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Abstract. Monotonicity is an important property of remap-
ping operators for coupled weather and climate models.
However, it is often challenging to design highly accurate
operators that avoid the generation of new extrema or keep
a remapped field between physically prescribed bounds. To
that end, this paper explores several traditional and novel ap-
proaches for both conservative and non-conservative mono-
tone remapping on the sphere. The accuracy and effective-
ness of these algorithms are evaluated in the context of sev-
eral different real and idealized fields and meshes.

1 Introduction

An important operation in global climate models is the trans-
ferring, or remapping, of data between different component
grids. For example, information needs to be exchanged at the
interface between the atmosphere and ocean models, when
both are typically defined on different grids. Atmospheric
models often use icosahedral or cubed sphere grids, while
ocean models have relied on unstructured meshes (Satoh
et al., 2008; Taylor et al., 2007; Ringler et al., 2013). Remap-
ping of data between grids whose structures differ greatly
is a challenging and important problem, as doing so inaccu-
rately can impact the stability of coupled simulations (Bel-
jaars et al., 2017). There are other circumstances in which
accurate remapping operators are important, such as post-
processing and mesh refinement. In the former case, the grid
on which a simulation is performed may not be ideal for car-
rying out analysis, and transferring data onto a structured
mesh that is more amenable for analysis is often useful. In
the latter case, grid nesting (Harris and Lin, 2014) and adap-

tive grids (Jablonowski et al., 2006; Skamarock and Klemp,
1993) have been used to resolve the complex multiscale na-
ture of the atmosphere. Ensuring the accurate interpolation
of data between the different component grids in these sim-
ulations is crucial to preserving the models’ overall accuracy
(Slingo et al., 2009; Mahadevan et al., 2020).

There are a number of desirable properties of remapping
operators, in addition to accuracy. These properties include
consistency, conservation, and monotonicity and correspond,
respectively, to the mapping of the constant field to the con-
stant field, preservation of total mass, and no generation of
new extrema (Ullrich and Taylor, 2015). These properties
are necessary for ensuring important physical consistency of
model simulations. Some fields, like mass (which is usually
stored as density), are required to be conserved, while oth-
ers, like tracers or mixing ratios, are required to satisfy cer-
tain bounds following the remapping process. It is therefore
imperative for schemes that remap these fields to preserve
conservation and global monotonicity constraints so as not
to introduce artificial sources of error (Kritsikis et al., 2017).

The main property of remapping schemes that we are con-
cerned with in this paper is monotonicity. In the case of con-
servative remapping, monotonicity is often achieved by way
of limiters (Barth and Jespersen, 1989). In the conservative
case, we are interested in applying the “clip and assured sum”
(CAAS) method, which acts as a post-processing filter op-
eration on the remapped field (Bradley et al., 2019). In the
non-conservative case, we are interested in linear monotone
remapping operators that depend only on the mesh structures
and can be computed once and then applied in an offline man-
ner.
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TempestRemap (Ullrich and Taylor, 2015; Ullrich et al.,
2016) is a widely used package for generating conserva-
tive, consistent, and (optionally) monotone linear maps be-
tween arbitrary grids on the sphere, with data stored as vol-
ume averages (finite-volume method) or as coefficients of
a finite-element expansion. Although conservative remap-
ping is necessary for ensuring, for example, that fluxes at
the ocean–atmosphere interface preserve global invariants,
when remapping states or vectors it is often the case that
monotonicity and accuracy are more important than con-
servation. Indeed, when mapping from a coarse grid to a
fine grid, conservative and monotone schemes will appear
blocky because each fine grid volume completely within
a coarse grid volume must exactly preserve the state of
the coarse grid volume. Consequently, the Energy Exascale
Earth System Model (Golaz et al., 2019, E3SM), which uses
TempestRemap maps under the hood, falls back on bilinear
maps for transferring state data when mapping from coarse-
resolution to fine-resolution grids. To support the operational
remapping of data in this manner, the methods developed
in this paper have been implemented in v2.1.6 of the Tem-
pestRemap package (Ullrich et al., 2022).

