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Abstract. This paper introduces a mixed finite-element
shallow-water model on the sphere. The mixed finite-element
approach is used as it has been shown to be both accu-
rate and highly scalable for parallel architecture. Key fea-
tures of the model are an iterated semi-implicit time-stepping
scheme, a finite-volume transport scheme, and the cubed
sphere grid. The model is tested on a number of standard
spherical shallow-water test cases. Results show that the
model produces similar results to other shallow-water mod-
els in the literature.
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1 Introduction

The dynamical core of an atmospheric model numerically
approximates the solution to the governing fluid dynamics
equations that determine the evolution of the atmosphere. An
operational dynamical core must be both accurate, to give
confidence in the forecast, and efficient, to produce a fore-
cast in the desired time frame. Current supercomputer ar-
chitectures focus on using an increasing number of proces-
sors to decrease runtime, and so future dynamical cores must
be suitable for massively parallel architecture. Key aspects
of the dynamical core that will greatly affect both accuracy
and parallel scalability are the type of grid and the numerical
methods used to discretise the equations.

Traditionally, atmospheric models used a latitude–
longitude grid (Wood et al., 2014). However, the conver-
gence of the meridians at the pole leads to a computational
bottleneck, and thus the latitude–longitude grid is not suit-
able for future supercomputers. Hence, a number of differ-
ent approaches to gridding the sphere without a pole have
been developed and used in dynamical cores, such as icosa-
hedral grids and the yin–yang grid (Staniforth and Thuburn,
2012). One such promising grid is the cubed sphere, which
uses quadrilateral cells on six panels that cover the sphere
(Ronchi et al., 1996).

The choice of numerical methods used in a dynamical
core will affect both the accuracy and the efficiency of the
model. High-order methods generally improve accuracy but
increase the computational cost. There are a variety of spatial
methods (for example, finite-difference, finite-volume, semi-
Lagrangian) and temporal methods (for example, explicit,
semi-implicit, horizontally explicit, vertically implicit) used
in atmospheric models by different operational centres and
modelling groups (see Ullrich et al., 2017, and references
within). The mixed finite-element method of Cotter and
Shipton (2012) and Cotter and Thuburn (2014) is a spatial
method that allows high-order schemes to be defined whilst
retaining good parallel properties (Melvin et al., 2019).
Mixed finite elements retain many properties of C-grid finite-
difference and finite-volume methods, such as good numeri-
cal dispersion relations. They also have the advantage of not
requiring orthogonal grids (Cotter and Shipton, 2012), bet-
ter consistency of the Coriolis operator (Thuburn and Cot-
ter, 2015), and the flexibility to increase accuracy by using
higher-order elements. In practice, most current atmospheric
dynamical cores aim for second-order accuracy overall (with
the transport scheme often higher order) (Wood et al., 2014).
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For this reason the lowest-order mixed finite-element method
will be a building block of the model described in this article.

The shallow-water equations are an important step in test-
ing the methods used for the development of a dynamical
core (Williamson et al., 1992). The shallow-water equations
contain many of the properties of the full atmospheric gov-
erning equations but with a reduction in complexity. In prac-
tice, if a method is not good enough (by whatever metric)
for a shallow-water model, it will not be good enough for
an atmospheric dynamical core. This allows the methods to
be evaluated in a simpler setting and design decisions to be
made early in development.

This document presents a novel mixed finite-element dis-
cretisation, extending that of Melvin et al. (2019) for at-
mospheric dynamics in Cartesian geometry, of the rotating
shallow-water equations in a spherical domain. This is the
natural next step from Melvin et al. (2019) in the develop-
ment of a three-dimensional dynamical core in spherical ge-
ometry, allowing the impact of the chosen spherical grid to be
investigated in a simplified context using an evolution of the
same numerics. As with the model of Melvin et al. (2019),
the shallow-water discretisation presented here has been de-
veloped in the LFRic framework: see Adams et al. (2019).
Key components of the model are the semi-implicit iterated
time-stepping scheme and the finite-volume transport. The
governing shallow-water equations are given in Sect. 2. The
discretisation, including the spatial and temporal aspects, is
given in Sect. 3, the finite-volume transport scheme is de-
scribed in Sect. 4, and the solution procedure is outlined in
Sect. 5. Results from standard shallow-water test suites are
given in Sect. 7, with a concluding summary in Sect. 8.

