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Abstract. The Community Multiscale Air Quality (CMAQ)
model has been a vital tool for air quality research and
management at the United States Environmental Protection
Agency (US EPA) and at government environmental agen-
cies and academic institutions worldwide. The CMAQ model
requires a significant amount of disk space to store and
archive input and output files. For example, an annual sim-
ulation over the contiguous United States (CONUS) with
horizontal grid-cell spacing of 12 km requires 2–3 TB of in-
put data and can produce anywhere from 7–45 TB of out-
put data, depending on modeling configuration and desired
post-processing of the output (e.g., for evaluations or graph-
ics). After a simulation is complete, model data are archived
for several years, or even decades, to ensure the replicabil-
ity of conducted research. As a result, careful disk space
management is essential to optimize resources and ensure
the uninterrupted progress of ongoing research and appli-
cations requiring large-scale, air quality modeling. Proper
disk-space management may include applying optimal data-
compression techniques that are executed on input and output
files for all CMAQ simulations. There are several (not limited
to) such utilities that compress files using lossless compres-
sion, such as GNU Gzip (gzip) and Basic Leucine Zipper
Domain (bzip2). A new approach is proposed in this study
that reduces the precision of the emission input for air qual-
ity modeling to reduce storage requirements (after a lossless
compression utility is applied) and accelerate runtime. The
new approach is tested using CMAQ simulations and post-

processed CMAQ output to examine the impact on the per-
formance of the air quality model. In total, four simulations
were conducted, and nine cases were post-processed from
direct simulation output to determine disk-space efficiency,
runtime efficiency, and model (predictive) accuracy. Three
simulations were run with emission input containing only
five, four, or three significant digits. To enhance the analy-
sis of disk-space efficiency, the output from the altered pre-
cision emission CMAQ simulations were additionally post-
processed to contain five, four, or three significant digits. The
fourth, and final, simulation was run using the full precision
emission files with no alteration. Thus, in total, 13 gridded
products (4 simulations and 9 altered precision output cases)
were analyzed in this study.

Results demonstrate that the altered precision emission
files reduced the disk-space footprint by 6 %, 25 %, and 48 %
compared to the unaltered emission files when using the
bzip2 compression utility for files containing five, four, or
three significant digits, respectively. Similarly, the altered
output files reduced the required disk space by 19 %, 47 %,
and 69 % compared to the unaltered CMAQ output files when
using the bzip2 compression utility for files containing five,
four, or three significant digits, respectively. For both com-
pressed datasets, bzip2 performed better than gzip, in terms
of compression size, by 5 %–27 % for emission data and
15 %–28 % for CMAQ output for files containing five, four,
or three significant digits. Additionally, CMAQ runtime was
reduced by 2 %–7 % for simulations using emission files with
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reduced precision data in a non-dedicated environment. Fi-
nally, the model-estimated pollutant concentrations from the
four simulations were compared to observed data from the
US EPA Air Quality System (AQS) and the Ammonia Moni-
toring Network (AMoN). Model performance statistics were
impacted negligibly. In summary, by reducing the precision
of CMAQ emission data to five, four, or three significant dig-
its, the simulation runtime in a non-dedicated environment
was slightly reduced, disk-space usage was substantially re-
duced, and model accuracy remained relatively unchanged
compared to the base CMAQ simulation, which suggests
that the precision of the emission data could be reduced to
more efficiently use computing resources while minimizing
the impact on CMAQ simulations.

1 Introduction

The Community Multiscale Air Quality (CMAQ) model
(Byun and Schere, 2006) is a sophisticated, 3D Eulerian
(gridded) numerical modeling system based on message
passing interface (MPI) that uses scientific first principles to
simulate the chemical transformation and transport of ozone,
particulate matter, toxic compounds, and acid deposition.
Since the formation and transformation of chemical species
are functions of complex atmospheric and chemical inter-
actions, two primary input types are required to initialize
CMAQ simulations: meteorology and emissions. First, me-
teorological data (such as temperature, wind, cloud forma-
tion, and precipitation rate) provide atmospheric conditions
to drive CMAQ. The second required input field, which is the
focal point of this study, is emission data (i.e., emission rates
from emission sources) that characterize pollutants from both
man-made and naturally occurring sources.

