.044 0.043
Corr 0.847 0.808 0.881 0.654 0.873 0.656 0.877 0.837

(b) Spatial cross-validation testing

Bias −0.004 0.004 0.029 0.007 0.011 0.021 −0.010 −0.0003
RMSE 0.075 0.080 0.067 0.079 0.067 0.074 0.096 0.075
ubRMSE 0.057 0.057 0.048 0.053 0.052 0.071 0.055 0.056
Corr 0.790 0.791 0.861 0.789 0.762 0.647 0.778 0.792

(c) Continental cross-validation

Bias −0.009 −0.016 0.041 0.039 0.052 −0.067 −0.016 −0.002
RMSE 0.099 0.104 0.047 0.119 0.092 0.078 0.065 0.098
ubRMSE 0.071 0.062 0.032 0.075 0.055 0.052 0.061 0.068
Corr 0.605 0.646 0.87 0.581 0.711 0.718 0.806 0.624

do not have the data to plot their results), which was cal-
ibrated on 177 of the soil moisture sites and tested on the
others. Their MSWEP+HBV (Hydrologiska Byråns Vatten-
balansavdelning) model obtained a median R value of 0.78.
Their performance is competitive and quite impressive for a
process-based model, but unfortunately the HBV model only
outputs a water storage value (in mm) that can be correlated
to the fluctuation of observed soil moisture and not the soil
moisture itself, and thus other metrics like bias cannot be cal-
culated (additional linear transformations are required to ob-
tain soil moisture, which introduces uncertainty). It would
be interesting to explore how HBV or similar models would
react to the cross-continental test below, where it may show
some advantages.

In general, the difference between the training and tem-
poral tests is small, and thus we regard the model training
error to be small. Switching from the temporal test to the
random spatial test, most regions suffered a small decline
in performance, suggesting that the impact of spatial hetero-
geneity is larger than the impact of temporal nonstationar-
ity for soil moisture predictions. Regions seeing noticeable
declines include the CONUS (from 0.847 to 0.790), Asia
(0.873 to 0.762), and Australia (0.877 to 0.778), which could
reflect the limited quality of soil texture data and processes
that cannot be described by the input attributes. Alaska stood
out as the exception (temporal test R = 0.654; spatial test
R = 0.789), which is in fact consistent with our theory of er-
rors discussed earlier and highlights the rapid changes facing
Arctic regions. Alaska is challenging because it is the fron-
tier of rapid changes in permafrost thawing and months of
frozen ground conditions. As a result, temporal nonstation-
arity in that region trumps spatial heterogeneity. This obser-

vation suggests that the soil moisture dynamics in Arctic re-
gions in the coming years will differ materially from those in
the past decades.

Precipitation data quality exerts an important influence on
the performance of the model but does not materially change
the model comparisons. MSWEP is a high-quality global
precipitation dataset (daily, 0.1◦ resolution) arising from
blending multiple forcing datasets and correcting their biases
(Beck et al., 2019). To support a fair comparison, we also ran
our multitask model with the more widely used ERA5 pre-
cipitation data, which gave slightly lower-performing results.
The multiscale model still outperformed reference products
(Table S6). We further note that our previous CONUS results
used the NLDAS-2 (North American Land Data Assimilation
System Phase 2) forcing data, which are more customized to-
ward North America, and obtained an R of 0.901 (Liu et al.,
2022a). We thus conclude that the forcing dataset used has
a moderate impact on results and needs to be the same for
models to be fully comparable.

3.3 Cross-continental tests

As expected, model performances dropped significantly in
the cross-continental test (testing on a continent where no
training data was provided), but even under this adverse sit-
uation, the multitask LSTM model surpassed or equaled the
performance of SMAP in all regions except Asia (Tables 1c,
S4, Figs. 1 and 2). When the CONUS was included as a train-
ing region, the R value in all regions except Alaska stayed
above 0.64. When both the CONUS and Europe were in-
cluded (again, except for Alaska), there seemed to be a base-
line performance level (R = 0.70) that the model would not
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Figure 1. Comparison of model performances for different continents in data-rich regions. Models from left to right are ranked from lowest
to highest global correlation. We plotted results for the training period, as well as temporal, spatial, and cross-continental tests. “Multi-
task_exclude” means the cross-continent test: the models were tested on a continent, but sites from that continent were excluded from train-
ing. The SoMo.ml product shown here was trained on all sites in all time periods, and thus it is most comparable to our “Multitask_train”
product.

fall below, despite there being no training data from the test
continent. For Africa and Australia, the advantages of the
multitask model (multitask_exclude in Fig. 2) over SMAP
or GLDAS are prominent. This suggests that we could con-
sider the multitask LSTM model to be a viable product even
in the no-data scenario.