This paper consists of three main sections. First, we
will describe the basic setup of remapping problems, the
test cases that are used in our numerical experiments, and
the metrics used to assess the accuracy of the remapping
schemes. In the next section, we will look at monotone con-
servative remapping. In general, it is difficult to construct
remapping operators that satisfy conservation and mono-
tonicity, while still maintaining high-order accuracy. So one
of the main purposes of this section is to examine the extent
to which a conservative and monotone remapping operator
can maintain the accuracy of its non-monotone counterpart.
We will also analyze the effectiveness of this conservative
and monotone operator in minimizing the errors associated
with the remapping of discontinuous source fields, as well
its ability to remap real data fields accurately. The subject
of the next section is non-conservative monotone remapping,
and it is divided into two main parts. The first part focuses
on traditional approaches to monotone remapping and in-
cludes a description of the bilinear method used in the Earth
System Modeling Framework (ESMF) (Hill et al., 2004), as
well as two additional approaches that may provide advan-
tages in some circumstances. In the second part, we show
that the accuracy of these traditional approaches is reduced
when remapping from source meshes that are finer than the
target mesh, and a method is introduced to correct this. We
end with conclusions and future research directions.

2 Preliminaries

Let� denote the unit sphere. Given a source mesh,�s, and a
target mesh, �t, the remapping operator, R, is a matrix con-

structed to satisfy

ψ t
= Rψ s, (1)

where ψ s
= (ψ s

1, . . .,ψ
fs
s ) ∈ Rfs and ψ t

= (ψ t
1, . . .,ψ

ft
t ) ∈

Rft are vectors of discrete density values on the source and
target meshes, respectively. The number of degrees of free-
dom on the source mesh is denoted by fs, and the num-
ber of degrees of freedom on the target mesh is denoted by
ft. Here, ψ s corresponds to the discretization of a function
ψ :�s

→ R, either by sampling ψ at a set of discrete nodes
by pointwise sampling or over a set of regions by area aver-
aging. The operators that discretize the function ψ into the
discrete vectors ψ s and ψ t are denoted by Ds and Dt. De-
grees of freedom on the source and target meshes can be
stored in various ways, though in this paper we focus on
finite-volume or finite-element methods. In the former case,
degrees of freedom on the mesh correspond to area or vol-
ume averages, and in the latter, they are stored as coefficients
of basis functions with compact support. For instance, for the
spectral element method, a type of finite-element method, it
is typical to store degrees of freedom at a set N2

p Gauss–
Lobatto–Legendre (GLL) nodes within each face.

Following Ullrich and Taylor (2015), the metrics that are
used to assess the accuracy of the remapping schemes in this
paper are as follows.

L1 ≡
I t
[|RDs(ψ)−Dt(ψ)|]

I t[|Dt(ψ)|]
(2)

L2 ≡

√
I t[|RDs(ψ)−Dt(ψ)|2]√

I t[|Dt(ψ)|2]
(3)

L∞ ≡
max|RDs(ψ)−Dt(ψ)|

max|Dt(ψ)|
(4)

Lmin ≡
min|RDs(ψ)| −min|Dt(ψ)|

min|Dt(ψ)|
(5)

Lmax ≡
max|RDs(ψ)| −max|Dt(ψ)|

max|Dt(ψ)|
(6)

Here, I s and I t are the integration operators on the source
mesh given by

I s
[ψ s
] =

f s∑
i=1

ψ s
i J

s
i , (7)

with J s
i denoting the weight of the ith degree of freedom on

the source mesh. The integration operator on the target mesh,
I t, is defined similarly.

We will use several idealized test cases for our numerical
experiments, including a low-frequency harmonic denoted
by Y 2

2 and given by the equation

ψ = 2+ cos2(θ)cos(λ), (8)

a high-frequency harmonic, Y 16
32 , given by

ψ = 2+ sin16(2θ)cos(16λ), (9)
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and a vortex represented by

ψ = 1− tanh
[ρ′
d ′

sin(λ′−ω′t)
]
, (10)

where r ′ = r0 cos(θ ′) is the radius, ω is the angular velocity
with

ω =

0, if ρ′ = 0
Vt

ρ′
if ρ′ 6= 0,

(11)

and Vt is the tangential velocity with

Vt =
3
√

3
2

sech2(ρ′) tanh(ρ′). (12)

Here, (λ′,θ ′) represents the coordinates in a rotated spherical
coordinate system whose pole is at (0,0.6), and we set r0 =
3, d = 5, and t = 6 (Ullrich and Taylor, 2015).

3 Monotone conservative remapping

The focus of this section is on monotone conservative remap-
ping and assessing potential improvements in accuracy that
arise from employing a nonlinear remapping technique to
enforce bounds preservation. We consider fields whose to-
tal mass needs to be conserved across the remapping process
and that need to remain between specified bounds. This form
of “bounds preservation” is important for fields such as mix-
ing ratios, which are required to remain between zero and
unity, and it corresponds to a global form of monotonicity
wherein no new global extrema are generated. We also con-
sider local forms of bounds preservation, which are stronger
than global monotonicity in the sense that they will not intro-
duce any new local extrema.