The CMAQ model typically requires multiple emission
datasets which occupy a significant amount of disk space.
Although disk space is becoming progressively cheaper
and more affordable, the research and computational needs
are rapidly increasing and becoming more complex. For
instance, the total sizes of emission and meteorological
datasets are about 7.0 and 6.8 GB, respectively, for a
1 d CMAQ simulation for the contiguous United States
(CONUS) with a horizontal resolution of 12 km. The total
disk-space size for 1 d of output is 20 GB (for a typical output
configuration considering only surface output and neglect-
ing extra diagnostic output). Including 3D fields and diag-
nostic output, however, the total output disk-space size can
easily be tripled. Most studies with CMAQ on this scale cre-
ate at least a full year’s worth of data, so aggressive disk-
space management is justifiable to minimize overall costs as-
sociated with running CMAQ. Aggressive disk-space man-
agement could be a substantial cost-saving measure, regard-
less of whether simulations are conducted on-site (such as
with a high-performance computing architecture or a Linux

cluster) or by using cloud computing, where data retrievals
can quickly elevate costs. Here, we propose optimizing disk
space by compressing CMAQ emission datasets as one prac-
tical consideration to maximize storage capacity. If success-
ful, this option could be extended to other input types with
large disk-space needs, such as meteorological data.

Compression algorithms can be described as either loss-
less or lossy. Lossless compression algorithms reduce disk
space by replacing repeated sequences with a smaller, unique
identifier. Thus, an entire dataset can be retrieved, once un-
compressed, without alteration of the original dataset (hence
the name, lossless). Lossy algorithms, however, in terms of
numeric arrays, reduce disk space by manipulating the man-
tissa of individual floating-point numbers. Typically, trailing,
or insignificant bits, are replaced with a sequence of zeros
or ones. As a result, data are compressed at the cost of nu-
merical inconsistencies between the original dataset and the
compressed dataset.

The concept of maximizing disk space by altering netCDF
datasets has been examined previously by Zender (2016) and
Kouznetsov (2021). Zender (2016) created a versatile toolset
that compresses data based on user specifications that are
applied to the mantissa of floating-point datasets. The first
notable algorithm developed by Zender (2016) is precision
trimming, which is publicly available in the netCDF op-
erators (NCOs, http://nco.sourceforge.net/nco.html, last ac-
cess: 11 April 2022) utility. Precision trimming sets all non-
significant bits to zero (bit shaving) which, based on anal-
ysis, produces an undesirable bias of the compressed data
(Zender, 2016). As a result, Zender (2016) introduced a
Bit Grooming algorithm (default algorithm in the NCO)
that shaves (to zero) and sets (to one) the least significant
bits of consecutive values. Despite the additional toolset,
Kouznetsov (2021) found substantial artifacts, or numeri-
cal inconsistencies, in multipoint statistics caused by Bit
Grooming. Due to the suboptimal results, Kouznetsov (2021)
developed and evaluated multiple lossy compression algo-
rithms with respect to the NCO’s available toolsets from
Zender (2016). Kouznetsov (2021) created a round and half-
shaved lossy compression algorithm which both doubled
compression accuracy by rounding the mantissa to the near-
est value that has zero tail bits and by setting all tail bits to
zero, except for the most significant bit which gets set to one
(Kouznetsov, 2021).

Excluding analyses conducted on datasets via lossy com-
pression algorithms, the authors are unaware of any stud-
ies that have been conducted on the compression efficiency
of floating-point datasets with respect to n significant dig-
its. Additionally, Zender (2016) and Kouznetsov (2021) did
not conduct evaluations regarding the impact of altered preci-
sion datasets on numerical simulations. In this study, the pre-
cision of netCDF datasets will be reduced and compressed
to explore compression efficiency, and the resultant reduced
precision datasets will be used to run CMAQ simulations to
quantify the impacts on runtime and on model accuracy as a
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result of dataset manipulation via a lossy compression algo-
rithm. This study proceeds as follows: in Sect. 2, a descrip-
tion of the methodology will be provided, followed by results
in Sect. 3 and then the conclusions in Sect. 4.