Interestingly, the fewer sites a region had, the less im-
pact there was by switching from the random spatial to the
cross-continental test (Table 1c and the bright red boxes,
Multitask_exclude, in Figs. 1 and 2). For Africa_North,
Africa_South, and Australia, there was no decline from the
random spatial test (Table 1b) to the cross-continental test
(Table 1c). Asia saw a larger impact, with R dropping from
0.762 in the spatial test to 0.711 in the cross-continental test.
We noticed precipitous drops for Alaska (median R from
0.789 to 0.581 – again suggesting soil moisture dynamics

there are materially different from other parts of the world),
Europe (0.791 to 0.646), and the CONUS (0.790 to 0.605).
We thus conclude that when a region had very few sites but
high heterogeneity, these sites only played a minor role in
training the model, and thus removing them did not materi-
ally change the model. When a region had a large number
of sites, like the CONUS or Europe, removing them substan-
tially reduced the training data diversity. The quality of a DL
model is a strong function of its training data – thus it would
be severely weakened if a large part of its training data were
removed.

It is also interesting that African, Australian, and Asian
sites had good performance in this experiment. It seems to
suggest their soil types and rainfall moisture responses have
already been covered by similar sites in the CONUS and Eu-
rope, and thus the model was already sufficient. With diverse
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Figure 2. The same as Fig. 1 but for data-sparse regions, i.e., Africa, Asia, and Australia.

Figure 3. Metric distributions for the multitask model random spatial cross-validation tests. (I) Correlation and (II) RMSE of spatial cross-
validation tests for (a) the CONUS, (b) Europe, (c) Africa_North, (d) Alaska, (e) Asia, (f) Africa_South, and (g) Australia. The training
and testing periods were both from 1 April 2015 to 31 December 2020. Maps are made with Natural Earth imagery, no permission needed
(Natural Earth, 2022).
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Figure 4. Metric distributions for the multitask model continental cross-validation tests. (I) Correlation and (II) RMSE of continental cross-
validation tests for (a) the CONUS, (b) Europe, (c) Africa_North, (d) Alaska, (e) Asia, (f) Africa_South, and (g) Australia. The training
and testing periods were both from 1 April 2015 to 31 December 2020. Maps are made with Natural Earth imagery, no permission needed
(Natural Earth, 2022).

climates and landscapes ranging from desert to temperate
forest and from croplands to wetlands, the CONUS networks
play a dominant role in providing training on how soil mois-
ture responds to different forcings, as modulated by the soil
and landscape characteristics. We cannot know for certain
that the model will work well in other parts of Africa and
Asia until we have more in situ sites there. However, the cur-
rent results at least can make us hopeful that the model will
likely produce good results in some parts of the untrained
world and will likely add value beyond satellite products.

3.4 Factorial influences on model performance

Due to LSTM’s strong ability to fit to data, it can serve as a
probe for process complexity (Liu et al., 2022a; Feng et al.,
2022, 2020; Tsai et al., 2021): those sites that LSTM can-
not adequately capture may contain complicated processes
that are not well described by the inputs. The factorial impor-
tance analysis indicates that slope aspect, average soil mois-
ture, and surface solar radiation downwards are the top three
factors that influence the multitask LSTM model’s R in the
temporal test (Fig. 5). The RF model has a test correlation
of 0.6 (with 80 % training data and 20 % test data), but its
only purpose here is to provide a reading on the top three
factors. We have also tried using gradient-boosted decision
trees (Friedman, 2001), which produced a test correlation of
0.77, and the top three important factors were slope aspect,
precipitation, and surface solar radiation downwards. There-
fore, this model choice does not qualitatively affect our con-
clusions. As a reminder, the feature importance test is based
on training random forest (RF) models with the inputs listed
in Fig. 5, and R from the temporal test serves as the target.
A high-ranking factor in Fig. 5 implies that it has influence
not only on soil moisture but also on the predictability of

soil moisture. It could be that in a certain range of this fac-
tor (the range may be conditional on other factors due to
factorial interactions) there are not that many sites of this
kind (it is a minority class that is not well represented in the
training dataset) or that some latent processes become impor-
tant. Nevertheless, due to the inherent limitations of machine
learning, factorial importance is only a hypothesis rather than
confirmed truth (Tsai et al., 2021). As a result, human inter-
pretation of the results will be required. Because the sensi-
tivity to radiation is somewhat difficult to interpret, here we
focus on average soil moisture and aspect.