2 Governing equations

The shallow-water equations in a rotating domain are given
in vector-invariant form by

∂u

∂t
+ q8u⊥+∇ (K +8+8s)= 0, (1)

∂8

∂t
+∇ · (u8)= 0, (2)

where u= (u,v) is the velocity, 8= gh is the geopotential
(with gravity g and free surface height h), 8s is the surface
geopotential, andK ≡ 1/2|u|2 is the kinetic energy. The per-
pendicular operator is defined by (u,v)⊥ = (−v,u).

The potential vorticity (PV) q is defined as

q =
∇
⊥
·u+ f

8
, (3)

where f is the Coriolis parameter and∇⊥· ≡ k·∇×, and tak-
ing the curl of Eq. (1) gives a conservative transport equation
for PV:

∂8q

∂t
+∇ · (u8q)= 0. (4)

3 Discretisation

The governing Eqs. (1) and (2) are discretised in time using
a two-time-level iterated implicit scheme (Sect. 3.1) and in
space using a mixed finite-element method (Sect. 3.2) for the
wave-dynamic terms and a high-order upwind finite-volume
scheme (Sect. 4) for the advection terms. This process is an
extension to the shallow-water equations on the sphere of
Melvin et al. (2019), who presented a similar discretisation
in a three-dimensional Cartesian domain.

3.1 Temporal discretisation

To achieve second-order temporal accuracy, a time-centred
approach is used. The target discretisation, as in Melvin et al.
(2019), is a two-time-level iterated implicit scheme where
terms responsible for the fast-wave dynamics are treated by
the iterative semi-implicit scheme and the transport terms
(those involving the mass flux in Eq. 2 and the potential vor-
ticity in Eq. 1) are computed using a high-order, upwind,
explicit finite-volume scheme. Taking Eqs. (1) and (2) and
applying this discretisation results in

δtu+F⊥
(
qn8n,u1/2

)
+∇(K +8+8s)

α
= 0, (5)

δt8+∇ ·F
(
8n,u1/2

)
= 0, (6)

where δt s ≡
(
sn+1
− sn

)
/1t , sα ≡ αsn+1

+ (1−α)sn, and
F (s,u) are the fluxes computed by the transport scheme of
variable s by wind field u. We use α = 1/2 to achieve the
second order centred in the time scheme.

3.2 Mixed finite-element discretisation

The mixed finite-element formulation in two spatial dimen-
sions requires the specification of three finite-element func-
tion spaces: V0, V1, V2 (cf. the four function spaces Wi, i =

0. . .3 used in Melvin et al., 2019). The scalar spaces are an
H1 space consisting of point-wise scalars, V0 (zero forms),
or an L2 space consisting of area-integrated scalars, V2 (two
forms). There are two choices for the vector space V1 corre-
sponding to either VC1 , a Hcurl space of circulation vectors,
or VD1 , aHdiv space of flux vectors. Each choice has an asso-
ciated discrete de Rham complex,

V0
∇
−→ VC1

k·∇×
−−−→ V2 (7)

for curl-conforming vectors and

V0
k×∇
−−→ VD1

∇·
−→ V2 (8)

for div-conforming vectors. For this paper only the div-
conforming complex Eq. (8) will be considered: V1 ≡ VD1 ,
with u ∈ V1 and 8 ∈ V2. This is analogous to the standard
C-grid staggering (Arakawa and Lamb, 1977) where the nor-
mal components of the velocity vector are stored at the cell
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Figure 1. The finite-element function spaces V0, V1, and V2 for
the div-conforming complex, showing the locations of the velocity
components and the geopotential.

edges. The div-conforming complex, with the locations of
the prognostic variables u, v, and 8, is shown in Fig. 1.

The potential vorticity q ∈ V2 is collocated with 8 and is
computed diagnostically as follows. The velocity u is repre-
sented in the Hcurl space as v ∈ VC

1 using a Galerkin projec-
tion, and then the curl is taken to give the relative vorticity
ω ≡ k · ∇ × v ∈ V2. The absolute vorticity is projected into
V2 and then divided by the geopotential. As the lowest-order
space is used, this gives the potential vorticity q ∈ V2.

Taking Eq. (5), multiplying by a test function w from the
velocity space and integrating over the domain D gives∫
D

w ·
[
δtu+F⊥

(
qn8n,u1/2

)]
−∇ ·w(K +8+8s)

α
dA= 0, (9)

where, since the geopotential and kinetic energy are discon-
tinuous between cells, the third term has been integrated by
parts and the boundary term vanishes due to the continuity of
the test functions w. Similarly, taking Eq. (6), multiplying by
a test function σ from the geopotential space and integrating
over the domain gives∫
D

σ
[
δt8+∇ ·F

(
8n,u1/2

)]
dA= 0, (10)

where it is assumed that the advection scheme returns fluxes
F ∈ V1.

