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Abstract. We present the largest sensitivity study to date
for cloud cover using the Weather Forecasting and Research
model (WRF V3.7.1) on the European domain. The exper-
iments utilize the meteorological part of a large-ensemble
framework, ESIAS-met (Ensemble for Stochastic Integra-
tion of Atmospheric Simulations). This work demonstrates
the capability and performance of ESIAS for large-ensemble
simulations and sensitivity analysis. The study takes an it-
erative approach by first comparing over 1000 combina-
tions of microphysics, cumulus parameterization, planetary
boundary layer (PBL) physics, surface layer physics, radi-
ation scheme, and land surface models on six test cases.
We then perform more detailed studies on the long-term
and 32-member ensemble forecasting performance of select
combinations. The results are compared to CM SAF (Cli-
mate Monitoring Satellite Application Facility) satellite im-
ages from EUMETSAT (European Organisation for the Ex-
ploitation of Meteorological Satellites). The results indicate
a high sensitivity of clouds to the chosen physics configura-
tion. The combination of Goddard, WRF single moments 6
(WSM6), or CAM5.1 microphysics with MYNN3 (Mellor–
Yamada Nakanishi Niino level 3) or ACM2 (Asymmetrical
Convective Model version 2) PBL performed best for simu-
lating cloud cover in Europe. For ensemble-based probabilis-
tic simulations, the combinations of WSM6 and SBU–YLin

(Stony Brook University Y. Lin) microphysics with MYNN2
and MYNN3 performed best.

1 Introduction

The 2020s have begun with increasingly frequent and ex-
treme weather in Eurasia, with a series of floods, heat waves,
and droughts from Europe to China, most recently culminat-
ing in the deadly situation in Pakistan. Such events have high-
lighted the destructiveness of extreme weather to human life
and infrastructure and the potential for weather forecasting
and research to help better understand these weather condi-
tions and how climate change may catalyze future tragedies
(Tabari, 2020; Palmer and Hardaker, 2011; Bauer et al.,
2015, 2021; Sillmann et al., 2017; Samaniego et al., 2018;
Bellprat et al., 2019).

At the same time, the Russo-Ukrainian War has created an
urgent desire across Europe for energy security and indepen-
dence towards local, renewable generation. In the energy sec-
tor, better weather predictions help facilitate the economical
integration of higher proportions of wind and photovoltaics
into power systems (e.g., Rohrig et al., 2019; Adeh et al.,
2019), for which unexpected weather can create bottlenecks
at the small scale or be incredibly expensive in energy mar-
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kets at the large scale, even resulting, e.g., in negative prices
during high wind events. Aside from the economics, evaluat-
ing the impact of energy on ecology will also require better
forecasting (Yan et al., 2018; Lu et al., 2021).

This study has resulted as part of a larger effort to ad-
vance towards exascale computing in weather forecasting,
with a focus on energy meteorology for solar power predic-
tions. In this context, we have aimed to optimize the perfor-
mance of the ultra-large-ensemble system ESIAS (Ensemble
for Stochastic Integration of Atmospheric Simulations), and
its meteorological component WRF (Weather Research and
Forecasting model), for cloud cover as compared to satel-
lite measurements over the central European domain, demon-
strating the framework and creating, to our knowledge, the
largest sensitivity study of WRF to date.

1.1 Sensitivity analyses for deterministic and ensemble
simulation

Sensitivity analysis is a widely accepted method for identi-
fying the most suitable model composition. Improving the
accuracy of weather and climate models involves research
to improve numerical solvers, parameter accuracy, and ad-
vanced governing equations. Various global and regional de-
terministic weather models are developed by national and in-
ternational weather agencies. The optimal implementation of
any model can, however, vary greatly for different regions.
The widely used and publicly available WRF research soft-
ware system, for example, is developed in North America,
where the optimal model configuration or even parameteriza-
tion of land types (e.g., the typical density and size of struc-
tures) can differ in Europe and elsewhere. It is, for exam-
ple, the authors’ experience that WRF, using the combination
of microphysics Kessler, WRF single moments 5 (WSM6),
or WSM6 with planetary boundary layer physics Yonsei
University (YSU), Mellor–Yamada–Janjic scheme (MYJ), or
Mellor–Yamada Nakanishi Niino level 3 (MYNN3; Berndt,
2018), typically results in biased predictions of the solar re-
source in Germany, which results in an overestimation of so-
lar energy in the simulation case.

The improvement of high-performance computation has
enhanced the ability to perform not only higher-resolution
simulations but also larger sensitivity analyses (Borge et al.,
2008; Jin et al., 2010; Santos-Alamillos et al., 2013; García-
Díez et al., 2013; Mooney et al., 2013; Warrach-Sagi et al.,
2013; Kleczek et al., 2014; Pieri et al., 2015; Stergiou et al.,
2017; Gbode et al., 2019; Tomaszewski and Lundquist, 2020;
Varga and Breuer, 2020). To date, most sensitivity analy-
ses are based on a small number of combinations of physics
configurations. The largest sensitivity analysis of WRF, for
example, includes 63 physics combinations (Stergiou et al.,
2017), whereas WRF has over 1×106 possible combinations
of 23 microphysics, 14 cumulus settings, 13 planetary bound-
ary layer (PBL) physics, 7 land surface and 8 surface layer
models, and 8 long- and 8 shortwave radiation schemes (Ska-

marock et al., 2008). There is thus potential for optimization,
as most physics combinations can be expected to be biased
when compared to observations.

The model optimization is typically an effort in determin-
istic accuracy, but there are two general types of weather sim-
ulation, i.e., deterministic and probabilistic (Palmer, 2012).
Whereas the quality of a single deterministic prediction re-
lies on substantial work to obtain accurate model data and
physics, ensemble-based probabilistic simulations focus on
the spread of possible solutions. This accounts for the uncer-
tainty from the initial conditions or model physics using large
or even multiphysics ensembles of solutions (e.g., Li et al.,
2019) or employing stochastic schemes if afforded higher-
performance computing power (Ehrendorfer, 1997; Palmer,
2000; Dai et al., 2001; Gneiting and Raftery, 2005; Leut-
becher and Palmer, 2008; Hamill et al., 2013). While deter-
ministic forecasts should provide the most likely case, prob-
abilistic forecasts aim to capture the uncertainty of that solu-
tion. The optimal model configuration may then differ for the
ensemble application, depending, e.g., on the model physics
variance or sensitivity to perturbation.

1.2 Technical challenge

Finally, besides the scientific challenge of ensemble fore-
casting (or, e.g., assessing probablistic performance; Sill-
mann et al., 2017), there is also the technical challenge of,
e.g., powerful supercomputing facilities and storing simula-
tions large enough to capture the detail and outliers needed
to detect extreme and damaging events typically missed by
contemporary, O(10) member ensembles. Presently, large
supercomputers can computationally produce ultra-large en-
sembles of O(1000) members (at a moderate resolution, be-
tween convection-permitting and global high resolution; Ki-
toh and Endo, 2016), if challenges in I/O (input/output) per-
formance and MPI (message passing interface) communica-
tion are addressed. The ESIAS framework (Berndt, 2018;
Franke et al., 2022) has been developed to accomplish ultra-
large-ensemble forecasts of up toO(1000)members, demon-
strated in this study with both multiphysics and stochastic
schemes for probabilistic simulation of cloud cover. More-
over, ESIAS aims to meet future exascale computation re-
quirements in order to perform forecasts that are not yet op-
erationally possible.