The model correlation in the temporal test generally rises
as soil moisture goes up, until reaching the wettest regime
(0.48–0.6), where its variability increases (Fig. 6Ih). The
sites in the middle range tend to have continuity in soil mois-
ture and regular rainfall patterns, which are most ideal for
LSTM. There is a clear rising trend in R for the temporal
test from dry to wet sites. The driest sites may be difficult to
predict due to scarce but sudden rainfall events that quickly
dry out, which reduces the usefulness of LSTM’s memory
capability. When we plotted the spatial test R (Fig. 6IIh), the
pattern is similar but less pronounced, which suggests the dri-
est sites are also more impacted by temporal non-stationarity
than spatial heterogeneity because they have seen limited
storm events. Toward the wettest regime, saturation often oc-
curs, and soil moisture may be influenced by groundwater or
flooding processes, which are difficult to account for.

Interestingly, aspect has a nonlinear effect that varies in
different soil moisture regimes (Fig. 6Ii) due to its impact
on shading and solar insolation. It is well known that aspect
can have a predominant control on soil moisture and plants
for dry sites, as witnessed by different vegetation densities
and species and microbial communities on south-facing and
north-facing slopes (Armesto and Martnez, 1978; Bennie et
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Figure 5. The feature importance determined from a random forest (RF) model constructed to predict temporal test R using all the undu-
plicated category data presented in this paper as inputs. The correlation of this model is 0.6. Aspect, average soil moisture, and downward
radiation are the top three factors. A separate gradient-boosted decision model was also trained and obtained a correlation of 0.77, and the
top three important factors were similar: slope aspect, precipitation, and downward solar radiation.

al., 2006; Xue et al., 2018). For the very dry sites (average
SMAP < 0.08), only those with mid-range aspects tended to
have a decent correlation. The temporal test R (Fig. 6Ii) had
a larger response to aspect than the spatial test R (Fig. 6IIi),
which suggests this difficulty is not a result of too few train-
ing sites in space but a result of highly complex and non-
stationary temporal trends in this combined range of average
soil moisture and aspect. The north-facing dry slopes have a
lower R, perhaps because of complex vegetation–soil mois-
ture interactions in this regime, which may shift from year to
year. The most south-facing dry slopes also have low R, per-
haps because they approach the lower limit of soil moisture
and can see large changes due to individual storm events. In
contrast, for the wetter soil regimes, the role of aspect is re-
duced; we see noticeably reduced R only for the most south-
facing slope (Fig. 6IIi). This reduced impact may be because
soil moisture is no longer such a strong selector of vegetation
species on these slopes, and thus the distinction of aspect be-
comes less important.

In the vast parts of Africa or Asia where soil moisture pre-
dictions are required but not well supported by in situ mea-
surements, the analysis above can help us to anticipate chal-
lenges. At the hillslope scale, our predictions may have a
larger error for those north-facing slopes in the dry regime
and also straight south-facing slopes for the Northern Hemi-
sphere (to be reversed for the Southern Hemisphere). The re-
sults highlight the importance of aspect controls on soil mois-
ture and suggest that future models will need to represent its
effect well before they can be accurate.

3.5 Further discussion

Our correlation is modestly higher than the previous state-
of-the-art model, the well-calibrated conceptual hydrologic
model, HBV. Even though that model does not simulate the
physical quantity of soil moisture, it could be modified to
have a module that does. However, to obtain suitable pa-
rameters on the global scale and improve the physical pro-
cesses, we think adding differentiable programming to the
model will give it the adaptive capability to learn from big
data (Feng et al., 2022; Shen et al., 2023; Aboelyazeed et al.,
2022; Bindas et al., 2022). It is possible that such a model
may generalize better than LSTM over long distances due to
the imposed physical constraints.

Typically, for many hydrologic applications (Fang et al.,
2022; Feng et al., 2021; Liu et al., 2022a; Rahmani et al.,
2021a), a spatial test is a tougher test than a temporal test for
fully data-driven models, showing the strong impacts of spa-
tial heterogeneity. This could either mean the inputs of the
model do not completely describe the problem or that there
are not enough sites in space with different combinations of
input attributes for the model to fully resolve their impacts.
Typically, spatial error can be gradually reduced if there are
more training sites in space. However, in both Alaska (Fig. 1)
and north-facing dry slopes around the world (Fig. 6IIi), tem-
poral errors have exceeded spatial errors. Consistently, when
we ran K-fold experiments with a higher K, it also did not re-
sult in noticeably different performances for the models (data
not shown). These observations not only highlight the unique
challenges of these places (rapid climate-driven changes and
strong nonstationarity) but also suggest that the number of
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Figure 6. Stratified analysis of the distribution of R values from (I) temporal and (II) spatial tests. (a–g) The maps show the global distribution
of test sites as a function of average SMAP soil moisture value and aspect. The colors on the map represent aspect cosine. The average
SMAP < 0.08 sites are a minority class and are represented by squares. (h) The SMAP boxplot shows the distribution of R under different
average soil moisture values (SMAP). (i) The aspect boxplot shows the distribution of R in different aspect cosine bins, where the left boxplot
in each bin indicates SMAP 5 0.08, and the right boxplot in each bin indicates SMAP > 0.08. The upper half of the figure, part I, shows
temporal test R values (which characterize temporal nonstationarity), while the lower half of the figure, part II, shows spatial test R values,
which characterize the effect of spatial heterogeneity. Maps are made with Natural Earth imagery, no permission needed (Natural Earth,
2022).
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training sites is not a predominant issue for limiting the ac-
curacy of soil moisture predictions.

