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Abstract. Numerical weather prediction (NWP) models are
atmospheric simulations that imitate the dynamics of the
atmosphere and provide high-quality forecasts. One of the
most significant limitations of NWP is the elevated amount of
computational resources required for its functioning, which
limits the spatial and temporal resolution of the outputs. Tra-
ditional meteorological techniques to increase the resolution
are uniquely based on information from a limited group of
interest variables. In this study, we offer an alternative ap-
proach to the task where we generate precipitation maps
based on the complete set of variables of the NWP to gener-
ate high-resolution and short-time precipitation predictions.
To achieve this, five different deep learning models were
trained and evaluated: a baseline, U-Net, two deconvolu-
tion networks and one conditional generative model (Condi-
tional Generative Adversarial Network; CGAN). A total of
20 independent random initializations were performed for
each of the models. The predictions were evaluated using
skill scores based on mean absolute error (MAE) and lin-
ear error in probability space (LEPS), equitable threat score
(ETS), critical success index (CSI) and frequency bias after
applying several thresholds. The models showed a significant
improvement in predicting precipitation, showing the ben-
efits of including the complete information from the NWP.
The algorithms doubled the resolution of the predictions and
corrected an over-forecast bias from the input information.
However, some new models presented new types of bias: U-
Net tended to mid-range precipitation events, and the decon-
volution models favored low rain events and generated some
spatial smoothing. The CGAN offered the highest-quality

precipitation forecast, generating realistic outputs and indi-
cating possible future research paths.

1 Introduction

Precipitation prediction is a fundamental scientific and social
problem. Accurate rain forecasts play a crucial role in sectors
like agriculture, energy, transportation and recreation and
help to prevent human and material losses in extreme weather
events such as floods or storms. Nevertheless, it remains an
unsolved problem due to its high complexity, the large num-
ber of atmospheric variables involved, and the complex in-
teractions between them. This complexity and the rarity of
high precipitation events make it a challenging phenomenon
to predict.

Meteorology has developed different models to provide
weather estimations. Among the most successful methods
are the numerical weather prediction (NWP) models which
consist of systems of equations that simulate the dynamics
of the atmosphere and provide highly accurate weather fore-
casts over long periods (Kimura, 2002). The performance
of these models has presented a constant improvement over
time, and they are the standard operational systems in many
meteorological agencies all over the world (Bauer et al.,
2015).

However, NWP models still preserve some limitations,
the most important being the large number of computa-
tional resources needed to generate forecasts, which limits
the temporal and spatial resolutions of their outputs, shrink-
ing the possibility of offering highly detailed forecasts (Serifi
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et al., 2021). This shortcoming has given place to two sci-
entific tasks in meteorology: providing short-time (between
5 min and 6 h) forecasts (nowcasting) and generating high-
resolution forecasts from low resolution (downscaling).

Deep learning algorithms are starting to be integrated as
part of the weather forecast workflow and help them to over-
come their limitations (Schultz et al., 2021). In the case of
the short-time forecast, Shi et al. (2015) developed a first
convolutional long short-term memory network (LSTM) that
outperformed state-of-the-art optical flow models. Two years
later, Shi et al. (2017) improved previous benchmarks by
presenting a new trajectory recurrent model for nowcast-
ing. Following the same goal, Agrawal et al. (2019) used
the U-Net architecture (Ronneberger et al., 2015) to now-
cast categorical radar images with results that outperformed
traditional nowcasting methods. Later after some exploratory
work (Ayzel et al., 2019), Ayzel et al. (2020) introduced the
RainNet v1.0, a convolutional network based on the U-Net
for radar-based precipitation nowcasting. The results of the
RainNet significantly overcame the performance of previ-
ous models but generated rain maps with remarkable spatial
smoothing and difficulty in predicting high rain events. Con-
sidering these limitations, Ravuri et al. (2021) presented a
deep generative model based on generative adversarial net-
works (GANS) (Goodfellow et al., 2014) which improved
the accuracy and realism of the outputs.

The second significant area of deep learning application
for the generation of weather maps is spatial downscaling,
which consists of generating high-resolution forecasts from
low resolution (known in the machine learning domain as
a super-resolution task; Park et al., 2003). Stengel et al.
(2020) used generative models to downscale wind velocity
and solar irradiance data from global climate models, show-
ing the usability of deep learning in climatological data. In
the case of precipitation, Sha et al. (2020) developed a U-
Net-based model to downscale daily precipitation forecasts
from a low to a higher resolution, obtaining results that over-
come the performance of the statistical downscaling meth-
ods. One year later, Serifi et al. (2021) used generative mod-
els to downscale temperature and precipitation maps from
weather simulations and meteorological observations, ob-
taining high-resolution maps with improved quality while
avoiding blurred results typical of the deconvolution.

Despite recent advancements, nowcasting and downscal-
ing precipitation preserve significant room for improvement.
In our opinion, one of the main shortcomings of the used ap-
proaches is the limited amount of atmospheric information
integrated into the generation of predictions. Most models
are developed using data from previous observations of the
same variable (wind speed, precipitation, temperature, etc.),
omitting information from additional meteorological states
involved in the physical phenomena. In the case of spatial
downscaling, a deep learning approach increases the resolu-
tion of the NWP models, but it does not correct their imper-
fections, generating high-resolution inaccurate images.