3.3 Transforms

As in Melvin et al. (2019), the equations are transformed
from a physical cell C to a reference cell Ĉ using the mapping
φ : Ĉ→ C. The physical cell, on the cubed sphere, has coor-
dinates χ , and the reference cell, a unit square, has coordi-
nates χ̂ , and the transform is such that χ = φ(χ̂). Transform-
ing the equations to a single reference cell provides a num-
ber of computational efficiencies such as a single set of basis
functions and quadrature points (Rognes et al., 2009). The
Jacobian of this transformation is defined as J≡ ∂φ (χ̂)/∂χ̂
and is used in transforming variables between the physical
and reference cells. The transformations used for spaces V1

and V2 are designed to preserve fluxes through an edge (V1)

and area-integrated values (V2) respectively. The transfor-
mation for V1 is v (χ)≡ v (φ [χ̂ ])= Ĵv (χ̂)/detJ. Following
Melvin et al. (2019), for the V2 transformation rehabilitation,
the approach of Bochev and Ridzal (2010) is used so that the
V2 mapping is modified to σ (χ)≡ σ (φ [χ̂ ])= σ̂ (χ̂). Ap-
plying these to Eqs. (9) and (10) gives∫
D

Jŵ
detJ
·

[
δtJû+ JF̂⊥

(
qn8n,u1/2

)]
−∇̂ · ŵ

(
K̂ + 8̂+ 8̂s

)α
dÂ= 0 (11)

and∫
D

σ̂
[
δt8̂detJ+∇̂ · F̂

(
8n,u1/2

)]
dÂ= 0. (12)

4 Transport scheme

The transport scheme is an extension to the method-of-lines
scheme used by Melvin et al. (2019), computing fluxes F of
a scalar field s by a wind field u:

F (s,u)=

t+1t∫
t

sudt. (13)

The flux F is obtained using a method-of-lines scheme
where a conservative transport equation

sn+1
− sn+1t∇ ·F

(
sn,u

)
= 0 (14)

is solved to obtain F . The temporal aspects of this scheme
are handled in the same manner as Melvin et al. (2019) using
an m-stage Runge–Kutta scheme

s(i) = sn−1t

i−1∑
j=1

ai,j∇ ·F
(
s(j),u

)
,

i = 1, . . .,m, (15)

sn+1
= sn−1t

m∑
k=1

bk∇ ·F
(
s(k),u

)
. (16)

The coefficients ai,j and bk in Eqs. (15) and (16) are given
by the Butcher tableau for the scheme:

0
c2 a2,1
c3 a3,1 a3,2
...

...
. . .

cm am,1
... am,m−1

b1 b2
... bm−1 bm

Here the three-stage third-order strong stability preserving
(SSP3) method of Gottleib (2005) is used, which has the
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Butcher tableau:
0
1 1

1/2 1/4 1/4

1/6 1/6 4/6
At each stage i we need to compute F

(
s(i),u

)
≡ š(i)u,

where š is a high-order upwind reconstruction of s. We use
a quadratic reconstruction for š (see Sect. 4.1), resulting in a
transport scheme that is third order in both time and space. As
the model uses the cubed sphere grid, the spatial reconstruc-
tion of Melvin et al. (2019) is extended to take into account
the non-uniformity of the mesh by using a two-dimensional
horizontal reconstruction. The scheme defined in this section
works on order l = 0 spaces.

4.1 Reconstruction of a scalar field

The advection scheme computes a high-order upwind recon-
struction š of a given scalar field s. The reconstructed field
is computed at points staggered half a grid length in all di-
rections from the original field, so for a field s ∈ V2, which
is located at cell centres, the reconstructed field š is com-
puted at the centre of each cell edge. The reconstruction is
computed by fitting a polynomial through a number of cells
and evaluating this polynomial at the staggered points. The
reconstruction is such that the integral of the polynomial is
equal to the integral of s within each cell. This is given an up-
wind bias by choosing even-order polynomials for the recon-
struction which require an odd number of s points and hence
can be weighted to the upwind side of the point at which the
reconstruction is needed; for example, for a one-dimensional
quadratic reconstruction at a point ši+1/2 with a positive wind
field, two upwind points si−1 and si and one downwind point
si+1 are used.

