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Abstract. Precipitation is a crucial component of the global
water cycle. Rainfall features (e.g., strength or frequency)
strongly affect societal activities and are closely associated
with the functioning of terrestrial ecosystems. Hence, pre-
dicting global and gridded precipitation under different emis-
sion scenarios is an essential output of climate change re-
search, enabling a better understanding of future interac-
tions between land biomes and climate change. Some cur-
rent lower-complexity models (LCMs) are designed to em-
ulate precipitation in a computationally effective way. How-
ever, for precipitation in particular, they are known to have
large errors due to their simpler linear scaling of precipita-
tion changes against global warming (e.g., IMOGEN; Ze-
lazowski et al., 2018). Here, to reduce the errors in emu-
lating precipitation, we provide a data-calibrated precipita-
tion emulator (PREMU), offering a convenient and compu-
tationally effective way to estimate and represent precipi-
tation well, as simulated by different Earth system models
(ESMs) and under different user-prescribed emission scenar-
ios. We construct the relationship between global and local
precipitation and modes of global gridded temperature and
find that the emulator shows good performance in predicting
historically observed precipitation from Global Soil Wetness
Project Phase 3 (GSWP3). The ESM-specific emulator also
estimates well the simulated precipitation of nine ESMs and
under four dissimilar future scenarios of atmospheric green-
house gases (GHGs). Our ESM-specific emulator also re-
produced well interannual fluctuations (R = 0.82–0.93, p <
0.001) of global land average precipitation (GLAP) simu-
lated by the nine ESMs, as well as their trends and spatial pat-
terns. The default configuration of our emulator only requires

gridded temperature, also available from lower-complexity
models such as IMOGEN (Zelazowski et al., 2018) and
MESMER (Beusch et al., 2022; Nath et al., 2022), which
themselves are calibrated against ESMs. Therefore, our pre-
cipitation emulator can be directly coupled within other
LCMs, improving on, for instance, the current emulations of
precipitation implicit in IMOGEN. The PREMU model has
the opportunity to provide the driving conditions to model
well the hydrological cycle, ecological processes and their
interactions with climate change. Critically, the efficiency of
LCMs allows them to make projections for many more po-
tential future trajectories in atmospheric GHG concentrations
than is possible with full ESMs due to the high computational
requirement of the latter. By coupling with PREMU, LCMs
will have the ability to emulate gridded precipitation; thus,
they can be widely coupled with hydrological models or land
surface models.

1 Introduction

Earth system models (ESMs) are the primary tools to study
the impact of greenhouse gas (GHG) emissions on our cli-
mate, representing all the important Earth system processes
(IPCC, 2013). However, there is a lack of sufficient com-
putational power to run the most comprehensive, physically
complete climate models for every application of interest
(Nicholls et al., 2020) or for every potential future-emissions
scenario. Thus, lower-complexity models (LCMs) are de-
signed as the common approaches to improve computational
efficiency in climate change research by focusing on the most
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impact-relevant variables (Gasser et al., 2017). By describing
highly parameterized properties of the climate system, LCMs
are many orders of magnitude faster than full-complexity
ESMs (Nicholls et al., 2020). The simplest LCMs are en-
ergy balance models (EBMs) that use multiple parameter-
ized numerical models to estimate the changes in greenhouse
gas concentrations, radiative forcing and then global land–
ocean average temperature under different emission scenar-
ios (Meinshausen et al., 2011; Nicholls et al., 2020). How-
ever, such global “box” models do not simulate the spatial
pattern of temperature. Some more complex LCMs, such as
IMOGEN (Integrated Model Of Global Effects of climatic
aNomalies; Zelazowski et al., 2018) and OSCAR (Gasser et
al., 2017), additionally emulate the spatial pattern of tem-
perature through the pattern-scaling method. Pattern scal-
ing multiplies global temperature change by spatial pat-
terns to give regional information (Zelazowski et al., 2018;
Gasser et al., 2017; Huntingford et al., 2010; Tebaldi and Ar-
blaster, 2014; Tebaldi and Knutti, 2018). Joint temperature
and precipitation emulation by considering anthropogenic
GHG forcing and large-scale modes of sea surface temper-
ature (SST) variability has been proven possible (McKinnon
and Deser, 2018, 2021). More recently, a spatially resolved
emulator (the Modular Earth System Model Emulator with
spatially Resolved output, MESMER) solely requiring global
mean temperature (GMT), e.g., by coupling to the emission-
driven LCM MAGICC (Model for the Assessment of Green-
house Gas Induced Climate Change), to then generate annual
temperature fields has been developed (Beusch et al., 2022).
Other than temperature, however, it is still a challenge for
LCMs to simulate well other climate variables such as pre-
cipitation under different emission scenarios (Gasser et al.,
2017).

Precipitation has high spatio-temporal variability and is af-
fected by atmospheric dynamics and interannual modes of
variability (Li et al., 2021; Tsanis and Tapoglou, 2019), mak-
ing representing it within traditional LCM approaches diffi-
cult. Thus, only two LCMs (IMOGEN and OSCAR) have
tried to emulate precipitation but with poor skill (Zelazowski
et al., 2018; Gasser et al., 2017). IMOGEN emulates the
gridded precipitation based on the regression relationship
(by month and location) between gridded precipitation and
global land average temperature (Zelazowski et al., 2018).
OSCAR constructs the emulator by establishing a relation-
ship between global average precipitation and global aver-
age temperature and radiative forcing, from which a pattern-
scaling method is used to deduce the gridded precipitation
(Gasser et al., 2017). Nevertheless, the gridded precipitation
estimated by the simple linear method is not fully reliable in
either IMOGEN or OSCAR; the gridded precipitation pre-
dicted by IMOGEN explains less than 20 % of the variance
of seasonal precipitation in most regions (Zelazowski et al.,
2018), and OSCAR cannot capture the interannual variations
of regional precipitation across the globe at all (Gasser et al.,
2017). This may be because (1) the global average tempera-

ture could not fully characterize local temperature and mois-
ture recycling (Prein et al., 2017) and large-scale circulation
(Shepherd, 2014; Fereday et al., 2018; Heinze-Deml et al.,
2021), and/or (2) there is at any given location a nonlinear
relationship between local rainfall features and global warm-
ing (Allen and Ingram, 2002; Collins et al., 2013; Chadwick
and Good, 2013). Hence, models such as IMOGEN, which
rely on linear pattern scaling, by definition cannot fully cap-
ture expected future precipitation changes. Nevertheless, pre-
cipitation is a crucial component of the water cycle (Eltahir
and Bras, 1996; Trenberth et al., 2003; Sun et al., 2018), has
key societal implications and is closely associated with the
functioning of terrestrial ecosystems. Accurately emulating
precipitation change is necessary to determine the climate
response to different emission scenarios and to understand
feedbacks to global warming via rainfall-dependent vegeta-
tion’s net primary productivity (Gasser et al., 2017).

Previous studies have confirmed the important impact
of ocean–atmosphere oscillations on interannual and inter-
decadal variations of regional precipitation (e.g., Li et al.,
2021; Tsanis and Tapoglou, 2019; Dai, 2013). As such, our
noted changes in gridded surface air temperature likely con-
tain information about sea surface temperature and ocean–
atmosphere oscillations in addition to information on the
background global land average temperature. To this end,
we proposed a computationally efficient precipitation emu-
lator (PREMU), which uses gridded temperature data as in-
dependent forcing variables to reconstruct the gridded pre-
cipitation. We have designed the presented emulator such
that it can act as, for instance, an enhanced precipitation
module for the OSCAR and IMOGEN models. Alterna-
tively, PREMU could be coupled directly with the MAGICC-
MESMER and MESMER-M emulators. When coupling with
other LCMs, tracing gridded precipitation under novel tra-
jectories for GHGs will be possible. In Sects. 2 and 3, we
described the datasets (both measurement- and ESM-based)
and the methods to construct the driving-data-specific emu-
lator for historical observation and each ESM in detail. We
illustrated the emulator’s ability to emulate the historical and
future precipitation in Sect. 4. Finally, Sect. 5 discusses the
strengths and caveats of our emulator.

2 Data

In the analysis, we tested the performance of PREMU
for both historical periods (1901–2016) and future peri-
ods (2015–2100). For historical periods, we used different
time periods of observation data for calibration (1901–1950)
and validation (1951–2016), while for the future, we used
ESM data under different emission scenarios for calibration
(SSP5–8.5) and validation (SSP1–2.6, SSP2–4.5 and SSP3–
7.0).
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2.1 Observation datasets

To verify the ability to predict historical precipitation using
the emulator proposed in this study, we first demonstrated the
applicability of the emulator to observational data provided
by the Global Soil Wetness Project Phase 3 (GSWP3; Kim,
2017). The GSWP3 dataset is based on the 20th Century Re-
analysis (20CR) version 2c (Compo et al., 2011) and has pre-
cipitation fields at a resolution of 2◦× 2◦. The GSWP3 data
are dynamically downscaled using spectral nudging and bias
correction from the Global Precipitation Climatology Project
and Climate Research Unit (Humphrey and Gudmundsson,
2019). This approach successfully keeps the low-frequency
signal of the two original reanalysis products yet also pro-
vides additional high-frequency signals that were lacking
in previous products but are essential for investigating ex-
treme events (Kim, 2017). GSWP3 also provides the other
seven climate variables, including 2 m air temperature (Tair),
specific humidity, surface downwelling long-wave radiation,
surface downwelling short-wave radiation, surface air pres-
sure and near-surface wind speed at a 0.5◦× 0.5◦ spatial res-
olution from years 1901 to 2016. Here, with an emphasis on
precipitation, we used Tair and precipitation from GSWP3
from the period 1901 to 1950 to calibrate the emulator and
from 1951 to 2016 to verify the emulator’s performance in
predicting historical precipitation.

