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Abstract. Ammonia (NH3) is an important atmospheric con-
stituent. It plays a role in air quality and climate through
the formation of ammonium sulfate and ammonium nitrate
particles. It has also an impact on ecosystems through depo-
sition processes. About 85 % of NH3 global anthropogenic
emissions are related to food and feed production and, in
particular, to the use of mineral fertilizers and manure man-
agement. Most global chemistry transport models (CTMs)
rely on bottom-up emission inventories, which are subject
to significant uncertainties. In this study, we estimate emis-
sions from livestock by developing a new module to calcu-
late ammonia emissions from the whole agricultural sector
(from housing and storage to grazing and fertilizer applica-
tion) within the ORCHIDEE (Organising Carbon and Hy-
drology In Dynamic Ecosystems) global land surface model.
We detail the approach used for quantifying livestock feed
management, manure application, and indoor and soil emis-
sions and subsequently evaluate the model performance. Our
results reflect China, India, Africa, Latin America, the USA,
and Europe as the main contributors to global NH3 emis-
sions, accounting for 80 % of the total budget. The global
calculated emissions reach 44 TgNyr−1 over the 2005–2015
period, which is within the range estimated by previous work.
Key parameters (e.g., the pH of the manure, timing of N ap-
plication, and atmospheric NH3 surface concentration) that
drive the soil emissions have also been tested in order to as-
sess the sensitivity of our model. Manure pH is the parame-
ter to which modeled emissions are the most sensitive, with

a 10 % change in emissions per percent change in pH. Even
though we found an underestimation in our emissions over
Europe (−26 %) and an overestimation in the USA (+56 %)
compared with previous work, other hot spot regions are con-
sistent. The calculated emission seasonality is in very good
agreement with satellite-based emissions. These encourag-
ing results prove the potential of coupling ORCHIDEE land-
based emissions to CTMs, which are currently forced by
bottom-up anthropogenic-centered inventories such as the
CEDS (Community Emissions Data System).

1 Introduction

Ammonia (NH3) is a crucial species in the atmosphere, play-
ing a role in the alteration of air quality and climate through
its implication in airborne particle matter formation (PM or
aerosols) (Anderson et al., 2003; Bauer et al., 2007). The
NH3 lifetime is short and has been reported to range from
a few hours to a few days (Pinder et al., 2008; Behera et al.,
2013), as ammonia mostly originates from surface emissions
and its deposition velocity is high over most surfaces (Hov
et al., 1994; Evangeliou et al., 2020). Due to this character-
istic, NH3 is transported over relatively short distances and
readily reacts with abundant gases such as nitric and sulfuric
acids to form secondary aerosols (Malm et al., 2004). The
resulting aerosols, such as ammonium nitrates or ammonium
sulfates, have important impacts on the Earth’s radiative bud-
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get due to their ability to scatter incoming radiation, act as
cloud condensation nuclei, and indirectly increase cloud life-
time (Abbatt et al., 2006; Henze et al., 2012; Behera et al.,
2013; Evangeliou et al., 2020). The impact of NH3 on the to-
tal radiative forcing is estimated to be−0.06 Wm−2, with re-
spective contributions of about−0.07 and 0.01 Wm−2 to the
radiative forcing of nitrate and sulfate (Myhre et al., 2013).
By analyzing different Representative Concentration Path-
way (RCP) scenarios, Hauglustaine et al. (2014) showed the
importance of ammonia with respect to the direct aerosol
forcing in the future due to the potentially significant increase
in agricultural emissions. In the most extreme scenario, emis-
sions could increase by 50 % by 2100 compared with their
present-day level.

In addition to its contribution to the radiative budget, the
balance between NH3, SO2, and NOx emissions controls the
formation of secondary inorganic aerosols (SIAs), which are
important components of fine particles (PM2.5) (Paulot et al.,
2016; Fu et al., 2017; Sutton et al., 2020). Quantifying am-
monia emissions is of high interest for air quality policies, as
it appears that NH3 emission reductions would also be effi-
cient to reduce inorganic aerosol formation (Lachatre et al.,
2019).

There are many issues in the development of reliable
NH3 emission inventories, as analyzed by Nair and Yu
(2020), such as the lack of emission measurements, the dif-
ficulties in validating the NH3 concentration with measure-
ments, and the critical assumptions behind the modeling
approaches in terms of emission factors and activity rates.
Even though ammonia emissions are challenging to esti-
mate, several studies have aimed at quantifying global emis-
sions and their associated uncertainty. For example, Den-
tener and Crutzen (1994) estimated a global NH3 emission
of 45 TgNyr−1 (±50 %), which is a low estimate compared
with the 54 TgNyr−1 (±25 %) of Bouwman et al. (2005)
and the 75 TgNyr−1 (±50 %) of Schlesinger and Hartley
(1992) (Zhu et al., 2015). Agricultural activities are among
the significant sources of ammonia in the world, accounting
for about 85 % of the global anthropogenic NH3 emissions
(Behera et al., 2013). Agricultural emissions originate from
fertilizer application and livestock management, with the lat-
ter including livestock housing, manure storage, and manure
application. Globally, recent studies have developed method-
ologies in order to quantify emissions from this sector. For
example, Beusen et al. (2008), Paulot et al. (2014), and Mc-
Duffie et al. (2020) estimated similar emissions of about 32–
35 TgNyr−1, which is less than the 41–47 TgNyr−1 esti-
mates of Crippa et al. (2018) and Vira et al. (2020).

Modeling NH3 sources from agriculture is especially dif-
ficult because it depends on several factors related to the
environment (e.g., atmospheric conditions and soil proper-
ties) and to agricultural practices, which are also crucial to
capture the temporal and spatial variability in emissions cor-
rectly. Emissions from manure management are driven by the
amount of N in the feed, animal body characteristics, animal

housing conditions, temperature, and animal waste handling
practices (Anderson et al., 2003). The soil NH3 emissions
originate from N application, either from fertilizer or manure,
and are controlled by the soil pH, temperature, water content,
surface wind speed, and the atmospheric NH3 concentration
(Kirk and Nye, 1991; Hertel et al., 2011; Behera et al., 2013).
Other factors such as the ammonium content of the fertilizer
and the timing of N application are also crucial for emission
estimates (Riddick et al., 2016; Vira et al., 2020).

The first type of approach to the quantification of agri-
cultural ammonia emissions is bottom-up inventories. Most
global inventories, such as the CEDS (Community Emis-
sions Data System; McDuffie et al., 2020), EDGAR (Emis-
sions Database for Global Atmospheric Research; Crippa
et al., 2018), and HTAP (Hemispheric Transport of Air Pollu-
tion; Janssens-Maenhout et al., 2015), are based on activity
data associated with corresponding emission factors (EFs).
Chemistry transport models (CTMs) are usually forced with
these global emission inventories. As examples, the inven-
tory described by Bouwman et al. (1997) is prescribed in
the study of Xu and Penner (2012), and the CEDS inven-
tory (McDuffie et al., 2020) is used in Paulot et al. (2016)
and Pai et al. (2021). Emission inventories do not account
for environmental factors, such as the temperature or soil hu-
midity, which is an important limitation for studying spatial–
temporal variability in the atmospheric NH3 and NH+4 con-
centrations. Most inventories rely on the fertilizer applica-
tion period to represent the seasonality of emissions but
are based on few studies and usually use the same tempo-
ral profile (most of the time reflecting European agricul-
tural practices), which is extrapolated to the whole globe.
More complex inventories exist, such as the updated version
of the Global Livestock Environmental Assessment Model
(GLEAM; Uwizeye et al., 2020) or the comprehensive food
system developed by Conijn et al. (2018), and combine more
detailed agricultural information (e.g., animal requirements,
livestock system types, manure management, and the sur-
face types receiving manure) with EFs but consider yearly
emissions. Even though this type of approach is more accu-
rate due to the detailed consideration of agricultural prac-
tices, it shows limitations for studying the temporal vari-
ability in emissions due to the static representation of the
agricultural practices when using unique EFs or only one
seasonal profile for the whole globe. Recently, more com-
plex models based on an explicit description of processes
that control the volatilization from soil have been developed.
The FAN (Flow of Agricultural Nitrogen) model, initially
developed by Riddick et al. (2016) and largely improved
by Vira et al. (2020), combines information on agricultural
practices, emission factors for manure management emis-
sions, and physical processes for soil volatilization to com-
pute NH3 emissions from the different agricultural sources.
When soil processes are tightly coupled to the main me-
teorological drivers, the related emissions respond to envi-
ronmental changes, which is particularly interesting in the
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case of climate–surface interaction studies. Even if the FAN
model is integrated into the Community Earth System Model
(CESM), the manure produced by livestock is not directly
linked to the biomass productivity, which can represent un-
certainty in the N content of the manure and, therefore, in the
resulting emissions.