2 Methodology

All input and output files in this study are 32-bit, binary,
netCDF files which inherently contain seven or eight signifi-
cant digits at most. To perform this study, we created a sim-
ple tool written in Fortran to truncate floating-point data in
netCDF files by keeping n significant digits which are nor-
malized in scientific notation. Table 1 shows several exam-
ples of this numerical manipulation. We applied this tool to
alter the precision of two different datasets (input emission
and CMAQ model output) by keeping n significant digits.

For this study, CMAQ v5.3.1 (USEPA, 2019; Appel et al.,
2021) was run with 459 columns, 299 rows, and 35 verti-
cal layers with a horizontal grid-scale resolution of 12 km
(Fig. 1a). Emission input files consist of two area sources
and nine point sources (hourly). The area-source emission
files contain 57 and 62 variables, and the point-source files
contain anywhere from 54 to 58 variables (containing one
vertical layer). Ten CMAQ output files (nine of them are
hourly) were generated in this study: three output files
were generated for simulation-restart purposes (SOILOUT,
CGRID which contains only 1 h data, and MEDIA), two files
contained average (APMDIAG and ACONC) and hourly
(CONC) species concentrations, three files held wet deposi-
tion (WETDEP1; 140 variables), dry deposition (DRYDEP;
174 variables), and deposition velocity (DEPV; 104 vari-
ables) output, and lastly, the final file contained biogenic
emission diagnostic output (B3GTS).

In total, we conducted four annual CMAQ simulations for
2016: one with unaltered emission data (simulation orig) and
three with altered precision emission data by setting n to five
(A05), four (A04), and three (A03) for all emission input files
(gridded_no_rwc, gridded_rwc, ptnonipm, ptegu, ptagfire,
ptfire, ptfire_othna, pt_oilgas, cmv_c3_12, cmv_c1c2_12,
and othpt) utilized by CMAQ for this study. On the out-
put side, direct CMAQ outputs (ACONC, APMDIAG, DRY-
DEP, and WETDEP1) from the A05, A04, and A03 (in which
A0n signifies an altered simulation which utilized altered
precision emission data to n significant digits) simulations
were similarly altered to possess five, four, or three signifi-
cant digits (denoted as FX05, FX04, and FX03, respectively,
in which FX0n signifies an altered precision case which
was post-processed by an A0n simulation’s CMAQ output).
Emission input and CMAQ output data were then com-
pressed separately by gzip (GNU Gzip, https://www.gnu.org/
software/gzip, last access: 11 April 2022) and bzip2 (https:
//www.sourceware.org/bzip2, last access: 11 April 2022) for
all simulations and cases to determine compression effi-
ciency in terms of the reduction of disk space. In summary,

there are four separate simulations (called orig or abbrevi-
ated as A0n) and nine additional, altered precision output
cases (abbreviated as FX0n). For example, a CMAQ simu-
lation that was run with emission data that were processed
with n equals five significant digits, then post-processed to
possess three significant digits, is denoted as A05FX03 (see
Table 2 for a full list of simulations and cases).

Simulated numerical, or predictive, accuracy was ana-
lyzed against concentrations of particulate matter with diam-
eter less than 2.5 µm (PM2.5), ozone (O3), ammonia (NH3),
the wet-deposition rates of sodium (Na), ammonium (NH4),
chlorine (Cl), nitrate (NO3), sulfate (SO4), and the dry-
deposition rate of O3 for all simulations and cases. PM2.5 and
O3 were evaluated at in situ stations from the dataset of the
United States Environmental Protection Agency’s (US EPA)
Air Quality System (AQS; Fig. 1b). Ammonia (NH3) was
evaluated at in situ stations utilizing observations from the
Ammonia Monitoring Network (AMON; Fig. 1c). Hourly
observations of O3 were processed to calculate the maxi-
mum 8 h daily average concentrations (MDA8) and paired
in space and time with calculated MDA8 O3 from post-
processed CMAQ output. Likewise, daily averaged PM2.5
observations and 2-week-averaged NH3 observations were
used to evaluate CMAQ. Observed values are paired with
the volume-averaged pollutant estimate from CMAQ’s sur-
face layer’s grid cell containing the air quality monitoring
site (i.e., nearest neighbor). Statistical metrics were also cal-
culated by pairing gridded values from the orig simulation
(considered observed values) and the altered precision sim-
ulations and cases (considered the predicted values). Tabu-
lated statistical metrics for grid–grid pairing was computed
by taking the mean of hourly, statistical metrics.