2.2 Earth system model data

To evaluate the emulator’s performance in estimating fu-
ture precipitation, we additionally used monthly precipita-
tion and 2 m Tair for years 2015 to 2100 from nine ESMs
operated under four shared socioeconomic pathways (SSPs;
SSP1–2.6, SSP2–4.5, SSP3–7.0, and SSP5–8.5; O’Neill et
al., 2016). These ESMs are included in the sixth phase of
the Coupled Model Intercomparison Project (CMIP6; Ta-
ble 1). The SSP5–8.5 scenario represents the largest future
change of GHG concentrations compared to the other three
SSPs (Hausfather and Peters, 2020) and so is associated with
the largest variation in precipitation and Tair changes. Hence,
we used the precipitation and Tair from SSP5–8.5 to cal-
ibrate the emulator and the other three scenarios to verify
the emulator’s performance at reproducing ESMs. However,
note that the emulator based on this extreme-warming sce-
nario (SSP5–8.5) may not produce well the precipitation pat-
terns of cooler scenarios (e.g., SSP1–2.6) due to the nonlin-
ear response of the atmosphere to warming. We discuss this
further in Sect. 5. In addition, in view of the different re-
sponses of precipitation to the changes of Tair in different
ESMs, we constructed the emulator for each ESM respec-
tively. For comparison between different models, the precip-
itation and Tair from all nine ESMs are re-gridded to the
resolution of 2.5◦× 2.5◦ using the first-order conservative
remapping technique (Jones, 1999). As there remains sub-
stantial error and uncertainty in gridded precipitation data,

we retained only a first-order regridding method for precip-
itation or Tair (we note that second-order calculations have
been used by others; Brunner et al., 2020).

3 Methods

3.1 General approach

Given the relatively poor linear relationship between global
and/or gridded (i.e., local) precipitation and global land mean
temperature (as noted in Zelazowski et al., 2018), we try to
build a new emulator for precipitation. We still search for a
relationship between precipitation change and some function
of gridded Tair (Fig. 1), albeit one that is more complex than
simply linear in relation to global temperature. Since precip-
itation is also controlled not only by local temperature (Zhou
et al., 2020), we seek links to features of Tair from all grid
cells. There are 10 368 grid boxes considered at a common
2.5◦× 2.5◦ resolution, which we used for both historical ob-
servations and future ESMs after remapping the latter. It is
these Tair data and model simulations that we used across the
globe to predict precipitation variation.

In this section, we set out underlying methods for our
emulation of local precipitation by the principal-component-
regression (PCR) approach, based on relating it to the dom-
inant modes of variability of temperature. PCR is a type of
regression analysis, which considers the orthogonal principal
components as independent variables. As a method that can
be used to overcome the problem of multi-linearity in predic-
tor variables, the PCR technique is widely used in forecasting
seasonal precipitation (Kim et al., 2017) and reconstructing
the climatic modes of variability (Jones et al., 2009; Michel
et al., 2020). These authors find the PCR method performs re-
markably well, and the method is explained in detail in Chap-
ter 13 of Storch and Zwiers (2011). As might be expected,
therefore, our starting point is to derive the principal compo-
nents of global gridded temperature. We followed the stan-
dard procedure of principal-component analysis (PCA), as
used in climate research (e.g., Yan et al., 2020; Singh, 2006;
Jiang et al., 2020), that consists of a set of time-invariant spa-
tial patterns multiplied by time series of coefficients. PCA
notation can vary between users, but for simplicity, we will
simply refer to PCA “spatial patterns” (each of which has the
dimensions of the spatial grid or, alternatively, an array of
one dimension with 10 368 points) and PCA “time series”,
which multiply the patterns. These time series, derived for
each month, contain values applicable for each year – so, for
instance, fitting to years 1901–1950 implies that they will
have 50 numbers. As precipitation may be influenced by the
temperature of the previous months via large-scale circula-
tion (e.g., the lag effects of the El Niño–Southern Oscillation
(ENSO) on regional precipitation; Li et al., 2011; Lu et al.,
2019; Efthymiadis et al., 2007), we used the average Tair of 3
months (month of interest plus the previous two months) to
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Table 1. List of the nine employed CMIP6 models and the modeling groups that provided them.

Model Modeling center Variant ID

UKESM1-0-LL Met Office Hadley Centre and National Environmental Research Council, UK r1i1p1f2
MPI-ESM1-2-LR Max Planck Institute for Meteorology, Germany r1i1p1f1
MIROC6 Japan Agency for Marine-Earth Science and Technology, Japan r1i1p1f1
IPSL-CM6A-LR Institut Pierre-Simon Laplace, France r1i1p1f1
GFDL-ESM4 Geophysical Fluid Dynamics Laboratory, USA r1i1p1f1
EC-Earth3 EC-Earth Consortium, Europe r1i1p1f1
CanESM5 Canadian Centre for Climate Modelling and Analysis Environment and Climate Change, Canada. r11i1p1f1
CESM2 National Center for Atmospheric Research, Climate and Global Dynamics Laboratory, USA r1i1p1f1
ACCESS-ESM1-5 Commonwealth Scientific and Industrial Research Organisation, Australia r10i1p1f1

Figure 1. Illustration of the precipitation emulator driven by the gridded temperature. Step 1 is to extract the features of gridded temper-
ature through principal-component analysis. In Step 2, we construct the parameters of the emulator by regression of GLAP or gridded
precipitation and the principal components of gridded temperature. Then we use the emulator to predict the precipitation for the validation
period or scenario in Step 3. Finally, we calibrate the precipitation and verify the results with precipitation from GSWP3 and ESMs. Here,
T PCA
e,m (y, i) is the principal components extracted by PCA. P global

e,m (y) is the GLAP, and P grid
e,m (k,y) is the precipitation of a given grid k.

αe,m(i)/βe,m(k, i) represents the coefficients of each principal component of temperature in relation to global and/or gridded precipitation,
and αintercept

e,m (i)/β
intercept
e,m (k, i) is the intercept term. USpatial

e,m (k, i) is the PCA coefficients. Note that the gridded temperature from GSWP3
has an area-weighted average of 2.5◦× 2.5◦ before PCA.

apply PCA. In addition, considering that ESMs may under-
represent the effects of topography and aerosols on modeled
precipitation (Samset et al., 2016; Yang et al., 2021), we cal-
ibrated the emulator for the historical period and future pe-
riod separately. For the estimates of future change, we used
precipitation and Tair from the SSP5–8.5 scenario of green-
house gas increases to calibrate the ESM-specific emulator.
We selected this scenario due to its representation of the most
extreme changes in Tair amongst SSPs (O’Neill et al., 2016).

3.2 Framework for PREMU

3.2.1 Calibration

We set out in Table 2 below our notation for indices and vari-
able quantities.

Our use of the standard definition of PCAs (sum of pat-
terns× time series) implies that the estimate of the princi-
pal components is given by the spatial pattern of principal-
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Table 2. List of index labels and variable symbols in the calibration.

Index label or variable symbol Variable Notes

e ESM index Indexes nine ESMs used (see Table 1)
i PCA index i = 1 is dominant spatial PCA; 1≤ i ≤

NPCA = 10 used

k Spatial index 1≤ k ≤Ngrid, where Ngrid = 10368 grids
m Month index All calculations for each month; 1≤m≤ 12
y Year index Index of years in periods of calibration or pre-

diction

T Timeseries
e,m (k,y) Time series part of PCAs for

each location and for tempera-
ture

Average gridded Tair of 3 months (month of in-
terest plus the previous two months) – note that
different time series calculated for each location
are indexed by k.

U
Spatial
e,m (k, i) Spatial part of PCAs for tem-

perature
A matrix of eigenvectors of the covariance ma-
trix

T PCA
e,m (y, i) Temporal principal components

in PCAs
Time series representing the characteristics of
global gridded Tair

P
global
e,m (y) Monthly global land average

precipitation for calibration

P
grid
e,m (k,y) Monthly gridded (i.e., local)

precipitation for calibration

component coefficients USpatial
e,m (k, i) multiplied by the time

series of 3 months’ average gridded temperature. The choice
of the 3-month average Tair as an independent variable is
robust, with further details illustrated in Sect. 5. The PCA
component coefficients, USpatial

e,m (k, i), are the combination of
eigenvectors of the covariance matrix of the anomalies of the
gridded 3-month average Tair. However, unlike many limited-
area applications that derive a single time series (to multiply
each PCA; Rahaman et al., 2019), we instead determined a
time series for each location, and hence, T Timeseries

e,m (k,y) has
a k dependency. We then summed over all locations k, and
this gives a global annual time series (for each ESM e, month
m, year y and PCA i) of

T PCA
e,m (y, i)=

∑Ngrid

k=1
U

Spatial
e,m (k, i) · T Timeseries

e,m (k,y) . (1)

Using Tair for years 1901–1950 from the GSWP3 grid-
ded dataset and for the period 2015–2100 from the nine
ESMs forced under the SSP5–8.5 scenario, we determined
the principal-component coefficient matrix USpatial

e,m for each
monthm and the ESM e (or GWSP3) independently. We em-
ployed Eq. (1), and the top 10 principal components (i =
1, . . . , 10) were used in this study – these describe more
than 70 % of gridded temperature information (i.e., varia-
tion) across the globe (Figs. 2 and S1–S3). The stability of
the component coefficients USpatial

e,m (k, i) of the top 10 PCs
between different scenarios is discussed in Sect. 5. Other-
wise, we found that the 15 ocean–atmosphere climate indices

can be well reconstructed by multilinear regression of the
top 10 principal components T PCA

e,m (y,1 : 10) (Fig. S4). This
suggests that the principal components of gridded tempera-
ture likely additionally contain information about sea surface
temperature and ocean–atmosphere oscillations, which have
great impacts on interannual and interdecadal variations of
regional precipitation.

Having established the temperature principal components
via the form presented in Eq. (1), we then mapped these onto
precipitation both globally and locally. Our mapping is via a
standard regression based on 50 data points (i.e., years 1901–
1950, or 86 data points in ESMs for years 2015–2100). The
regression has 40 degrees of freedom due to our selection
of 10 PCAs, and this relationship links the time series of
monthly gridded precipitation from the GSWP3 dataset (or
the nine ESMs) and the 10 principal components of gridded
temperature for each month of the 12 months of the year
(January to December). This regression (for each ESM e,
month m, grid k and year y) is constructed as follows:

P
grid
e,m (k,y)=

∑NPCA

i=1
βe,m (k, i) · T

PCA
e,m (y, i)+β

intercept
e,m (k, i), (2)

where P grid
e,m (k,y) is the precipitation at a specific cell k. Vari-

able βe,m represents the regression coefficient of each princi-
pal component, and β intercept

e,m is the intercept term; these are
derived from linear regressions by the least-squares method
using the calibration time series. To provide the reliable es-

timation of global monthly precipitation ̂
P

global
e,m (y), we con-
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Figure 2. The corresponding results from the PCA of the gridded temperature in January between 1901 and 1950 from GSWP3: (a) the cu-
mulative variance explanation rate of the top 10 principal components; (b–k) coefficients of the top 10 principal components (corresponding
to USpatial

e,m (:, i), i = 1–10).

structed the regression relationship between global land av-
erage precipitation (GLAP) and the 10 individual principal
components separately, following Eq. (2).