In this study, in order to better account for the key param-
eters in the estimate of the NH3 emissions, we implement a
module representing the agricultural sector within the OR-
CHIDEE (Organising Carbon and Hydrology In Dynamic
Ecosystems) land surface model (LSM). Our methodology
is based on the integration of a complete dynamical agricul-
tural module (CAMEO, Calculation of AMmonia Emissions
in ORCHIDEE) within ORCHIDEE, which details a feed
management module linked to the biomass productivity of
the model and animal characteristic information, a manure
management representation that combines regional agricul-
tural handling practices, and a complex soil emission com-
ponent based on key environmental parameters such as the
vegetation growth, temperature, and soil humidity.

Section 2 describes the agricultural model within OR-
CHIDEE and the model setup of the 11 year control simula-
tion (2005–2015) as well as with the sensitivity analysis sim-
ulation set. Global and regional results comparing previous
works (CEDS and the FAN model from Vira et al., 2020) and
seasonal analysis using airborne measurements (Infrared At-
mospheric Sounding Interferometer-derived emissions) are
presented and discussed in Sect. 3. The conclusions are pro-
vided in Sect. 4.

2 Methods

This section describes the process-based model for the N
flow from agriculture within the ORCHIDEE LSM. The new
module implemented here aims at calculating two types of
emissions from agriculture: the manure management chain
emissions (livestock housing and yard emissions as well
as manure storage emissions) and soil emissions (account-
ing for fertilizer and manure application). The ORCHIDEE
model framework is described in Sect. 2.1.1 followed by the
different interactive components (shown in Fig. 1): the feed-
ing of livestock, the whole manure management chain, fertil-
izer surface application, and the soil–plant–atmosphere con-
tinuum processes leading to soil emissions. Section 2.2 de-
scribes the setup of the simulations and the model evaluation
protocol.

2.1 The ORCHIDEE LSM

2.1.1 General description

ORCHIDEE is a global-scale terrestrial ecosystem model
coupling energy, water, and both the carbon and nitro-
gen cycles (Ciais et al., 2005; Krinner et al., 2005; Piao
et al., 2007). Vegetation comprises 15 plant functional types

(PFTs), among which two crop types (C3 and C4) and four
grass types (temperate, boreal, and tropical C3 grasses as
well as a single C4 class) are represented. The initial version
used in this study includes a simple management of the crop
biomass (which assumes that 45 % of the net primary pro-
ductivity, NPP, is harvested) but no grassland management.

The main N processes within the soil–plant–atmosphere
continuum are based on the OCN model (Zaehle and Friend,
2010; Zaehle et al., 2010). The representation of nitrifica-
tion and denitrification processes are based on the DNDC
(DeNitrification–DeComposition) model (Li et al., 1992; Li,
2000; Zhang et al., 2002). It accounts for ammonia/ammo-
nium (NH3/NH+4 ), nitrate (NO−3 ), nitrogen oxides (NOx),
and nitrous oxide (N2O) pools as well as the related emis-
sions. In addition to NH3, NOx , N2O, and N2 emissions, N
is lost through runoff and leaching processes. The N inputs to
soil mineral pools include atmospheric NOy and NHx depo-
sition, biological nitrogen fixation (BNF), and the application
of synthetic and organic fertilizers over agricultural lands.
The total ammonia nitrogen (TAN) pool is also updated ac-
cording to plant uptake, as described in Zaehle and Friend
(2010). The version of ORCHIDEE used for this study is
ORCHIDEEv3, revision 6863. It was part of the ensemble of
terrestrial ecosystem models used for the 2019 Global Car-
bon Budget (Friedlingstein et al., 2019) and was recently
evaluated by Seiler et al. (2022). Overall, ORCHIDEEv3
shows good agreement with observation-based data for car-
bon fluxes and vegetation state. Former revisions of OR-
CHIDEEv3 have also been used to quantify the global gross
primary production (GPP) flux (Vuichard et al., 2019) and
soil N2O emissions (Tian et al., 2018). In the initial version,
the organic fertilizer (i.e., manure) amount was prescribed
annually (Zhang et al., 2017a), and the corresponding quan-
tity of N was applied at a constant rate daily over the whole
year. In addition, the emissions from the whole manure man-
agement were missing, and only soil emissions were taken
into account. A description of the ORCHIDEE model, in-
cluding the nitrogen cycle and its interaction with the car-
bon cycle, is detailed in Vuichard et al. (2019). At the global
scale, the model evaluation shows good agreement between
the gross primary production simulated with the carbon–
nitrogen interaction version and the observational validation
set.

In this paper, we integrate the following new developments
within a new module called CAMEO for the Calculation of
AMmonia Emissions in ORCHIDEE:

– a new grassland and cropland management module ded-
icated to livestock feeding (Sect. 2.1);

– a module computing manure production and the associ-
ated emissions from indoor farming livestock activities
(housing, yard, manure storage) (Sect. 2.1);

– a new parametrization for agricultural N application
onto croplands and grasslands (Sect. 2.1);
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– an improved soil emission scheme based on a more re-
alistic representation of the soil–plant–atmosphere con-
tinuum (Sect. 2.1).

2.1.2 The agricultural N-flow module within
ORCHIDEE: CAMEO

Livestock feed management

Both the livestock feeding (BMing, kgCm−2 yr−1) and bed-
ding (BMbedding, kg Cm−2 yr−1) needs are calculated within
each grid cell from livestock density distribution maps, for
different livestock categories. The livestock types considered
in our study are non-dairy cattle, dairy cattle, pigs, small ru-
minants, and chickens, which are the main contributors to
global livestock NH3 emissions. Da , the distribution of each
livestock category a, is taken from the Gridded Livestock of
the World (GLW 2; Robinson et al., 2014) for the year 2006.

BMing for livestock category a is calculated as follows:

BMing (a) =Da ×SI×Wa, (1)

where Wa is the animal weight (kg), and SI is the specific
intake (the intake per animal weight unit, kgCkg−1 yr−1).

A daily dry matter intake equal to 2.5 % of the livestock
weight (Paustian et al., 2006) is considered for every live-
stock category, and a factor of 0.45 is used to convert the
dry matter into carbon matter (Paustian et al., 2006), leading
to an SI value of 0.01 kgCkg−1 yr−1. Regarding livestock
weights, we use regional values adapted from the Supple-
ment of FAO (2018), as listed in Table 1.

The livestock feeding and bedding needs are provided by a
fraction of the crop and grass NPP which is harvested (called
BMharv/graz). In order to quantify the amount of grassland
and cropland biomass needed to feed each livestock category
(BMing,grass (a) and BMing,crop (a), respectively), we use the
fractions of grass and crop that constitute the diet compo-
sition of each animal (dgrass (a) and dcrop (a), respectively).
The ruminant animals (i.e., cattle and small ruminants) have
a diet composed of a portion of grass and crop, whereas the
non-ruminant animals (i.e., pigs and chickens) have a crop-
only diet. The bedding needs are taken from crop residues
only.