The horizontal spatial reconstruction is based on that used
in Thuburn et al. (2014), which uses a similar method to Bal-
dauf (2008) and Skamarock and Menchaca (2010). To sum-
marise, a series of polynomials Pk of a given order n in a lo-
cal Cartesian coordinate system (x,y) is defined over a sten-
cil of ns cells. The polynomial is required to fit (in a least
squares sense) the discrete field being reconstructed. The in-
tegral along the cell edge of the reconstructed field š is ap-
proximated by Gaussian quadrature and is given by

∫
šdS ≡

∫ ns∑
k=1

Pk (x,y)skdS

≈

nq∑
j=1

ns∑
k=1

wjPk
(
xj ,yj

)
sk, (17)

where
(
xj ,yj

)
are the integration points and wj the weights

of the Gaussian quadrature. In practice, a nq = 2 point
quadrature is used, and this is found to give a small improve-
ment over single-point quadrature.

The weights Pk (xr ,yr) that multiply each value sk in the
stencil are obtained by evaluating a polynomial

Pk (x,y)=

n∑
i=0

n−i∑
j=0

aki,jx
iyj (18)

at (xr ,yr). The coefficients aki,j of Pk are determined by min-
imising the residual rk

rk =

ns∑
j=1

∫
j

Pk − δjkdAj


2

, (19)

so that the integral of Pk = 1 in cell k and Pk = 0 otherwise.
For an order n reconstruction, there are nm ≡ (n+ 1)(n+

2)/2 coefficients aki,j , and so, to avoid an under-determined
problem, this requires at least nm cells in the stencil. Addi-
tionally, the stencil should be symmetric about the central
cell. To ensure these properties hold, the stencils are gener-
ated in the same manner as Thuburn et al. (2014). To sum-
marise, the following algorithm is used.

1. Add the central cell to the stencil (if n= 0, stop).

2. Loop until the number of cells in the stencil ns is at least
the number of monomials nm.

3. Find the set S of all neighbouring cells of cells currently
in the stencil.

4. Either add all cells in S that are not already in the stencil
and are neighbours of two cells already in the stencil or,
if no cell in S is a neighbour of two cells in the stencil,
add all cells in S that are not already in the stencil.

An example of the type of stencil this generates around a
corner of the cubed sphere is shown in Fig. 2.

For example, with a quadratic reconstruction n= 2 there
are nm = 6 monomials, and the stencil algorithm will gener-
ate a stencil with ns = 9 cells in general and ns = 8 cells near
the corners of the cubed sphere. As in Thuburn et al. (2014)
the central cell (k = 1) in the stencil is fitted exactly (r1 = 0
in Eq. 19), and the others are fitted in a least squares sense.

The local Cartesian coordinates (x,y) are computed as in
Thuburn et al. (2014), the origin of the coordinate system x0
is taken to be the centre of the cell in the centre of the sten-
cil, and the direction of the x axis is then taken as the direc-
tion from x0 to an arbitrary neighbour. Then it is straightfor-
ward to reconstruct any point xi ≡ (Xi,Yi,Zi) in the stencil
in terms of the local coordinates (xi,yi); see Thuburn et al.
(2014) for more details.

4.2 Flux computation

Once the scalar field s has been reconstructed at the locations
of the V1 degrees of freedom to give š, the flux of that field
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Figure 2. Stencil for a quadratic reconstruction of a field around the
corner of a cubed sphere. Numbers indicate at which iteration of
the stencil generation the cell is added, lightly shaded cells indicate
cells used for the reconstruction that are fitted in a least squares
manner, and the darkly shaded cell indicates the central cell which
is fitted exactly.

on a cell face is obtained by multiplying the reconstructed
scalar by the normal component of the velocity field at that
point:

F̂ = ûš, (20)

where š is the vector containing all š at cell edges.