Typical statistical metrics including mean bias (MB), cor-
relation coefficient (r), root mean square error (RMSE), and
normalized mean bias (NMB) are used to evaluate all chem-
ical species in this analysis at different temporal intervals
and for different pairing methodologies (either grid–point or
grid–grid) which includes regional stratification (based on re-
gions from Fig. 1a) for several figures. The utilized statistical
metrics are denoted below in Eq. (1) through Eq. (4):
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Table 1. Examples of precision-reducing transformations of floating points from their original forms (first column) to their altered precision
forms (second to fourth column).

Original (orig) Altered 5 (A05) Altered 4 (A04) Altered 3 (A03)

0.005666635 0.0056666 0.005667 0.00567
3.437405× 10−6 3.4374× 10−6 3.437× 10−6 3.44× 10−6

0.0005319762 0.00053198 0.000532 0.000532
3.437× 10−6 3.437× 10−6 3.437× 10−6 3.44× 10−6

100 150.0 100 150.0 100 200.0 100 000.0

Figure 1. Regions for spatial and temporal stratification (a), AQS stations (b), and AMON stations (c) for the proceeding evaluation.
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where N is the total number of observed and predicted pairs,
X is the observed value, Y is predicted value, σ is the sam-
ple standard deviation of a distribution, and the overbars in
Eq. (2) refer to the sample mean of a distribution. Although

many compression toolsets exist and optimization is depen-
dent on multiple factors (Kryukov et al., 2020), gzip and
bzip2 are the most public, reliable, and widely used com-
pressors. Both utilities are lossless compression algorithms
which are available for Linux users. In terms of functionality,
gzip uses a compression algorithm called Deflate (Deutsch,
1996) which reduces sequences of datasets by incorporat-
ing a combination of LZ77 dictionary coding (Ziv and Lem-
pel, 1977) and Huffman entropy coding (Huffman, 1952). In
comparison, bzip2 uses the Burrows–Wheeler (Burrows and
Wheeler, 1994) algorithm which sorts all possible rotations
of an input lexically and forms an output by concatenating
the last character from the sorted list. In terms of compres-
sion ratio, bzip2 is notably better than gzip, however, with
respect to compression speed, gzip is significantly faster than
bzip2. Due to their availability and efficiency, both gzip and
bzip2 are utilized in this study (default settings).
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Table 2. Setup of all simulations (orig, A05, A04, and A03) and cases analyzed in this study.

Unaltered emission data Altered precision emission data

(a) Simulation: orig (b) Simulation: A05 (c) Simulation: A04 (d) Simulation: A03

Altered precision CMAQ output

(e) Case: A05FX05 (h) Case: A04FX05 (k) Case: A03FX05
(f) Case: A05FX04 (i) Case: A04FX04 (l) Case: A03FX04
(g) Case: A05FX03 (j) Case: A04FX03 (m) Case: A03FX03

3 Results

3.1 Data storage

The CMAQ input and output data are stored for future anal-
yses and to ensure the reproducibility of modeling studies
which demands a tremendous amount of disk space for in-
put and output files. Therefore, we propose easing the disk-
space burden by utilizing efficient compression algorithms.
For this section of the analysis, two popular, reliable, and ef-
ficient compression utilities, gzip and bzip2, were utilized to
determine compression efficiency with respect to emission
input (emissions mentioned in Sect. 2.) files and CMAQ out-
put (mentioned in Sect. 2. including CGRID, CONC, and
SOILOUT) files. Both compression utilities were applied
daily to compress emission input and CMAQ output files
throughout the entirety of the 2016 simulation (Fig. 2).