High-order remapping methods can lead to overshoots or
undershoots of the remapped field, which is problematic for
several reasons. For instance, high-order remapping of dis-
continuous source fields may lead to oscillatory behavior of
the remapped field similar to the Gibbs phenomenon (Got-
tlieb and Shu, 1997; Mahadevan et al., 2022). Preserving the
bounds of these fields, as well as minimizing the Gibbs os-
cillation, is critical to maintaining the accuracy of coupled
simulations.

Conservative and bounds-preserving schemes have been
used in semi-Lagrangian schemes (Zerroukat, 2010). Here,
we are interested in the “clip and assured sum” (CAAS)
method (Bradley et al., 2019), whereby the remapped field
is cropped, and then mass is redistributed in such a way that
the field remains within specified bounds. Specifically, given
a vector of source values, and lower and upper bounds l and
u, the CAAS algorithm modifies the remapped field, Rψ s,
such that l ≤ Rψ s

≤ u while still preserving conservation.
The operator R is constructed according to a two-stage pro-
cedure for finite-volume meshes (Ullrich et al., 2016).

In this section, our goal is to examine the utility of the
CAAS algorithm as a way of ensuring bounds preservation
and reducing the Gibbs phenomena while still ensuring ac-
curacy and conservation. In particular, we are interested in
documenting the effect of CAAS on standard error norms, as
implemented in TempestRemap.

3.1 Finite-volume to finite-volume

Here, we look at the case in which the source and target
meshes are both finite-volume. In particular, we are inter-
ested in applying the CAAS algorithm with two different
types of local bounds preservation, which we now describe.

We let

ai = min
intersecting faces

ψ s
i , bi = max

intersecting faces
ψ s
i , (13)

where the maximum and minimum values are computed over
all source faces that intersect target face i. We then define the
local lower and upper bounds, ll,i and ul,i , as

ll,i = ai, ul,i = bi . (14)

We have found that a variation of this type of bounds preser-
vation gives an improvement in convergence under mesh re-
finement, which we call “local-p bounds preservation” and
describe as follows. We define the minimum and maximum
value over a set of adjacent faces as

ci = min
adjacent faces

ψ s
i , di = max

adjacent faces
ψ s
i . (15)

Here, the minimum and maximum are computed over a set of
(p+1)2 source faces adjacent to target face i, where p is the
order of the polynomial reconstruction. The choice of (p+
1)2 was an empirical one that provided good convergence
results. The local-p lower and upper bounds, lp,i and up,i ,
are then defined as

lp,i =min(ai,ci), up,i =max(bi,di). (16)

For our numerical tests, we use cubed sphere source meshes
with ne×ne elements per panel for ne = 15, 30, and 60. The
target is a 1◦ latitude–longitude mesh with 360 longitudinal
elements and 180 latitudinal elements. The convergence re-
sults for remapping with and without CAAS with local-p
bounds preservation for several different fields are presented
in Figs. 1 and 2. For each mesh, we plot the errors as func-
tions of np, the order of the polynomial reconstruction on the
source mesh.

In all cases, the L1 convergence for the remapped field
both with and without CAAS is very similar, and the L2 con-
vergence is qualitatively similar as well. However, the L∞
error levels off for all three test cases when CAAS is ap-
plied, particularly for the high-resolution cases. This can be
understood by looking at the convergence of the correspond-
ing Lmin and Lmax errors. For all test cases, the remapped
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Figure 1. Convergence test for finite-volume to finite-volume remapping from cubed spheres to a 1◦ latitude–longitude mesh for three
different test cases. The dashed lines show the results using CAAS with local-p bounds preservation, and the solid lines are the results
without CAAS.

field overshoots and undershoots the global maximum and
minimum of Dt(ψ): that is, ψ evaluated on the target mesh.
The CAAS algorithm will then clip these fields so that, at
the very least, they respect the global bounds of ψ evalu-
ated on the source mesh, Ds(ψ). In this case, the remapped
field, after applying CAAS to it, will satisfy the inequality
minDs(ψ)≤ Rψ s

≤max Ds(ψ). The effect of the clipping
operation, then, is that the L∞ error will be approximately as
large as

min(|maxDt(ψ)−maxDs(ψ)|, |minDt(ψ)−minDs(ψ)|) (17)

because the minimum and maximum of the remapped field
after applying CAAS to it will be approximately equal to
minDt(ψ) and maxDt(ψ). As can be seen in Fig. 2, the Lmin
and Lmax errors remain essentially constant for all mesh res-
olutions as the order of the polynomial reconstruction is in-
creased. This constancy then results in an effective lower
bound on the L∞ errors and is the reason for the flat lines
for the Y 2

2 , Y 16
32 , and vortex test cases.