In this matter, we propose a new and alternative solu-
tion: to use the complete low-resolution weather simula-
tions (NWP) as an informed prior for training a system that
produces high-resolution precipitation maps. This translates
into using deep learning algorithms to directly map the low-
resolution meteorological forecast with high-resolution radar
observations, generating short-term (3 h) and high-resolution
(1.4 km) precipitation maps based on the nonlinear combi-
nation of all variables of the numerical weather simulations
(NWP), correcting forecast inaccuracies in the process (see
Fig. 1).

Our research goal is to achieve this mapping by developing
and testing different deep learning algorithms in their ability
to generate precipitation maps while increasing the resolu-
tion of the output. We will start by describing the data we
worked on: the COSMO-DE-EPS simulations as input and
precipitation radar images as output. Later, we present the
different algorithms we trained and tested, their implemen-
tation and optimization procedures, and the metrics used to
evaluate the generated predictions. The results obtained by
each model are examined using the current literature.

2 Data

The complete dataset was composed of all eight initializa-
tions of the COSMO-DE-EPS forecast with 3 h lead time and
their target precipitation radar observations over the period
between the beginning of 2011 until the end of May 2018, in
a selected area of about 100× 100 km2 in the region of West
Germany (see Fig. 2).

The selected area is located in the central parts of West
Germany where interaction between low mountain ranges
and the dominant flow patterns induces strong spatial vari-
ability in the yearly precipitation amount (see also, e.g.,
Kreklow et al., 2020). Due to prevailing westerly and south-
westerly winds, the southwestern part of the target area is
characterized by low precipitation amounts between 500 and
700 mm yr−1 due to lee effects of the Eifel mountain range.
By contrast, yearly precipitation exceeds 1200 mm yr−1 be-
tween Wuppertal and Luedenscheid due to lee effects at the
Sauerland mountain range. The high spatial variability in
precipitation together with a good data coverage due to the
overlapping observation area of different radar stations (see
Fig. 1 in Pejcic et al., 2020) make the region suitable for test-
ing our deep neural networks.

2.1 NWP output

We use the output of the COSMO-DE-EPS forecast (Peralta
et al., 2012) as input; this was known as the German Me-
teorological Service (DWD) operational ensemble predic-
tions system until May 2018, providing numerous data points
for developing and testing deep learning applications. The
COSMO-DE-EPS is the German adaptation of the COSMO
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Figure 1. Task description: our research goal is to perform a direct mapping between the low-resolution atmospheric forecast and the high-
resolution radar observations using the complete information of the NWP as input.

Figure 2. Average yearly precipitation (colors, mm yr−1) from
2001–2021 compiled from the RW product (rain-gauge-adjusted
hourly precipitation) of the RADKLIM dataset (see Sect. 2.2). The
lateral boundary of the target region is highlighted by the black box.
Contour lines show the surface elevation retrieved from the SRTM
dataset (NASA JPL, 2013).

model, a well documented and reliable NWP model operat-
ing in several EU countries (Marsigli et al., 2005; Valeria and
Massimo, 2021).

We selected the forecast with 3 h of lead time. We calculate
the mean and standard deviation (i.e., ensemble spread) from
the 20 ensemble members for a total of 143 forecasts. Each
of the forecast variables provided information about meteo-
rological states (wind speed, temperature, pressure, etc.) and
soil and surface states (water vapor on the surface, snow
amount, etc.), providing a multidimensional description of
the atmospherical state for the time predicted. A detailed de-
scription of the COSMO-DE-EPS output can be consulted in
Schättler et al. (2019).

Given that each pixel of the COSMO-DE-EPS grid cov-
ered 7.8 km2 (2.8×2.8 km), the correspondent 100 km2 fore-
cast around the coordinates (51◦00′00′′ N, 7◦30′00′′ E) has an
extension of 36×36 pixels and we have 143 variables (chan-

nels); this give a final shape of 36×36×143 forecast for the
area.

2.2 Radar precipitation observations

Our prediction target constitutes quality controlled precipita-
tion observations of the German radar network provided by
the DWD. Here, we use version 2017.002 of the RADar KLI-
Matologie (RADKLIM – radar climatology) dataset (Winter-
rath et al., 2018). This dataset is based on the RADar On-
Line AdjustemeNt (RADOLAN) procedure which converts
the reflectivity measured by 17 ground-based C-band radar
stations to precipitation rates (Bartels et al., 2004). The pro-
cedure constitutes a synthesis between radar and rain gauge
observations and includes several corrections to eliminate
backscattered noise due to non-meteorological targets (e.g.,
insects or solid objects like wind power plants). Additional
corrections are included for the RADKLIM dataset com-
pared to the RADOLAN procedure (Winterrath et al., 2018).