4.3 Predictors

The temporal discretisation is designed to mimic a semi-
implicit semi-Lagrangian discretisation such as that used in
Wood et al. (2014). For the transport scheme this includes
advecting predictors (8p,qp) for the geopotential and po-
tential vorticity fields instead of the values at the start of the
time step (8n,qn). This is motivated by considering a semi-
Lagrangian discretisation of a prototypical equation

Ds
Dt
+G(s)= 0, (21)

with D/Dt ≡ ∂/∂t +u · ∇. Discretising across a trajectory
from xD at time level n to xA at time level n+ 1 gives

[s+α1tG(s)]n+1
A = [s− (1−α)1tG(s)]nD, (22)

with subscripts “A” and “D” denoting evaluation at arrival xA
and departure xD points respectively. Evaluation of a function
F at a departure point can be expressed as

F nD = F
n
A−Asl

(
F n,u1/2

)
, (23)

where Asl is the operation of the semi-Lagrangian advection
operator. Applying this approximation to Eq. (21) gives

[s+α1tG(s)]n+1
= sp −Asl

[
sp,u1/2

]
, (24)

sp ≡ [s− (1−α)1tG(s)]n, (25)

where the subscript “A” has been dropped for convenience.
Applying this idea to Eq. (2), the geopotential predictor to be
advected is then

8p ≡ [8− (1−α)1t8∇ ·u]n. (26)

This can also be applied to potential vorticity using Eq. (4).
These predictors come from considering the continuity and
PV equations in advective form Ds/Dt + s∇ ·u= 0, where
s =8 or q8, as would be used in a semi-Lagrangian model.

5 Solution procedure

The procedure for the solution of the shallow-water equa-
tions is as follows. The semi-implicit governing equations,
Eqs. (5) and (6), are repeated here for clarity:

δtu+F⊥
(
qn8n,u1/2

)
+∇(K +8+8s)

α
= 0, (27)

δt8+∇ ·F
(
8n,u1/2

)
= 0. (28)

An iterated implicit scheme is used to solve Eqs. (27) and
(28). At each stage (k) of the iterative scheme, the time-level
n+1 terms are lagged and included in the residuals such that

Ru ≡ (u+α1t∇(K +8+8s))
(k)

− (u− [1−α]1t∇(K +8+8s))
n

+1tF⊥
(
(q8)p,u1/2

)
, (29)

R8 ≡8
(k)
−8n+1t∇ ·F

(
8p,u1/2

)
, (30)

where k is the estimate for the n+ 1 terms after k iterations
of the iterative scheme. Increments u′ ≡ u(k+1)−u(k) and
8′ ≡8(k+1)−8(k) to Eqs. (29)–(30) are sought such that
the fast-wave terms are handled implicitly:

u′+ τf (u′)⊥+ τ1t∇8′ =−Ru, (31)
8′+ τ1t∇ ·

(
8∗u′

)
=−Rφ, (32)

where 8∗ is a reference state used to obtain the lineari-
sation and τ is a relaxation parameter (usually chosen to
be τ = 1/2). In practice, we use 8∗ =8n as the reference
state. Applying the mixed finite-element discretisation, this
becomes the system(

M1+ τ1tC −τ1tD(1·)T
τ1tD(8∗·) M2

)(
u′

8′

)
=−

(
Ru

R8

)
,

(33)
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where Ru and R8 are the finite-element discretisations of
Eqs. (29) and (30) respectively given by Eqs. (11) and (12).
The matrices are defined as

Mi,j

1 ≡

∫
D

Jŵi ·
J

detJ
ŵjdÂ, (34)

Mi,j

2 ≡

∫
D

σ̂i σ̂jdetJdÂ, (35)

Ci,j ≡f
∫
D

Jŵi ·
J

detJ
ŵ⊥j dÂ, (36)

D(ψ)i,j ≡
∫
D

∇̂ · ŵiψσjdÂ. (37)

At each iteration (k) the system (33) is solved using an it-
erative Krylov subspace method (in this case the generalised
minimal residual method – GMRES). For the tests presented
in this paper (see Sect. 7), GMRES generally converged in
two to three iterations to a tolerance of 10−4.

6 Mesh

An equiangular cubed sphere mesh is used to grid the sphere.
We use the notation Cn to describe a cubed sphere with n×n
cells per panel. The mesh is parameterised using a finite-
element representation of the sphere within a cell with poly-
nomials of order m. Note therefore that a point within a cell
does not necessarily lie on the sphere, with the error depend-
ing on the order of the elements used. For example, a lin-
ear element lies on the sphere at the vertices of the element
and uses a linear approximation to the surface of the sphere
within the element. Representing the sphere with these ele-
ments removes the need for analytical transforms to the refer-
ence grid, allowing the use of an arbitrary grid if required (in
this paper we use the standard equiangular cubed sphere). To
compute the error of the mesh parameterisation, the geocen-
tric coordinates (X,Y,Z) at a point in the cell are computed
using the finite-element representation. The error is the dif-
ference between the true radius of the sphere and the radius
using (X2

+Y 2
+Z2)1/2.