BMing,grass(a) = BMing(a)× dgrass (a)

BMing,crop(a) = BMing(a)× dcrop (a) (2)

The diet composition dcrop/grass (a) is calculated from re-
gional feeding information detailed in the Global Livestock
Environmental Assessment Model (FAO, 2018) and is de-
scribed in the Supplement. The bedding is estimated as fol-
lows EMEP/EEA (2019):

BMbedding (a) =Da × 0.32×Strawa. (3)

Here, Strawa corresponds to the amount of straw
(kghead−1 yr−1) used as bedding for each livestock type

(Table 2), and the 0.32 factor corresponds to the C content
of straw, assuming a C : N ratio of 80 (USDA, 2022) for the
straw material and an N content of 4 gNkg−1 (EMEP/EEA,
2019). This value is consistent with recent experimental
studies by Su et al. (2020), who found 0.35 kgkg−1 of total
carbon in wheat straw.

BMbedding (a) and BMing,crop(a) constitute the total demand
for crops. We assume that the demand for crop biomass in
each grid cell is satisfied by the amount of crop biomass
harvested globally (global market). In contrast, the grass
biomass needs are satisfied locally. Indeed, the grass biomass
needs define the grassland management intensity through a
grazing indicator (GI, unitless) that corresponds to the frac-
tion of grass NPP for the year y that is harvested. Hence, the
GI is defined as follows:

GI(y) =min
(

BMing grass

NPPgrass above(y)
;maxabove

)
, (4)

where NPPgrass above(y) corresponds to the above NPP of
grasslands at the grid cell level (kgCm−2 per grid cell per
year) and maxabove, which is a parameter equal to 0.7 and
defined as the maximum of the above biomass available for
grazing/cutting.

NPPgrass above(y) is a function of the grassland NPP
(kgCm−2 per grassland per year) but also of the grassland
area defined in each grid cell. Due to an inconsistency be-
tween the land use map and livestock density map, the tar-
geted BMing grass value may not be reached by the use of the
GI. To ensure that BMing grass demand is always satisfied, we
adjust the diet composition of ruminants in some grid cells
by increasing dcrop (a) as much as needed (and by reducing
dgrass (a) by the same factor). The adjusted value of dgrass (a)
is named dgrass, adjusted (a) and is depicted in the Supple-
ment (Fig. S1). The GI is then applied to NPPgrass above(y)
on a daily basis in order to obtain the total effective grazed
biomass. For each animal, dgrass, adjusted (a) is used to deduce
the effective crop biomass from the effective grazed biomass.
Finally, each grid cell’s effective crop biomass is constrained
by the global crop harvested NPP. To do so, we compute
the ratio between the global effective crop biomass and the
global crop harvested NPP (HI) at a yearly time step. When
HI > 1, we impose the same constraint locally by dividing
the effective crop biomass by HI.

As our methodology is based on an N-flow scheme, the
C : N ratio imposed by the model for the crop and grass prod-
ucts is used to convert the carbon into the N biomass ingested
(in kgNm−2 yr−1). The grassland C : N ratio is unique for
each grid cell and varies spatially from 23 to 62, whereas the
cropland C : N ratio is fixed for the whole globe and is esti-
mated to be ∼ 38. BMing tot(y,a) represents the total (includ-
ing crop and grass products) N biomass ingested, which is
used to compute the resulting manure emissions (described
in the next section). Concerning the crop used as straw, a
fixed C : N ratio of 80 is chosen (EMEP/EEA, 2019).

Geosci. Model Dev., 16, 1053–1081, 2023 https://doi.org/10.5194/gmd-16-1053-2023



M. Beaudor et al.: Global agricultural ammonia emissions simulated with ORCHIDEE 1057

Figure 1. Scheme of the agroecosystem representation developed within ORCHIDEE. It is composed of four main components describing
feed management, manure management, surface N application, and the soil–plant–atmosphere continuum processes leading to the soil
emissions. The livestock distributions and synthetic fertilizers are the main forcing files in the system and are represented in the dashed
frames. The time steps (1 year, 1 d, and 30 min) of the processes are indicated using the arrows.

Table 1. Regional weights of the animal (kg) used in the intake needs calculation. Data have been adapted from FAO (2018). The regions
listed in the table are as follows: NA (North America), RUS (Russian Federation), WE (western Europe), EE (eastern Europe), NENA (Near
East and North Africa), ESEA (East and Southeast Asia), OCE (Oceania), SA (South Asia), LAC (Latin America and the Caribbean), and
SSA (sub-Saharan Africa).

NA RUS WE EE NENA ESEA OCE SA LAC SSA

Dairy cattle 750 500 594 514 370 398 461 336 556 287
Non-dairy cattle 744 611 611 610 407 482 440 409 556 296
Pigs 157 142 163 148 117 103 113 91 143 72
Chickens 1.5 1.7 1.9 1.8 1.6 1.7 1.7 1.4 1.6 1.7
Small ruminants 85 77 75 76 50 40 76 39 60 34

Indoor N flows and ammonia emissions

We adapt the scheme developed by Dämmgen and Hutch-
ings (2008) which defines indoor ammonia emissions for
each animal category. These pathways have also been used
in the Tier 2 methodology of the manure management part
of the EMEP/EEA Air Pollutant Emission Inventory Guide-
book EMEP/EEA (2019). It is based on an N-flow model
with mass transfers and emissions proportional to the TAN.

The main output of this module is the N emissions that
occur during housing, yarding, and storage of animals, along
with the resulting manure produced. The seasonal variability
in indoor N emissions is neglected, and the emissions and the
manure flow are calculated yearly.

Firstly, we compute the N biomass excreted by each an-
imal category (mexcreted) based on the excretion rates esti-
mated by Paustian et al. (2006) for the Intergovernmental
Panel on Climate Change (IPCC) Tier 2 recommendations
(see Table 2).

mexcreted(a) = BMing tot(y,a)× (1−Nretained(a)) (5)

Secondly, we compute the manure excreted during the dif-
ferent livestock activities as a proportion of the year spent
in housing, in the yard, and grazing, based on EMEP/EEA
(2019). The fraction of time spent in the yard (xyard, Table 2)
is prescribed. The remaining time fraction is split into graz-
ing (xgraz, Table 2) and housing periods.

mN (yard,a) = xyard,a×mexcreted(a)

mN (graz,a) = xgraz,a× (1− xyard,a)×mexcreted(a)

mN (house,a) = (1− xgraz,a)× (1− xyard,a)×mexcreted(a) (6)

Default values of the TAN fraction contained in the exc-
retal N (xTAN,a) from the manure management part of the
EMEP/EEA Air Pollutant Emission Inventory Guidebook
2019 (EMEP/EEA, 2019) (see Table 2) are used to calculate
the amount of TAN produced during each activity, i (hous-
ing, yarding, and grazing):

mTAN (i,a) = xTAN,a×mN(i,a). (7)
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Table 2. Default values for the fractions of the year spent grazing and in the yard, the proportion of TAN in the N mass retained, and the straw
used as bedding. The information has been taken and adapted from EMEP/EEA (2019). The straw used as bedding for pigs is the average
between different livestock types. The N retained is taken from Paustian et al. (2006).

xgraz xyard N retained xTAN Straw
(–) (–) (–) (%) (kghead−1 yr−1)

Dairy cattle 0.5 0.25 0.20 60 1500
Non-dairy cattle 0.5 0.10 0.07 60 500
Pigs 0 0 0.30 70 400
Chickens 0 0 0.30 70 0.00
Small ruminants 0.92 0.02 0.10 50 20

mTAN (graz,a) and mN (graz,a) are used in Sect. 2.1 for N ap-
plication on cultivated areas.

The ammonia emissions from housing ENH3(house,a)
(in kgNm−2 yr−1) combine the volatilization from liq-
uid and solid TAN masses, with specific emission fac-
tors: EFNH3 (house,liq,a) (kilograms of NH3-N per kilogram of
TAN) and EFNH3 (house,sol,a) (kilograms of NH3-N per kilo-
gram of TAN). EFNH3 (house,liq,a) and EFNH3 (house,sol,a) val-
ues are taken from Sommer et al. (2019) for each animal a
except for the small ruminants category, which is assigned a
value from EMEP/EEA (2019) (see Table 3). ENH3(house,a) is
written as follows:

ENH3(house,a) = (xliq,a×EFNH3 (house,liq,a)+ (1− xliq,a)

×EFNH3 (house,sol,a))×mTAN (house,a), (8)

where xliq,a (unitless) is the proportion of manure handled as
liquid for livestock type a, adapted from the Global Live-
stock Environmental Assessment Model (FAO, 2018) (see
Supplement).