The gzip compression utility reduced the file sizes, on av-
erage by 1 %, 5 %, and 21 %. This translates into about 5,
26, and 111 GB actual difference between the compressed
orig case and the compressed A05, A04, and A03 emission
datasets for the entire year of 2016, respectively. The reduc-
tion in file size (using gzip) was more substantial when ap-
plied to reduced precision CMAQ output, with an average
reduction in file size of 4 %, 19 %, and 67 %. This means
about 167, 839, and 2016 GB actual difference between the
orig case and FX05, FX04, and FX03, respectively for the
entire year. With the bzip2 utility, the reduction in magnitude
is much larger than with gzip, with an average reduction of
file size equal to 6 %, 25 %, and 48 % (actual differences are
about 27, 126, and 241 GB, respectively for A05, A04, and
A03 emission files and 19 %, 47 %, and 69 % (actual differ-
ences are about 856, 2142, and 3115 GB, respectively) for the
compressed CMAQ output. Thus, bzip2 is found to be a more
effective tool than gzip by roughly 5 %, 20 %, and 27 % for
emission data and 15 %, 28 % and 23 % for CMAQ output,
for reduced precision by keeping 5, 4, and 3 significant digits
(reduced precision emissions and reduced precision output
data), respectively.

3.2 Runtime

We examined daily runtime (captured by an MPI function
called MPI_WTIME) for CMAQ using emission data pre-

Figure 2. Relative compression size of two utilities, gzip (solid line)
and bzip2 (dotted line), on daily emission files (labeled as Emiss.)
and direct CMAQ output (labeled as CMAQ) for 2016 with reduced
precision settings: 5, 4, and 3 (labeled as Altered 05, Altered 04,
and Altered 03, respectively). Negative values indicate better com-
pression efficiency.

pared with truncations of A05, A04, and A03 compared with
running CMAQ with unaltered (orig) emission data (Fig. 3).
Even though the simulations were not performed in a dedi-
cated environment (results are not entirely consistent due to
the allocation of resources when the simulations were initial-
ized), the daily runtimes for A05, A04, and A03 were lower
than the runtime of the orig simulation in most of the days.
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Figure 3. Relative daily runtime with respect to different adjusted
emission input for the A03, A04, and A05 simulations for 2016.

The total runtimes for the A05, A04, and A03 simulations
were 3.13, 2.94, and 12.84 h faster than the orig case (2 %,
2 %, and 7 %, respectively of the relative reduction of run-
time). There are two possible explanations for such behavior:
first, during the execution of each case, CMAQ competed for
I/O resources with other tasks on the system. As a result, an
I/O bottleneck could explain spikes in relative runtime on
certain simulation days (Fig. 3). Second, a change in emis-
sion input (due to the reduced precision emission data) could
alter the pathway for the aerosol dynamics calculation.

3.3 Accuracy

The accuracy of each case is first examined grid-to-point
between modeled output and in situ observations (Fig. 1;
AQS and AMON) for all available model–measurement
pairs throughout 2016. In general, to gauge the accuracy of
CMAQ, bulk statistical metrics of bias, NMB, r , and RMSE
have been provided in Table 3 for the orig simulation. To
compare bulk statistical metrics to the orig simulation, the
absolute difference in bias, RMSE, minima (minimum differ-
ence between all model and observation pairs), and maxima

was calculated with respect to the altered simulations and
cases for daily PM2.5, MDA8 O3, and 2-week-averaged NH3.
Overall, negligible differences are apparent (Fig. 4). For ex-
ample, the maximum absolute, bulk statistical difference be-
tween the orig simulation and the altered cases and sim-
ulations for daily PM2.5, MDA8 O3, and 2-week-averaged
NH3 did not exceed 1.4×10−4, 3.6×10−5, 1.1×10−1, and
5.3×10−3 µg m−3 or ppb for bias, RMSE, minima, and max-
ima, respectively. Therefore, differences in terms of max-
imum absolute, bulk statistical differences are quite small
amongst the unaltered simulation (orig) and the altered sim-
ulations and cases.

Bulk statistical results with respect to in situ observations
and compared to the orig simulation (Fig. 4) are encouraging;
differences are small, ignoring regional or temporal stratifi-
cation. To determine if statistical results fluctuate spatially
(by region) and or temporally (by season), RMSE was com-
puted for nine different subregions (regions are portrayed
in Fig. 1) across the United States for four seasons (win-
ter, spring, summer, and fall) from the mentioned observation
and model pairs. Each region’s RMSE was stacked together,
by simulation and case, and plotted as “accumulated RMSE”
by species. Likewise, results are negligible for daily PM2.5,
MDA8 O3, and 2-week-averaged NH3, respectively (Fig. 5)
for all regional and temporal stratifications and for all simu-
lations and cases.