1.3 Outline

In this article, we proceed in Sect. 2 with descriptions of the
forecasting system, the model physics configurations, and the
methodology used for the sensitivity analysis. Section 3 de-
scribes the data used in this study. The sensitivity analysis
itself is performed iteratively in four sets in Sect. 4, begin-
ning with a general test of a very large assortment of models
before winnowing this down with increasing detail. The final
results are discussed and concluded in Sect. 5.
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Figure 1. The concept of ESIAS-met scheme and the whole process
of ESIAS-met. The ESIAS system control scripts control the WRF
processing system and the namelist to generate necessary inputs.

2 Model description

2.1 Modeling system: ESIAS-met v1.0

ESIAS is a stochastic simulation platform developed by the
IEK-8 (Institute of Energy and Climate Research) at the
Jülich Research Centre and by the Rhenish Institute for En-
vironmental Research at the University of Cologne. ESIAS
includes two parts, which are based on the Weather Research
and Forecasting (WRF) model V3.7.1 (Skamarock et al.,
2008) and the EURopean Air pollution and Dispersion – In-
verse Model (EURAD-IM; Franke et al., 2022), which we
shall refer to as ESIAS-met and ESIAS-chem, respectively.
The full details of these two models are described by Berndt
(2018) and Franke (2018).

Figure 1 illustrates the workflow of ESIAS-met, based on
WRF V3.7.1. The ESIAS System Control Scripts are typ-
ically used to control the WRF Preprocessing System to
produce the intermediate meteorological inputs and bound-
ary data for the simulation, though for the model setup
described in the next section, both the Global Ensemble
Forecast System (GEFS) and European Centre for Medium-
Range Weather Forecasts (ECMWF) ERA5 data can be used
as the input. The namelist generated by the WRF_TOOLS of
ESIAS-met is the same as for WRF V3.7.1, and the input and
output filenames are flexible for outputting large numbers of
files.

The ESIAS-met executables apply the MPI for large-
ensemble simulations with interactive members on high-
performance computers (HPCs; large individual ensemble
simulations on HPCs are inhibitive and cause long queuing
times). The main purpose of ESIAS-met is to perform large-
ensemble simulations with stochastic schemes, and thus,
both the stochastically perturbed parameterization tendency
(SPPT; Buizza et al., 1999) and the stochastic kinetic energy
backscatter scheme (SKEBS; Berner et al., 2009, 2011) are
implemented.

2.2 Model setup

ESIAS-met is driven with boundary conditions and interme-
diate meteorological inputs from GEFS and with MODIS
(Moderate Resolution Imaging Spectroradiometer) land use
data. The map projection is Lambert conformal, with a cen-
tral point (54◦ N, 8.5◦W). The horizontal resolution is 20 km
and the number of horizontal grid points is 180×180. There
are 50 vertical layers, only the first 11 of which have un-
even spacing through the vertical direction, especially near
the surface. In this study, we do not use any finer, nested do-
main due to the computational demand. We thus evaluate 10
microphysics which are limited to no cloud-resolving simu-
lations (UCAR, 2015). A previous study and large sensitivity
analysis by Stergiou et al. (2017) tested 68 different physics
configurations also on the European domain, though with a
different approach, thereby changing the physics options one
at a time.

Large-ensemble simulations with members of different
physics were created in three sets to iteratively investigate the
optimal configuration for cloud cover and the photovoltaics
forecasting application. The first set (Set 1) is the broadest,
with 560 combinations of microphysics, cumulus parameter-
ization, and planetary boundary layer physics. Accordingly,
only a few test cases with differing but typical cloud condi-
tions could be afforded for Sets 1–3, whereas both the sea-
sonality and probabilistic performance were tested for the
final four configurations in Set 4. The Set 1 combinations
and the acronyms for the WRF physics and parameteriza-
tions are listed in Table 1. We note that the official docu-
mentation recommends setting the surface layer physics with
specific planetary boundary layer physics in WRF (UCAR,
2015). Five-layer thermal diffusion is employed for land sur-
face physics, Dudhia for shortwave radiation physics, and the
Rapid Radiative Transfer Model (RRTM) for longwave radi-
ation physics in this set of numerical experiments.

Set 2 takes a sub-selection from the Set 1 results and adds
land surface models, shortwave radiation schemes, and long-
wave radiation schemes to form the additional 513 combina-
tions described in Table 2. We note here that the PBL ACM2
only considers the surface layer physics of MM5 similarity
and thus does not apply to the other surface layer physics
models. The land surface model CLM4 also does not em-
ploy Eta similarity and thus we exclude this combination.
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Table 1. Employed physics configuration of Set 1, which summarized 10×7×8 configurations. The abbreviation is followed by the physics
name. The PBL is used with certain surface layer physics indicated in the same row of PBL option.

Clusters Microphysics Abbr. Cumulus parameterization Abbr. PBL Abbr. Surface layer physics

Physics Kessler Ke Kain–Fritsch KF YSU YSU MM5 similarity
options Lin (Purdue) Lin Betts–Miller–Janjic BM MYJ MY Janjic-Eta similarity

WSM3 W3 Grell–Freitas GF GFS G Pleim–Xiu
WSM5 W5 Simplified Arakawa–Schubert OS QNSE Q QNSE surface layer
WSM6 W6 Grell-3 G3 MYNN2 MN2 MM5 similarity
Goddard Go Tiedtke T MYNN3 MN3 MYNN surface layer
Thompson Th New SAS NS ACM2 A2 MM5 similarity
Milbrandt 2-mom Mi BouLac BL MM5 similarity
CAM 5.1 Ca
SBU–YLin SB

For the long- and short-wave radiation physics, we have
only three combinations, i.e., RRTM and Dudhia, RRTMG
(Rapid Radiative Transfer Model for GCMs) and RRTMG,
and Goddard and Goddard for the short- and longwave radia-
tion physics schemes, respectively. For surface layer physics,
we employ Monin–Obukhov (MO) similarity and hence the
revised MM5 MO similarity (listed as MM5 similarity) and
Janjic-Eta MO similarity are utilized. The MYNN surface
layer scheme is used to investigate its suitability with the
MYNN2 and MYNN3 PBL physics. The sophisticated land
surface models (LSMs) of CLM (Community Land Model
version 4) and Noah LSM are tested along with Rapid Update
Cycle (RUC) LSM, which performs similarly to the other
two LSMs (Jin et al., 2010).

Following the Set 2 results, six microphysics and six com-
binations of PBL and surface layer physics were chosen for
36 further combinations for stochastic study in Set 3 (listed
in Table 3). Here, 32-member ensembles were created with
SKEBS for a total of 1152 members. All Set 3 simula-
tions employ the Grell-3 cumulus parameterization, the Dud-
hia shortwave radiation physics, the RRTM longwave radi-
ation physics, and the RUC LSM for land surface physics.
Although ESIAS-met can employ both SPPT and SKEBS
schemes, we only apply SKEBS in this experiment. Accord-
ing to Jankov et al. (2017) and Li et al. (2019), SKEBS
can produce a large-ensemble spread. Berndt (2018) also re-
ports that SKEBS can more effectively produce instability in
ESIAS-met than SPPT. We therefore use it to study the extent
of the spread that one single stochastic scheme can produce.
One ensemble member of the 32 is not perturbed as to double
as a control run.