3.2 Finite-element to finite-volume

Here, we examine bounds preservation in the case in which
the source mesh is finite-element. Local bounds preservation

is defined similarly to how it was for finite-volume source
meshes, but now the minimum and maximum in Eq. (14) are
computed over all GLL nodes on all the faces that intersect
target face i. The convergence results for standard remap-
ping with and without CAAS with local bounds preserva-
tion for several different fields are presented in Figs. 3 and 4.
Here, the convergence results are nearly identical, apart from
the L∞ error for fourth-order reconstruction for the Y 2

2 test
case on the coarsest mesh. By looking at the corresponding
Lmin and Lmax errors, we see that the remapped field under-
shoots and overshoots the global minimum and maximum of
Dt(ψ). The error induced by CAAS will once again be ap-
proximately equal to the expression given in Eq. (17).

3.3 The Gibbs phenomenon

In this section, we examine the effectiveness of CAAS in re-
ducing overshoots and undershoots associated with remap-
ping a discontinuous source field. To that end, we modify the
vortex test case by defined by Eq. (10) by letting the field be
equal to zero if it is less than a certain threshold and equal to
1 if it is greater than it.

In Fig. 5, results are shown for four different schemes ap-
plied to the vortex test: remapping without CAAS, CAAS
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Figure 2. Convergence test for finite-volume to finite-volume remapping from a cubed sphere to a 1◦ latitude–longitude mesh for three
different test cases. Note that in all cases for np > 1, the remapped field overshoots and undershoots the absolute maximum and minimum,
respectively.

with local bounds preservation, CAAS with local-p bounds
preservation, and CAAS with global bounds preservation. By
global bounds preservation, we mean that the remapped field
satisfies the equation

minDs(ψ)≤ Rψ s
≤max Ds(ψ). (18)

It is evident from this figure that without applying CAAS,
the remapped field suffers from a significant loss of accu-
racy close to the discontinuity, and significant undershoots
of the global minimum are present. The fields obtained using
CAAS with local bounds, local-p bounds, and global bounds
preservation all show a reduction of oscillations and an im-
provement of accuracy, with the local bounds preservation re-
sulting in the greatest improvement. One-dimensional cross
sections of the remapped fields allow us to examine this re-
duction more closely. In particular, observe from Fig. 6 how
sharply CAAS with local bounds represents the discontinu-
ity. Although the remapped fields obtained using CAAS with
local-p bounds and global bounds remain between zero and
unity, there are still slight oscillations near zero.

3.4 Real data

To test the performance of the CAAS algorithm on real data,
we use the cloud fraction data generated from the MIRA
real data emulator (Mahadevan et al., 2022), which is a field

that is required to be bounded between zero and unity and is
shown in Fig. 7. We perform two tests. The first is remapping
the cloud fraction from an ne90 cubed sphere mesh to a 1◦

latitude–longitude mesh, and the second is from an ne360
cubed sphere to a 0.25◦ latitude–longitude mesh. In each
case, we compare the accuracy of first order, second order,
and second order using CAAS with global bounds preserva-
tion between zero and unity. We see from Tables 1 and 2 that
the CAAS algorithm gives the smallest error norms for all
metrics in both tests.

4 Non-conservative monotone remapping

In this section, we describe several different approaches
to monotone remapping that are consistent but non-
conservative. In general, traditional approaches to monotone
remapping perform poorly when the source mesh is signifi-
cantly finer than the target mesh. To correct this, we propose
what we call integrated approaches to remapping, which rely
on the construction of the overlap mesh or supermesh (e.g.,
Farrell et al., 2009). This is in contrast to the more traditional
approaches that amount to pointwise interpolations, which
we refer to as non-integrated approaches, and are used ex-
tensively in, for instance, the Earth System Modeling Frame-
work (Hill et al., 2004).
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Figure 3. Convergence test for finite-element to finite-volume remapping from a cubed sphere to latitude–longitude mesh using local bounds
preservation for three different test cases. The setup is the same as it was for finite-volume to finite-volume remapping, with the dashed lines
showing the results using CAAS with local bounds preservation and the solid lines showing the results without CAAS.