While our product did not surpass SMAP by a large mar-
gin under the most stringent test (cross-continental), it is suit-
able as a long-term simulation tool, as it does not require
near-real-time observations. Thus it can be used to assess fu-
ture climate change impacts. It is also easy to further expand
LSTM networks to enable “data integration” or “data assimi-
lation”, which absorbs information from recent observations
to improve future forecasts (Fang and Shen, 2020; Feng et
al., 2020). Satellite observations could also be employed as
the recent observations, as they could help to update LSTM’s
hidden states. Such assimilation typically results in a signifi-
cant boost in performance and the elimination of bias. Com-
pared to data assimilation with traditional models, we could
skip the bias correction procedure, as LSTM models tend to
have little bias and will adaptively learn to remove the bias by
themselves. Data assimilation only has short-term impacts,
however, and the value of the information content of the data
will eventually wane as the simulation proceeds.

The LSTM-based SMAP modeling product is already de-
ployed at scale via the operational agricultural advice ap-
plication of PlantVillage, a nonprofit organization based at
Penn State. We intend to put the multitask model into produc-
tion alongside alternative estimates. This service is provided
free of charge to farmers and extension services in Africa
through the USAID Current and Emerging Threats to Crops
Innovation Lab (CETC IL). PlantVillage currently scales out
precipitation data to 13 million farmers per week in Kenya
and Burkina Faso and believes the ability to complement this
with more accurate information on soil moisture will be of
large assistance to farmers coping with droughts and erratic
weather as a result of climate change. It is also valuable to
help farmers optimize fertilizer application rates, which has
become even more critical due to the massive increase in fer-
tilizer prices over the last 12 months.

4 Conclusions

When evaluated against sparse in situ soil moisture networks,
the multitask LSTM model outperformed currently available
satellite-based products, land surface models, and an alterna-
tive DL model across most continents. Judging by the 5-fold
spatial test model results, the model had not only dramati-
cally lower bias but also the highest correlation with in situ
soil moisture networks. Learning from multiple data sources,
the model can be deployed at large scales at a small compu-
tational cost and can be expanded to incorporate data assim-
ilation capabilities. These features make it a suitable opera-
tional tool to democratize access to information for agricul-
ture in developing regions. While we wish for more mea-
surements in Africa for model training and validation, the re-
sults are at least encouraging. The model can utilize satellite-
estimated soil moisture as one of the learning targets while

also learning from in situ data, and thus it is well poised
to provide higher-resolution outputs than the satellite-based
products.

The LSTM model served as a probe for process complex-
ity and showed that mean soil moisture and aspect have im-
portant controls on soil moisture predictability, while also
showing that Arctic regions are inherently more difficult to
predict due to rapid soil changes. For the dry slopes (aver-
age SMAP soil moisture < 0.08) that face north, there could
be complicated vegetation–soil moisture interactions that are
difficult to predict. For the wetter slopes, the role of aspect
becomes less prominent. Error analysis suggests that in these
difficult regions, temporal errors can outweigh spatial errors,
and thus having longer data records and monitoring most re-
cent changes can be more important than adding more sites.

The multitask LSTM model can generalize well in highly
data-sparse regions. Even in the worst-case scenario (no
training data on a whole continent), the model was able to
surpass SMAP’s accuracy on most continents. It did seem
to have some trouble generalizing to Alaska, where the soil
dynamics are much different from other regions and are also
experiencing rapid changes. However, it provided decent per-
formance when tested in data-sparse continents where it has
not been trained, like Africa and Australia, showing that
these predictions can be beneficial for such regions where
there are not a lot of published soil moisture datasets. This
modeling success is partially due to the strong ability of the
model to generalize but also because the soils in the known
sites in Africa are similar to those in the training set. It is for-
tunate that the more intensively instrumented CONUS and
Europe already contain a wide variety of soils and climates
for training, without which the model would suffer greatly.

Code and data availability. The multitask LSTM code
and GSM3 soil moisture dataset can be downloaded at
https://doi.org/10.5281/zenodo.7026036 (Liu et al., 2022b).
Links to data sources have been provided in the Methods section.
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