Finally, four combinations were selected for long-term
simulations as part of a project concerning energy predictions
and quantile calibrations (Dupuy et al., 2021). These data
include day-ahead predictions for every other day in 2018,
and we use it here against a half-year of available satellite
data to verify the reliability of the recommendations under
more diverse conditions than the limited test cases. The set of
four combinations in Table 4 are WSM6-MYNN2, WSM6-

MYNN4, Goddard-MYNN2, and Goddard-MYNN3. The
cumulus parameterization and surface physics are Grell-3D
and revised MM5 MO similarity, respectively. The RUC
LSM is used for land surface physics. These simulations
were conducted over the same European domain but with
15 km resolution and using ECMWF instead of GEFS as in-
put due to the availability of the data. The model grid cells
increase from 180× 180 to 220× 220 in horizon.

2.3 Model performance evaluation and measurements

2.3.1 Ternary cloud mask

To determine the accuracy of the cloud cover prediction, we
apply the determination method and separate the cloud cover
fraction in each grid cell into three gradations, namely clear-
sky (< 5 %), partially cloudy (≥ 5 % and < 95 %), and fully
cloudy (≥ 95 %), to show more detail beyond a binary cloud
mask. The definition of clear sky follows the definition from
Automated Surface Observing System (ASOS; Diaz et al.,
2014), with 5 % cloud fraction, while the full cover is de-
fined analogously at 95 % cloud fraction. The inclusion of
partial clouds adds detail to the comparison of the simulation
and satellite data, which of course decreases agreement rates
relative to a binary mask. Table 5 illustrates the ternary de-
tection possibilities for deterministic simulations. The tradi-
tional binary detection classifies the outcome into just three
categories, namely false (overprediction), miss, and match.
Ternary determination increases this to five categories by in-
cluding partially cloudy areas and the prediction ability for
the different physics configurations. Here, we use the con-
vention that “under” and “over” represent the partial matches
between fully missed or false clouds.

2.3.2 Kappa score

The Kappa (κ) score is used to measure agreement between
two or more raters, using determination in large datasets
(like for subjects in psychological research; Fleiss and Co-
hen, 1973). This score for deterministic results is used widely
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Table 2. Employed physics configuration of Set 2, which summarized 3× 3× 3× 19 configurations. Both revised MM5 MO (MMO) and
Janjic-Eta MO (JMO) similarity is based on Monin–Obukhov similarity, and therefore, we use MO to represent the abbreviation.

Clusters Microphysics Cumulus PBL Radiation (SW; LW) Abbr. Surface layer Abbr. LSM Abbr.

Physics WSM5 Kain–Fritsch MYNN2 RRTM+Dudhia RD MM5 similarity MMO Noah NOA
options WSM6 Grell-3D MYNN3 RRTMG RR Janjic-Eta similarity JMO RUC RUC

Goddard Tiedtke ACM2 New Goddard GG MYNN MYN CLM4 CL4

Table 3. Employed physics configuration of Set 3, which summa-
rizes 6×6 configurations. The PBL is used with certain surface layer
physics indicated in the same row of PBL option.

Clusters Microphysics PBL Surface layer physics

Physics Kessler YSU MM5 similarity
options WSM3 GFS Pleim–Xiu

WSM6 MYNN2 MM5 similarity
Goddard MYNN3 MYNN surface layer
CAM 5.1 ACM2 MM5 similarity
SBU–YLin BouLac MM5 similarity

in natural sciences such as land science for determining the
change of land use (e.g., Schneider and Gil Pontius, 2001;
Yuan et al., 2005; Liu et al., 2017) or machine learning for
scoring and validation (e.g., Dixon and Candade, 2008; Is-
lam et al., 2018). The equation of the Kappa score for multi-
ple raters is calculated as follows:

κ =
P̄ − P̄e

1− P̄e
(1)

P̄ =
1

N · n(n− 1)

N∑
i=1

k∑
j=1

nij
2
−Nn (2)

P̄e =
1

(N · n)2

k∑
j=1

N∑
i=1

nij
2. (3)

P̄ − P̄e is the actual degree of agreement between raters, and
1− P̄e is the degree of agreement when matching correctly.
For a number of n raters, N subjects will be rated into k cat-
egories. Each nij represents the number of raters agreeing on
the j th category. In our work, the five possible outcomes in
Table 5 are the categories for the two raters, which are the
simulation and observation results for the grid cells as sub-
jects.
κ has a maximum value of 1 and can also be negative. The

maximum κ means a full match between the two datasets. κ
between 0 and 1 indicates a partial match between the two
datasets, while negative κ indicates some anti-correlation in
the matching (Pontius, 2000). A good model result should
result in positive κ .

2.3.3 Kernel density estimation

Kernel density estimation (KDE) is a method to approximate
the probability density function of dataset. A variableX with
n independent data points x1, x2, . . ., xn at x can be expressed
as follows:

fh(x)=
1
nh

n∑
i=1

K

(
xi − x

h

)
, (4)

where h and K are the bandwidth and kernel functions,
respectively. The kernel function K(u) can be uniform
(( 1

2 )I (|u| ≤ 1)) or Gaussian ( 1
√

2π
exp((− 1

2 )u
2)), depending

on the purpose. This study uses the Gaussian kernel. Here we
also propose normalizing the KDE with the cumulative KDE
with x in the range from 1 to m as follows:

fh,acc(i)=
∑
j<i

fh(xj ), for i = 1,2, . . .,m. (5)

The resulting cumulative KDE can be normalized by the last
item of fh,acc(i), i.e., fh,acc(xm), and therefore a normalized
cumulative KDE can be used to show the cumulative proba-
bility distribution of the data, which increases monotonically.

3 Data description

3.1 Input data

The initial and lateral boundary conditions are generated
from the control data of the GEFS of the National Centers for
Environmental Prediction (NCEP; Hamill et al., 2013). This
dataset has approximately 40 km resolution and 42 vertical
levels. The detail on the GEFS data is described by Hamill
et al. (2011). To better represent the forecasting skill from
April to September in 2015, we conduct 48 h simulations be-
ginning on 13 April, 15 May, 17 June, 19 July, 23 August,
and 21 September. These are more or less random days in
different months without rare conditions, as we target the
general forecasting performance for PV. Due to limited com-
putational resources, we are only able to demonstrate Sets
1, 2, and 3 in ESIAS-met for day-ahead simulations begin-
ning on these 6 random days. Each simulation uses inputs
from the GEFS reforecast data with a 3 h resolution. The
soil texture and land use condition are based on MODIS and
the Noah-modified 20-category International Geosphere Bio-
sphere Programme (IGBP)-MODIS land use data with 2 min
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Table 4. Four select physics configurations of Set 4 (2× 2× 1).

Clusters Microphysics PBL Cumulus param. Surface layer physics LSM

Physics WSM6 MYNN2 Grell-3D MM5 similarity RUC LSM
options Goddard MYNN3

Table 5. The five possible outcomes for the detection of predicted
cloud cover compared to observation, where 0 %–5 %, 5 %–95 %,
and 95 %–100 % are defined as clear, partial, and full cover, respec-
tively. In addition to the classifications of match, miss, false/over-
prediction in the detection method for binary condition, we have
partial matches of “under” and “over”.