Results indicate that all simulations and cases have negli-
gible differences in terms of bulk statistical metrics across the
United States and considering regional and temporal stratifi-
cations. Statistical results conducted on in situ observations
were redone (methodologically) at the grid level for hourly
PM2.5, O3 and NH3, using the orig simulation (as the ob-
served field) with respect to the altered precision simulations
and cases (predicted fields). The RMSE was first calculated
for all hourly grid–grid pairs for PM2.5, O3, and NH3. Only
cells that are within each region (Fig. 1a), within the contigu-
ous US, were used to calculate hourly RMSE for all available
regional pairs. Next, the average, hourly RMSE was calcu-
lated for each season and region based on spatial and tempo-
ral masking using the regions portrayed in Fig. 1a. All strati-
fications were grouped together as accumulative, stacked bar
plots for different seasons by simulation or case. Although
differences are evident (Fig. 6), the scale of such differences
is quite small. For example, the total accumulative RMSE for
PM2.5, O3, and NH3 (sum of all region’s RMSE) did not ex-
ceed 0.04 µg m−3, 0.3 ppbV, and 0.05 ppbV, respectively for
all cases and for all seasons.

Additionally, the maximum absolute bias for all grid cells
was determined spatially between the orig simulation and the
altered simulations and cases throughout 2016 for PM2.5, O3,
and NH3 from gridded, hourly (CMAQ) output. For PM2.5,
all simulations and cases performed similarly, in which no
visual differences are apparent (Fig. 7). For O3 (Fig. 8) and
NH3 (Fig. 9), however, the differences become relatively
large for cases n= 3. In fact, for both species, spatial and
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Table 3. Annual bulk statistical metrics for all grid–point pairs for the unaltered simulation (orig) binned by species (row) and statistic
(column).

Case Bias NMB (%) r RMSE

PM2.5 (µg m−3) −0.02828948 −0.37369379 0.53041275 5.01579136
MAD8 O3 (ppb) −1.70888518 −4.07590175 0.76393761 7.93497772
NH3 (µg m−3) −0.42796669 −35.05920328 0.51400293 1.28576807

Figure 4. Absolute differences in bulk statistical metrics for daily
PM2.5, MDA8 O3, and 2-week-averaged NH3 between the orig
simulation and the altered simulations and cases. Bulk statistical
metrics were calculated for all model–observation pairs at in situ
stations.

magnitude error visibly increase with fewer significant digits
(simulations and cases). For example, the maximum abso-
lute bias is largest for the A03 simulations and even worse
for the FX03 altered precision cases, ignoring the artifact of
error across the Northeastern United States for O3 for the
A05 simulations and cases (induced by the A05 simulation).
The maximum absolute bias ranges, found by taking the
range of all altered precision cases, for PM2.5, O3, and NH3
are 46.77 µg m−3, 0.4265 ppbV, and 18.78 ppbV, respectively
(Table 4). The minimum absolute bias ranges for PM2.5, O3,
and NH3 are 5.573 µg m−3, 0.5091 ppbV, 9.778 ppbV (Ta-
ble 4), respectively. Based on range, error can potentially be
quite large compared to the statistics provided in Fig. 6, how-
ever, large-scale error is not persistent based on the small
accumulated RMSE for all regions grouped by CMAQ sim-
ulation and case (Fig. 6). For example, for PM2.5, the maxi-
mum positive bias was (roughly) between 41 and 51 µg m−3

for the FX03 cases (Table 4). Upon further investigation, this
relatively significant error occurred at one grid cell because
of an anomalous wildfire (Pioneer wildfire in Idaho from
July to September of 2016). Prior to the onset of the Pio-
neer wildfire and after the wildfire was extinguished, PM2.5
returned to normal levels with respect to the orig simulation
for FX03 cases. Regardless, total accumulated values did not
exceed 0.04 µg m−3, 0.3 ppbV, and 0.05 ppbV for PM2.5, O3,
and NH3 respectively. Since errors associated with Figs. 7–9
are predominately small (maximum absolute bias), relatively
large error (similar to the discrepancies in bias for PM2.5
for the FX03 cases) is associated with brief spikes of certain
species within and around source regions.