Table 1. Error norms for remapping from an ne90 cubed sphere to a 1◦ latitude–longitude mesh.

Method L1 L2 L∞ Lmin Lmax

First order 8.69574× 10−3 1.0483× 10−2 6.78599× 10−2
−1.60710× 10−3 0.0

Second order 6.96131× 10−3 7.36387× 10−3 3.40735× 10−2 4.97992× 10−3 1.43158× 10−2

Second order with CAAS 6.87982× 10−3 7.30759× 10−3 3.40699× 10−2
−7.18568× 10−5 0.0

In brief, for consistent and monotone remapping operators,
we express the value of ψ t at each spatial degree of freedom
on the target mesh as a weighted sum of N values of ψ s:

ψ t
j = wi1ψ

s
i1
+ . . .+wiNψ

s
iN
, (19)

where ik denotes the index of a spatial degree of freedom
on the source mesh. As we are working with finite-volume
meshes in this context, the spatial degrees of freedom corre-
spond to the average value over the mesh faces. For consis-
tency, we need wi1+ . . .+wiN = 1, and for monotonicity, we
need 0≤ wi1 , . . .,wiN ≤ 1. The weightswik then make up the
entries of the remapping operator R given in Eq. (1).

4.1 Bilinear remapping

Here, we describe the non-integrated approach to monotone
bilinear remapping found in the ESMF. Suppose we are given
a point on the target mesh onto which we are remapping. Call
this point P j . First, we need to find a triangle or quadrilateral
whose vertices are source face centers that contains P j . We
assume that the edges of these triangles and quadrilaterals are
great-circle arcs. Now the source mesh is described in terms
of the nodes of each face and the edges that connect them.
Since the field values at the face centroids represent second-
order approximations to the average value of the field, they
are the natural choice for interpolation. To that end, the dual
mesh of the source mesh is constructed, which will result
in a mesh whose faces have source face centroids as their
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Figure 4. The Lmax and Lmin results of the convergence test for finite-element to finite-volume remapping from a cubed sphere to a latitude–
longitude mesh using local bounds preservation for three different test cases. Circled data points indicate that the global minimum and
maximum have been enhanced.

Figure 5. The Gibbs oscillations for a finite-volume to finite-volume remapping from a resolution 60 cubed sphere to a 1◦ latitude–longitude
mesh, with fourth-order polynomial reconstruction. Panel (a) shows the results without CAAS, panel (b) shows the results using CAAS with
local bounds preservation, panel (c) shows the results using CAAS with local-p bounds preservation, and panel (d) shows the results using
CAAS with global bounds preservation.
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Figure 6. One-dimensional cross sections for remapping of a discontinuous field at the Equator. Panel (a) shows the results without CAAS,
(b) shows the results using CAAS with local bounds preservation, (c) shows the results using CAAS with local-p bounds preservation, and
(d) shows the results using CAAS with global bounds preservation.

Figure 7. The cloud fraction field used in evaluating the effectiveness of CAAS on a real data field.

vertices. Once the dual mesh is available, it can be searched
to find a polygon that contains P j , the given point on the
target mesh. If the polygon that contains P j has more than
four sides, it is triangulated in order to find a sub-triangle that
contains P j .

Once this polygon is found, and assuming it has to be fur-
ther triangulated, we solve the following equation:

(1−α−β)Qi1
+αQi2

+βQi3
= (1− γ )P j , (20)

where Qi1
, Qi2

, and Qi3
are the coordinates of the face cen-

ters of the triangle that contains P j . Intuitively, the solution

Geosci. Model Dev., 16, 1537–1551, 2023 https://doi.org/10.5194/gmd-16-1537-2023
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Table 2. Error norms for remapping from an ne360 cubed sphere to a 0.25◦ latitude–longitude mesh.

Method L1 L2 L∞ Lmin Lmax

First order 7.02963× 10−4 1.16409× 10−3 1.83186× 10−2
−6.35094× 10−4 0.0

Second order 1.80731× 10−4 2.34888× 10−4 6.32974× 10−3
−2.23843× 10−4 4.68194× 10−3

Second order with CAAS 1.80671× 10−4 2.27702× 10−4 6.32968× 10−3
−2.30600× 10−4 0.0

Figure 8. An overview of the Delaunay triangulation remapping
scheme, whereby the images of the source face centers are triangu-
lated.

to this equation corresponds to first finding the intersection of
the line through the origin and P j , and the plane that passes
through the points Qi1