Prediction

Clear Partial Full cover

Observed
Clear Match Over False cloud

Partial Under Match Over
Full cover Missed cloud Under Match

Figure 2. The topography of the target domain, the European do-
main, for the simulation. The red line indicates the area for validat-
ing the result with cloud cover from the satellite.

and 30 s resolutions, respectively. The target domain covers
most of Europe, with a 20 km horizontal resolution. Figure 2
shows the whole area of the target domain and the elevation
height. The ECMWF-reanalyzed ERA5 data are also used
as initial conditions in 2018 for a yearly day-ahead weather
forecasting simulation. We apply the 3 h input and lateral
boundary conditions as inputs for ESIAS-met.

3.2 Satellite data

To validate and rate the model performance, we use the cloud
fraction cover (CFC) product from the EUMETSAT Climate
Monitoring Satellite Application Facility (CM SAF; Stengel
et al., 2014). The data are corrected and generated from the
Spinning Enhanced Visible and InfraRed Imager (SEVIRI)
on Meteosat-8, which uses the visible, near-infrared, and in-
frared wavelengths to retrieve cloud information. The hourly
CFC data have level 2 validation (Stöckli et al., 2017) for the
accuracy of total synoptic cloud cover, and the data are cor-
rected by the algorithm from Stöckli et al. (2019), using the
clear-sky background and diurnal cycle models for bright-
ness temperature and reflectance. The calculation of CFC
employs a Bayesian classifier. This product covers the spa-
tial domain of Europe and Africa back to 2015, although
this product was discontinued after March 2018. The data
are cropped to the central European model domain. Since
the CFC data do not include the northern part of Europe and
have limitations at high viewing angles above the 60th paral-
lel (Stöckli et al., 2017), we exclude this part of the domain
in the analysis.

The satellite data are provided on a regular grid with a
0.05◦× 0.05◦ horizontal resolution, which is finer than the
simulation setup of 20km× 20 km, equivalent to 0.31◦ lon-
gitude and 0.18◦ latitude at the model domain center. In order
to compare the satellite data to the lower-resolution model re-
sults, we simply average the CFC pixels within each grid cell
(other studies, like Bentley et al., 1977, may use all points
within a fixed radius, which may or may not overlap). The
target value for any model grid point is then averaged over
12 to 36 observation points, depending on the location.

The viewing zenith angle of the satellite of course cre-
ates some uncertainty in the actual observation locations due
to cloud heights. This mostly vertical shift can be up to a
few pixels for high clouds within the EUMETSAT grid it-
self; however, it is at most one 20 km model point in uncer-
tainty, such that this has only a small effect on the discrete
cloud mask of the aggregated value and is negligible for the
κ scores, when considering the actual resolution of cloud de-
tails arising out of the model. Should higher-resolution sim-
ulations be investigated in the future, however, this will have
to be taken into account using, e.g., a satellite simulator on
the model data.

Figure 3 shows the cumulative domain cloud cover over
time for each test day in 2015 according to the observation.
The blue and orange curves represent the cloud cover during
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daytime, while the red and cyan curves represent the cloud
cover at night. For the cumulative plots of KDE, which is
normalized to 1.0, curves with a higher accumulative rate
(rapid growth on the y axis) represent high clear-sky rates
in the data. Curves with a lower accumulative rate (y axis)
represent more full cloud cover. The 17 June and 23 August
cases exhibit a very high variation over the 48 h of simula-
tion time. Moreover, 17 June shows a higher cloud cover than
23 August. The 13 April, 15 May, 19 July, and 21 September
cases are similar in the cloud cover condition, since the cu-
mulative distributions show that the variation in cloud cover
is smaller than for 17 June and 23 August. However, both the
13 April and 19 July cases show a higher cloud cover in the
early morning and in the early evening than for the 15 May
and 21 September cases, respectively. In general, the 23 Au-
gust and 21 September cases can represent the cloud cover
condition with high variability and low variability, respec-
tively.

Finally, for the year-long simulation we used EUMETSAT
cloud mask data that were available for comparison to the
simulation results. This binary cloud mask is also an oper-
ational product from SEVIRI that covers the full disk and
distinguishes cloudy and cloud-free pixels, as derived by the
Meteorological Product Extraction Facility.

4 Results

4.1 Simulation efficiency

The simulations were performed on the JUWELS (Jülich Su-
percomputing Centre, 2019) high-performance computer uti-
lizing Intel Xeon 24-core Skylake CPUs (central processing
units; 48 cores per node) and 96 GB of main memory. We use
12 CPUs per ensemble member, meaning 6720 total CPUs
for 560 ensemble members and 6156 CPUs for 513 ensemble
members to perform the large-ensemble simulation for Sets
1 and 2. These large-ensemble simulations are completed by
JUWELS without performing farming on the HPCs, with the
stability of the large simulations guaranteed by ESIAS.

Different physics configurations not only affect the re-
sulting weather data but also significantly impact the com-
putation time. Figures 4 and 5 show the average time con-
sumption (solid line) and the range of the time consumptions
(color fill) for the configurations of microphysics and plane-
tary boundary layer physics, respectively. We use the simu-
lation case on 21 September as an example. The most time-
consuming simulations always include CAM5.1 (average of
26 095 s) microphysics, and the quickest have Kessler (aver-
age of 10 404 s), which only parameterizes the autoconvec-
tion, precipitation clouds, the evaporation of precipitation,
and the condensation–evaporation function in the continu-
ity equation. For the simulation of planetary boundary layer
physics, the slowest configuration is QNSE (quasi-normal-
scale elimination; average of 16 967 s), and the fastest is GFS

(NCEP Global Forecast System; average of 12 440 s). The
cumulus parameterization has the smallest effect on time
consumption, with the most time-consuming being Grell-3
(average of 14 715 s), and the least time-consuming being
Betts–Miller–Janjic (average of 13 447 s), where the differ-
ence is only 9.4 %.

The differences between the first and third quartiles show
how much the different physics configurations affect the sim-
ulation speed, as shown in Figs. 4b and 5b. For the physics
clusters of microphysics, PBL physics, and cumulus parame-
terization, the average quartile difference is near 1500, 3500,
and 3700 s, respectively. The outliers involve CAM5.1 mi-
crophysics, which is the most computationally expensive.
The most time-consuming part is the configuration of the
microphysics. The average time consumption is similar for
the clusters of PBL physics and of cumulus parameterization,
except for the QNSE PBL physics, which consumes 5000 s
more simulation time than other PBL physics. The box plot
confirms that CAM5.1 microphysics and QNSE PBL physics
are the most time-consuming.

4.2 Set 1 sensitivity analysis: clusters of microphysics,
PBL, and cumulus parameterization

The simulation results used for comparison with the satellite
data exclude the first 12 h, as the model is run in weather fore-
casting mode and hence can take 6–12 h to converge (Jankov
et al., 2007; Kleczek et al., 2014). Only the last 36 h of the
simulation output are therefore used to compare with the
satellite data.