The radar data are given on a polar stereographic grid
which provides a quasi-equidistant grid coverage over Ger-
many at a resolution of 1 km. For consistency between the
input and the target, the Climate Data Operators (CDO) soft-
ware (Schulzweida, 2019) is used to remap the data onto the
same rotated pole grid as the COSMO data (see Sect. 2.1),
but at a higher spatial resolution of 1.4 km for downscal-
ing purposes. The first-order conservative remapping method
provided by the YAC (Yet Another Coupler) interpolation
stack (Hanke et al., 2016) ensures that the area-integrated
precipitation amount is approximately conserved during the
remapping process. Additionally, the YW product which pro-
vides precipitation rates for every 5 min is used to retrieve
hourly precipitation. This is mandatory, since the original
hourly RQ product is not valid at full hours but at minute 50,
which would in turn result in a mismatch with the time stamp
of the NWP data. The resulting target data then comprise
72×72 pixels which are aligned with the coarser NWP input
data.
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3 Methodology

According to the recent literature, two main deep learning ap-
proaches can be considered helpful to solve this task: decon-
volution models and conditional generative adversarial mod-
els. Both of these approaches perform a nonlinear mixing of
the input variables to generate high-resolution precipitation
maps.

Deconvolution models use deconvolution layers to in-
crease the resolution of the input. The deconvolution oper-
ation (also called transposed convolution or unsampled con-
volution) works inversely to convolution. Instead of creating
an abstract representation of the input by reducing its spa-
tial dimension, deconvolution upsamples the input to the de-
sired feature map using learnable parameters by multiplying
it by a kernel (Dumoulin and Visin, 2018). Deconvolution
techniques have been widely used in super-resolution (Long
et al., 2015) and image-segmentation tasks (Ronneberger
et al., 2015). However, applications of deconvolution net-
works to generate precipitation maps (Ayzel et al., 2020)
have generated blurry outputs with high spatial smoothing,
making the images look unrealistic and fail to predict high
precipitation events.

On the other hand, generative adversarial networks
(GANS) have been used to generate realistic precipitation
maps that do not incur spatial smoothing or blurring (Ravuri
et al., 2021). Generative adversarial networks are a genera-
tive model composed of two separate networks: a generator
network that creates a fake image from a random input and
a discriminator network, with the job of discriminating be-
tween the real and the fake images. While the generator is
trained to try to deceive the discriminator, the discriminator
is trained to separate the authentic images from the fake ones.
Both networks are trained against each other, which forces
the generator to create realistic outputs (Goodfellow et al.,
2014).

Generative adversarial networks can also be used to solve
image-to-image translation tasks by substituting the random
input for a conditional input (Isola et al., 2016) (now called
conditional generative adversarial networks or CGANs).
While the task of the discriminator remains unchanged, the
generator is asked to not only fool the discriminator but also
be near the truth value, combining the loss with the distance
between output and true values regulated by a hyperparame-
ter lambda. In this way, the generator produces an output that
is not only accurate but also resembles the characteristics of
a real image.

In this work, five different deep learning models were de-
veloped and tested: two baseline models for comparison with
previously published algorithms, two deconvolution models
and the CGAN. The development of the deconvolution mod-
els and the CGAN were guided by previously published lit-
erature about deep learning applications for super-resolution
tasks but adapted to our dataset characteristics and the results
of hyperparameter experimentation. Validation of hyperpa-

rameters and parameters is performed by testing the model
against unobserved data (test set). Each of the models is ex-
plained in detail next and summarized in Table 1.

3.1 Deep learning models

3.1.1 Baseline model

As a baseline comparison point, a single 7× 7 deconvolu-
tion kernel with a ReLU (rectified liner unit) activation func-
tion is used to generate a single precipitation map. The ker-
nel combined the local input information to calculate a high-
resolution rain map. The goal of this model was to offer a
baseline comparison point of the simplest model to compare
with more complex models.

3.1.2 U-Net

As mentioned in the introduction, the U-Net architecture
(Ronneberger et al., 2015) was previously used to nowcast
and downcast meteorological data. The U-Net is composed
of an initial contracting path followed by an expansive path
that increases the resolution of the output, adding skip con-
nections between the stages of the paths.

Due to its proven good performance in the abovemen-
tioned tasks, it was considered essential to explore its per-
formance in solving our present task and have it as a refer-
ence point to evaluate the performance of our models. In this
work, we adapt the architecture used by Ayzel et al. (2020)
to the dimensionality of our input and output data while con-
serving the essential contracting and expanding paths. The
detailed architecture can be found in Appendix A.

3.1.3 One-level deconvolution (Deconv1L v1)

In the Deconv1L, a first 7×7 deconvolution kernel is applied
to the input that generates 32 high-resolution feature maps.
Next, batch normalization is applied to avoid overfitting, fol-
lowed by a convolution kernel that combines the 32 feature
maps into a single precipitation image as output.

3.1.4 Three-level deconvolution (Deconv3L v1)

The Deconv3L model first applies max pooling to the input
information to reduce its resolution to half (4.8 km2). After
that, it applies a first deconvolution 5× 5 kernel to generate
32 feature maps, followed by batch normalization. An ad-
ditional deconvolution kernel is applied over the generated
feature maps to generate 16 combined feature maps. Finally,
a single convolutional kernel estimates the output layer based
on the previously mixed maps.

3.1.5 Conditional adversarial generative networks
(CGAN v1)

For the CGAN, the Deconv3L was used as a generator to
create rain maps based on the COSMO-DE-EPS input. Ad-
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Table 1. Summary of the deep learning models trained and tested in this study.