Emissions from yarding (ENH3(yard,a)) are calculated from
the mass excreted in the yard, and there is no distinction be-
tween liquid and solid handling.

ENH3(yard,a) = EFNH3 (yard,a)×mTAN (yard,a) (9)

We compute the amounts of N and TAN that are stored
as liquid and solid before application (mN (stor,type,a)
and mTAN (stor,type,a) for type=liq,sol, respectively;
kgNm−2 yr−1; Eq. 10). For storage, we assume that all
of the manure from housing and yarding is stored, except
the N lost by ammonia emissions in the house and yard
(ENH3(house,a) and ENH3(yard,a), respectively). Manure from
yarding is considered liquid and goes in the liquid manure
storage. Concerning the liquid storage (i.e., slurries), a
fraction fmin of the organic N (N-TAN) is converted into
TAN through mineralization. A value of 0.1 is used for fmin
(Dämmgen and Hutchings, 2008; EMEP/EEA, 2019). For
solid storage, we account for an additional N source from
bedding (mbed,N,a). Incorporation of bedding in the manure
storage induces an immobilization of TAN in the organic
matter when manure is handled as straw-based solid manure,

at a rate fimm proportional to mbed,N,a. An fimm value
of 0.0067 kgkg−1 is used (Kirchmann and Witter, 1989;
Webb and Misselbrook, 2004; EMEP/EEA, 2019). This
immobilization greatly reduces the resulting NH3 emissions.

mN (stor,liq,a) = (mN (house,liq,a)−ENH3(house,liq,a))

+ (mN (yard,a)−ENH3(yard,a));

mTAN (stor,liq,a) = (mTAN (house,liq,a)−ENH3(house,liq,a))

× (1− fmin)+

mTAN (stor,liq,a)× fmin+ (mTAN (yard,a)−ENH3(yard,a));

mN (stor,sol,a) =mN (house,sol,a)−ENH3(house,sol,a)

+mbed,N,a;

mTAN (stor,sol,a) =mTAN (house,sol,a)−ENH3(house,sol,a)

−mbed,a× fimm. (10)

Here, mbed,N is the N mass of bedding (kgNm−2 yr−1), and
mbed is the dry matter mass of bedding.

Manure from storage is supposed to be entirely used as
fertilizer. The quantities mTAN (applic) and mN (applic) are the
respective TAN and N manures that will be applied to the sur-
face, as described in Sect. 2.1. They are obtained by remov-
ing the total N emissions from the stored manure (Eq. 11).

liquid
{
mTAN (applic,liq,a) =mTAN (stor,liq,a)−Estor(liq,a)
mN (applic,liq,a) =mN (stor,liq,a)−Estor(liq,a)

solid
{
mTAN (applic,sol,a) =mTAN(stor,sol,a)−Estor(sol,a)
mN (applic,sol,a) =mN(stor,sol,a)−Estor(sol,a)

(11)

In addition to emissions of NH3, other N species (N2O,
NO, and N2) emissions can occur from storage and, thus,
are required to calculate the final manure mass from storage.
These emissions are obtained using the EFs listed in Table 3
as follows:

Estor,liq,a =mTAN (stor,liq,a)×

(EFNH3 (stor,liq,a)+EFN2O (store,liq,a)

+EFNO (stor,liq,a)+EFN2 (stor,liq,a));

Estor,sol,a =mTAN (stor,sol,a)×

(EFNH3 (stor,sol,a)+EFN2O (stor,sol,a)

+EFNO (stor,sol,a)+EFN2 (stor,sol,a)). (12)
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Table 3. Emission factors (EFs) given as a percentage of the TAN content in the manure. EFs for the yard and the other N species come from
EMEP/EEA (2019). The other EFs are taken from Sommer et al. (2019). There is no distinction between liquid and solid manure for yard
EFs. Numbers in parentheses are the standard deviations given in Sommer et al. (2019) and used for the sensitivity analysis.

Manure type EFNH3 (house) EFNH3 (yard) EFNH3 (store) EFN2 (store) EFNO (store) EFN2O (store)

Dairy cattle Liquid 19 (5.7) 30 25 (11.2) 0.3 0.01 0
Dairy cattle Solid 8 (5.7) 30 32 (15.8) 30 1 2
Non-dairy cattle Liquid 19 (5.7) 53 25 (11.2) 0.3 0.01 0
Non-dairy cattle Solid 8 (5.7) 53 32 (15.8) 30 1 2
Pigs Liquid 27 (12.1) 0 11 (6.9) 0.3 0.01 0
Pigs Solid 23 (12.6) 0 29 (15.6) 30 1 1
Chickens Solid 21 (11.5) 0 19 (15.9) 30 1 0.2
Small ruminants Solid 22 (5.7) 75 30 (15.8) 30 1 2

The remaining manure after storagem(applic,a) and the ma-
nure produced during grazing m(graz,a) are the main output
of this specific module. Both quantities are the input for the
surface application component of the model (described in the
next section).

Organic application onto land

This section contains the description of the manure applica-
tion to soil. m(applic,a) and m(graz,a) are the manure remain-
ing after storage and the manure produced during grazing,
respectively (a description is given in Sect. 2.1). Both are
yearly stocks applied daily at a constant rate and during a
specific period, driven mainly by environmental conditions,
as described below. This assumption may neglect the actual
seasonal patterns of N application usually defined by local
governance in some regions. For instance, as discussed in
Van Damme et al. (2022), the time of the year when fertiliz-
ers can be applied in Europe is strongly dependent on local
regulations. Synthetic fertilizers are also considered in our
representation and follow the same temporal distribution as
the manure from storage. Note that ORCHIDEE does not dif-
ferentiate between natural and managed grassland. Only grid
cells with either the presence of livestock or fertilizer appli-
cation are considered for the emission calculation, so we can
assume that the pixel is managed.

As previously stated, the following two types of manure
are considered:

– Manure from storage and applied to soil as fertilizer.
The manure from storage is applied daily at a con-
stant rate for 6 months from the beginning of vegeta-
tion growth, corresponding to the first leaf development
depending on the PFT. The intermediate period of appli-
cation (Lapplication = 6 months) has been chosen in order
to account for the heterogeneity in the agricultural prac-
tices, as the model only represents C3 and C4 crop types
within the grid cell. Moreover, there is a lack of infor-
mation in the literature about N application onto grass-
land at the global scale. We assume that cropland and

grassland PFTs receive stored manure with a 2 times
higher preference for cropland fractions.

– Manure deposited during grazing activity by the rumi-
nants. The manure from grazing activitym(graz,a) is cal-
culated in Eq. (7) and is assumed to be only deposited
on grassland PFTs by ruminants. The first day of ma-
nure deposition for grazing also corresponds to the be-
ginning of vegetation growth. The amount and period
of manure deposited during grazing are animal-specific
and are determined by the fraction of time passed graz-
ing (xgraz,a).

The soil–plant–atmosphere processes leading to soil
emissions

In this section, we describe the physical processes in the soil
that influence ammonia emissions. A single soil TAN pool
(TAN(soil), gNm−2) is considered. The soil TAN pool is dy-
namically updated depending on the processes implemented
in the model. These processes are described in Zaehle and
Friend (2010). The processes corresponding to the creation
of NH+4 are related to mineralization, N application, and NHx
deposition, whereas the losses include nitrification, leaching,
and volatilization.

TAN(soil,aq) corresponds to the ammonium pool TAN(soil),
which is assumed to be diluted in the soil water at a different
heights in the soil according to the zactivity parameter.