The 560 simulations were performed with the target dates
and times from Sect. 3.1. The heat maps in Figs. 6 and 7
represent two different test case results with high and low
variabilities, based on the cloud cover, respectively. Both fig-
ures indicate that the κ scores of the microphysics cluster by
their cumulus parameterization and PBL physics. The cloud
mask results indicate that the CAM5.1 cluster not only out-
performed the cloud cover prediction of the other micro-
physics but also that Goddard and WMS3 performed well.
The κ indicates that the Kessler microphysics predicted the
worst cloud cover overall, irrespective of the PBL physics or
cumulus parameterization used. The combination of the three
cumulus parameterizations, Grell–Freitas, Grell-3, and New
SAS (Simplified Arakawa–Schubert), and the PBL physics
GFS diminishes the prediction of the cloud cover. The re-
sults from the other four cases can be found in Figs. S1–S4
in the Supplement.

The overall results for κ from the six test cases (Fig. 8a)
confirm that CAM5.1 performed best for cloud cover and that
both the WRF single moments 3 (WSM3) and the Goddard
microphysics also performed well. The only exception is the
13 April case, where the Goddard microphysics cluster out-
performed the other microphysics. The simulations for the 15
June and 23 August cases were performed well by the God-
dard microphysics and the WMS3, WSM5, and WSM6 mi-
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Figure 3. The cumulative KDE of cloud cover for the six simulation cases in UTC time. The colors distinguish the different cloud cover. The
different colors represent different time periods in a day, as shown in the legend.

Figure 4. The (a) total accumulated simulation time. (b) A box plot of different microphysics configurations within each simulation hour on
21 September 2015. The upper and lower boundaries of the color fill indicate the maximum and minimum simulation time with other physics
configurations.

crophysics clusters. Here, the cloud cover varies more than
in the other cases. The performance of the Goddard micro-
physics and the WMS3, WSM5, and WSM6 microphysics
clusters was equal to the CAM5.1 microphysics cluster in

the cases with large cloud cover variation, as for 17 June and
23 August.

Figures 9 and 10 show the average cloud fraction from
hours 12 to 48 from both the satellite data and the simulation
result for 23 August and 21 September, respectively. In this
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Figure 5. The (a) total accumulated simulation time. (b) A box plot of different PBL configurations within each simulation hour on
21 September 2015. The upper and lower boundaries of the color fill indicate the maximum and minimum simulation time with other
physics configurations.

Figure 6. The heat map of the average κ for every configuration for the clusters of microphysics (y axis) with the cluster of cumulus
parameterization and PBL (x axis) for the simulation case on 23 August for Set 1. The data only use the last 36 h of simulations for
calculating κ .

simulation case, we use the different microphysics and the
cumulus parameterization of Grell-3D and the PBL physics
of MYNN3. In the 23 August case, the sky is partially clear
above the North Sea and in Eastern Europe and rather cloudy
around the Alps. From the selected microphysics, Kessler,
WSM6, Goddard, CAM5.1, and SBU–YLin (Stony Brook
University Y. Lin), different cloud fraction conditions are
shown. WSM6, Goddard, and SBU–YLin provided a good
simulation of the clear sky above the North Sea and Eastern
Europe, while the sky above the Alps is as cloudy, as in the
satellite data. The worst case, Kessler, shows a large cloud
cover condition over Eastern Europe, which contradicts the
observation during the dynamic 23 August case.

The 21 September case is a cloudy day with low vari-
ability in cloud cover. A band of clear sky occurs above
Austria, Slovakia, southern Poland, and Ukraine (Fig. 10).
The WSM6 and Goddard microphysics simulated less cloud
over the clear-sky band but produced less cloud cover overall
within the model domain. Kessler simulated a cloudy condi-
tion over central Europe.

In Fig. 11, the KDE of the cloud cover shows the proba-
bilistic distribution of the average cloud cover for the 36 h of
simulation after hour 12 for the 23 August and 21 September
cases. For 23 August, CAM5.1 microphysics worked well
for the κ score but overestimates the cloud cover. The over-
estimation of cloud cover causes CAM5.1 to perform worse
than in the 15 May, 19 July, and 21 September cases. WSM3,
WSM5, WSM6, and Goddard microphysics show similar
trends of cloud cover distribution, as in the satellite image.
For the 21 September case, the clear-sky condition (< 5 %
of cloud cover) is captured well by CAM5.1, but the cloud
cover distributions of the entire CAM5.1 cluster differ from
that in the satellite image.

By comparing the result with the microphysics cluster,
PBL physics cluster, and cumulus parameterization cluster,
we can conclude that there is good performance for cloud
simulation by CAM5.1, WSM3, and Goddard microphysics.
The PBL physics and cumulus parameterizations have fewer
impacts on the simulation of cloud cover than the micro-
physics. To obtain a comprehensive result on cloud cover, we
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Figure 7. The heat map of average κ for every configuration for the clusters of microphysics (y axis) with the cluster of cumulus parameter-
ization and PBL (x axis) for the simulation case on 21 September for Set 1. The data only use the last 36 h of simulations for calculating κ .

Figure 8. The box plots of κ in panel (a) show all the simulation dates and those on (b) 13 April, (c) 15 May, (d) 17 June, (e) 19 July, (f)
23 August, and (g) 21 September for Set 1.

investigate the impact of using different microphysics on the
average cloud cover distributions. However, the temporally
and spatially averaged cloud covers provide less information
and less variability over time. To determine the simulation
skill on the spatial patterns, we score the simulation result
by calculating the κ score using the pixels in the simulation
domain.

4.3 Set 2 sensitivity analysis: clusters of microphysics,
PBL, cumulus, radiation schemes, surface layer
physics, and land surface parameterization

Additional components to the physics configuration include
different longwave and shortwave radiation physics and land
surface layer physics. However, there are more than a million
possible combinations of all physics options. We therefore
narrow down the choice of the microphysics, PBL physics,
and cumulus parameterization from Sect. 4.2. Accounting for
the treatment of the graupel mixing ratio for ESIAS-chem,
we predominantly use the microphysics of WSM5, WSM6,

and Goddard. CAM5.1 performed the best across five of the
six test cases, but it is not included because of the higher
computational cost. MYNN2, MYNN3, and ACM2 (Asym-
metrical Convective Model version 2) are selected because of
their good performance with the selected microphysics. From
the heat map (Fig. 6), both Grell 3D and Tiedtke work well
with Goddard and WSM6. We also choose Kain–Fritsch,
which is widely used (e.g., Warrach-Sagi et al., 2013; Knist et
al., 2017), for comparison. The PBL physics from MYNN2,
MYNN3, and ACM2 performed well across all the simula-
tions and is chosen for this simulation case.

Figure 12 shows the heat map of the 21 September sim-
ulation case and the physics configuration of Goddard and
ACM2. The Goddard radiation schemes perform skillful pre-
dictions of cloud cover. This heat map also indicates good
combinations of microphysics, cumulus parameterization,
and radiation schemes, as well as combinations of PBL
physics, surface physics, and land surface models by row and
column, respectively. By row, the Goddard works better with
the Tiedtke and Grell-3D cumulus parameterization overall.
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Figure 9. Average cloud cover fraction for 36 h of (a) satellite data and simulation by different microphysics, including (b) Kessler, (c)
WSM6, (d) Goddard (e) CAM5.1, and (f) SBU–YLin. All simulations are configured with Grell-3D and ACM2 PBL physics, which per-
formed a more skilled prediction than any other combination from 23 August.