Name Baseline U-Net Deconv1L v1 Deconv3L v1 CGAN v1

Layers 2dDeconv(1) See 2dDeconv(32) Max pooling(2) Deconv3L +
Appendix A BatchNorm 2dDeconv(32) discriminator

Conv(1) BatchNorm
2dDeconv(16)
Conv(1)

Kernel size 7× 7 7× 7 5× 5 5× 5

Stride 2 2 2 2

Parameters 7008 153 849 224 673 127 841 127 841

ditionally, a discriminator model was implemented with the
task of distinguishing between authentic images and gener-
ated images. The discriminator network was composed by
three blocks of a convolution kernel together with a dropout
layer, followed by a flattening of the feature maps and a fully
connected output. Different from the previous models, the
difference between the generated images and the actual val-
ues was not directly back-propagated to the weights. Instead,
the generator loss is a combination of the distance between
the predictions and outputs with an attempt to fool the dis-
criminator, which leads the generator to create realistic out-
puts based on the input without blur.

3.2 Implementation

The training of the models was performed on the JUWELS
Supercomputer at the Jülich Supercomputing Centre (JSC),
on standard compute nodes. Each node contained 2 Intel
Xeon Platinum 8168 CPU with 24 cores each of 2.7 GHz,
and 96 GB DDR4 of ram at 2666 MHz. The training took
between 30 min and 1 h, depending on the complexity of
the model. The implementation was based on Python 3.8.3
(Van Rossum and Drake, 1995). Array operations were per-
formed using Numpy 1.19.1 (Harris et al., 2020) and Ten-
sorFlow 2.3.1 (Abadi et al., 2015) was utilized to implement
the deep learning algorithms together with the Keras 2.4.0 li-
brary (Chollet et al., 2015). The mpi4py 3.0.3 library (Dalcin
et al., 2019) was used to distribute the initializations training
on different JUWELS JSC cores. Scikit-Learn metrics 0.23.2
(Pedregosa et al., 2011) were used for verification and Mat-
plotlib (Hunter, 2007) for plotting the results.

The complete implementation was subdivided into three
sections. First, preprocessing was needed to prepare the data
for training and to generate the different datasets from the
complete set of forecasts and observations. Given that the
performance of deep learning models can be affected by the

random initialization of the kernel parameters, 20 indepen-
dent random initializations were trained for each of the mod-
els of interest to make the study’s results robust. Thereafter,
each model initialization was trained using the training set
and monitored using the validation set. Lastly, the perfor-
mance of each model initialization was evaluated using the
test set. Each of the steps is explained in detail in the follow-
ing subsections.

3.2.1 Preprocessing

The first step of the preprocessing was to match each of the
COSMO-DE-EPS forecasts with their corresponding radar
observation. All forecast–precipitation pairs containing any
missing values were discarded (3.93 % of the total). Next, the
original values of the forecast were standardized in order to
avoid numerical problems due to inputs in different units of
measurement. The complete dataset was split into train, test
and validation set by date. All forecasts with dates of 1st, 9th,
17th and 25th, regardless of month and year, were selected as
part of the test set (2671 forecasts and observations, 12.96 %
of the samples). In the same way, the validation set was built
with the forecast of the 5th, 13th, 21st and 28th of all months
and years (2725 forecast and observations, 13.25 % of the
complete set). Then, all remaining dates were chosen as part
of the training set (15 189 forecast and observations, 73.79 %
of the dataset). Finally, the three datasets were stored and
retrieved using the TFRecords format from the TensorFlow
library (Abadi et al., 2015) (the complete preprocessing rou-
tine was implemented and can be found in the notebook pre-
processing.ipynb, part of the repository part of this paper).

3.2.2 Training

One single script was developed (baseline.py, unet.py, de-
conv1l.py, deconv3l.py, and cgan.py) for each model. The 20
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initializations of each model were distributed between 20 in-
dependent cores of the JSC HPC in the mpi4py library (Dal-
cin et al., 2019). Each core reads the training set stored as
TFRecords, initializes a model with random initial weights
and fits the parameters to the training set. The training was
performed during 24 epochs using a mini-batch size of 20.
Mean squared logarithmic error (MSLE) was used as the
loss measure due to the gamma-like distribution of the rain
amount on the radar images (see Fig. 3), and Adam, with
a learning rate of 0.001, was used as the optimizer. Once
each core finished its respective training, the resulting model
was stored in TensorFlow HDF5 format, and their loss during
training was saved and plotted to check for convergence.

3.2.3 Verification and plotting

Once the trained models were stored, their performance was
evaluated using the test set (evaluate.ipynb). Each of the 20
initializations was loaded and used to generate predictions
for the input test set. Next, the predictions were evaluated
using the verification methods (detailed in the following sec-
tion) and the results were stored. Finally, the evaluations of
each model were plotted and illustrated (plot.ipynb).

3.3 Verification methods

Predictions generated by the trained models, as well as the
predictions from COSMO-DE-EPS, were evaluated using
two different types of metrics: continuous and dichotomous.
The continuous verification metrics were skill scores based
on mean absolute error (MAE) and linear error in probability
space (LEPS). The output of the models was also evaluated
using three different dichotomous metrics based on the truth
table – critical success index (CSI), equitable threat score
(ETS) and frequency bias – for which five different thresh-
olds were applied to the output: 0.2, 0.5, 1, 2 and 5 mm h−1.
Each of the verification metrics is presented in detail in the
following paragraphs.