Figure 3 shows the error within a cell when using linear
and quadratic elements on a C96 grid with the Earth’s ra-
dius. The error for the linear element is largest at the cell
centre, with a maximum error of 426.39 m. The quadratic
element reduces the error by 5 orders of magnitude, with a
maximum error of 0.0018 m. Figure 3c shows the conver-
gence of the maximum error within a cell. The linear element
error converges at second order, with the quadratic element
converging at fourth order. For this reason the quadratic ele-
ment is used to create the mesh for the shallow-water model.
Note that the quadratic element is for the representation of
the mesh, whereas the lowest-order finite elements are used
for the spatial discretisation of the model.

Table 1. The normalised `2 and `∞ geopotential error norms for
the Williamson 2 test (top) and the normalised `2 and absolute `∞
geopotential error norms for the Williamson 5 test (bottom) at dif-
ferent resolutions after 15 d.

C24 C48 C96

ˆ̀2(8) 4.86× 10−4 1.04× 10−4 2.22× 10−4

ˆ̀
∞(8) 6.19× 10−4 1.40× 10−4 3.17× 10−5

`2(8) 4.21× 10−3 7.83× 10−4 5.43× 10−4

`∞(8) 1009.8 183.3 109.2

7 Numerical results

This section shows the results of the model runs using a stan-
dard set of spherical shallow-water test cases. The full initial
conditions for each of the tests are given in the references
under each test case.

7.1 Williamson 2: steady state

The first test case is the steady-state test described in
Williamson et al. (1992). The steady flow means that the ini-
tial conditions are the analytical solution at any time, and
thus error norms can be calculated for the runs at different
resolutions.

The normalised `2 error norms of the geopotential field at
15 d are given in the top two rows of Table 1 for the C24
(1t = 3600), C48 (1t = 1800), and C96 (1t = 900) resolu-
tions. The error norms can be used to determine the conver-
gence rate and hence the empirical order of accuracy of the
model. The convergence rates of the `2 and `∞ error norms
are approximately second order. This is expected as the
finite-element discretisation and the time-stepping scheme
are both second-order methods. The error fields after 15 d
for the C96 resolution are shown in Fig. 4: these errors show
a wave number 4 pattern coming from the underlying cubed
sphere mesh; however, the errors are large scale and are not
particularly clustered around the edges and corners of the
cubed sphere, indicating an acceptable level of grid imprint-
ing.

7.2 Williamson 5: mountain test

The mountain test case of Williamson et al. (1992) is used
to show the performance of the model when orography is
present (i.e. 8s 6= 0). The initial zonal flow is over a moun-
tain centred at 90◦ longitude and 30◦ latitude. The same grid
resolutions and time steps used for the Williamson 2 test are
used for the mountain test.

The geopotential at day 15, shown in Fig. 5a for the C96
grid, is comparable to other shallow-water models at simi-
lar resolutions (see for example Thuburn et al., 2010, 2014;
Ullrich, 2014). We investigate the errors in the total geopo-
tential by comparing them with a high-resolution solution
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Figure 3. The error from linear and quadratic finite-element representations of the sphere within a cell. The left and centre plots show the
absolute error (true – FE) for the linear and quadratic basis functions respectively on the C96 cubed sphere grid. The right plot shows the
convergence of the `inf error, using C24, C48, C96 and C192 cubed sphere grids.

Figure 4. Errors after 15 d for the Williamson 2 test at C96 resolution for geopotential (a) and zonal wind (b) showing the large-scale nature
of the error.

generated using the semi-implicit semi-Lagrangian (SISL)
shallow-water model of Zerroukat et al. (2009). This ref-
erence solution uses a time step of 1t = 60 s and a high-
resolution latitude–longitude grid of 1536× 768 points. The
high-resolution solution is then interpolated, using bi-cubic
interpolation, to the corresponding cubed sphere grid where
the difference is taken to produce the error plots and diagnos-
tics.

The error plots for the total geopotential are shown in
Fig. 6 for the C24 and C48 resolutions. The error for the
C48 solution is visually similar to that of the finite-element
cubed sphere model of Thuburn and Cotter (2015) (their
Fig. 7), with a large negative error near the mountain and
the wave train error in the Southern Hemisphere. The errors
decrease significantly as the resolution increases. The nor-
malised `2 and absolute `∞ error norms, calculated from the
high-resolution SISL model, are given in the bottom of Ta-
ble 1.