The zactivity parameter is regulated by all TAN sources,
called “input” (“min” – mineralization, “dep” – deposition,
BNF, “fert” – mineral fertilizer, and “manure” – applied ma-
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Table 4. Summary of the data sources used in Sects. 2.1 and 2.1 for the calculation of the indoor emissions. All of the data are used for each
livestock type a except for the Ddairy cattle,i variable.

Abbreviation Description Unit Sources

D Spatial distribution for 2006 headkm−2 Robinson et al. (2014)
Ddairy cattle,i Country level i annual dairy cattle stocks head FAOSTAT (2020)
W Regional typical animal weight kg Adapted from FAO (2018)
dcrop/grass Regional diet composition % Adapted from FAO (2018)
Straw Annual straw used in bedding kg FM head−1 yr−1 EMEP/EEA (2019)
Nretention frac N-retention fraction % Paustian et al. (2006)
Lhousing Housing period day EMEP/EEA (2019)
xTAN Fraction of TAN in N excreted % EMEP/EEA (2019)
xliq Regional manure types % Adapted from FAO (2018)
EFN2O (stor), EFN2 (stor), European EFs. % TAN EMEP/EEA (2019)
EFNO (stor), EFNH3 (small rum) Every EF for small ruminants
EFNH3 (indoor) NH3 European EFs % TAN Sommer et al. (2019)

nure and manure from grazing), in soil as follows:

zactivity(t)=(pzact_deep

× inputmin+pzact_deep× inputdep

+pzact_deep× inputbnf+

pzact_surf(fert)× inputfert

+pzact_surf(manure)
× inputmanure+ zactivity(t − 1)
×TAN(soil))

×
1

inputtot+TAN(soil)
, (13)

where inputtot denotes the total TAN sources in soil. We as-
sume that the fertilization and the application of manure are
surface N additions to soil, whereas the other sources of TAN
(mineralization, deposition, and BNF) are deeply added into
soil (pzact_deep = 1.0 m). It is worth noting that inputfert is
given as the ammonium content of the total N mineral fertil-
izer applied (the parameter FracNH+4 ,fert is the fraction of the
ammonium content of the N fertilizer used to make the con-
version, and this parameter is tested in the sensitivity analy-
sis).
pzact_surf is obtained as described in Riddick et al. (2016):

pzact_surf(manure) = sW(m)× inputmanure/SWC,

pzact_surf(fert) = sW(f )× inputfert/SWC. (14)

Here, SWC is the soil water content computed by OR-
CHIDEE, sW(m) is the specific water volume of manure
(5.67×10−4 m3 of water per gram of nitrogen; Sommer and
Hutchings, 2001; Riddick et al., 2016), and sW(f ) is the spe-
cific water volume of synthetic fertilizers. sW(f ) depends on
the soil temperature Tg and is given by United Nations In-
dustrial Development Organization (UNIDO):

SW(f )=
1× 10−6

0.466× 0.66× e0.0239×(Tg−273)
. (15)

The emissions of NH3 (ENH3 , gNm−2 s−1) are obtained
following the resistive scheme used in the FAN model (Rid-
dick et al., 2016; Vira et al., 2020):

ENH3 =
NH3(g)−χa

Ra(z)+Rb
, (16)

where NH3(g) is the NH3 concentration at the sur-
face (gNm−3), χa is the free-atmosphere concentration
(gNm−3), Ra(z) is the aerodynamical resistance (sm−1),
and Rb is the quasi-boundary-layer resistance (sm−1).
χa is prescribed as a monthly field averaged over 11 years

from a run of the global LMDZ-INCA (Laboratoire de
Météorologie Dynamique–INteraction with Chemistry and
Aerosols) model at a 2.5◦× 1.3◦ resolution (39 vertical lev-
els) over the 2005–2015 period (Hauglustaine et al., 2014).
The spatial distribution of χa is presented in Fig. S4 (Sup-
plement) for both May and December (2005–2015 climatol-
ogy).
Ra(z) is computed interactively by the biophysics module

of the ORCHIDEE model. Rb has been implemented accord-
ing to Xu et al. (2019) as follows:

Rb =
v

DNH3

×

[
c

(LAI)2
×

(
l×µ∗

v

)]1/3

, (17)

where DNH3 is the molecular diffusivity of NH3 in air
(m2 s−1; Massman, 1998), c is an empirical constant equal
to 3, l is the leaf width (0.02 m; Massad et al., 2010),
v is the kinematic viscosity of air (1.56× 10−5 m2 s−1 at
25 ◦C), T is the air temperature (in K), and LAI is the leaf
area index (m2 m−2), which is computed by the ORCHIDEE
model. The resulting annual mean Rb ranges between 0 and
1.14 sm−1 over the globe. DNH3 is a function of temperature
and is written as follows:

DNH3 = 0.1978×
(

T

273.13

)1.81

× 10−4. (18)

Geosci. Model Dev., 16, 1053–1081, 2023 https://doi.org/10.5194/gmd-16-1053-2023



M. Beaudor et al.: Global agricultural ammonia emissions simulated with ORCHIDEE 1061

Henry’s law coefficient (KH) and the dissociation con-
stant of NH+4 (aq) in water (KNH4 ) (Sutton et al., 1994) are
used for the speciation between the different TAN species
(NH3(g),NH3(aq),NH+4 (aq)

(
gNm−3)).

KH =

[
NH3(aq)

][
NH3(g)

] (19)

KNH4 =

[
H+

][
NH3(aq)

][
NH+4 (aq)

] (20)

By combining Eqs. (19) and (20), we can compute the
gaseous phase of ammonia NH3(g), which is the fraction that
will be volatilized. TAN(soil,aq) corresponds to the aqueous
phase of TAN in the soil, which is modulated by the height
of the soil through the zactivity parameter.

NH3(g)=
TAN(soil,aq)

θ
Kfact
+ ε

, (21)

where θ is the volumetric soil water content (in cubic meters
of water per cubic meter of soil), and ε is the fraction of the
air-filled soil volume computed by the ORCHIDEE model.

Kfact is calculated as

Kfact = 1/(1+KH+KH
[
H+

]
/KNH4), (22)

andKH, Henry’s law constant for NH(3), depends on the sur-
face temperature Tg as follows:

KH = H× Tg× e
4092(1/Tg−1/Tref), (23)

where Tref is the reference temperature (298.15 K), and H
is a conversion factor equal to 4.905. We use the value of
0.59 molm−3 Pa−1 described in Sander (2015) by which the
perfect gas constant has been multiplied in order to get a unit-
less constant. KNH4 is the dissociation equilibrium and also
depends on the surface temperature Tg as follows:

KNH4 = 5.67× 10−10
× e−6286(1/Tg−1/Tref). (24)

The hydrogen ion concentration
[
H+

]
is assumed to be

constant and equal to 10−7, which approximately corre-
sponds to the pH given in Massad et al. (2010) for cattle ma-
nure, diammonium phosphate fertilizers in acidic soils, and
ammonium nitrate fertilizers. A pH of 7 is also adopted in
Riddick et al. (2016). In our simulations, the pH does not im-
pact the surrounding soil pH in the model, in contrast to Vira
et al. (2020), where the pH varies according to different TAN
age classes.

2.2 Modeling setup

The ORCHIDEE model, including all of the developments
described in Sect. 2, was run at a spatial resolution of 2◦

(180× 90). This spatial resolution is relatively low but en-
ables one to perform an ensemble of sensitivity tests at a

reasonable computing cost. We also performed a reference
simulation at a 0.5◦ resolution to ensure that the model res-
olution does not affect the results. We performed a 10-year
reference simulation over the 2005–2015 period. This sim-
ulation starts in January 2005 from a simulation done with
an ORCHIDEE version similar to the one presented in this
paper but without the developments presented in Sect. 2.1.2.
In the reference simulation, all annual forcing data are up-
dated every year except those related to BNF and the live-
stock density, which are constant over time. A set of nine
sensitivity test simulations characterized by specific changes
in the parametrization were conducted to evaluate the impact
of parameter uncertainty on agricultural ammonia emissions.
The parameters that have been tested are the atmospheric am-
monia concentration (χa), the pH of the manure (pH, default
value of 7), the timing period of N application (Lapplication,
default value of 183 d), the emission factor for housing and
storage activities (EFNH3 (indoor)), the fraction of ammonium
in fertilizer (FracNH+4 ,fert, default value of 0.6), and the N
deep processes regulation parameter (pzact_deep, default value
of 1 m). Table 5 summarizes the set of simulations and the
key parameters tested.