3.3.1 MAE-based skill score

The mean absolute error measures the absolute difference be-
tween paired observations expressing the same phenomenon,
in this case, the difference between the forecast and the ob-
served radar images. Considering F as the forecast vector
and O as the observations, the MAE is defined as follows:

MAE=
1
N

N∑
i=1
|F i −Oi |. (1)

The term “skill score” indicates the degree of improve-
ment of the new predictions compared to the original
COSMO-DE-EPS forecast. The forecast is perfect when the
skill score equals 1, while a skill score of 0 and below in-
dicates that there is no improvement or less skill in the new
predictions compared to the reference. The MAE-based skill

score is calculated as follows:

skill score= 1−
MAEmodel predictions

MAECOSMO-DE-EPS predictions
. (2)

3.3.2 LEPS-based skill score

The linear error in probability space is the mean absolute
difference between the values that the forecast and observa-
tion take in the climatological cumulative distribution func-
tion (CDF) of the observations, i.e., LEPS is analogous to the
MAE but in a CDF space (Ward and Folland, 1991). Consid-
ering F as a distinct forecast, O as the respective observation
and CDFo as the CDF of the observations determined by an
appropriate climatology, LEPS is defined as follows:

LEPS=
1
N

N∑
i=1
|CDFo(F i)−CDFo(Oi)|. (3)

Similar to other skill scores, a perfect forecast obtains a
skill score equal to 1 and a skill score of 0 and below would
indicate a decrease in the performance compared to the ref-
erence models. The LEPS-based skill score is calculated as
follows:

skill score= 1−
LEPSmodel predictions

LEPSCOSMO-DE-EPS predictions
. (4)

3.3.3 Equitable threat score (ETS)

The ETS measures the skill of the forecast relative to chance
by measuring the fraction of the observed forecast events that
were correctly predicted, adjusted for corrected predictions
associated with random chance. It ranges between −1/3 and
1, with 0 and below indicating no skill and 1 representing a
perfect forecast. Specifically, it is calculated in the following
way:

ETS=
hits− hitsrandom

hits+misses+ false alarms− hitsrandom
, (5)

where

hitsrandom =
(hits+misses)(hits+ false alarms)

total
. (6)

3.3.4 Critical success index (CSI)

The CSI measures the fraction of observed and/or forecast
events that were correctly predicted. It ranges between 0 and
1, with 0 indicating no skill and 1 representing a perfect
score:

CSI=
hits

hits+ false alarms+misses
. (7)

3.3.5 Frequency bias (BIAS)

The frequency bias measures the ratio of the frequency of
forecast events to the frequency of observed events. It indi-
cates whether the forecast has a tendency to under-forecast
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Figure 3. Distribution of registered precipitation for pixels with precipitation > 0 mm h−1 in the radar observations. In all datasets, the
majority of the pixels registered no rain. For the pixels with rain, we found the rain amounts to characteristic gamma-like distribution.

(BIAS < 1) or over-forecast (BIAS > 1). It ranges from 0 to
∞ with a perfect score of 1 and does not measure how well
the forecast corresponds to the observations, only relative
frequencies:

BIAS=
hits+ false alarms

hits+misses
. (8)

4 Results

Our research goal was to explore the application of deep
learning models to generate high-resolution precipitation
maps using low-resolution NWP simulations as input. We de-
veloped and tested five deep learning algorithms to achieve
this goal. For each model, 20 independent runs with initial
randomization were performed, and their predictions were
evaluated using the aforementioned metrics.

The results of this work demonstrate the general ability
of deep learning algorithms to calculate high-resolution pre-
cipitation maps. As in most machine learning applications, a
significant influence of the architecture and the total number
of parameters was found; this suggests that the algorithm’s
ability to solve these tasks depends on finding the right level
of complexity for the problem. The scores are summarized in
Table 2 and illustrated in Figs. 4 and 5. The models’ predic-
tions are shown in Fig. 6. A detailed analysis of the perfor-
mance of each model is presented next.

First, we need to evaluate the skill of the original COSMO-
DE-EPS to forecast precipitation. To do so, we compared
the total precipitation variable against a low-resolution ver-
sion of the radar observation using all metrics. To merge the
RADKLIM data onto the rotated pole grid of the COSMO-
DE-EPS data, a conservative remapping step with CDO is
performed, similar to the procedure described in the “Data
availability” section.

Given that MAE- and LEPS-based skill scores are cal-
culated in reference to the COSMO-DE-EPS performance,
the respective skill scores are equal to 0. Following the ETS
and CSI scores, we observe an initial high performance of

the model in low-threshold events and a progressive decline
with the threshold increase. This finding indicates a good
general skill to predict low rain events and less skill to pre-
dict high precipitation events. However, COSMO-DE-EPS
presents the highest scores in predicting high precipitation
events (2 and 5 mm h−1). Analyzing the frequency bias, a
strong tendency to over-forecast rain regardless of the thresh-
olds can be observed, a tendency that can be confirmed by
examining the example predictions in Fig. 6.