, Qi2
, and Qi3

, and then representing
this point as a linear combination of these three points. The
coefficients in Eq. (20) then define the value of the remapped
field on the target mesh:

ψ t
j = (1−α−β)ψ

s
i1
+αψ s

i2
+βψ s

i3
. (21)

Note that we have assumed that P j is the center of the j th
face on the target mesh. The weights clearly sum to 1, and
they are non-negative because triangle Qi1

Qi2
Qi3

contains
P j . Hence, this weighting defines a monotone, consistent
remapping operator (Ullrich and Taylor, 2015). The case in
which the polygon that contains P j has four sides is similar.
In particular, we solve the equation

(1−α)(1−β)Qi1
+α(1−β)Qi2

+αβQi3

+β(1−α)Qi4
= (1− γ )P j , (22)

where Qi1
to Qi4

are vertices of the quadrilateral that con-
tains P j . The coefficients in the previous equation then re-
sults in the equation

ψ t
j = (1−α)(1−β)ψ

s
i1
+α(1−β)ψ s

i2

+αβψ s
i3
+β(1−α)ψ s

i4
. (23)

4.1.1 Delaunay triangulation remapping

In this section, we describe an alternative to the remapping
scheme described in the previous section. We obviate the

Figure 9. The weights used in the weighting based on the Delaunay
triangulation.

need to triangulate an arbitrary polygon by constructing the
Delaunay triangulation of the face centroids of the source
mesh. We outline our approach as follows. We seek a tri-
angle on the source mesh whose vertices are source face
centroids that contains a given point on the target mesh. To
that end, we divide the sphere into six panels: call them Ri
for 1≤ i ≤ 6. The panels R1, . . .,R4 are equally sized and
lie along the Equator between 45◦ N and 45◦ S. The panels
R5 and R6 are equally sized caps above and below 45◦ N
and 45◦ S, respectively. Let Si denote gnomonic projections
of the set of source face centroids in Ri onto the plane tan-
gent to the sphere at the center of Ri . So Si is a set of two-
dimensional points, and we denote its Delaunay triangula-
tion by T (Si) (Shewchuk, 1996). So given a point P j on
the target mesh, we first find the panel Rk that contains it.
We then compute G(P j ), the gnomonic projection onto the
plane tangent to the sphere at the center of Rk . We then find
the triangle with vertices V i1 ,V i2 , and V i3 ∈ T (Sk) that con-
tains G(P j ). To find this triangle, we use a k–d tree. First,
we use the tree to find the triangle whose center is nearest
G(P j ). If G(P j ) is in this triangle, we stop. Otherwise we
search through neighboring triangles until we find one that
contains it. A summary of this process is shown in Fig. 8,
where a triangulation of the images of the source face cen-
ters under the gnomonic projection is shown. Now we know
that the gnomonic projection maps great-circle arcs on the
sphere to straight lines on the plane, so if P i1 , P i2 , and P i3
are the points on the source mesh such that G(P i1)= V i1 ,
G(P i2)= V i2 , and G(P i3)= V i3 , then we can be sure that
P j is contained within the spherical triangle whose vertices
are P i1 , P i2 , and P i3 . We then approximate the value of ψ t

j
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as

ψ t
j =

Ai1

A
ψ s
i1
+
Ai2

A
ψ s
i2
+
Ai3

A
ψ s
i3
, (24)

where, as can be seen in Fig. 9, Aik is the area of the spher-
ical sub-triangle that does not have P ik as a vertex, and A
is the area of the spherical triangle that contains P j . The
weights are non-negative because they correspond to triangle
areas, and they are between zero and 1 because 0≤ Aik ≤ A.
Hence, these weights are monotone and consistent. Note that
an advantage of this approach is that it is easily parallelized,
as we can divide the sphere into an arbitrary number of pan-
els.

4.1.2 Generalized barycentric coordinate remapping

The final scheme we describe is based on what are called
generalized barycentric coordinates (Floater, 2015). Our use
of this scheme is motivated by a desire for a systematic way
of incorporating more source points into Eq. (19). Intuitively,
we expect such a scheme to give more accurate results, as
it would incorporate more information from nearby source
points for each point on the target mesh. We first define these
coordinates and then provide a description of where we ex-
pect them to be most useful. Let P 1, . . .,P n be the vertices of
a polygon in the plane and Q be a point within the polygon.
The generalized barycentric coordinates of Q with respect
to the vertices, wi , satisfy the following.