The C48 maximum errors (given in Fig. 6 and in Table 1)
are smaller in magnitude than those for the 13 824-cell finite-
volume cubed sphere model of Thuburn et al. (2014) and
have a similar magnitude to the SISL model (Zerroukat et al.,

2009) at 160× 80 resolution (note that Thuburn et al., 2014,
use total height, not total geopotential, in their results, and so
their results need to be multiplied by gravity to give an equiv-
alent value). The absolute `∞ error norm values converge at
a rate of 1.6, similarly to those given in Thuburn et al. (2014)
(note that they use a smaller time step than presented in our
results).

The normalised `2 errors of the geopotential, given in the
bottom of Table 1, have a convergence rate of 2.42 between
C24 and C48. However, at higher resolution the error conver-
gence stalls, similarly to that found in Thuburn et al. (2014)
for comparable time steps, with a rate of only 0.53 between
C48 and C96. Even with this stalling, the total rate between
C24 and C96 is 1.48.

To demonstrate the conservation properties of the model,
the mass, total energy and potential enstrophy are computed
at each time step. The total energy is defined as

E =

∫
D

1
2
h
(
|u|2+8+ 28s

)
dA, (38)
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Figure 5. Results for the Williamson mountain test on the C96 grid. Panel (a) shows the total geopotential (8+8s) after 15 d. Panel (b) shows
the potential vorticity (q) after 50 d.

Figure 6. Absolute error plots for total geopotential (8+8s) for the Williamson mountain test on the C24 grid (a) and the C48 grid (b) after
15 d. Note the different scales on the colour bars.

and the potential enstrophy is defined as

Z =

∫
D

1
2
8q2dA, (39)

where the integrals are over the whole domain.
Mass, energy, and potential enstrophy are conserved in

the continuous equations. As the model uses a finite-volume
transport scheme, the mass is conserved to machine preci-
sion; however, energy and potential enstrophy are not con-
served by the discretisation presented here, and in fact, in the
discrete case, potential enstrophy cascades downscale from
resolved to unresolved scales and thus is expected to decrease
with time.

The normalised total energy and potential enstrophy are
plotted against time in Fig. 7 for different grid resolutions
(C24, C48, and C96) up to day 50. As the resolution in-
creases, the dissipation in the model decreases, and the total
energy and potential enstrophy curves are closer to conser-
vation (a horizontal line). The flow is initially weakly non-
linear, and so for the first 15 d there are no significant cas-
cades to unresolved scales. After 15 d the percentage loss
in total energy is 0.0355% for C24, 0.0062% for C48, and

0.001% for C96. For potential enstrophy the percentage loss
is 0.3648% for C24, 0.076% for C48, and 0.014% for C96.
Extending to 50 d, the flow becomes more non-linear, and
this results in more dissipation of energy and potential en-
strophy. The percentage losses are 0.221% for C24, 0.063%
for C48, and 0.014% for C96 in the total energy and 3.33%
for C24, 2.19% for C48, and 1.45% for C96 in the potential
enstrophy.

The potential vorticity at day 50 is shown in Fig. 5b for the
C96 resolution. As the flow has become non-linear, the po-
tential vorticity contours start to wrap up. The model captures
the potential vorticity filaments without producing noise. The
results for this test indicate that the model is correctly simu-
lating flow over orography.

7.3 Galewsky instability test

For the Galewsky instability test (Galewsky et al., 2004), a
perturbation is added to a balanced jet to create a barotropic
instability. As the instability progresses, many small-scale
potential vorticity filaments are produced.

The potential vorticity solutions at day 6 are shown in
Fig. 8 for the C48, C96, C192, and C384 resolution runs
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Figure 7. The normalised total energy (a) and potential enstrophy (b) against time for the Williamson mountain test.

Figure 8. The potential vorticity q after 6 d for the Galewsky instability test. Panel (a) shows the C48 solution, panel (b) shows the C96
solution, panel (c) shows the C192 solution, and panel (d) shows the C384 solution.

(with 1t = 900, 450, 225, and 112.5 s respectively). At C48
resolution the grid imprinting from the cubed sphere is evi-
dent. A wave number 4 pattern appears on the jet, dominat-
ing the development of the instability. Increasing the resolu-
tion to C96, C192, or C384 reduces the impact of the grid
imprinting; however, the instability has still developed more
than in the reference solution of Galewsky et al. (2004) at
T 341 resolution. This is consistent with the finite-element
cubed sphere model of Thuburn and Cotter (2015), which
uses a similar mixed finite-element discretisation to the one
used here. In Thuburn and Cotter (2015) it is stated that the

grid imprinting may be exaggerated by the highly unstable
initial state of this test.