Figure 10. Average cloud cover fraction for 36 h of (a) satellite data and simulation by different microphysics, including (b) Kessler,
(c) WSM6, (d) Goddard (e) CAM5.1, and (f) SBU–YLin. All the simulations are configured with Grell-3D and ACM2 PBL physics, which
performed a more skilled prediction than any other combination from 21 September.

By column, the heat map shows that ACM2 PBL physics
can improve the simulation with all the microphysics but
with less improvement for the radiation schemes RRTM and
Dudhia. Under the same condition, MYNN3 with Grell-3D
and RRTM and Dudhia perform better with WSM5, WSM6,
and Goddard microphysics. From the 513 combinations of
physics configurations, the range of the κ score is between
0.15 and 0.24. The microphysics and the PBL physics are
chosen from the results of Sect. 4.2, which is why the im-
provement is not significant compared to the improvement
from changing either the longwave and shortwave radiation
scheme or the surface layer physics or land surface models.

In the 17 June case (Fig. 13), the cloud cover distribution
has a very high variability, and therefore, the simulation skills
increase their variabilities in κ with different combinations.
When all microphysics clusters have a Kain–Fritsch score

less than 0.1, then the simulations are better with the com-
binations of MYNN2/MYNN/RUC, MYNN3/MYNN/Noah,
and ACM2/MMO/CLM4. The pattern of outperforming κ is
also shown in the result for 19 July (Fig. S7), which includes
the worst κ score among the six cases. The results from the
other four cases can be found in Figs. S5–S8.

The box plot (Fig. 14) shows the overview of the six
cases along with the clusters of microphysics and cumulus
parameterization, which show less variability and are very
similar for each case, indicating that high variability occurs
from other physics clusters. The whiskers of the box plot (as
maximum or minimum of the data or third quartile± 1.5×
interquartile range) show that combinations with the Grell-
3D cumulus parameterization can achieve the maximum av-
erage κ scores. The Goddard microphysics and Tiedtke cu-
mulus parameterization can be the least variable, and their
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Figure 11. The probabilistic function from the kernel density estimation (KDE) of the average cloud fraction for the last 36 h simulation for
(a) case 23 August and (b) case 21 September. The PBL physics is by ACM2 and the cumulus parameterization is by Grell-3D. The solid
color lines depict the KDE from the simulations, and the black dashed line is the KDE from the satellite data.

median κ indicates that this combination can outperform
other microphysics and cumulus parameterization clusters.
The box plots from all the cases show that the cumulus pa-
rameterizations of Grell-3D and Tiedtke, which are more ad-
vanced than Kain–Fritsch, can improve the score. The re-
sulting κ does not significantly differ between Grell-3D and
Tiedtke.

4.4 Set 3 sensitivity analysis: impact of microphysics
and PBL on stochastic simulation

Stochastic weather forecasting requires many diverse simu-
lation ensemble members. To study the impact of the physics
configuration on the stochastic simulation, we generated
31+ 1 ensemble members in 48 h ensemble runs. The to-
tal cloud fractions again after 12 simulation hours are used
to analyze the differences from the model configuration and
their impact on probabilities. The stochastic experiments are
simulated for the same cases and domain and with the same
input data as before.

Figure 15 shows the probabilistic cloud cover fraction
within the 25th–75th percentiles and 5th–95th percentiles of
the simulations. The development of the mean cloud cover
fraction is compared to the mean cloud cover fraction of the
satellite data. The rmse (root mean square error) and stan-
dard deviation are used to show the comprehensive result of
the temporal cloud cover development within the final 36 h
of the simulations.

The Kessler microphysics appeared to overestimate the
cloud cover fraction and have the largest rmse of all micro-
physics. Moreover, the two peaks in the cloud cover frac-
tion around the hours of 12 and 36 of the simulation are not
clearly captured by the Kessler ensemble, though this is bet-
ter than in most cases in the combination with ACM2. The
SBU–YLin microphysics and ACM2 PBL physics achieved

the smallest rmse, and the WSM6 microphysics and ACM2
PBL physics were second best. The biggest standard devi-
ation and therefore ensemble spread was produced by the
SBU–YLin and MYNN2 PBL physics. In the 21 September
case (Fig. S13), the WSM6 microphysics showed the great-
est spread and largest standard deviation. In both cases, the
CAM5.1 microphysics combined with the GFS PBL physics
to produce the narrowest probability distribution of the cloud
cover fraction. The color blocks show the simulation skill in
capturing the cloud cover fraction within a certain percentile.
The MYNN2, MYNN3, and ACM2 PBL physics not only
produce a larger probabilistic distribution than the other PBL
physics but also perform better with the WSM6, Goddard,
and SBU–YLin microphysics. The results from the other four
test cases can be found in Figs. S9–S12.

Figure 16 summarizes the rmse performance of the en-
semble mean against the observed domain total cloud frac-
tion. Figure 17 illustrates the time-averaged ensemble spread
with the standard deviation (SD) of the domain total cloud
fraction. From the rmse, SBU–YLin had the best mean total
cloud fraction over all six cases, with a more variable cloud
fraction according to the SD. The WSM3, WSM6, Goddard,
and SBU–YLin with MYNN3 and ACM2 produced more ac-
curate average cloud fractions than the other combinations.
Overall, the WSM series and SBU–YLin better represented
the uncertainty than the other microphysics, while MYNN3
and ACM2 improved the simulation accuracy.

4.5 Set 4 sensitivity analysis: long-term validation

Sets 1–3 address over a thousand model combinations. Ide-
ally, all combinations could be tested over a full year to cap-
ture diverse conditions and seasonality and to benchmark
their operational performance. The aggregate computational
expense of all combinations is unfortunately too great for
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Figure 12. The heat map of the average κ for the configuration for the clusters of microphysics, cumulus parameterization, and the radiation
physics (y axis) with the cluster of PBL physics, surface physics, and the land surface model (x axis) for the simulation case on 21 September
for Set 2. The data only use the last 36 h of simulations for calculating κ .

this. For the four most promising models listed in Table 4,
however, ESIAS could be economically tested over a full
year and these four cases compared to roughly 6 months of
available satellite data in 2018 by calculating the κ with the
cloud mask data. A summary of these results is shown in
Fig. 18.

In this test of the more generalized model performance, the
models scored similarly, with the WSM6 microphysics hav-
ing higher κ and slightly lower standard deviations than God-
dard with the same PBL, and likewise, MYNN3 performed
better than MYNN2 for the same microphysics. In the plot,
the maximum κ values are thus generally reached by points

with MYNN3, especially with WSM6, whereas the lowest
are most commonly from Goddard–MYNN2.

The hourly κ can not only fluctuate up to about 25 %
within a given day but also at timescales of weather patterns
over 2–4 weeks, generally around their means of ∼ 0.55 %.
There is no clear seasonal trend in the matching rate over
these 6 months. The models perform relatively better or
worse on the same days, depending on the weather condition,
as they all share the same ECMWF input data, and the WRF
outputs remain similar at the synoptic scale. The model pref-
erences here seem consistent with the relative performances
in Sets 1 and 2 for the 2015 test days, such that these four
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Figure 13. The heat map of the average κ for the configuration for the clusters of microphysics, cumulus parameterization, and the radiation
physics (y axis) with the cluster of PBL physics, surface physics, and the land surface model (x axis) for the simulation case on 17 June for
Set 2. The data only use the last 36 h of simulations for calculating κ .

configurations seem suitable for the general simulation of
cloud cover with WRF on the European domain.