3.2.2 Generating emulations using PREMU

For validation, we set out in Table 3 below the variables
that we estimated with our methodology. The “overhat” no-
tation represents an estimated quantity. We first recalled that
we fitted our PCA-based framework to historical tempera-
ture and precipitation data for the period 1901–1950 and to
ESMs for the SSP5–8.5 future atmospheric GHG concentra-

tion scenario. Based on the principal-component coefficients
extracted using these calibration datasets, we then estimated
the ̂T PCA

e,m (y, i) using Eq. (1), using Tair from GSWP3 for
1951–2016 and, for 2015–2100, using Tair from each ESM
independently under the other three SSPs. Then we estimated

the ̂
P

global
e,m (y) and ̂

P
grid
e,m (s,y) individually by means of the

̂T PCA
e,m (y, i) and our fitted-regression coefficients in Eq. (2).

Geosci. Model Dev., 16, 1277–1296, 2023 https://doi.org/10.5194/gmd-16-1277-2023
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Table 3. List of variable symbols in the validation.

Variable symbol Variable Notes

̂
T PCA
e,m (y, i) Principal components estimated by the

Tair from validation datasets
Based on the assumption of constant
spatial part of PCAs, USpatial

e,m (k, i).

̂
P

global
e,m (y) Estimation of monthly global precipita-

tion, GLAP

̂
P

grid
e,m (k,y) Estimation of monthly gridded

(i.e., spatial) precipitation

3.3 Validation

Before evaluating the performance of PREMU, we found a

slight difference in GLAP between P̂ global
e,m and the spatial av-

erage of P̂ grid
e,m , brought about by setting negative numbers of

P̂
grid
e,m to zero at some grid points. Thus, as a final component

to our calculations, we scale P̂ grid
e,m by the ratio of P̂ global

e,m and
the monthly GLAP from the average the over grid points as

area-averaged P̂ grid
e,m , i.e., with the following equation:

̂
P

grid,Adj
e,m (k,y)=

̂
P

grid
e,m (k,y) ·

P̂
global
e,m

Mean
(
P̂

grid
e,m

) , (3)

where ̂
P

grid,Adj
e,m is the adjusted estimation of monthly gridded

precipitation and Mean
(
P̂

grid
e,m

)
represents the area-weighted

averaged P̂ grid
e,m .

In order to evaluate the advantages of PREMU compared
to the emulations of gridded precipitation by other emula-
tors (e.g., IMOGEN-based or OSCAR-based methods), we
simply used a prediction that linearly relates rainfall changes
to global temperature changes and variability. We com-
pared this simpler linear approach with the performance of
PREMU. To evaluate the performance of PREMU in describ-
ing the historical observations, we compared the mean an-
nual precipitation (MAP) and trends of GLAP from GSWP3
with the emulated values obtained from PREMU and the sim-
ple linear approach (Sect. 4.1). Our statistic to compare was
the Pearson correlation coefficients between the GLAP from
observations and these two emulations. For gridded precip-
itation, we instead calculated the percentage error of MAP
during 1987–2016 and compared the changes of MAP in the
first and last 3 decades of the validation period (1951–1980
and 1987–2016) for each grid. Similarly, we evaluated the
performance of PREMU in describing future precipitation
by comparing the MAP and trends of GLAP with ESMs for
the four future scenarios (Sect. 4.2). As PREMU is an ESM-

specific emulator, we calculated the performance of PREMU
in each ESM individually. The percentage error at each grid
point was used to evaluate the emulations of PREMU at dif-
ferent locations. We additionally evaluated the performance
of PREMU in terms of the seasonal cycle of precipitation
(Sect. 4.3). Here, we compared the land average precipitation
in different latitudes from GSWP3 or the multi-model mean
of nine ESMs with the emulation of PREMU. Also, the er-
ror in the spatial pattern of seasonal precipitation is used to
show that PREMU can capture the seasonal cycle of gridded
precipitation from both historical observations or ESMs.

Furthermore, in Sect. 5 of this study, we evaluated the reli-
ability of our assumption of the constant spatial part of PCA.
To test this assumption, we compared the coefficient ma-
trix of temperature derived for the SSP5–8.5 scenario with
those from the SSP1–2.6 scenario. Finally, for further devel-
opments of PREMU, we explored the performance by other
versions of PREMU (e.g., PREMU-mon, PREMU-6mon and
PREMU-land) of emulating precipitation, and again our find-
ings are presented in Sect. 5.

4 Results

4.1 Performance of precipitation emulator for
historical precipitation

As outlined above, to evaluate the ability of our PREMU to
emulate historical precipitation, we first used the precipita-
tion and Tair data from GSWP3 for the period 1901–1951 to
calibrate its parameters. We then tested its predictive capa-
bility for estimating precipitation data from the period 1951–
2016. For the calibration period (1901–1950), our emula-
tor shows a consistent areally averaged global annual pre-
cipitation value (1002 and 1002 mm yr−1 for PREMU and
GSWP3, respectively) and trend (0.48 and 0.54 mm yr−2 for
PREMU and GSWP3; Table S1). Furthermore, the interan-
nual variations of GLAP derived from PREMU are found
to be significantly correlated with those from GSWP3 (R =
0.81, p < 0.001). For the validation period (1951–2016),
PREMU also captured the observed trend (0.22 mm yr−2

for both PREMU and GSWP3) and interannual variations
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Figure 3. The emulation of historical precipitation. (a) GLAP of the historical observation precipitation (GSWP3) and the predicted precip-
itation estimated by the simple linear method (simple linear) and by our emulator (PREMU) in 1901–2016. (b) The spatial pattern of error
of MAP in 1987–2016 between simple linear and GSWP3. (c) The spatial pattern of error of the MAP in 1987–2016 for our emulator and
for GSWP3. The global land average does not include Antarctica because of no emulation for Antarctica, and the arid areas where the MAP
from GSWP3 is less than 200 mm yr−1 in 1980–2016 are masked.

(R = 0.67, p < 0.001) of GLAP from GSWP3 (Fig. 3a). In
contrast, if we simply used a prediction that linearly relates
rainfall changes to global temperature changes and variabil-
ity, which has similarities to the IMOGEN-based method, we
found a much smaller (−0.25 mm yr−2, −45 %) and larger
(+0.47 mm yr−2, +213 %) trend in GLAP than GSWP3 for
the calibration and validation periods, respectively. In addi-
tion, the interannual variations of GLAP as estimated by a
simple linear regression against global temperature show a
weaker correlation with GSWP3 in these two periods (R =
0.27, p = 0.06 for the calibration period;R = 0.15, p = 0.21
for the validation period; Fig. 3a; Table S1).

Spatially, PREMU and a simple linear-based method (sim-
ilar to the algorithms in IMOGEN) can both emulate simi-
larly the spatial pattern of mean annual precipitation (MAP)
from the last 3 decades in the validation period (1987–2016),
as observed in the GSWP3 data (Fig. 4a, c, e). There are
fewer grid cells showing more than 25 % error for MAP from
GSWP3 in our emulation (17 %; Table S1) when compared to
a simple linear fit (27 %; Fig. 3b and c). The overestimation
of MAP with our PREMU method is mainly found in the Ti-

betan Plateau and central Africa (∼ 20 %), and the underes-
timation of MAP is mainly found in northern Siberia, the is-
land of Greenland and northern Australia (−15 % to −30 %;
Figs. 3c and S5). To verify the emulator’s ability to predict
changes in gridded observation precipitation, we calculated
the change of MAP in the first and last 3 decades of the
validation period (1951–1980 and 1987–2016; Fig. 4b, d, f).
For the differences between these two time periods, PREMU
shows consistent changes of precipitation in northern Eura-
sia, North America and central South America and when us-
ing GSWP3 data. However, the simple linear method has un-
derestimated the increase or overestimated the decrease of
precipitation in these regions (Fig. 4). In some regions of
East Asia, Europe, Australia and South America, PREMU
underestimates or overestimates the changes in annual pre-
cipitation (in the range of 50–200 mm yr−1; Fig. S6), and
these values represent little improvement over the simple lin-
ear method (Fig. 4). Furthermore, we noted that the changes
in MAP from both PREMU and the simple linear method
show the opposite to the changes in MAP from GSWP3 in
some regions (e.g., Australia and West Africa; Fig. 4b, d, f).
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This suggests that changes in precipitation in these particular
regions may be driven by factors such as aerosols, topogra-
phy and land use changes rather than temperature, which is
further discussed in Sect. 5.

4.2 Performance of precipitation emulator in terms of
future precipitation from CMIP6 ESMs

A key requirement of PREMU is that it can make projections
of precipitation change for different future scenarios of atmo-
spheric GHG concentrations and potentially for novel trajec-
tories of such gases, for which ESMs have not made calcula-
tions. To test for this capability, we analyzed its performance
at predicting changes under the SSP1–2.6, SSP2–4.5 and
SSP3–7.0 scenarios and for those ESM-based simulations
that are available. Recall that our PREMU calibration was
against ESMs operated for the SSP5–8.5 scenario, capturing
inter-ESM differences in projections of Tair and, critically,
precipitation. Similar to the emulation for the historical pe-
riod, PREMU shows a good performance in emulating future
precipitation (Fig. 5). For the calibration scenario, the multi-
model mean GLAP from PREMU shows a consistent trend
(0.96 and 0.96 mm yr−2 for our emulator and ESMs; Ta-
ble S2) and interannual variation (R = 0.98, p < 0.001) with
that from ESMs (Fig. 5a). For the three validation scenar-
ios of the different SSPs, PREMU shows a better correlation
in interannual variations of GLAP with ESMs than the his-
torical period (R = 0.86, p < 0.001 for SSP1–2.6;R = 0.95,
p < 0.001 for SSP2–4.5;R = 0.95, p < 0.001 for SSP3–7.0;
Fig. 5c, e, g). Although the trends of global precipitation in
our emulation are close to those of ESMs across the three
scenarios (Table 4), the error of trends by the PREMU in-
creases from high- to low-emission scenarios (Tables 4 and
S3). In addition, the standard deviations of GLAP are under-
estimated by 2 % in SSP5–8.5 and by 43 % in SSP1–2.6 (Ta-
ble S2). At the individual ESM level, PREMU can capture
well both trends and interannual fluctuations of GLAP un-
der all scenarios for MPI-ESM1-2-LR, MIROC6, EC-Earth3
and CanESM5. For the other five models, there are biases
of trends (Table 4) and/or interannual variations of GLAP
(Figs. 6 and S7–S9) between our emulation and ESMs. These
differences could be partly related to the substantial uncer-
tainties and different features affecting future precipitation
projections in ESMs. These factors are discussed in Sect. 5.