1.
∑n

i=1
wi = 1

2. wi ≥ 0

3.
∑n

i=1
wi(x)P i = x

The first two properties are responsible for consistency and
monotonicity, and the third property, known as linear pre-
cision, means that linear functions can be reconstructed ex-
actly in terms of the polygon vertices and is essentially why
these weights are second-order accurate. One particular set
of weights is given by the equation

wi = A(P i−1,P i,P i+1)
∏

k 6=i, i−1
A(Q,P k,P k+1), (25)

where A(P i−1,P i,P i+1) and A(Q,P k,P k+1) denote the
areas of triangles P i−1P iP i+1 andQP kP k+1, respectively,
and wi is the weight corresponding to vertex P i (Meyer
et al., 2002).

We generalize to the sphere by interpreting the areas in
Eq. (25) as the areas of spherical triangles, rather than planar
triangular areas. An advantage of these weights is that they
are general; they can be used for arbitrary polygons, not just
triangles and quadrilaterals.

As was the case with bilinear interpolation outlined in
Sect. 4.1, the dual of the source mesh is constructed. This
will provide a mesh whose nodes are source face centers that

can be searched through efficiently. We again use a k–d tree
to find the dual mesh face that contains a target pointQ. The
details are similar to those described for the Delaunay trian-
gulation scheme in Sect. 4.1.1. Once we have this face, we
apply the weights given in Eq. (25). We point out that for the
triangular meshes we are considering, most faces on the dual
mesh are hexagonal, so using the generalized barycentric co-
ordinates given in Eq. (25) will allow up to six source points
to be incorporated into the remapping operator in Eq. (19),
instead of the three or four points that would be used for the
Delaunay triangulation weighting given in Eq. (24), or the
bilinear weighting in Eq. (21). We hypothesize that this dou-
bling of the number of source points in Eq. (19) would lead
to an increase in accuracy for remapping fields on triangular
source meshes. Furthermore, the generalized barycentric co-
ordinate weighting will always incorporate at least as many
source points as either other scheme.

4.2 Non-integrated remapping: numerical tests

Here we show the results of two different numerical tests.
In the first case, the remapping is done from cubed spheres
to a fixed 1◦ latitude–longitude mesh. The cubed spheres are
of increasing resolution with ne = 5, 10, 20, 40, 80, and 160
and have 150, 600, 2400, 9600, 38400, and 153600 faces,
respectively. The target mesh has 64800 faces. We plot the
error norms as functions of the approximate face size, which
we take to be the square root of the approximate area of each
face. Specifically, the face size is defined as

face size=

√
4π
N
, (26)

where N is the number of faces. We see from Fig. 10 that
the schemes converge at second order and are approximately
similar in magnitude.

For the second test, the target is still a fixed 1◦ latitude–
longitude mesh, and the source meshes are triangular
geodesic meshes with 180, 720, 2880, 11520, 46080, and
184320 faces. From Fig. 11, we see that all schemes con-
verge at second order and give similar error norms in most
cases. For the high-frequency and vortex tests, however, we
see that the generalized barycentric scheme gives consis-
tently smaller L∞ errors than the Delaunay triangulation and
the bilinear schemes, which indicates that the generalized
barycentric weighting is slightly more effective at resolv-
ing the sharp gradients present in these fields. So although
we hypothesized that the generalized barycentric coordinates
would perhaps give a more noticeable improvement in the er-
rors for all cases for triangular source meshes, we found that
its benefit appears to be limited to the L∞ errors for the Y 16

32
and vortex fields.

4.3 Integrated remapping

The remapping schemes described in the previous sections
work well when the source mesh is not too much finer than
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Figure 10. Convergence results for several non-integrated monotone remapping schemes for a fixed latitude–longitude target mesh and cubed
sphere source meshes.

Figure 11. Convergence results for several non-integrated monotone remapping schemes for a fixed latitude–longitude target mesh and
triangular source meshes.
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Figure 12. Convergence results for several integrated monotone remapping schemes for a fixed latitude–longitude target mesh and cubed
sphere source meshes.

the target mesh. However, when the resolution of the source
mesh is greater than that of the target mesh, pointwise sam-
pling of the source mesh to determine a field value on the tar-
get mesh is inappropriate and inaccurate. In this case, a large
number of points on the source mesh contribute no weights
to the remapping operator. To combat this under-sampling,
we now describe an approach that ensures all points on
the source mesh are sampled via construction of the over-
lap mesh or supermesh. Approaches of this type are called
integrated because of their analog to numerical quadrature
and are distinguished from the non-integrated approaches de-
scribed in Sect. 4.1–4.1.2. A non-integrated approach basi-
cally amounts to an interpolation, whereby we express each
value of the target field as a weighted sum of nearby source
values. In the integrated approach, we recall that our vari-
ables correspond to face averages, and we approximate these
integrals via quadrature. Specifically, for each face on the tar-
get mesh, we apply triangular quadrature to each sub-triangle
of each overlap face, where the number of overlap faces is
determined by the source mesh faces that intersect the given
target face. Written out in full, we have