In Riddick et al. (2016), the value of χa was set to
0.3 µgNm−3, as it is representative of the concentration over
low-activity agricultural sites (Zbieranowski and Aherne,
2012). Little sensitivity of the emissions to this parameter
was found because χa is much smaller than NH3(g). How-
ever, this parameter has been tested in our implementation
through a sensitivity analysis.

The ORCHIDEE model requires the following set of forc-
ing data:

– meteorological data, including the near-surface air tem-
perature and specific humidity, wind speed, pressure,
short- and long-wave incoming radiation, rainfall, and
snowfall, from the Climatic Research Unit (CRU) and
Japanese reanalysis (JRA) dataset (CRU-JRA V2.1)
(Harris et al., 2014) (preprocessed and adapted by
Vladislav Bastrikov, LSCE, July 2020), provided at 6 h
time steps;

– the global average annual atmospheric CO2 concentra-
tion, which is provided by TRENDY (Le Quéré et al.,
2018);

– the global annual land cover distribution, based on com-
bined information from the Land-Use Harmonization
2 (LUH2v2) dataset at a 0.25◦ resolution (Hurtt et al.,
2020) and the ESA (2022) CCI Land Cover (see Lurton
et al., 2020, for more details);

– atmospheric N deposition fluxes (NHx and NOy) from
the IGAC/SPARC Chemistry-Climate Model Initiative
(CCMI; Eyring et al., 2013), which have been used in
the N2O Model Intercomparison Project (NMIP) project
(Tian et al., 2018), corresponding to information at a
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Table 5. Summary of the simulations performed and the parameters tested. The EFNH3 (indoor) parameter is described in Sect. 2.1 for housing
and storage emissions. The equations and sections related to the individual parameters are also indicated.

Simulation Parameter tested Value Equation or section

CONC0.3 χa 0.3 µgNm−3 Eq. (16)
CONC3 χa 3 µgNm−3 Eq. (16)
pH7.5 pH 7.5 Eq. (22)
TIM10 Lapplication 10 d Sect. 2.1
TIM365 Lapplication 365 d Sect. 2.1
EFmax EFNH3 (indoor) (reference value + standard deviation); see Table 3 Eqs. (8), (9), and (12)
FERT0.75 FracNH+4 ,fert 0.75 Eqs. (13) and (14)

pzact_deep,1.5 pzact_deep 1.5 m Eq. (13)

0.5◦ spatial resolution and a monthly temporal resolu-
tion;

– the annual mineral fertilizer rates over croplands and
grasslands from an annual dataset developed by Lu
and Tian (2017), which corresponds to a reconstruction
from 1960 to 2014 for the global cropland matched with
the HYDE 3.2 cropland distribution;

– the biological nitrogen fixation rate, which is provided
as climatological data as a function of the evapotranspi-
ration flux (see Vuichard et al., 2019, for more details);

– the distribution of each livestock category, which is
taken from the Gridded Livestock of the World (GLW
2; Robinson et al., 2014) and represents the gridded an-
imal densities (Da) for the year 2006 at a 1 km resolu-
tion. Small-ruminant densities correspond to the sum of
the sheep and goat densities. The dairy cattle distribu-
tion has been retrieved from the total cattle distribution
combined with national dairy cattle densities given by
FAOSTAT (2020). The calculation adopted is described
in the Supplement.

2.3 Model evaluation dataset

Our integrated approach allows the computation of differ-
ent variable levels before the final emission results, such as
biomass productivity, animal excretion rate, and manure pro-
duction. This set of variables offers the advantage of evalu-
ating our emissions at different stages of the N flow against
the previous works listed in Table 6.

The decadal mean (2005–2015) values of global and re-
gional calculated agricultural emissions, including indoor
and soil emissions, are compared to the CEDS inventory
(McDuffie et al., 2020) and the emissions simulated by
FANv2 (Vira et al., 2020). From the LMDZ–ORCHIDEE–
INCA coupling development perspective, it is interesting to
compare our approach with CEDS (McDuffie et al., 2020),
as it is a reference dataset offering a long period of data
(1750–2019). FANv2 has been chosen for our evaluation

because our work is based on a similar approach. The re-
gional budget accounts for Africa; tropical southern Asia;
Europe; China, Korea, and Japan (abbreviated as China–K–
J in the figures); Oceania; India; the USA and Canada; and
Latin America. The seasonal variations in ammonia emis-
sions are also evaluated against satellite-derived emissions
(Evangeliou et al., 2020). For that purpose, atmospheric NH3
columns observed by the Infrared Atmospheric Sounding In-
terferometer (IASI) satellite have been combined with the
NH3 lifetime calculated by LMDZ-INCA in order to re-
trieve emissions. The NH3 retrieval product used to derive
emissions in our study comprises the 2011–2015 morning
observations (Metop-A and -B) and follows a neural net-
work retrieval approach (ANNI-NH3-v3R), as referred to in
Van Damme et al. (2017, 2021). Both the lifetime and at-
mospheric columns are monthly products and share the ex-
act same grid resolution (LMDZ-INCA grid resolution at
2.5◦×1.3◦). All three CAMEO, CEDS, and FANv2 seasonal
variations are evaluated against IASI-derived emissions (de-
fined as IASIinv). In order to be consistent with IASI observa-
tions (where no source distinction is possible), the CAMEO,
CEDS, and FANv2 agricultural emissions need to be comple-
mented by fire emission data taken from van der Werf et al.
(2017) (Global Fire Emissions Database, GFED s4) as well
as by industrial and waste sources (McDuffie et al., 2020).
The extended emissions are referred to as CAMEO+, FAN+,
and CEDS+, respectively, as described in Table 7. It is im-
portant to note that only the ORCHIDEE model can provide
natural emissions; this source is not considered in the FAN+
nor the CEDS+ datasets.

3 Results and evaluation

3.1 Evaluation of intermediate variables

Using the ORCHIDEE model, we estimate the total
biomass produced, including grass and crop, to be about
103 TgNyr−1, which is slightly lower than previous esti-
mates (110–152 TgNyr−1 estimated by Bouwman et al.,
2013a; Billen et al., 2014; Bodirsky et al., 2014; Conijn et al.,
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Table 6. Summary of the different simulated variables evaluated in this work by comparison with previous studies.

Metric Description Unit Previous studies

BMharv/graz Global crop and grass production TgNyr−1 Bouwman et al. (2013a);
Billen et al. (2014); Bodirsky et al. (2014);
Conijn et al. (2018); Uwizeye et al. (2020)

BMing,tot Global N intake by livestock TgNyr−1 Billen et al. (2014); Bodirsky et al. (2014);
Conijn et al. (2018); Uwizeye et al. (2020)

ENH3 (indoor) NH3 emissions from housing, yarding, and storage kgNm−2 yr−1 Crippa et al. (2018); Vira et al. (2020)

mN,excr/applic Global amount of manure excreted/applied TgNyr−1 Beusen et al. (2008); Potter et al. (2010);
Bouwman et al. (2013b); Billen et al. (2014);
Bodirsky et al. (2014); Zhang et al. (2017a);
Conijn et al. (2018); Vira et al. (2020);
Uwizeye et al. (2020)

FN Global amount of fertilizer applied TgNyr−1 Bouwman et al. (2013b); Billen et al. (2014);
Bodirsky et al. (2014); Zhang et al. (2017a);
Conijn et al. (2018); Vira et al. (2020);
Uwizeye et al. (2020)

ENH3 NH3 emissions from agriculture TgNyr−1 McDuffie et al. (2020); Vira et al. (2020);
Evangeliou et al. (2020)

Table 7. Summary of the different datasets used in the comparison with the IASI-derived emissions. All of the emission sets (except FANv2
data, which are a 2010–2015 climatology) are taken from the 2011–2015 period and have been gridded onto the LMDZ-INCA default
resolution of 144× 142 pixels.