For the spatial pattern (Fig. 5b, d, f, h), PREMU can re-
produce the projected pattern of MAP from the multi-model
mean of ESMs under the calibration scenario and the three
validation scenarios (Fig. 7). Compared to the historical pe-
riod, the error of multi-model MAP between our emulation
and ESMs is relatively smaller (∼ 10 %; Fig. 7). As for the
changes in precipitation during 2015–2100, PREMU shows
a consistent canonical pattern of MAP in comparison to the
multi-model mean of ESMs (Fig. 8), with a 50–200 mm yr−1

increase of annual precipitation in Eurasia, North America
and northeastern Africa but a 50–200 mm yr−1 decrease in

the Amazon rainforest from the low- to high-emission sce-
narios. However, similar to the simulation for GLAP, the er-
ror in the spatial pattern of MAP and changes in MAP be-
tween our emulation and ESMs increases from high- to low-
emission scenarios (Figs. 5 and 8). Furthermore, compared
to the historical period, PREMU can capture the changes in
MAP in West Africa well under all four scenarios, but it also
emulated the opposite changes of MAP in Australia under
SSP3–7.0, which is discussed in Sect. 5. When considering
performance at the individual ESM level, PREMU can repro-
duce the spatial pattern of MAP well. In general, the propor-
tions of grid cells with an error more than 10 % are small
(8 % [6 %–14 %] for SSP1–2.6; 5 % [3 %–8 %] for SSP2–
4.5; 5 % [3 %–9 %] for SSP3–7.0; 0 % [0 %–0 %] for SSP5–
8.5; mean [min–max]; Figs. 9 and S10–S12). However, as
for the changes in MAP, we found a relatively poor perfor-
mance in emulating the changes in some ESMs, especially
in SSP1–2.6 (Figs. 10 and S13–S15). While the spatial pat-
tern of changes in MAP is quite different across ESMs, even
under the same SSP, the errors by PREMU are much smaller
than the inter-ESM differences (Figs. 10 and S13–S15).

4.3 Seasonal performance of precipitation emulator

As a monthly emulator, the performance of PREMU in de-
scribing the seasonal cycle of precipitation requires evalu-
ation. For the historical observations, PREMU can capture
the seasonal cycle of GLAP in each latitude band (Fig. 11).
There are some spatial differences, with little error in bo-
real regions but with 18–22 mm per month error in the trop-
ics (Fig. S16). We found fewer grid cells showing more
than 20 mm per month error of seasonal precipitation from
GSWP3 in our emulation (18 %–24 %) compared to using a
simple linear fit (24 %–31 %; Fig. S16). As for the future pre-
cipitation, PREMU shows a good performance in emulating
the monthly land average precipitation in each latitude band
under all scenarios (Fig. S17). However, PREMU tends to
overestimate the JJA (June, July, August) and SON (Septem-
ber, October, November) precipitation in South Asia and the
Amazon and underestimates the SON and DJF (December,
January, February) precipitation in West Africa under SSP1–
2.6, while the error in the spatial pattern of seasonal pre-
cipitation decreases from low- to high-emission scenarios
(Fig. S18).

5 Discussion

To our knowledge, this study provides a novel approach to
linking local precipitation changes to geographical features
(i.e., spatial modes) of gridded temperature in a single em-
ulator chain, which can be further incorporated into existing
LCMs. Despite relying on a series of simple assumptions,
PREMU can successfully capture the changes in precipita-
tion simulated by ESMs and under a broad range of different
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Figure 4. Spatial pattern of MAP and changes in MAP. (a) The MAP in 1987–2016 from GSWP3. (b) The spatial pattern of change in MAP
between the period of 1951–1980 and 1987–2016 from GSWP3. (c, d) Same as (a) and (b) but for the emulation from simple linear. (e,
f) Same as (a) and (b) but for the emulation from PREMU.

Table 4. Trend of GLAP from ESM average and each ESM and its corresponding emulation by PREMU during the period 2015–2100 under
four scenarios. The ESM average represents the multi-model mean precipitation predicted by gridded temperature from nine ESMs. Note
that the unit is mm yr−2.

Trend in GLAP SSP1–2.6 SSP2–4.5 SSP3–7.0 SSP5–8.5

Unit: mm yr−2 ESM PREMU ESM PREMU ESM PREMU ESM PREMU

ESM average 0.29 0.16 0.58 0.45 0.69 0.76 0.96 0.96
UKESM1-0-LL 0.57 0.30 0.67 0.53 0.88 0.87 1.16 1.16
MPI-ESM1-2-LR 0.19 0.06 0.23 0.26 0.63 0.69 0.85 0.85
MIROC6 0.08 0.09 0.54 0.41 0.62 0.74 1.09 1.09
IPSL-CM6A-LR 0.48 0.27 0.73 0.56 1.05 0.90 1.25 1.25
GFDL-ESM4 0.15 −0.06 0.41 0.06 −0.13 0.03 0.04 0.03
EC-Earth3 0.13 0.18 0.63 0.72 1.14 1.21 1.67 1.69
CanESM5 0.51 0.40 1.15 0.90 1.33 1.32 1.48 1.48
CESM2 0.33 0.12 0.69 0.47 0.41 0.81 0.82 0.80
ACCESS-ESM1-5 0.18 0.08 0.21 0.18 0.28 0.25 0.28 0.27
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Figure 5. The emulation of future precipitation: (a) multi-model mean GLAP in nine ESMs from CMIP6 (the sixth phase of the Coupled
Model Intercomparison Project; CMIP (9)) and the precipitation prediction by our emulator (PREMU) in 2015–2100 under the SSP5–8.5
scenario. The shaded area represents the mean±SD. (b) The spatial pattern of error in MAP during 2071–2100 for the multi-model mean
and our emulator. (c, d) SSP1–2.6; (e, f) SSP2–4.5; (g, h) SSP3–7.0.

emission scenarios. Comparing with the precipitation pre-
dicted by a simple linear regression between local rainfall al-
teration and the level of global warming (e.g., as used in other
LCMs such as IMOGEN), the rainfall in PREMU shows
more consistent trends and interannual variations of GLAP
and in the spatial pattern of MAP. These improvements are
noted in the comparison against the historical precipitation
recorded in the GSWP3 dataset, as well as when emulating
the future precipitation predicted by ESMs (Figs. 3–6). For
a user-prescribed emission scenario or for a time-evolving
global temperature trajectory designed to constrain warming
to a level such as 2 ◦C (Huntingford et al., 2017), PREMU
can accurately and quickly emulate the related gridded pre-

cipitation changes. Our method can utilize the existing spa-
tial features of gridded temperature from either ESMs or
LCMs to support studies related to future changes in pre-
cipitation. In particular, coupling our precipitation emulator
with other LCMs provides the input climate forcing for land
surface models to help disentangle hydrological and ecolog-
ical responses globally to future climate change (Zelazowski
et al., 2018; Li et al., 2022; Korell et al., 2021).

5.1 Possible cause for the emulation errors of PREMU

We noted that the performance of PREMU in predicting fu-
ture precipitation from ESMs is much better than that when
emulating historical GSWP3 precipitation. This is because
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Figure 6. The anomaly of GLAP from each ESM under the SSP1–2.6 scenario: (a) UKESM1-0-LL; (b) MPI-ESM1-2-LR; (c) MIROC6;
(d) IPSL-CM6A-LR; (e) GFDL-ESM4; (f) EC-Earth3; (g) CanESM5; (h) CESM2; (i) ACCESS-ESM1-5.

PREMU is only based on the 10 modes of global gridded
temperature, and the effects of aerosols and topography on
precipitation are not well represented in our emulator (Austin
and Dirks, 2005; Medvigy and Beaulieu, 2012). For instance,
Fig. 3 shows that emulated precipitation has large errors in
mountainous regions, where orographic precipitation could
be dominant. The effect of raised aerosols in the 20th cen-
tury has been shown to have a role almost as large as green-
house gas warming effects on features of regional precipita-
tion (e.g., in India; Bollasina et al., 2011). Thus, adding the
effects of topography and aerosols on precipitation into the
PREMU could further improve the ability to predict precipi-
tation. Considering that the changes in MAP in West Africa
from PREMU are opposite to the changes in MAP from
GSWP3 (Fig. 4), PREMU can emulate the changes in MAP
in West Africa from ESMs well. An alternative argument is
that the good performance by PREMU in predicting precip-
itation from ESMs may suggest that climate models under-
represent the effects of topography and aerosols (Samset et
al., 2016; Yang et al., 2021).

Overall, the performance of predicting precipitation from
ESMs by our emulator is good, although not for all models
and under all scenarios. Both trends and interannual vari-
ability of GLAP are well captured under all scenarios for
MPI-ESM1-2-LR, MIROC6, EC-Earth3 and CanESM5, but
PREMU performs less well when predicting GLAP in the

other five ESMs (Figs. 6 and S7–S9). This may be because
different ESMs use alternative atmospheric circulation mod-
els and precipitation schemes (e.g., CAM6.3 in CESM2 and
AM4 in GFDL-ESM4), which contain different physical pro-
cesses or parameterizations in their simulation of precipita-
tion (Danabasoglu et al., 2020; Horowitz et al., 2020; Hour-
din et al., 2020). Notable is that PREMU underestimates
30 % (6 %–60 %) of interannual variations of precipitation
in all ESMs and when considering across all four GHG con-
centration scenarios. This is a common “feature” of linear
regression models, as they favor bias reduction over variance
under the bias–variance trade-off (Geman et al., 1992). In
addition, we also suggest that this may be because of miss-
ing some modes (out of the 10 modes we used) for interan-
nual variations, an underrepresentation of the effect of key
climate modes such as ENSO in our emulator or a non-
linear response of precipitation to climate modes. It is also
worth noting that the trend of GLAP in CESM2 and GFDL-
ESM4 under SSP3–7.0 is lower than that under SSP2–4.5.
We speculate that this may be caused by the most drastic
land use changes associated with that former SSP scenario,
resulting in a slower increase in precipitation under SSP3–
7.0 (Riahi et al., 2017). Our emulator predicts precipitation
through the temperature gradients and so cannot capture the
impact of land use changes on precipitation via altered land–
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Figure 7. The spatial pattern of MAP in 2071–2100 from (a) multi-model mean of ESMs and (b) the error in MAP from emulation from
PREMU. (c, d) SSP1–2.6; (e, f) SSP2–4.5; (g, h) SSP3–7.0.

atmospheric feedbacks that impact the hydrological cycle
(Table 4).