The final aspect of this evaluation explores differences
of important deposition rates using bar plots which depict
the sum of hourly absolute differences (for all cells across
the domain) between the orig simulation and the altered
simulations and cases. Bar plots were created for the wet-
deposition rates of sodium (Na), ammonium (NH4), chlo-
rine (Cl), nitrate (NO3), sulfate (SO4), and the dry-deposition
rate of O3 for all altered precision simulations and cases.
For all deposition rates, all 3 cases, A05FX03, A04FX03,
and A03FX03, performed equally poor, relatively speak-
ing, with respect to the orig simulation. The A05FX04,
A04FX04, and A03FX04 cases performed nearly identically
to the A05FX05, A04FX05, and A03FX05 cases for all de-
position rates, excluding the wet-deposition rate of sodium
and sulfate and the dry-deposition rate of ozone. The altered
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Figure 5. Stacked bar plots of RMSE (y axis) stratified by region (color), simulation and case (x axis), and season (subplot) for daily PM2.5,
MDA8 O3, and 2-week-averaged NH3 calculated from in situ observation.

Table 4. Maximum and minimum biases (altered – orig) calculated from hourly CMAQ output for all simulations and cases with respect to
the orig simulation across all grid cells.

Case PM2.5 (µg m−3) Ozone (ppbV) Ammonia (ppbV)

Max. Min. Max. Min. Max. Min.

A05FX05 4.40819836 −4.69252777 0.260878 −0.08337 0.893507 −0.61453
A05FX04 4.40777397 −4.69240379 0.263882 −0.08437 0.893806 −4.01074
A05FX03 51.17382812 −9.62011719 0.499962 −0.50085 19.64355 −4.86621
A05 4.40821075 −4.69258881 0.260483 −0.08343 0.893517 −0.61455
A04FX05 4.99303246 −4.70221233 0.136284 −0.16548 0.875244 −1.14815
A04FX04 4.99263382 −4.70223236 0.136154 −0.16448 1.275146 −4.01074
A04FX03 51.1640625 −9.51953125 0.503494 −0.50282 19.64355 −5.02832
A04 4.99302673 −4.70224953 0.13604 −0.16512 0.867432 −1.14854
A03FX05 11.09228516 −6.66992188 0.223785 −0.22272 4.146118 −7.44141
A03FX04 11.54589844 −10.265625 0.225784 −0.22272 4.446045 −7.0415
A03FX03 41.18359375 −9.46972656 0.562561 −0.59249 19.64355 −10.3923
A03 11.17675781 −7.01953125 0.224041 −0.22235 4.187866 −7.47461
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Figure 6. Stacked bar plots of changes to RMSE (y axis) stratified by region (color), simulation and case (x axis), and season (subplot) for
hourly PM2.5, O3, and NH3 calculated from grid–grid pairs with respect to the orig simulation.

Figure 7. Maximum absolute bias (versus the orig simulation) for PM2.5 calculated from hourly output for all simulations and cases.
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Figure 8. Maximum absolute bias (versus the orig simulation) for O3 calculated from hourly output for all simulations and cases.

Figure 9. Maximum absolute bias (versus the orig simulation) for NH3 calculated from hourly output for all simulations and cases.

precision 5 cases ( A05FX05, A04FX05, and A03FX05)
and the altered simulations (A05, A04, and A03) performed
nearly identically to the orig simulation for all deposition
rates. Overall, considering that each bar plot in Fig. 10 rep-
resents the sum of all hourly differences across the entire
domain, all species, simulations, and cases performed sim-
ilarly with respect to the orig case, and hence, amongst each
other. For comparison purposes, the annual sum, considering
all grid cells within the contiguous United States, for the wet-
deposition rates of sodium, ammonium, chlorine, nitrate, and
sulfate are 1.42× 105, 6.69× 104, 21.75× 104, 2.58× 105,
and 1.72× 105 kg ha−1, respectively for the base simulation

(orig). Similarly, the annual sum for the dry-deposition rate
of ozone (contiguous United States) is 2.78×106 kg ha−1 for
the base simulation.

No error accumulation due to the non-systematic changes
in model inputs (changing precision introduces both positive
and negative changes in a spatially and temporally random
manner) can occur over the course of the annual simula-
tion for chemical species of interest such as O3 and PM2.5.
Their lifetimes are much shorter than a year, i.e., their simu-
lated budgets within the continental-scale modeling domain
are repeatedly exchanged through transport, emissions, and
chemical and physical sinks. All simulations (orig, A05,
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Figure 10. Total absolute bias difference between the orig simula-
tion and the altered cases and simulations by deposition rate (row)
throughout 2016 utilizing hourly output.