Starting with the baseline model, we can observe an in-
crease in both skill scores concerning COSMO-DE-EPS.
This improvement is limited compared to more complex
models, which is expected due to the simplicity of the model
and the reduced amount of parameters involved. Regarding
ETS and CSI, a significant decrease in the median scores in
all thresholds can be viewed, together with high variability,
which signalizes a lack of consistency in the models’ perfor-
mance. Observing the example precipitation maps, the prob-
lem comes to light: the precipitation maps show checker-
board artifacts which lead to numerous rain points being
missing. This artifact is caused by the superposition of the
kernel operation caused by the only deconvolution layer in-
cluded in the model. Despite the artifacts, the model gener-
ates a significant improvement in the frequency bias, obtain-
ing values close to 1 in small thresholds. However, these re-
sults disappear at higher thresholds, indicating that the model
does not produce stable results.

The second comparison point was the U-Net-based model.
The U-Net model presents a significant improvement in ab-
solute error but a decrease with very high variability in the
LEPS-based skill score. By observing the ETS, CSI and fre-
quency bias scores, a substantial improvement can be ob-
served in its ability to predict low rain events. Regarding
the performance for thresholds of 1 and 2 mm h−1, this ar-
chitecture obtains even better median scores than the more
complex models, indicating a good ability to predict mid-
range rain events. These scores suggest that the U-Net model
has a lower bias towards rain amounts of 0 than the base-
line model and is prone to generating medium rain forecasts,
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Table 2. Summary of the results: median and best-performing model are presented for each of the metrics.

COSMO-DE-EPS Baseline U-Net Deconv1L Deconv3L CGAN
v1 v1 v1

Metric Score Median Best Median Best Median Best Median Best Median Best

MAE skill 0 0.382 0.441 0.47 0.497 0.487 0.499 0.497 0.516 0.506 0.513
LEPS skill 0 0.683 0.7 0.651 0.715 0.726 0.739 0.725 0.758 0.755 0.761

ETS 0.2 0.309 0.119 0.255 0.399 0.406 0.393 0.398 0.402 0.409 0.372 0.386
ETS 0.5 0.284 0.128 0.247 0.315 0.339 0.335 0.347 0.315 0.338 0.301 0.325
ETS 1 0.235 0.127 0.216 0.231 0.257 0.209 0.265 0.199 0.255 0.212 0.251
ETS 2 0.17 0.109 0.161 0.117 0.179 0.044 0.121 0.042 0.122 0.074 0.134
ETS 5 0.067 0.029 0.05 0.0 0.023 0.002 0.003 0.001 0.001 0.001 0.002

CSI 0.2 0.355 0.138 0.282 0.43 0.437 0.424 0.431 0.434 0.441 0.399 0.414
CSI 0.5 0.314 0.14 0.267 0.332 0.357 0.354 0.369 0.332 0.357 0.318 0.344
CSI 1 0.252 0.135 0.229 0.24 0.267 0.216 0.275 0.206 0.265 0.22 0.261
CSI 2 0.177 0.112 0.165 0.119 0.183 0.045 0.124 0.043 0.124 0.076 0.136
CSI 5 0.068 0.029 0.051 0.0 0.023 0.002 0.003 0.001 0.001 0.001 0.002

FBias 0.2 2.057 0.31 0.272 0.996 0.002 0.044 0.994 0.007 0.001 0.756 0.875
FBias 0.5 2.007 0.34 0.778 0.702 0.801 0.822 0.997 0.656 0.841 0.63 0.774
FBias 1 1.987 0.394 0.974 0.523 0.664 0.443 0.767 0.378 0.638 0.474 0.637
FBias 2 1.877 0.496 0.92 0.228 0.487 0.081 0.3 0.074 0.27 0.156 0.326
FBias 5 2.078 0.642 0.041 0.009 0.072 0.011 0.056 0.002 0.013 0.006 0.029

Perfect score for all metrics = 1.

Figure 4. Quantitative metrics: each subplot compares the skill score of the different models. In panel (a), each boxplot illustrates the MAE-
based skill score, and in panel (b), the LEPS-based skill score of 20 runs for each model with different initializations is depicted. The higher
the skill score, the higher the improvement over the reference (in this case, COSMO-DE-EPS). A skill score of 0 represents no improvement,
and a negative skill score indicates decay in the performance.

which generates a higher average error that is reflected by the
high variability of the LEPS-based skill score. This effect can
be confirmed in the precipitation maps with more extensive
and more intense precipitation regions.

Moving to the main models of this work, the first deconvo-
lution model, Deconv1L, significantly outperforms the base-
line and U-Net models in the MAE- and LEPS-based skill
scores. Observing the ETS and CSI scores, we can see a sig-
nificant improvement in predicting low rain events, obtain-

ing the best scores between all models for 0.5 and 1 mm h−1

thresholds. However, this ability starts to decrease signifi-
cantly with the utilization of higher thresholds, which indi-
cates the presence of a bias from the model to favor low
precipitation events and difficulties in predicting high rain
events. This tendency can be confirmed by observing the
frequency bias, where the Deconv1L model obtains almost
perfect scores for low thresholds but under-forecasts for rain
events of higher intensity. The example rain maps confirmed
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Figure 5. Dichotomous metrics: each subplot illustrates the metrics score of 20 independent models with different initial conditions after a
certain threshold was applied. The ETS and CSI vary between 0 and 1, with 0 indicating no skill and 1 a perfect forecast. Frequency bias
ranges from 0 to +∞, with bias < 1 indicating under-forecasting, bias > 1 indicating over-forecasting and a perfect score = 1.

a solid tendency to predict low rain events when generating
spatial smoothing of the rain maps, which also explains the
increase in the skill scores.