5.2 Evaluating the assumptions in methods

Our emulator is based on the assumption that spatial tem-
perature modes can describe precipitation well. Hence, we
assumed implicitly that the coefficient matrixes in PCA for
global gridded temperature (i.e., the weights of each grid
cell for each principal component) are stable, i.e., invari-
ant, with climate change. To test this assumption, we com-
pared the coefficient matrixes of temperature derived for the
SSP5–8.5 scenario with those from the SSP1–2.6 scenario
for the modeled period 2015–2100 (Figs. S16 and S17). For
the future scenarios, we found that most coefficients of PCA,
in both January and July, are similar between the SSP5–8.5
scenario and SSP1–2.6 scenario. Though with a different or-

der of PCA coefficients (Figs. S19–S20), this finding sug-
gests that the main features of global temperature are con-
stant across different scenarios. We noted that, in some in-
stances, the signs of coefficients are opposite for some prin-
cipal components between different scenarios, but this also
corresponds to regression coefficients with opposite signs,
which combined give the same predictions. Depending on
the circumstances, we noted that it may not be necessary to
use all top 10 PCs. For instance, if researchers only require
the decadal average or any increasing trend in precipitation,
PREMU calibrated by the top 1 PC of Tair under SSP5–8.5
may be sufficient to capture these characteristics of GLAP
from ESMs and under all four scenarios (Fig. S21). If the
researchers only require the decadal average or the trend of
precipitation, PREMU calibrated by the top 1 PC of Tair un-
der SSP5–8.5 can also capture the trends of GLAP from
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Figure 8. The spatial pattern of change in MAP in 2071–2100 from (a) multi-model mean of ESMs and (b) emulation from PREMU under
SSP5–8.5 scenario. (c, d) SSP1–2.6; (e, f) SSP2–4.5; (g, h) SSP3–7.0.

ESMs under all four scenarios (Fig. S21). Furthermore, we
have assumed that the coefficients of PCA are linked with
the ocean–atmosphere oscillations, but the detailed physical
explanations of the coefficient matrix need further study in
the future.

We have confirmed that our ability to reproduce the his-
torical and future trends, as well as interannual variabilities
in precipitation, is better than with other methods that more
simply regress local changes against global temperature vari-
ation (e.g., IMOGEN and OSCAR; Zelazowski et al., 2018;
Gasser et al., 2017). However, the remaining biases in em-
ulating the other three SSPs with the emulator constructed
(i.e., fitted) under SSP5–8.5 imply that the sensitivity of grid-
ded precipitation to temperature modes may have a slight
dependence on SSP. There are some studies that predict an
increased variability in precipitation under a warmer world
(Zhang et al., 2021; Song et al., 2018), but where such ad-
ditional variability is not present in the spatial temperature
modes of variations. Therefore, it could be unwise to use the
emulator constructed using the temperature and precipitation

during the historical period or under the low-emission sce-
narios to project future precipitation change under a high-
emission scenario. Constructing the emulator separately for
low- or high-emission scenarios could help reduce uncer-
tainties in emulating future precipitation. When coupling
PREMU with other LCMs to emulate the gridded precipi-
tation under a new prescribed emission scenario, we suggest
calibrating PREMU against the SSP whose future tempera-
ture most closely resembles the temperature in LCMs under
that new scenario.

5.3 Other versions of PREMU

5.3.1 PREMU constructed by different temperature
lag periods

We tested the effect of different lags of gridded tempera-
ture on changes in precipitation. Previous studies noted that
“memory effects” may cause precipitation to be affected
more by the climate modes in the previous months (An et al.,
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Figure 9. The spatial pattern of the error of the MAP in 2071–2100 between each ESM and emulation from PREMU under the SSP1–2.6
scenario: (a) UKESM1-0-LL; (b) MPI-ESM1-2-LR; (c) MIROC6; (d) IPSL-CM6A-LR; (e) GFDL-ESM4; (f) EC-Earth3; (g) CanESM5;
(h) CESM2; (i) ACCESS-ESM1-5.

2020). Throughout this study, we used the 3-month average
temperature (month of interest plus the previous two months)
to capture potential lagging effects. However, to quantify the
uncertainty based on duration of the lag effect, we also tested
1-month temperature and 6-month average temperature to
construct the emulator, respectively (“emulator-1mon” and
“emulator-6mon”). For the historical period, we found that
the emulator-1mon was unable to capture the increase of
GLAP after 1950. Predicting the GLAP from emulator-6mon
shows a good fitting of the trends and interannual variations
of GLAP in GSWP3, similar to that from the emulator based
on 3-month average temperature but with a lower correlation
coefficient (R = 0.77, p < 0.001 for 3 months; R = 0.73,
p < 0.001 for 6 months; Fig. S22). For future precipitation
from ESMs, all three emulators with different temperature
lag periods (1 month, 3 months, 6 months) can capture well
the changes in GLAP and gridded precipitation under dif-
ferent scenarios in the future (Figs. S23 and S24). This may
be due to underrepresentation of topography and aerosol ef-
fects in ESMs, which are potential sources of variations in
precipitation and could be important for influencing the lag
differences. Hence, we deduced that the method is highly ro-
bust (i.e., invariant) in terms of lag length when emulating
the future precipitation (Figs. 5 and S23–S24).

5.3.2 PREMU constructed by Tair over land

We constructed our emulator using thermal modes of vari-
ation based on the temperature from over both land and
ocean grid cells. As a sensitivity study, we also evaluated
the performance of the emulator constructed using only Tair
over land (“emulator-land”) to test its capability at predict-
ing future precipitation. We found that the emulator-land can
also reproduce consistent trends and interannual variations
of GLAP and changes in gridded precipitation found with
ESMs (Figs. S25 and S26), while the correlation in terms
of interannual variations of GLAP with ESMs is relatively
lower than PREMU (R = 0.71 for SSP1–2.6; R = 0.88 for
SSP2–4.5; R = 0.91 for SSP3–7.0; R = 0.96 for SSP5–8.5).
Considering that the change of air temperature over ocean
could contain additional information that relates to local cli-
mate variability (Trenberth and Shea, 2005), we suggest re-
taining our inclusion of all land and ocean grid cells in
PREMU calibration.

5.4 Potential further developments of PREMU

Our emulator has focused on total precipitation at each lo-
cation. Future analyses could include testing its performance
for individual features or subsets of precipitation patterns,
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Figure 10. The spatial pattern of change in MAP between the period of 2015–2044 and 2071–2100 from (a) UKESM1-0-LL and (b) em-
ulation from PREMU under SSP1–2.6 scenario. (c, d) MPI-ESM1-2-LR; (e, f) MIROC6; (g, h) IPSL-CM6A-LR; (i, j) GFDL-ESM4; (k,
l) EC-Earth3; (m, n) CanESM5; (o, p) CESM2; (q, r) ACCESS-ESM1-5.

such as convective precipitation, large-scale precipitation and
topographic precipitation. We also suggest possibly extend-
ing our emulator drivers beyond the modes of variability of
air temperature only. For example, considering that the inter-
annual variations of precipitation are mainly caused by large-
scale precipitation dominated by ENSO (Cai et al., 2001;
van Oldenborgh and Burgers, 2005; Gupta and Jain, 2021;
Zhou et al., 2020), we could consider additionally entrain-
ing sea surface temperature as a forcing variable. Similarly,
for convective precipitation, local temperature and energy for
uplift could be used for prediction (Berg et al., 2013). Fur-
thermore, PREMU may not have good capability in emulat-
ing the seasonal cycle of gridded precipitation. We suggest
that a future improvement, which will allow projections at
sub-yearly timescales, might be to add a residual variability
module similar to that in the MESMER-M model via lag-1

autocorrelations or local spatially correlated processes (Nath
et al., 2022).

6 Conclusions

In this study, we proposed an algorithm to construct a pre-
cipitation emulator, which could estimate gridded precipita-
tion and its changes in a convenient and computationally ef-
fective way. We exploit strong discovered linkages between
rainfall patterns and natural spatial modes of variability in
near-surface temperature. To the best of our knowledge, this
is a pioneer emulator that can be directly coupled within ex-
isting LCMs, especially noting that LCMs may perform well
for other variables but are currently weaker at estimating
features of rainfall. This new combination will better pre-
dict global and gridded precipitation under different emis-
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Figure 11. (a) The seasonal cycle of 30–90◦ N latitude land average
precipitation in 1987–2016 from GSWP3, simple linear method and
PREMU; (b) 0–30◦ N; (c) 30◦ S–0◦; (d) 90–30◦ S.

sion scenarios. With illustrative examples, we demonstrated
the good performance of our emulator in predicting the ab-
solute value and interannual variations in historical precipita-
tion from GSWP3 and also in predicting future precipitation
under four scenarios from ESMs. In addition, we also veri-
fied the reliability of our results despite the potential uncer-
tainties in the method (e.g., the assumptions of the stability of
the coefficient matrix in PCA and the sensitivity of gridded
precipitation to temperature modes). The accurate projection
of future precipitation can help analyze not only expected di-
rect climate change under different emission scenarios but
also the responses of the hydrological cycle and ecological
processes to such future changes. ESMs remain hugely com-
putationally demanding and can be only operated for a lim-
ited number of century-scale projections. Hence, robust emu-
lators of full-complexity Earth system models remain an im-
portant tool, extrapolating ESM projections to alternative fu-
ture emissions or GHG concentration scenarios that require
investigation and understanding.