At the higher resolution many small-scale features are re-
solved by the model without producing grid-scale noise. This
is due to the implicit diffusion from the transport scheme
damping grid-scale features. These solutions are comparable
to the results shown in Thuburn et al. (2014) and Thuburn
and Cotter (2015).
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Figure 9. The potential vorticity q for the vortices test case. Panel (a) shows the initial conditions, and panel (b) shows the solution after 15 d
from a high-resolution C192 simulation.

Figure 10. The potential vorticity q for the vortices test case after 15 d for the C24 resolution (a) and the C96 resolution (b).

7.4 Vortices test

The final test case is the field of vortices test from Kent et al.
(2016). A field of vortices (shown by the potential vorticity
in Fig. 9a) is set to evolve over a number of days. The vor-
tices interact, leading to small-scale vorticity filaments and
fingers as the vortices are stretched out as well as the merger
of vortices. A high-resolution run (using C192 resolution,
with potential vorticity shown after 15 d in Fig. 9b) is used
as a reference solution.

Figure 10 shows the day 15 potential vorticity for the C24
and C96 runs (with 1t = 1800 and 450 s respectively). The
C24 run is unable to resolve many of the features of the vor-
tices, but the implicit diffusion from the transport scheme
is sufficient to prevent grid-scale noise. For the higher-
resolution C96 run, the small-scale features of the potential
vorticity are well represented, and the solution matches the
reference solution well. This demonstrates the model’s abil-
ity to represent small-scale features without producing grid-
scale noise.

8 Conclusions

This article presents a new shallow-water model on the
sphere. The model is comprised of a mixed finite-element
spatial discretisation, a high-order finite-volume transport
scheme, and an iterated semi-implicit time scheme and
makes use of the cubed sphere grid. The finite-element dis-
cretisation is chosen as it has been shown to be both ac-
curate and scalable on many processors (Cotter and Ship-
ton, 2012). The lowest-order finite-element method is used
to give second-order spatial accuracy, and the finite-element
spaces are such that they are analogous to a C-grid stagger-
ing. The semi-implicit time stepping provides stability for
the fast gravity waves along with second-order temporal ac-
curacy. The method-of-lines advection scheme, using third-
order Runge–Kutta time stepping with a quadratic finite-
volume reconstruction, gives high accuracy and conservation
for transport.

The model achieves computational efficiency through the
use of the mixed finite-element method and the cubed sphere
grid. The cubed sphere cells are more uniform in size
than the traditional latitude–longitude grid, and so fewer
cells are required for the same resolution. For example, a
1◦× 1◦-resolution grid requires 360× 180= 64800 cells on
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a latitude–longitude grid but only 48600 cells on a C90
cubed sphere grid (with both grids having 360 cells around
the Equator). The cubed sphere grid also removes the pole
problem of the latitude–longitude grid and thus is more
scalable on massively parallel architecture (Staniforth and
Thuburn, 2012).

The model has been tested on a standard set of shallow-
water test cases. The Williamson steady-state test shows that
the model converges at second-order accuracy. The moun-
tain test demonstrates the model’s ability to capture flow over
orography. Grid imprinting from the Galewsky instability
test is evident at coarse spatial resolutions but is significantly
reduced at higher resolutions, in line with results from other
models with similar discretisations and cubed sphere meshes.
The vortex field test highlights that the model can resolve
small-scale features without producing grid-scale noise. The
results presented from this testing are comparable to other
models in the literature. This indicates that this model has a
similar level of accuracy to these other well-known shallow-
water models.

This shallow-water model has been developed alongside
the mixed finite-element Cartesian model for atmospheric
dynamics of Melvin et al. (2019). The vector-invariant model
presented here is a building block towards a mixed finite-
element spherical geometry dynamical core for the atmo-
sphere.

Code availability. The shallow-water model code, at LFRic
revision r39707, can be found on Zenodo with DOI
https://doi.org/10.5281/zenodo.7446738 (Kent et al., 2022).
This repository includes the configuration files used for the
tests in this article and instructions for running the model. In
addition, the code at the same revision is also available on GitHub
at https://github.com/thomasmelvin/gungho-swe (last access:
15 February 2023).

Data availability. The data can be accessed by running
the shallow-water model code using the configurations
specified in lfric/miniapps/shallow_water/configurations at
https://doi.org/10.5281/zenodo.7446738 (Kent et al., 2022).
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