In the case of Deconv3L, we found a similar but slightly
better performance compared to Deconv1L for the quantita-
tive metrics. The median MAE-based skill score is above all
previous models, and the median LEPS-based skill score is
comparable to the Deconv1L, with the best initialization out-
performing all previous models. Looking at the ETS and CSI,
we found a similar performance to the Deconv1L model,
with minor improvements in the 0.2 mm h−1 threshold but
a slight decrease in the performance of all other thresholds;
this indicates a higher bias to perform spatial smoothing and
to favor low rain events. This bias can be confirmed by ob-
serving the frequency bias scores, where the performance im-
proves for the small thresholds but then decays compared to
Deconv1L in all other thresholds. Example predictions con-
firm similar spatial smoothing found in other deconvolution
models. However, it is essential to consider that this model
reaches comparable performance to Deconv1L using approx-
imately half of the parameters, enabling more efficient use of
computational resources.

Considering the superior performance shown by the De-
conv3L model, we used it as a generator model in a condi-
tional generative adversarial model (CGAN). A significant
improvement in performance and consistency can be found
using Deconv3L as a generator in the MAE- and LEPS-based
skill scores. For lower thresholds (0.2 and 0.5 mm h−1), we
observe a decay in the performance compared to the decon-
volution models but improved scores for higher thresholds.
Additionally, the CGAN models have a lower frequency bias
for these same thresholds. These metrics indicate a better
model performance to predict high precipitation events, in-
dicating a correction of the spatial smoothing caused by the
deconvolution operation. This correction is confirmed by ob-
serving the prediction examples, where we can find the more
realistic high-resolution outputs between all models.

In summary, COSMO-DE-EPS tends to overpredict rain
events shown by a high-frequency bias and poor scores in
ETS and CSI for lower thresholds. This tendency can be
partially corrected by implementing deconvolution models
that present a superior performance to the reference mod-
els (baseline, U-Net). However, these deconvolution models
induce a new type of bias towards low rain events which pro-
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Figure 6. Example of predictions made by the different models versus the true values. For each of the models, the initialization with the
highest LEPS-based skill score was selected to generate the predictions.

voke spatial smoothing in the examples and reduces the to-
tal level of error; it also increases the accuracy for low rain
events while deteriorating the skill to predict high precipi-
tation events. This blurry effect can be countered by inte-
grating the deconvolution model as a generator in a condi-
tional generative model which can generate accurate outputs
resembling real rain maps. An additional finding was that the
U-Net architecture did not achieve superior or stable scores
for this problem. Possible reasons for this are discussed in the
following section. Additionally, all models present a decrease
in the scores when increasing the rain thresholds, indicating
a general difficulty in predicting high precipitation events.

5 Conclusions

The results obtained in this work provide significant evidence
for the application of deep learning models to perform bias
correction of the NWP input and to generate high-resolution
rain maps with improved accuracy. This improvement proves
that using the complete information of the NWP variables

and combining them in a nonlinear fashion using feature
maps helps to achieve higher quality and more precise pre-
cipitation forecasts.

The direct mapping between the physical simulations of
the weather and the precipitation maps captured by radars
can be achieved with the use of deep learning algorithms in
a single step that combines increasing the resolution and cor-
recting such inaccuracies of the original forecast. A signifi-
cant amount of improvement performed by the deep learning
models consisted of correcting the tendency of the COSMO-
DE-EPS to over-forecast, but the application of the devel-
oped models introduced new different types of bias.

The U-Net-based model presented an important bias to
mid-range precipitation, which increased the average error
of the predictions and made it less suitable to solve the task.
A possible reason is that the contracting path of the archi-
tecture destroyed a significant part of the needed information
to generate high-resolution predictions, causing the network
to overestimate the amount of rain registered and, therefore
produce inaccurate predictions.
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This conclusion is sustained by the observation that the ar-
chitecture of one of the best-performing models (Deconv3L)
is inspired by the U-Net architecture, except for the contract-
ing path that is substituted with a single max-pooling layer.
The performance and consistency shown by the Deconv3L
model are highly superior to the U-Net network. This is in
contrast with a series of works in the last years that used the
U-Net architecture for super-resolution tasks with meteoro-
logical data (Ayzel et al., 2020; Serifi et al., 2021). In this
particular case, where the input has an elevated number of
channels (in this case, 143), the expanding path alone pro-
vided higher performance than the complete U-shaped struc-
ture.

On the other hand, the spatial smoothing caused by the
deconvolution operation that has been reported in previous
works (Ayzel et al., 2020; Ravuri et al., 2021) was also re-
produced by our deconvolution models. Consistent with the
work of Ravuri et al. (2021), using the Deconv3L model as
a generator in a conditional generative model helped to find
the right trade-off between accuracy and realistic outputs and
generated realistic high-resolution rain maps with the lowest
error between all models. This gain in performance is due to
back-propagating a combined loss function (chances to fool
the discriminator and distance to real values) instead of only
the difference between the real values and the model predic-
tions, which avoids the fact that the model only optimizes
in terms of the mean squared logarithmic error, causing the
spatial smoothing.

An additional conclusion from this work is the relevance
of using multiple metrics for the evaluation of precipitation
predictions. Our results showed that the utilization of the
LEPS could reveal inconsistencies first unattended by the
MAE. Especially in the case of precipitation, the single use
of MAE as a performance metric can be misleading due to
the values’ closeness to 0.