Appendix A: Table of abbreviations

CMIP6 The sixth phase of the Coupled Model In-
tercomparison Project

EBM Energy balance model
ESM Earth system model
GLAP Global land average precipitation
GSWP3 Global Soil Wetness Project Phase 3
IMOGEN Integrated Model Of Global Effects of cli-

matic aNomalies (Zelazowski et al., 2018)
LCM Lower-complexity models
MAP Mean annual precipitation
MESMER Modular Earth System Model Emulator

with spatially Resolved output (Beusch et
al., 2022)

OSCAR A compact Earth system model (see Gasser
et al., 2017)

PCA Principal-component analysis
PREMU A computationally efficient precipitation

emulator (this study)
SSP Shared socioeconomic pathway
Tair Surface air temperature

Code availability. The MATLAB code used to emulate the precipi-
tation by PREMU is publicly available on GitHub (https://github.
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code used here is archived and available on Zenodo repository
(https://doi.org/10.5281/zenodo.7545350; Liu et al., 2023).

Data availability. The GSWP3 data are available at
https://doi.org/10.20783/DIAS.501 (last access: 19 Febru-
ary 2023; Kim, 2017). All CMIP6 data can be accessed from
the CMIP6 archive (https://esgf-node.llnl.gov/search/cmip6/, last
access: 19 February 2023; WCRP, 2023).

Supplement. The supplement related to this article is available on-
line at: https://doi.org/10.5194/gmd-16-1277-2023-supplement.

Author contributions. SP conceived and designed this study. The
PREMU model was coded and developed mainly by GL. GL, SP
and YX prepared the paper with contributions from CH.

Competing interests. The contact author has declared that none of
the authors has any competing interests.

Disclaimer. Publisher’s note: Copernicus Publications remains
neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

https://doi.org/10.5194/gmd-16-1277-2023 Geosci. Model Dev., 16, 1277–1296, 2023

https://github.com/GangLiulg/PreMU
https://github.com/GangLiulg/PreMU
https://doi.org/10.5281/zenodo.7545350
https://doi.org/10.20783/DIAS.501
https://esgf-node.llnl.gov/search/cmip6/
https://doi.org/10.5194/gmd-16-1277-2023-supplement


1294 G. Liu et al.: A new precipitation emulator for lower-complexity models

Acknowledgements. The authors would like to thank Data Integra-
tion and Analysis System (DIAS), Japan, for managing the public
availability of GSWP3 and would also like to thank the CMIP6 data
producers and providers.

Financial support. This research has been supported by the Na-
tional Natural Science Foundation of China (grant nos. 41722101
and 41830643).

Review statement. This paper was edited by Fabien Maussion and
reviewed by two anonymous referees.

References

Allen, M. R. and Ingram, W. J.: Constraints on future changes
in climate and the hydrologic cycle, Nature, 419, 228–232,
https://doi.org/10.1038/nature01092, 2002.

An, L., Hao, Y., Yeh, T.-C. J., and Zhang, B.: Annual to multi-
decadal climate modes linking precipitation of the northern and
southern slopes of the Tianshan Mts, Theor. Appl. Climatol., 140,
453–465, https://doi.org/10.1007/s00704-020-03100-y, 2020.

Austin, G. L. and Dirks, K. N.: Topographic Effects on
Precipitation, in: Encyclopedia of Hydrological Sciences,
https://doi.org/10.1002/0470848944.hsa033, 2005.

Berg, P., Moseley, C., and Haerter, J. O.: Strong increase in con-
vective precipitation in response to higher temperatures, Nat.
Geosci., 6, 181–185, https://doi.org/10.1038/ngeo1731, 2013.

Beusch, L., Nicholls, Z., Gudmundsson, L., Hauser, M., Mein-
shausen, M., and Seneviratne, S. I.: From emission scenar-
ios to spatially resolved projections with a chain of compu-
tationally efficient emulators: coupling of MAGICC (v7.5.1)
and MESMER (v0.8.3), Geosci. Model Dev., 15, 2085–2103,
https://doi.org/10.5194/gmd-15-2085-2022, 2022.

Bollasina, M. A., Ming, Y., and Ramaswamy, V.: An-
thropogenic Aerosols and the Weakening of the South
Asian Summer Monsoon, Science, 334, 502–505,
https://doi.org/10.1126/science.1204994, 2011.

Brunner, L., Hauser, M., Lorenz, R., and Beyerle, U.: The ETH
Zurich CMIP6 next generation archive: technical documentation,
Zenodo, https://doi.org/10.5281/zenodo.3734128, 2020.

Cai, W., Whetton, P. H., and Pittock, A. B.: Fluctuations of the rela-
tionship between ENSO and northeast Australian rainfall, Clim.
Dynam., 17, 421–432, https://doi.org/10.1007/PL00013738,
2001.

Chadwick, R. and Good, P.: Understanding nonlinear tropical pre-
cipitation responses to CO2 forcing, Geophys. Res. Lett., 40,
4911–4915, https://doi.org/10.1002/grl.50932, 2013.

Collins, M., Knutti, R., Arblaster, J., Dufresne, J. L., Fichefet, T.,
Friedlingstein, P., Gao, X., Gutowski, W. J., Johns, T., Krinner,
G., Shongwe, M., Tebaldi, C., Weaver, A. J., and Wehner, M.:
Long-term Climate Change: Projections, Commitments and Irre-
versibility, in: Climate Change 2013: The Physical Science Ba-
sis, Contribution of Working Group I to the Fifth Assessment Re-
port of the Intergovernmental Panel on Climate Change, edited
by: Stocker, T. F., Qin, D., Plattner, G. K., Tignor, M., Allen, S.
K., Boschung, J., Nauels, A., Xia, Y., Bex, V., and Midgley, P. M.,

Cambridge University Press, Cambridge, UK, New York, NY,
USA, https://doi.org/10.1017/CBO9781107415324.024, 2013.

Compo, G. P., Whitaker, J. S., Sardeshmukh, P. D., Matsui, N., Al-
lan, R. J., Yin, X., Gleason, B. E., Vose, R. S., Rutledge, G.,
Bessemoulin, P., Brönnimann, S., Brunet, M., Crouthamel, R. I.,
Grant, A. N., Groisman, P. Y., Jones, P. D., Kruk, M. C., Kruger,
A. C., Marshall, G. J., Maugeri, M., Mok, H. Y., Nordli, Ø., Ross,
T. F., Trigo, R. M., Wang, X. L., Woodruff, S. D., and Worley, S.
J.: The Twentieth Century Reanalysis Project, Q. J. Roy. Meteor.
Soc., 137, 1–28, https://doi.org/10.1002/qj.776, 2011.

Dai, A.: The influence of the inter-decadal Pacific oscillation on
US precipitation during 1923–2010, Clim. Dynam., 41, 633–646,
https://doi.org/10.1007/s00382-012-1446-5, 2013.

Danabasoglu, G., Lamarque, J.-F., Bacmeister, J., Bailey, D. A.,
DuVivier, A. K., Edwards, J., Emmons, L. K., Fasullo, J., Gar-
cia, R., Gettelman, A., Hannay, C., Holland, M. M., Large,
W. G., Lauritzen, P. H., Lawrence, D. M., Lenaerts, J. T. M.,
Lindsay, K., Lipscomb, W. H., Mills, M. J., Neale, R., Ole-
son, K. W., Otto-Bliesner, B., Phillips, A. S., Sacks, W., Tilmes,
S., van Kampenhout, L., Vertenstein, M., Bertini, A., Dennis,
J., Deser, C., Fischer, C., Fox-Kemper, B., Kay, J. E., Kinni-
son, D., Kushner, P. J., Larson, V. E., Long, M. C., Mickelson,
S., Moore, J. K., Nienhouse, E., Polvani, L., Rasch, P. J., and
Strand, W. G.: The Community Earth System Model Version
2 (CESM2), J. Adv. Model. Earth Syst., 12, e2019MS001916,
https://doi.org/10.1029/2019MS001916, 2020.

Efthymiadis, D., Jones, P. D., Briffa, K. R., Böhm, R., and
Maugeri, M.: Influence of large-scale atmospheric circu-
lation on climate variability in the Greater Alpine Re-
gion of Europe, J. Geophys. Res.-Atmos., 112, D12104,
https://doi.org/10.1029/2006JD008021, 2007.

Eltahir, E. A. B. and Bras, R. L.: Precipitation recycling, Rev. Geo-
phys., 34, 367–378, https://doi.org/10.1029/96RG01927, 1996.

Fereday, D., Chadwick, R., Knight, J., and Scaife, A. A.: At-
mospheric Dynamics is the Largest Source of Uncertainty in
Future Winter European Rainfall, J. Climate, 31, 963–977,
https://doi.org/10.1175/jcli-d-17-0048.1, 2018.

Gasser, T., Ciais, P., Boucher, O., Quilcaille, Y., Tortora, M., Bopp,
L., and Hauglustaine, D.: The compact Earth system model OS-
CAR v2.2: description and first results, Geosci. Model Dev., 10,
271–319, https://doi.org/10.5194/gmd-10-271-2017, 2017.

Geman, S., Bienenstock, E., and Doursat, R.: Neural Networks
and the Bias/Variance Dilemma, Neural Comput., 4, 1–58,
https://doi.org/10.1162/neco.1992.4.1.1, 1992.

Gupta, V. and Jain, M. K.: Unravelling the teleconnections
between ENSO and dry/wet conditions over India using
nonlinear Granger causality, Atmos. Res., 247, 105168,
https://doi.org/10.1016/j.atmosres.2020.105168, 2021.

Hausfather, Z. and Peters, P. G.: Emissions – the “busi-
ness as usual” story is misleading, Nature, 577, 618–620,
https://doi.org/10.1038/d41586-020-00177-3, 2020.

Heinze-Deml, C., Sippel, S., Pendergrass, A. G., Lehner, F., and
Meinshausen, N.: Latent Linear Adjustment Autoencoder v1.0:
a novel method for estimating and emulating dynamic precipi-
tation at high resolution, Geosci. Model Dev., 14, 4977–4999,
https://doi.org/10.5194/gmd-14-4977-2021, 2021.