Configuration Emission category Data sources

CAMEO+ Agricultural emissions ORCHIDEE run
Natural emissions ORCHIDEE run
Waste and industrial sources CEDS (McDuffie et al., 2020)
Biomass burning GFEDs4 (van der Werf et al., 2017)

FAN+ Agricultural emissions FANv2 data (2010–2015) (Vira et al., 2020)
Natural emissions Not taken into account in this dataset
Waste and industrial sources CEDS (McDuffie et al., 2020)
Biomass burning GFEDs4 (van der Werf et al., 2017)

CEDS+ Agricultural sources CEDS (McDuffie et al., 2020)
Natural emissions Not taken into account in this dataset
Waste and industrial sources CEDS (McDuffie et al., 2020)
Biomass burning GFEDs4 (van der Werf et al., 2017)

2018; Uwizeye et al., 2020). The calculated global annual
crop production (expressed in N) is about 74 TgNyr−1 and
compares well with the 72 and 74 TgNyr−1 estimated by
Billen et al. (2014) and Zhang et al. (2021), respectively.
The calculated annual grass production (28.8 TgNyr−1) is
more than 3 times lower than the 80.3 TgNyr−1 reported by
Billen et al. (2014) and estimated from the difference be-
tween livestock ingestion and available feed resources. By
doing so, uncertainties from several components (crop pro-
duction, net import of vegetal proteins, and human consump-
tion of vegetal proteins) are accumulated. Our resulting to-

tal biomass ingested by the livestock (88 TgNyr−1) is lower
than the range found in the literature (122–167 TgNyr−1;
Billen et al., 2014; Bodirsky et al., 2014; Conijn et al., 2018;
Uwizeye et al., 2020) which can be attributed to the low
grassland production calculated in our model.

However, if the grass N production is largely underesti-
mated by ORCHIDEE, our grass C production estimate of
1.2 PgCyr−1 is close to the value of 1.95 PgCyr−1 reported
in the Fifth Assessment Report (AR5) of the IPCC (Smith
et al., 2014). In this respect, an overestimation of the C : N
ratio may also explain part of the grass N production under-
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Table 8. Global estimates of intermediate variables computed by
the model in this study for the 2005–2015 period and the range of
previous estimates.

Metric This study Range of previous
estimates

BMharv/graz (TgNyr−1) 103 110–152
BMing,tot (TgNyr−1) 88 122–167
mN,applic (TgNyr−1) 66 32–131
FN (TgNyr−1) 121.6 55–116

estimation. It can be explained using a unique grass C : N
ratio per pixel and a global C : N ratio for crop in the model.
Because we assume that all of the manure stored is then ap-
plied to soil, for the evaluation phase, we only consider data
from the literature that estimate the application rate of ma-
nure to soil. The global annual amount of manure application
(66 TgNyr−1) is lower than the range of 99–129 TgNyr−1

estimated in recent studies (Beusen et al., 2008; Potter et al.,
2010; Bouwman et al., 2013b; Billen et al., 2014; Zhang
et al., 2017a; Conijn et al., 2018; Vira et al., 2020; Uwizeye
et al., 2020).

Figure 2 compares the distribution of the N manure ap-
plied with the values retrieved by Zhang et al. (2017a) for the
year 2006 in order to be consistent with the reference live-
stock distribution used in our approach. The spatial distribu-
tion of the manure application highlights the main livestock-
raising regions, such as China, India, Europe, Latin America,
and the USA. It shows good consistency with Zhang et al.
(2017a), although it is higher in India, the USA, and Latin
America and lower in China and Europe. These differences
can be explained by the fact that we use different regional
animal weights per livestock category (Table 1), instead of
a fixed value as in Zhang et al. (2017a). This induces dif-
ferent N demands for similar livestock and, ultimately, dif-
ferent quantities of applied manure. Indeed, we use recently
adapted data for animal weights from FAO (2018), whereas
Zhang et al. (2017a) used IPCC guidelines (Tier1 IPCC,
2006; Paustian et al., 2006). For instance, for India, the non-
dairy cattle weight is almost 4 times higher, which explains
the differences observed in our calculation. Moreover, our
study assumes a unique N excretion rate per livestock type
and no livestock system distinctions as a simplification.

3.2 Agricultural emissions at the global scale

We estimate global NH3 agricultural emissions (averaged
over 2005–2015) of about 44 TgNyr−1: 78 % from soil
volatilization (driven by fertilizer and manure application)
and the remainder from indoor emissions (from livestock
housing, yarding, and storage). These global NH3 emissions
are within the range given by McDuffie et al. (2020) and Vira
et al. (2020) of 39–47 TgNyr−1 (Fig. 3a).

China, India, Africa, Latin America, the USA, and Europe
appear as the main contributors to global NH3 emissions,
accounting for 80 % of the total budget (Fig. 3b). Most of
these source areas, which have also been identified as agri-
cultural regions by Van Damme et al. (2018), are regions
with intensive crop cultivation (Fig. S2) and important live-
stock activities, inducing high N application rates (Fig. 2).
The spatial distributions of the calculated agricultural NH3
emissions show good agreement with the FANv2 and CEDS
results (Fig. 4, b, c). In India and China, our emissions are
slightly higher than FANv2 and CEDS estimates. Our val-
ues are lower than the FANv2 estimate in Latin America and
Africa but high compared with CEDS emissions, which are
particularly low in these two regions. In some parts of Africa
and Latin America, where the use of synthetic fertilizer is
low (never exceeding 2500 kgNkm−2 yr−1), livestock activ-
ity appears to be the main contributor to the emissions.

In intensive agricultural regions, data used for mineral
fertilizer application rates can be a source of discrepancy
between models. Vira et al. (2020) use the LUH2 dataset
(Hurtt et al., 2020), which assumes that only croplands are
fertilized. The amounts of fertilizer applied over croplands
are comparable globally between Vira et al. (2020) and our
study (respective minimum–maximum of 79–87 and 96–
101 TgNyr−1 over 2010–2015) but differ in some regions
(see Fig. S2a). In addition, in our study, grasslands are also
fertilized with a global amount of 25.7 TgNyr−1. This leads
to differences in the simulated soil emissions, more specif-
ically in India, the USA, and China, where grasslands are
highly fertilized (Fig. S2b) and can be translated into high
volatilization rates when compared with FANv2.

NH3 emissions peak in June–July–August for most re-
gions (the USA, Europe, China, and Africa; Fig. 5)
with maximum values reaching 16.4 gNm−2 yr−1 in east-
ern China. The peak in India appears earlier in spring,
whereas two peaks occur in Latin America: one during
December–January–February and one during September–
October–November. Depending on the region, the season-
ality of the emissions varies according to different factors,
including environmental parameters and agricultural prac-
tices. This aspect will be analyzed in more detail in Sect. 3.4
and 3.5.

The spatial pattern of the simulated indoor NH3 emissions
(Fig. 6b) is similar to that of manure application rates, with
both being driven mainly by livestock density. Hot spot re-
gions of indoor emissions are located in eastern China, east-
ern India, and northern Europe, with maximum values reach-
ing up to 1.7 gNm−2 yr−1. The major sources of volatiliza-
tion from soils are located in India, eastern China, and the
USA, with a maximum value of 12 gNm−2 yr−1. The differ-
ence in spatial patterns between the two source categories is
mainly due to the fact that soil emissions not only depend
on livestock distribution (indoor emissions) but also on envi-
ronmental conditions and mineral fertilizer application rates.
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Figure 2. The manure application (kgNkm−2 yr−1) (a) simulated by CAMEO and averaged over the 2005–2015 period and (b) calculated
by Zhang et al. (2017a) for 2006.