We provided important information about the characteris-
tics of the application of models with different characteris-
tics to the mapping between meteorological simulations and
high-resolution rain maps that could guide the development
of potential real-world implementations. The first limitation
of our results is the limited spatial and temporal resolution
of our predictions. Our scope was limited to a forecast lead
time of 3 h and an area of 100× 100 km2, which is a small
domain when compared to real meteorological applications.
Also, nowcasting applications usually provide predictions for
several time points in the future while our work is limited to
one. Additionally, modern practical meteorological applica-
tions offer probabilistic outputs, and our models generate de-
terministic predictions which would be a limitation for a di-
rect application of the algorithms. Most of these limitations
are caused by our intention to generate an initial approxi-
mation of the capabilities of deep learning to solve this task
instead of generating a fully functional and applicable model.

The key element for the improvement of the quality of the
forecast is the inclusion of multiple variables (as channels)

which provide enough information about the different states
of the atmosphere and soil. The developed models combine
and weights the input information (and its combinations),
learning the relevant patterns in the input information to cor-
rect the precipitation predictions and increase its resolution.
Nonetheless, combining multiple variables entails two con-
sequences: first, it requires higher computational resources
to train the models than single or fewer variables. Second,
it makes it very difficult to distinguish which variables are
relevant to improve the forecast, given the nonlinear mixing
performed by the algorithm. Future research must explore the
relevance of single variables and train models with subsets of
variables that make more efficient use of the computational
resources.

Another shortcoming of our approach is overlooking the
different types of precipitation. Our models make no ex-
plicit differentiation between the different types of rain
(stratiform/convective). However, it could be that the best-
performing models have learned different patterns of input
information to improve each type of phenomenon, but prov-
ing this requires a different analysis that is out of the scope
of the present work. Future research could explore generat-
ing distinct models for the different types of precipitation and
the role of the different input variables for each type of pre-
cipitation.

The accurate prediction of high rain events remains a chal-
lenge, which is partially due to the limited number of samples
to train the algorithms, making this an extremely difficult
event to predict from the deep learning perspective. The inte-
gration of deep learning in meteorological workflows seems
to be a useful tool for improving meteorological models. In
our case, the use of deconvolution networks as a part of a
CGAN provides promising results for the generation of ac-
curate high-resolution precipitation outputs. Future research
should extend the application of these models to bigger spa-
tial and temporal domains, as well as more complex topogra-
phies, and at the same time, search for the set of hyperpa-
rameters that allows for decreasing inaccuracies in the pre-
dictions.
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Appendix A: U-Net architecture

Table A1. Following the architecture proposed by Ronneberger et al. (2015) and Ayzel et al. (2020), the U-Net architecture was adapted to
the input and output size of the current task using the following architecture.

Layer (type) Output shape Param no. Connected to

input_1 (InputLayer) (None, 36, 36, 143) 0 –
conv2d (Conv2D) (None, 36, 36, 16) 20 608 input_1[0][0]
conv2d_1 (Conv2D) (None, 36, 36, 16) 2320 conv2d[0][0]
max_pooling2d (MaxPooling2D) (None, 18, 18, 16) 0 conv2d_1[0][0]
conv2d_2 (Conv2D) (None, 18, 18, 32) 4640 max_pooling2d[0][0]
conv2d_3 (Conv2D) (None, 18, 18, 32) 9248 conv2d_2[0][0]
max_pooling2d_1 (MaxPooling2D) (None, 9, 9, 32) 0 conv2d_3[0][0]
conv2d_4 (Conv2D) (None, 9, 9, 64) 18 496 max_pooling2d_1[0][0]
conv2d_5 (Conv2D) (None, 9, 9, 64) 36 928 conv2d_4[0][0]
up_sampling2d (UpSampling2D) (None, 18, 18, 64) 0 conv2d_5[0][0]
concatenate (Concatenate) (None, 18, 18, 80) 0 up_sampling2d[0][0], max_pooling2d[0][0]
conv2d_6 (Conv2D) (None, 18, 18, 32) 23072 concatenate[0][0]
conv2d_7 (Conv2D) (None, 18, 18, 32) 9248 conv2d_6[0][0]
up_sampling2d_1 (UpSampling2D) (None, 36, 36, 32) 0 conv2d_7[0][0]
concatenate_1 (Concatenate) (None, 36, 36, 175) 0 up_sampling2d_1[0][0], input_1[0][0]
conv2d_8 (Conv2D) (None, 36, 36, 16) 25216 concatenate_1[0][0]
conv2d_9 (Conv2D) (None, 36, 36, 16) 2320 conv2d_8[0][0]
up_sampling2d_2 (UpSampling2D) (None, 72, 72, 16) 0 conv2d_9[0][0]
conv2d_10 (Conv2D) (None, 72, 72, 8) 1160 up_sampling2d_2[0][0]
conv2d_11 (Conv2D) (None, 72, 72, 8) 584 conv2d_10[0][0]
conv2d_12 (Conv2D) (None, 72, 72, 1) 9 conv2d_11[0][0]

Total parameters: 153 849, trainable parameters: 153 849, non-trainable parameters: 0.
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Campos, 2022b) and can be downloaded under the di-
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