5 Discussion

5.1 Impact of physics configuration on the simulated
cloud cover

The cloud cover masks on the κ heat map show that the
choice of microphysics is most consequential to the sim-
ulation of cloud cover in the European domain. The val-
ues show a consistently good result from WSM3, WSM5,
WSM6, Goddard, and CAM5.1 microphysics based on the

six test cases and 560 physics combinations in Set 1 and 513
combinations in Set 2. The good performance of WSM6 for
cloud cover fraction has been previously explained by Pieri
et al. (2015) and Jankov et al. (2011).

The employment of ACM2, MYNN2, or MYNN3 PBL
physics can lead to good results in the cloud cover mask.
According to the six test cases, the Milbrandt 2-mom and
Kessler microphysics schemes should be avoided, as should
the QNSE and GFS PBL physics. The research results of
Borge et al. (2008) point to the same choice of WSM6
microphysics, but our results differ by suggesting ACM2,
MYNN2, and MYNN3 PBL physics, while Borge et al.
(2008), Gbode et al. (2019), and Stergiou et al. (2017) instead
recommend YSU or MYJ PBL physics. Borge et al. (2008),
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Figure 14. The box plots of κ from microphysics and cumulus parameterization clusters in panel (a) show all the simulation dates and those
on (b) 13 April, (c) 15 May, (d) 17 June, (e) 19 July, (f) 23 August, and (g) 21 September for Set 2.

however, focus on the prediction of wind properties, tem-
perature, and humidity over Spain for 168 h of simulation,
Gbode et al. (2019) focus on the prediction of precipitation
over West Africa during the monsoon period, and Stergiou
et al. (2017) focus on the prediction of temperature and pre-
cipitation over Europe during 2 different months. This study
focuses on cloud cover and the solar power application.

Box plots of the different physics combinations illus-
trated that the employed land surface model and radiation
scheme was less consequential than the microphysics and
PBL physics. However, the results from the Set 2 sensitivity
analysis showed significant differences for different cumulus
parameterizations, though not as large as from the change in
the microphysics and PBL physics, and the κ values were
generally smaller for the Kain–Fritsch model than for Grell-
3D and Tiedtke.

5.2 Impact of physics configuration on stochastic
simulation

As ESIAS-met is an ensemble version of WRF, it was there-
fore important to understand the impact of different physics
on stochastic results. We identified the most sensitive physics
clusters and used Set 3 to generate 1152 total members from
36 physics× 32 members with the SKEBS scheme. We were
limited to ensemble groups of this size due to limited com-
putational resources (i.e., a single case uses 18 432 cores for
a total of, originally, 1536 ensemble members, from which
192 were excluded due to unsuitable microphysics).

The stochastic results show that the combination of
physics highly affects the probability distribution. Kessler
overestimated the cloud cover fraction, while, as in the re-
sults from the preceding sets, the cloud cover prediction was

simulated well with the microphysics of CAM5.1, Goddard,
and WSM6. Moreover, the SKEBS stochastic scheme pro-
duced broader probabilistic distributions with WSM6 and
Goddard, and the average cloud cover fraction could there-
fore be captured best by these microphysics. The CAM5.1
microphysics produced the most accurate results when com-
pared pixel by pixel, but the probabilistic distribution was the
smallest of the microphysics options.

Likewise, the PBL physics affected not only the develop-
ment of the cloud cover fraction but also the probabilistic
distribution. The GFS and MYNN2 schemes produced less
dynamic cloud cover and thus higher rmse values. ACM2
produced a more dynamic development of cloud cover, but
its probabilistic distribution was slightly less than that of
MYNN2 and MYNN3.

The stochastic analysis shows a contradiction between
the deterministic accuracy and probabilistic simulation. The
most accurate configuration for a deterministic forecast may
differ from that for the ensemble with the most accurate mean
or that which best captures the uncertainty and diversity of
possible outcomes. The CAM5.1 microphysics and ACM2
PBL physics lead to the most accurate deterministic fore-
cast, compared to the satellite observation, while SBU–YLin
with MYNN2 was the most accurate ensemble in terms of
its mean. Through all six cases, the CAM5.1 microphysics
produced the narrowest distribution, while the Goddard and
WSM6 microphysics could generally produce broader prob-
abilistic distributions.

Jankov et al. (2017) and Li et al. (2019) both reported
an insufficient ensemble spread with stochastic schemes
(e.g., SKEBS or SPPT) and that mixing multiple physics in
simulations can achieve a greater spread. In our simulations,
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Figure 15. The mean cloud cover fraction (–) and the observation from the satellite (black line) and by simulation (color line) from the
combination of microphysics (by different colors) and PBL physics (in different rows) for the case on 23 August. The color block represents
the range of percentiles, the darker block is limited between 25 % and 75 %, and the lighter block is limited between 5 % and 95 %. The gray
block indicates the spin-up time for ESIAS-met, which is not included in the root mean square error (rmse), standard deviation (σ̄ ), or the
mean simulated cloud cover fraction (x̄).
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Figure 16. Heat map of the RMSE between the ensemble mean total cloud fraction and observation, averaged over the last 36 h of the
simulations, shown for each cluster of microphysics and PBL physics (columns) for all test cases (rows). In the color scale, red represents
higher RMSE and poorer performance.

Figure 17. Heat map of the ensemble standard deviation (σ̄ ) of the mean total cloud fraction, averaged over the last 36 h of the simulations,
shown for each cluster of microphysics and PBL physics (columns) for all test cases (rows). In this heat map, blue indicates larger σ̄ and
greater ensemble spread.

combining the ensembles into one multiphysics ensemble
would enhance the spread, but this would be somewhat ar-
tificial due to the different biases of the model physics. The
accuracies of the different model physics must then always
be considered for multiphysics ensembles. We also note that
the small-ensemble spread reported in Jankov et al. (2017)
may be due to the small number of ensembles, i.e., four for
each physics configuration, yielding eight members in total.

5.3 Choice of physics configurations

The simulation results do not indicate a single best option for
the physics configuration. Many studies exist that focus on
very different aspects of sensitivity analysis, including spa-
tial resolution (Warrach-Sagi et al., 2013; Pieri et al., 2015;
Knist et al., 2017, 2018), inputs (Pieri et al., 2015), micro-
physics (Jankov et al., 2011; Rögnvaldsson et al., 2011), PBL
physics (García-Díez et al., 2013), cumulus parameteriza-
tions (Gbode et al., 2019), land surface models (Jin et al.,
2010), and the combination of different physics (Borge et
al., 2008; Santos-Alamillos et al., 2013; Awan et al., 2011;
Jankov et al., 2007; Pieri et al., 2015; Stergiou et al., 2017;
Otkin and Greenwald, 2008; Li et al., 2019; Varga, 2020).
These studies focus on different target variables and meteo-
rological states with different weather forcing input, obser-
vation data, domains, and timescales and therefore produce
very different results for the choice of physics or parameter-

ization. Our simulation results cannot give a clearer indica-
tion of the meteorological aspects across temporal and spatial
scales but can suggest some best physics configurations for
studying cloud simulation or solar power over the European
domain. Further investigations must still be carried out for
more comprehensive insights into other spatial scales, mete-
orological variables, further physics configurations, and dif-
ferent input data (e.g., ECMWF ERA5).