A04, and A03) are numerically stable (no compounding error
over time).

4 Conclusions

We have demonstrated that altering data by keeping a speci-
fied number of significant digits in terms of emission input
and/or simulated output, increased compression efficiency
based on two different, popular compression utilities (gzip
and bzip2). For emission data, bzip2 performed far better
than gzip and provided compression reduction, on average,
by 6 %, 25 %, and 48 %, and 19 %, 47 %, and 69 % for out-
put data for the A05, A04, and A03 cases, respectively, com-
pared to the orig case. In terms of daily simulation runtime
for the entire simulation year, the A05, A04, and A03 simu-
lations were faster than the orig simulation in an undedicated
HPC system for most simulation days.

As for accuracy, results for all studied simulations, either
with altered precision emission only, or with altered preci-
sion emission plus altered precision output, produced nu-
merically insignificant differences. For example, the maxi-
mum absolute, bulk statistical difference between the orig
simulation and the altered cases and simulations for daily
PM2.5, MDA8 O3, and 2-week-averaged NH3 did not exceed
1.4× 10−4, 3.6× 10−5, 1.1× 10−1, and 5.3× 10−3 µg m−3

or ppb for bias, RMSE, minima, and maxima, respectively.
Similarly, a small range in values is replicated for all other
bulk statistical metrics such as MB, r , and RMSE. Results
stratified by region and season are similar to those for bulk
statistics. Based on the in situ evaluation, simulation perfor-
mance is very similar amongst all cases, with visible differ-
ences for the A03 simulation and the FX03 cases in which
error is spatially detected in Figs. 7–9.

Statistical inconsistencies arise when comparing grid–grid
values of hourly PM2.5, O3, and NH3 versus the orig simula-
tion. Results indicate that similarities amongst the orig simu-
lation decreases with fewer significant digit simulations and
cases when analyzing the stacked and stratified (region and
season) RMSE bar plot (Fig. 6). More specifically, perfor-
mance with respect to the orig simulation is worse for the
A03 simulation and for the FX03 cases as well. Such discrep-
ancies do not occur consistently based on results provided by
bar plots of statistical metrics of deposition rates (Fig. 10).
Instead, errors appear to be confined to source regions at spe-
cific instances based on the maximum absolute (hourly) error
spatial plots with respect to the orig simulation (Figs. 7–9).

In summary, altering datasets by truncation to retain fewer
significant digits significantly improved data compression
and slightly improved runtime. Based on the thorough, yet
spatially limited, in situ evaluation, this study has shown
this proposed technique did not compromise model accuracy
based on an evaluation of simulations and cases at in situ lo-
cations compared to current air quality thresholds for daily
PM2.5, MDA8 O3, and 2-week-averaged NH3. These results
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show the optimal benefit of altering CMAQ input data by
keeping three significant digits, then subsequently keeping
four significant digits for CMAQ output data. In addition, this
proposed technique could be beneficial for groups that per-
form complex air quality modeling and want to improve disk-
space management while negligibly impacting the accuracy
of the simulations. Based on the success of this study, we pro-
pose testing these techniques on the rest of CMAQ input files
such as initial conditions, boundary conditions, and meteoro-
logical data to determine the viability of these techniques to
more adeptly manage disk space without compromising the
quality of the CMAQ simulations used for research and to
develop air quality management strategies.

Code and data availability. The source code of the tool to al-
ter data by keeping a specific number of significant digits
and a run script which includes usage instructions for this
tool, is available from https://doi.org/10.5281/zenodo.6620983
(Wong, 2022a). CMAQ 5.3.1 is available at https://www.
epa.gov/cmaq/access-cmaq-source-code (last access: 30 Septem-
ber 2021, EPA, 2022). Original, unaltered CMAQ input data for
this study are available at https://doi.org/10.15139/S3/MHNUNE
(CMAS, 2023). Original, unaltered CMAQ input data for
this study from 1 January to 1 May 2016 are available at
https://doi.org/10.5281/zenodo.6624164 (Wong, 2022b).
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