ψ t
i ≈

1
|�t
i |

Nov∑
j=1

Nt∑
k=1

Nq∑
m=1

ψ s(xm,k,j )dWm, (27)

where |�t
i | is the area of target face i, Nov is the number of

source faces that overlap target face i, NT is the number of
sub-triangles per overlap face, Nq is the number of quadra-

ture points per sub-triangle, dWm is the quadrature weight
for themth quadrature point, and xm,k,j is the location of the
mth quadrature point within each sub-triangle of each over-
lap face. Now we do not know the value of ψ s(xm,k,j ), so
we need to estimate it. In our numerical tests, we will use all
three of the weightings described in Sect. 4. In particular, we
estimate ψ s(xm,k,j ) as

ψ s(xm,k,j )=

N∑
l=1

wlψ
t
pil
, (28)

where the pi1 to piN denote the faces on the source mesh
whose centers form the polygon that contains xm,k,j , and
w1, . . .,wiN represent the corresponding weights given by
Eqs. (24), (25), and (21) or (23), depending on the source
mesh. Because the integration is performed by way of the
overlap mesh, we can be sure that every degree of freedom
on the source mesh contributes weights to the remapping op-
erator.

4.4 Integrated remapping: numerical tests

This section again consists of two tests. The first test is to es-
tablish second-order convergence of the integrated schemes,
and it is identical to the setup of the first test shown in
Sect. 4.2. In Fig. 12, we compare the results of the inte-
grated versions of all three remapping schemes described in
Sect. 4. All three schemes give error norms similar to their
non-integrated counterparts shown in Fig. 10. In particular,
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Figure 13. Convergence results for the integrated and non-integrated bilinear remapping schemes from cubed spheres to a fixed latitude–
longitude mesh.

the error norms of the generalized barycentric and bilinear
schemes are nearly identical. This is to be expected, as in
both schemes, the value at each point on the target mesh de-
pends on four source points.

In the next test, we consider a setup wherein the source
meshes are refined beyond the resolution of the target mesh.
The source meshes are cubed spheres with ne = 15, 30, 60,
120, 240, and 480 and have 1350, 5400, 21600, 86400,
345600, and 1382 400 faces, respectively. The target mesh is
a fixed latitude–longitude mesh of 2◦ resolution. We see from
Fig. 13 that the accuracy of the non-integrated scheme is de-
graded, but the integrated scheme remains second-order. In
particular, observe that the accuracy of the non-integrated bi-
linear scheme starts to diminish relative to the integrated one
when the face size is between 10−1.5 and 10−2, which cor-
responds to a source mesh with no more than approximately
125000 faces. Before this point, the errors of both schemes
are similar. We point out that we only include a comparison
of the integrated and non-integrated versions of the bilinear
scheme, as the results look nearly identical for both the gen-
eralized barycentric and Delaunay triangulation schemes.

5 Conclusion

In this paper we have examined a number of differ-
ent schemes for conservative and non-conservative mono-
tone remapping. For monotone conservative remapping, we
showed that the “clip and assured sum” method provides an

accurate way of remapping conservative fields that are re-
quired to stay bounded and is effective at reducing the Gibbs-
like oscillations associated with discontinuous source fields.

We then described several different approaches to non-
conservative remapping. Two of these have, to the best of our
knowledge, never been applied to remapping problems on
the sphere. These methods have what are referred to as non-
integrated and integrated versions, and it was shown that the
integrated versions are capable of maintaining second-order
accuracy across a wide range of source mesh resolutions by
systematically sampling the degrees of freedom on the source
mesh, albeit at higher computational costs.

As discussed in the Introduction, the methods described
in this paper have been implemented as part of v2.1.6 of the
TempestRemap software package (Ullrich et al., 2022).

Code availability. The code used in this paper is part of the
TempestRemap software package and is available on Zenodo
(https://doi.org/10.5281/zenodo.7121451; Ullrich et al., 2022).

Data availability. The data used in this paper are available on Zen-
odo at https://doi.org/10.5281/zenodo.7714127 (Marsico and Ull-
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