Horowitz, L. W., Naik, V., Paulot, F., Ginoux, P. A., Dunne,
J. P., Mao, J., Schnell, J., Chen, X., He, J., John, J. G.,
Lin, M., Lin, P., Malyshev, S., Paynter, D., Shevliakova, E.,

Geosci. Model Dev., 16, 1277–1296, 2023 https://doi.org/10.5194/gmd-16-1277-2023

https://doi.org/10.1038/nature01092
https://doi.org/10.1007/s00704-020-03100-y
https://doi.org/10.1002/0470848944.hsa033
https://doi.org/10.1038/ngeo1731
https://doi.org/10.5194/gmd-15-2085-2022
https://doi.org/10.1126/science.1204994
https://doi.org/10.5281/zenodo.3734128
https://doi.org/10.1007/PL00013738
https://doi.org/10.1002/grl.50932
https://doi.org/10.1017/CBO9781107415324.024
https://doi.org/10.1002/qj.776
https://doi.org/10.1007/s00382-012-1446-5
https://doi.org/10.1029/2019MS001916
https://doi.org/10.1029/2006JD008021
https://doi.org/10.1029/96RG01927
https://doi.org/10.1175/jcli-d-17-0048.1
https://doi.org/10.5194/gmd-10-271-2017
https://doi.org/10.1162/neco.1992.4.1.1
https://doi.org/10.1016/j.atmosres.2020.105168
https://doi.org/10.1038/d41586-020-00177-3
https://doi.org/10.5194/gmd-14-4977-2021


G. Liu et al.: A new precipitation emulator for lower-complexity models 1295

and Zhao, M.: The GFDL Global Atmospheric Chemistry-
Climate Model AM4.1: Model Description and Simulation Char-
acteristics, J. Adv. Model. Earth Syst., 12, e2019MS002032,
https://doi.org/10.1029/2019MS002032, 2020.

Hourdin, F., Rio, C., Grandpeix, J.-Y., Madeleine, J.-B., Cheruy,
F., Rochetin, N., Jam, A., Musat, I., Idelkadi, A., Fairhead,
L., Foujols, M.-A., Mellul, L., Traore, A.-K., Dufresne, J.-L.,
Boucher, O., Lefebvre, M.-P., Millour, E., Vignon, E., Jouhaud,
J., Diallo, F. B., Lott, F., Gastineau, G., Caubel, A., Meurdes-
oif, Y., and Ghattas, J.: LMDZ6A: The Atmospheric Compo-
nent of the IPSL Climate Model With Improved and Better
Tuned Physics, J. Adv. Model. Earth Syst., 12, e2019MS001892,
https://doi.org/10.1029/2019MS001892, 2020.

Humphrey, V. and Gudmundsson, L.: GRACE-REC: a re-
construction of climate-driven water storage changes over
the last century, Earth Syst. Sci. Data, 11, 1153–1170,
https://doi.org/10.5194/essd-11-1153-2019, 2019.

Huntingford, C., Booth, B. B. B., Sitch, S., Gedney, N., Lowe,
J. A., Liddicoat, S. K., Mercado, L. M., Best, M. J., Wee-
don, G. P., Fisher, R. A., Lomas, M. R., Good, P., Zelazowski,
P., Everitt, A. C., Spessa, A. C., and Jones, C. D.: IMOGEN:
an intermediate complexity model to evaluate terrestrial im-
pacts of a changing climate, Geosci. Model Dev., 3, 679–687,
https://doi.org/10.5194/gmd-3-679-2010, 2010.

Huntingford, C., Yang, H., Harper, A., Cox, P. M., Gedney, N.,
Burke, E. J., Lowe, J. A., Hayman, G., Collins, W. J., Smith,
S. M., and Comyn-Platt, E.: Flexible parameter-sparse global
temperature time profiles that stabilise at 1.5 and 2.0 ◦C, Earth
Syst. Dynam., 8, 617–626, https://doi.org/10.5194/esd-8-617-
2017, 2017.

IPCC: Climate Change 2013: The Physical Science Basis, Contri-
bution of Working Group I to the Fifth Assessment Report of the
Intergovernmental Panel on Climate Change, edited by: Stocker,
T. F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S. K., Boschung,
J., Nauels, A., Xia, Y., Bex, V., and Midgley, P. M., Cambridge
University Press, Cambridge, UK and New York, NY, USA, 1535
pp., 2013.

Jiang, Y., Cooley, D., and Wehner, M. F.: Principal Component
Analysis for Extremes and Application to U.S. Precipitation,
J. Climate, 33, 6441–6451, https://doi.org/10.1175/JCLI-D-19-
0413.1, 2020.

Jones, J. M., Fogt, R. L., Widmann, M., Marshall, G. J., Jones, P.
D., and Visbeck, M.: Historical SAM Variability. Part I: Century-
Length Seasonal Reconstructions, J. Climate, 22, 5319–5345,
https://doi.org/10.1175/2009jcli2785.1, 2009.

Jones, P. W.: First- and Second-Order Conservative Remap-
ping Schemes for Grids in Spherical Coordinates, Mon.
Weather Rev., 127, 2204–2210, https://doi.org/10.1175/1520-
0493(1999)127<2204:Fasocr>2.0.Co;2, 1999.

Kim, H.: Global Soil Wetness Project Phase 3 Atmospheric Bound-
ary Conditions (Experiment 1), Data Integration and Analysis
System (DIAS) [data set], https://doi.org/10.20783/DIAS.501,
2017.

Kim, J., Oh, H.-S., Lim, Y., and Kang, H.-S.: Seasonal precipitation
prediction via data-adaptive principal component regression, Int.
J. Climatol., 37, 75–86, https://doi.org/10.1002/joc.4979, 2017.

Korell, L., Auge, H., Chase, J. M., Harpole, W. S., and Knight,
T. M.: Responses of plant diversity to precipitation change are

strongest at local spatial scales and in drylands, Nat. Commun.,
12, 2489, https://doi.org/10.1038/s41467-021-22766-0, 2021.

Li, G., Gao, C., Lu, B., and Chen, H.: Inter-annual variabil-
ity of spring precipitation over the Indo-China Peninsula and
its asymmetric relationship with El Niño-Southern Oscillation,
Clim. Dynam., 56, 2651–2665, https://doi.org/10.1007/s00382-
020-05609-4, 2021.

Li, L., Li, J., and Yu, R.: Evaluation of CMIP6 HighResMIP models
in simulating precipitation over Central Asia, Adv. Clim. Change
Res., 13, 1–13, https://doi.org/10.1016/j.accre.2021.09.009,
2022.

Li, W., Zhai, P., and Cai, J.: Research on the Relation-
ship of ENSO and the Frequency of Extreme Precipita-
tion Events in China, Adv. Clim. Change. Res., 2, 101–107,
https://doi.org/10.3724/SP.J.1248.2011.00101, 2011.

Liu, G., Peng, S. S., Huntingford, C., and Xi, Y.: Gan-
gLiulg/PreMU: v1.0.0 (PREMU), Zenodo [code],
https://doi.org/10.5281/zenodo.7545350, 2023.

Lu, B., Li, H., Wu, J., Zhang, T., Liu, J., Liu, B., Chen, Y., and
Baishan, J.: Impact of El Niño and Southern Oscillation on the
summer precipitation over Northwest China, Atmos. Sci. Lett,
20, e928, https://doi.org/10.1002/asl.928, 2019.

McKinnon, K. A. and Deser, C.: Internal Variability and Re-
gional Climate Trends in an Observational Large Ensemble,
J. Climate, 31, 6783–6802, https://doi.org/10.1175/JCLI-D-17-
0901.1, 2018.

McKinnon, K. A. and Deser, C.: The Inherent Uncertainty of Pre-
cipitation Variability, Trends, and Extremes due to Internal Vari-
ability, with Implications for Western U.S. Water Resources,
J. Climate, 34, 9605–9622, https://doi.org/10.1175/JCLI-D-21-
0251.1, 2021.

Medvigy, D. and Beaulieu, C.: Trends in Daily Solar Radiation and
Precipitation Coefficients of Variation since 1984, J. Climate, 25,
1330–1339, https://doi.org/10.1175/2011jcli4115.1, 2012.

Meinshausen, M., Raper, S. C. B., and Wigley, T. M. L.: Em-
ulating coupled atmosphere-ocean and carbon cycle models
with a simpler model, MAGICC6 – Part 1: Model descrip-
tion and calibration, Atmos. Chem. Phys., 11, 1417–1456,
https://doi.org/10.5194/acp-11-1417-2011, 2011.

Michel, S., Swingedouw, D., Chavent, M., Ortega, P., Mignot,
J., and Khodri, M.: Reconstructing climatic modes of variabil-
ity from proxy records using ClimIndRec version 1.0, Geosci.
Model Dev., 13, 841–858, https://doi.org/10.5194/gmd-13-841-
2020, 2020.

Nath, S., Lejeune, Q., Beusch, L., Seneviratne, S. I., and Schleuss-
ner, C.-F.: MESMER-M: an Earth system model emulator for
spatially resolved monthly temperature, Earth Syst. Dynam., 13,
851–877, https://doi.org/10.5194/esd-13-851-2022, 2022.

Nicholls, Z. R. J., Meinshausen, M., Lewis, J., Gieseke, R., Dom-
menget, D., Dorheim, K., Fan, C.-S., Fuglestvedt, J. S., Gasser,
T., Golüke, U., Goodwin, P., Hartin, C., Hope, A. P., Kriegler,
E., Leach, N. J., Marchegiani, D., McBride, L. A., Quilcaille, Y.,
Rogelj, J., Salawitch, R. J., Samset, B. H., Sandstad, M., Shiklo-
manov, A. N., Skeie, R. B., Smith, C. J., Smith, S., Tanaka, K.,
Tsutsui, J., and Xie, Z.: Reduced Complexity Model Intercom-
parison Project Phase 1: introduction and evaluation of global-
mean temperature response, Geosci. Model Dev., 13, 5175–5190,
https://doi.org/10.5194/gmd-13-5175-2020, 2020.

https://doi.org/10.5194/gmd-16-1277-2023 Geosci. Model Dev., 16, 1277–1296, 2023

https://doi.org/10.1029/2019MS002032
https://doi.org/10.1029/2019MS001892
https://doi.org/10.5194/essd-11-1153-2019
https://doi.org/10.5194/gmd-3-679-2010
https://doi.org/10.5194/esd-8-617-2017
https://doi.org/10.5194/esd-8-617-2017
https://doi.org/10.1175/JCLI-D-19-0413.1
https://doi.org/10.1175/JCLI-D-19-0413.1
https://doi.org/10.1175/2009jcli2785.1
https://doi.org/10.1175/1520-0493(1999)127<2204:Fasocr>2.0.Co;2
https://doi.org/10.1175/1520-0493(1999)127<2204:Fasocr>2.0.Co;2
https://doi.org/10.20783/DIAS.501
https://doi.org/10.1002/joc.4979
https://doi.org/10.1038/s41467-021-22766-0
https://doi.org/10.1007/s00382-020-05609-4
https://doi.org/10.1007/s00382-020-05609-4
https://doi.org/10.1016/j.accre.2021.09.009
https://doi.org/10.3724/SP.J.1248.2011.00101
https://doi.org/10.5281/zenodo.7545350
https://doi.org/10.1002/asl.928
https://doi.org/10.1175/JCLI-D-17-0901.1
https://doi.org/10.1175/JCLI-D-17-0901.1
https://doi.org/10.1175/JCLI-D-21-0251.1
https://doi.org/10.1175/JCLI-D-21-0251.1
https://doi.org/10.1175/2011jcli4115.1
https://doi.org/10.5194/acp-11-1417-2011
https://doi.org/10.5194/gmd-13-841-2020
https://doi.org/10.5194/gmd-13-841-2020
https://doi.org/10.5194/esd-13-851-2022
https://doi.org/10.5194/gmd-13-5175-2020


1296 G. Liu et al.: A new precipitation emulator for lower-complexity models

O’Neill, B. C., Tebaldi, C., van Vuuren, D. P., Eyring, V., Friedling-
stein, P., Hurtt, G., Knutti, R., Kriegler, E., Lamarque, J.-F.,
Lowe, J., Meehl, G. A., Moss, R., Riahi, K., and Sander-
son, B. M.: The Scenario Model Intercomparison Project (Sce-
narioMIP) for CMIP6, Geosci. Model Dev., 9, 3461–3482,
https://doi.org/10.5194/gmd-9-3461-2016, 2016.