Nevertheless, regarding day-ahead simulations with 20 km
horizontal resolution, WSM6, Goddard, and CAM5.1 mi-
crophysics performed best here for deterministic weather
forecasting of cloud cover. In the probabilistic application,
WSM6, Goddard, and SBU–YLin microphysics yielded the
greatest variability, while Kessler and CAM5.1 conversely
generated the narrowest distributions. The PBL physics were
best simulated by ACM2 and MYNN3. The choice of cumu-
lus parameterization, surface layer physics, and land surface
model did not significantly increase the accuracy. The PBL
scheme did have a significant effect on the probabilistic dis-
tributions. MYNN2 and MYNN3 generated wider distribu-
tions, while GFS generated smaller ones. Our results show
some agreement with Stergiou et al. (2017) in that WSM6
and Goddard were performing well (as TOPSIS, Technique
for Order Preference by Similarity to Ideal Solution, rank-
ing as fifth and seventh) for the precipitation in July, and
CAM5.1 performs well for the temperature in January.
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Figure 18. The monthly box plot of the four cases by the κ for the 6 months simulation from June to October. The yearly means and standard
deviations of the κ are shown for four cases at the bottom of the plot.

The best combination for ensemble-based probabilistic
simulation ideally has accurate ensemble means and realis-
tically broad distributions. The Goddard, WSM6, or SBU–
YLin microphysics with MYNN3 are potential choices.
When the mean of the simulations is close to the mean of
the observation, then the reality can be better captured. How-
ever, as mentioned by Sillmann et al. (2017), the technique of
scoring ensemble simulations remains a challenge for better
probabilistic analysis. A more comprehensive study should
also include some promising physics combinations while in-
cluding the short- or long-term effects of applying differ-
ent physics at different spatial scales, such as continental or
global scales, and including a 1 km resolution to study the
dynamics and local conditions at the convection-resolving
scale.

5.4 Future work

This study was performed without a nested domain for
a higher-resolution simulation, which might be useful
for investigating the effect of the resolution on multi-
physics for convection-resolving simulations. Exascale high-
performance computing might enable such studies for scien-
tific research and provide an opportunity to investigate the
scalability of ultra-large-ensemble simulation systems (Neu-
mann et al., 2019; Bauer et al., 2021). To this end, the ESIAS
system presented here has been designed to perform data as-
similation with the advantage of its elastic ensemble simu-
lation frameworks. Further development will focus on data
assimilation, such as the use of the particle filter with the
particle removal function (van Leeuwen, 2009).

6 Conclusions

This study introduced an ensemble simulation system for
conducting ultra-large-ensemble simulations in Europe and
with multiphysics and ensemble-based probabilistic simula-
tions. We used the meteorological part of the system to gen-
erate diverse simulations and perform and iterative sensitiv-
ity analyses of various physics configurations for cloud cover
fraction using κ coefficients to score the match rate of cloud
cover masks. This began with experiments on 6 d of 560 ini-
tial physics combinations, followed by 513 additional tests of
secondary model choices, and, finally, tests of the stochastic
performance of 42 selected combinations. Last, a half-year
of data could be simulated to test the long-term performance
of the four favored model combinations.

The sensitivity analysis of the combination of three
physics configurations – microphysics and the planetary
boundary layer (PBL) physics and the cumulus parameter-
ization – showed the microphysics to have the greatest in-
fluence on cloud cover. The Goddard, WSM3, and CAM5.1
microphysics consistently performed better than the other
microphysics, but the amount of computation time required
for CAM5.1 is relatively high. The Goddard and WSM3
scheme did better for more dynamic cloud situations. The
PBL physics also have a significant effect on the results and
show better agreement with MYNN2/3 and ACM2 but less
agreement with GFS and QNSE PBL physics. The long-term
simulation using WSM6 and Goddard with MYNN2 and
MYNN3 in 2018 showed that the agreement between sim-
ulated and observed cloud mask reaches at least 65 % and at
largest 89 % without trends in different seasons.

The sensitivity analysis on the combination of six physics
configurations – including microphysics and the PBL
physics, the cumulus parameterization, longwave and short-
wave radiation schemes, surface layer physics, and land sur-
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face models – shows again that the microphysics affect the
cloud cover the most and that the ACM2 PBL physics sig-
nificantly increases the cloud cover prediction accuracy. The
physics configurations of surface layer physics and land sur-
face models were found to be less significant than other
physics.

The sensitivity analysis for stochastic simulation showed
significant differences. The WSM6 and SBU–YLin micro-
physics with MYNN2 and MYNN3 captured the cloud frac-
tion better within their broader probabilistic distributions
than other models did, although the WSM6 and SBU–YLin
with ACM2 better captured the dynamics of the cloud frac-
tion in situations with more variability of the cloud cover in
time.

The simulation results indicate a pathway for improving
model physics and demonstrate the potential of ultra-large-
ensemble simulations and high-performance computers ap-
proaching exascale. The multiphysics simulation, however,
produces a larger-ensemble spread compared to the stochas-
tic schemes, although the result from the sum of the mul-
tiphysics may not be realistic. The employment of suitable
physics configurations can improve both the accuracy and
the probabilistic quality of both deterministic and large-
ensemble weather predictions.

Code availability. The codes of ESIAS-met and also
the pre- and post-processed codes are available via
https://doi.org/10.5281/zenodo.6637315 (Lu and Elbern, 2022).
The modeling and analysis tools can be found in the code reposi-
tory at https://github.com/hydrogencl/WRF_TOOLS (last access:
7 February 2023) (https://doi.org/10.5281/zenodo.7603301, Lu,
2023a) and https://github.com/hydrogencl/SciTool_Py (last access:
7 February 2023) (https://doi.org/10.5281/zenodo.7603323, Lu,
2023b).

Data availability. The NCEP GEFS datasets (Hamill
et al., 2013) were retrieved from NCEP GEFS https:
//www.ncei.noaa.gov/products/weather-climate-models/
global-ensemble-forecast. The ERA5 reanalysis datasets
(Hersbach and Dee, 2016) were retrieved from ECMWF’s
Meteorological Archival and Retrieval System (MARS). Visit
https://www.ecmwf.int/en/forecasts/dataset/ecmwf-reanalysis-v5
(ECMWF, 2023) and then access the data via the MeteoCloud
platform of JSC (https://datapub.fz-juelich.de/slcs/meteocloud/,
last access: 9 February 2023). The cloud fraction (CFC) dataset
(https://doi.org/10.5676/EUM_SAF_CM/CFC_METEOSAT/V001;
Stöckli et al., 2017) is retrieved from CM SAF (http:
//www.cmsaf.eu, last access: 21 July 2017). The cloud mask data
has been retrieved from EUMETSAT (https://archive.eumetsat.int/,
EUMETSAT, 2015). The model output is archived at the JSC under
data project no. jiek80. Please contact the corresponding author to
access the model data.
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