Prein, A. F., Rasmussen, R. M., Ikeda, K., Liu, C., Clark,
M. P., and Holland, G. J.: The future intensification of
hourly precipitation extremes, Nat. Clim. Change, 7, 48–52,
https://doi.org/10.1038/nclimate3168, 2017.

Rahaman, W., Chatterjee, S., Ejaz, T., and Thamban, M.: Increased
influence of ENSO on Antarctic temperature since the Indus-
trial Era, Sci. Rep., 9, 6006, https://doi.org/10.1038/s41598-019-
42499-x, 2019.

Riahi, K., van Vuuren, D. P., Kriegler, E., Edmonds, J., O’Neill,
B. C., Fujimori, S., Bauer, N., Calvin, K., Dellink, R., Fricko,
O., Lutz, W., Popp, A., Cuaresma, J. C., Kc, S., Leimbach, M.,
Jiang, L., Kram, T., Rao, S., Emmerling, J., Ebi, K., Hasegawa,
T., Havlik, P., Humpenöder, F., Da Silva, L. A., Smith, S., Ste-
hfest, E., Bosetti, V., Eom, J., Gernaat, D., Masui, T., Rogelj,
J., Strefler, J., Drouet, L., Krey, V., Luderer, G., Harmsen, M.,
Takahashi, K., Baumstark, L., Doelman, J. C., Kainuma, M.,
Klimont, Z., Marangoni, G., Lotze-Campen, H., Obersteiner, M.,
Tabeau, A., and Tavoni, M.: The Shared Socioeconomic Path-
ways and their energy, land use, and greenhouse gas emissions
implications: An overview, Glob. Environ. Change, 42, 153–168,
https://doi.org/10.1016/j.gloenvcha.2016.05.009, 2017.

Samset, B. H., Myhre, G., Forster, P. M., Hodnebrog, Ø., An-
drews, T., Faluvegi, G., Fläschner, D., Kasoar, M., Kharin, V.,
Kirkevåg, A., Lamarque, J.-F., Olivié, D., Richardson, T., Shin-
dell, D., Shine, K. P., Takemura, T., and Voulgarakis, A.: Fast
and slow precipitation responses to individual climate forcers: A
PDRMIP multimodel study, Geophys Res. Lett., 43, 2782–2791,
https://doi.org/10.1002/2016GL068064, 2016.

Shepherd, T. G.: Atmospheric circulation as a source of uncer-
tainty in climate change projections, Nat. Geosci., 7, 703–708,
https://doi.org/10.1038/ngeo2253, 2014.

Singh, C. V.: Pattern characteristics of Indian monsoon rainfall us-
ing principal component analysis (PCA), Atmos. Res., 79, 317–
326, https://doi.org/10.1016/j.atmosres.2005.05.006, 2006.

Song, F., Leung, L. R., Lu, J., and Dong, L.: Seasonally de-
pendent responses of subtropical highs and tropical rainfall
to anthropogenic warming, Nat. Clim. Change, 8, 787–792,
https://doi.org/10.1038/s41558-018-0244-4, 2018.

Storch, H. and Zwiers, F.: Statistical Analysis in Cli-
mate Research, Cambridge University Press, Cambridge,
https://doi.org/10.1017/CBO9780511612336, 2011.

Sun, Q., Miao, C., Duan, Q., Ashouri, H., Sorooshian, S., and Hsu,
K.-L.: A Review of Global Precipitation Data Sets: Data Sources,
Estimation, and Intercomparisons, Rev. Geophys., 56, 79–107,
https://doi.org/10.1002/2017RG000574, 2018.

Tebaldi, C. and Arblaster, J. M.: Pattern scaling: Its strengths
and limitations, and an update on the latest model simulations,
Clim. Change, 122, 459–471, https://doi.org/10.1007/s10584-
013-1032-9, 2014.

Tebaldi, C. and Knutti, R.: Evaluating the accuracy of cli-
mate change pattern emulation for low warming targets, En-
viron. Res. Lett., 13, 055006, https://doi.org/10.1088/1748-
9326/aabef2, 2018.

Trenberth, K. E. and Shea, D. J.: Relationships between precipita-
tion and surface temperature, Geophys. Res. Lett., 32, L14703,
https://doi.org/10.1029/2005GL022760, 2005.

Trenberth, K. E., Dai, A., Rasmussen, R. M., and Parsons, D. B.:
The Changing Character of Precipitation, B. Am. Meteorol. Soc.,
84, 1205–1218, 10.1175/bams-84-9-1205, 2003.

Tsanis, I. and Tapoglou, E.: Winter North Atlantic Oscil-
lation impact on European precipitation and drought un-
der climate change, Theor. Appl. Climatol., 135, 323–330,
https://doi.org/10.1007/s00704-018-2379-7, 2019.

van Oldenborgh, G. J. and Burgers, G.: Searching for decadal vari-
ations in ENSO precipitation teleconnections, Geophys. Res.
Lett., 32, https://doi.org/10.1029/2005GL023110, 2005.

WCRP: CMIP6, WCRP [data set], https://esgf-node.llnl.gov/
search/cmip6/, last access: 19 February 2023.

Yan, Z., Wu, B., Li, T., Collins, M., Clark, R., Zhou, T., Murphy,
J., and Tan, G.: Eastward shift and extension of ENSO-induced
tropical precipitation anomalies under global warming, Sci. Adv.,
6, eaax4177, https://doi.org/10.1126/sciadv.aax4177, 2020.

Yang, X., Yong, B., Yu, Z., and Zhang, Y.: An evaluation of
CMIP5 precipitation simulations using ground observations
over ten river basins in China, Hydrol. Res., 52, 676–698,
https://doi.org/10.2166/nh.2021.151, 2021.

Zelazowski, P., Huntingford, C., Mercado, L. M., and Schaller, N.:
Climate pattern-scaling set for an ensemble of 22 GCMs – adding
uncertainty to the IMOGEN version 2.0 impact system, Geosci.
Model Dev., 11, 541–560, https://doi.org/10.5194/gmd-11-541-
2018, 2018.

Zhang, W., Furtado, K., Wu, P., Zhou, T., Chadwick, R., Marzin, C.,
Rostron, J., and Sexton, D.: Increasing precipitation variability
on daily-to-multiyear time scales in a warmer world, Sci. Adv.,
7, eabf8021, https://doi.org/10.1126/sciadv.abf8021, 2021.

Zhou, P., Liu, Z., and Cheng, L.: An alternative approach for
quantitatively estimating climate variability over China un-
der the effects of ENSO events, Atmos. Res., 238, 104897,
https://doi.org/10.1016/j.atmosres.2020.104897, 2020.

Geosci. Model Dev., 16, 1277–1296, 2023 https://doi.org/10.5194/gmd-16-1277-2023

https://doi.org/10.5194/gmd-9-3461-2016
https://doi.org/10.1038/nclimate3168
https://doi.org/10.1038/s41598-019-42499-x
https://doi.org/10.1038/s41598-019-42499-x
https://doi.org/10.1016/j.gloenvcha.2016.05.009
https://doi.org/10.1002/2016GL068064
https://doi.org/10.1038/ngeo2253
https://doi.org/10.1016/j.atmosres.2005.05.006
https://doi.org/10.1038/s41558-018-0244-4
https://doi.org/10.1017/CBO9780511612336
https://doi.org/10.1002/2017RG000574
https://doi.org/10.1007/s10584-013-1032-9
https://doi.org/10.1007/s10584-013-1032-9
https://doi.org/10.1088/1748-9326/aabef2
https://doi.org/10.1088/1748-9326/aabef2
https://doi.org/10.1029/2005GL022760
https://doi.org/10.1007/s00704-018-2379-7
https://doi.org/10.1029/2005GL023110
https://esgf-node.llnl.gov/search/cmip6/
https://esgf-node.llnl.gov/search/cmip6/
https://doi.org/10.1126/sciadv.aax4177
https://doi.org/10.2166/nh.2021.151
https://doi.org/10.5194/gmd-11-541-2018
https://doi.org/10.5194/gmd-11-541-2018
https://doi.org/10.1126/sciadv.abf8021
https://doi.org/10.1016/j.atmosres.2020.104897

	Abstract
	Introduction
	Data
	Observation datasets
	Earth system model data

	Methods
	General approach
	Framework for PREMU
	Calibration
	Generating emulations using PREMU

	Validation

	Results
	Performance of precipitation emulator for historical precipitation
	Performance of precipitation emulator in terms of future precipitation from CMIP6 ESMs
	Seasonal performance of precipitation emulator

	Discussion
	Possible cause for the emulation errors of PREMU
	Evaluating the assumptions in methods
	Other versions of PREMU
	PREMU constructed by different temperature lag periods
	PREMU constructed by Tair over land

	Potential further developments of PREMU

	Conclusions
	Appendix A: Table of abbreviations
	Code availability
	Data availability
	Supplement
	Author contributions
	Competing interests
	Disclaimer
	Acknowledgements
	Financial support
	Review statement
	References