Figure 3. Averaged global (a) and regional (b) NH3 emissions (TgNyr−1) from indoor activities (“Indoor”, darker bars) and agricultural
soil (“Agri. soils”, lighter bars) computed by CAMEO over the 2005–2015 period (“CAMEO”, blue bars) and FANv2 (Vira et al., 2020)
over the 2010–2015 period (“FAN”, green bars). Total agricultural emissions (accounting for manure management and soil volatilization)
estimated in the CEDS inventory (2005–2014 average) (McDuffie et al., 2020) are represented in purple (“CEDS-Agri. total”). China–K–J
accounts for China, Korea, and Japan.

The sensitivity of modeled emissions to some of these factors
is presented in Sect. 3.4.

The agricultural NH3 emissions from manure management
(qualified as “indoor”) are poorly quantified at the global
scale. While Vira et al. (2020) reported this emission source
to be 18 TgNyr−1 for 2010, our estimate is half this value
(9.6 TgNyr−1) but is in good agreement with the NH3 emis-
sions reported by Crippa et al. (2018) and Beusen et al.
(2008) (9 TgNyr−1 for the year 2010 and 2000, respec-
tively). Biomass excreted in our model is 40 % lower than
what is produced in FANv2, which can partly explain the
difference observed in the resulting indoor emissions. In ad-
dition, we use EFs from recent studies (Sommer et al., 2019;
EMEP/EEA, 2019), whereas a parametrization relying on the
temperature and the ventilation rate is used in FANv2 (Vira
et al., 2020). However, the parametrization in FANv2 has
been adjusted to reproduce default EFs for barns and stores
from EMEP/EEA (2016) under European conditions. The
use of updated EFs compared with Vira et al. (2020) largely
explains the differences between the estimated indoor emis-
sion estimates. Moreover, in contrast to FANv2, our manure

management module integrates a distinction between solid
and liquid manure handling for each livestock type, with very
different EF values. As discussed in Groen et al. (2016), Mu
et al. (2017), and Uwizeye et al. (2017, 2020), uncertain-
ties associated with EFs are large and can lead to over- or
underestimates in indoor emissions and resulting soil emis-
sions. The sensitivity of our calculated total emissions (ma-
nure management and soil) to this input parameter will be
described in detail in Sect. 3.4, with a change of 14 % at the
global scale demonstrating that the parameter has a signifi-
cant impact on indoor emissions. Furthermore, we consider
that each animal category has unique grazing, housing, and
yarding periods, whereas Vira et al. (2020) consider regional
livestock production systems.

3.3 Emissions at the regional scale

Good agreement is found for the NH3 emissions in China
between CAMEO, CEDS, and FAN estimates. In agree-
ment with CEDS, India is the second biggest emitter region
(Fig. 3b). However, FANv2 estimates much higher emissions
in Africa and Latin America. As mentioned, there are impor-
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Figure 4. Simulated ammonia emissions (gNm−2 yr−1) from total
agricultural sources computed (a) by CAMEO (2005–2015 aver-
age), (b) by the FANv2 model (2010–2015 average) (Vira et al.,
2020), and (c) from the CEDS inventory (2005–2015 average) (Mc-
Duffie et al., 2020).

tant gaps between estimates given by CEDS and FANv2 for
these two regions. In Africa and Latin America, our calcula-
tion leads to intermediate results between CEDS and FANv2
estimates.

Our estimates are quite similar to those given by FANv2
and CEDS, especially in Europe, China, and India. How-
ever, our indoor emissions are usually lower than what is
computed by FANv2, except in the USA, where our emis-
sions are slightly higher. In China, our total agricultural esti-
mate of 9.3 TgNyr−1 is higher than those from CEDS and
FANv2. However, our estimate is lower than those from
several studies focusing on Chinese emissions: Kang et al.
(2016), Li et al. (2021), Zhang et al. (2018), Crippa et al.
(2018), and Zhang et al. (2017b) (9.7, 10.0, 10.3, 11.3, and
12.4 TgNyr−1, respectively). In India, the emissions that we
compute (7.1 TgN yr−1) are closed to the FANv2 emissions
(7.4 TgNyr−1). Our emissions in North America are 30 %
higher than the FANv2 value and the other estimates. As
shown in Fig. 6, the southern central part of the USA (mainly
Texas) is a hot spot region, where the maximum value can
reach 3 gNm−2 yr−1. The combination of low soil moisture

and a high temperature simulated in this area can explain
such high values of volatilization from the soil. In FANv2,
emissions do not exceed 1.5 gNm−2 yr−1. Unlike the USA,
our emissions in Europe are 30 % lower than FANv2 and
EDGAR4.3 emissions, whereas they are 15 % lower than
EMEP and CEDS emissions.

Unlike in FANv2, where three types of N fertilizers in
the form of ammoniacal nitrogen, urea, and nitrates are con-
sidered, we assume a constant ammonium fraction of 0.6
in synthetic fertilizers. Even if the yearly fertilizer applica-
tion is similar to the amount used in FANv2, the ammonium
pool in soil from the mineral application can be different.
This may imply differences in the emissions, especially in re-
gions where the mineral application is intensive, such as Eu-
rope, China, and India (See Fig. S2). Concerning Africa and
Latin America, our calculated emissions (∼ 5.4 TgNyr−1)
are within the range of CEDS and FANv2 values. Africa
and Latin America are characterized by specific environmen-
tal conditions along with different vegetation types, which
may explain the uncertainties present in the estimates. There
is also a lack of information regarding agricultural prac-
tices and resulting emissions in these regions. In Argentina,
Castesana et al. (2018) estimated agricultural emissions of
about 0.31 Tg N, whereas our emissions reach 0.91 Tg N and
are closer to the estimates of Vira et al. (2020) (1.02 Tg N).
The large differences mainly come from fertilizer use, reach-
ing 1400 Gg N in their approach. The fertilizer use from the
NMIP project (Tian et al., 2018) (752 Gg N) is in line with
the reported values in Castesana et al. (2018) and consistent
with the IFASTAT values for 2010–2015 (400–900 Gg N).
We can not easily conclude whether the emissions differ-
ences come from EFs or manure production estimates. We
can only compute a posteriori a single EF for soil emission
from our process-based modeling, whereas no manure stock
production is given in Castesana et al. (2018).

3.4 Sensitivity to model parameters

Among the parameters tested, the manure pH used in the cal-
culation of the gaseous phase of ammonia is the strongest
driver of NH3 emissions (Fig. 7). At the global scale, the pH
induces an increase of about 74 % when fixed at 7.5 com-
pared with the reference value fixed at 7.

The impact of the pH is very variable from one region
to another: it reaches up to 90 % in some regions such as
Africa and the USA, whereas it is the lowest in India (49 %)
(Fig. 7). In order to explain these regional differences, we
explored the drivers of the spatial distribution of modeled
NH3 emission sensitivity to pH. The spatial distributions of
the sensitivity of NH3 emissions and the gaseous ammonia
pool of the soil to pH are similar (Fig. 8a). In particular, the
sensitivity is low in India compared with other regions, like
Europe, for both variables. Figure 8b shows the spatial pat-
tern of the dissociation constant of ammonium. The high-
est values are located in the warmest regions, such as India,
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Figure 5. Regional seasonal agricultural ammonia emissions averaged over the 2005–2015 period (gNm−2 yr−1) simulated by CAMEO.
Boxes delimit the regions used in the analysis comparing CAMEO emissions with IASIinv (Sect. 3.5). Note that the scales are different for
each region.

where the temperature is one of the main drivers of the dis-
sociation constant. As the dissociation reaction (Eq. 20) is
favored in these regions (more NH3 is available), it implies
that volatilization is more likely to occur. Along with the high
dissociation constant, India is characterized by an important
soil NH+4 concentration (Fig. 8c) due to intensive agricultural
input (mineral fertilizer and manure application), leading to

a high quantity of TAN being available for emissions. In re-
gions where conditions promote high NH3 volatilization, pH
is a weaker driver of emissions. Despite the regional differ-
ences in the pH sensitivity, it is an environmental parameter
that is an essential driver in the emissions and can be a source
of significant uncertainty in our model.
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Figure 6. Simulated ammonia emissions averaged over the 2005–2015 period (gNm−2 yr−1) from agricultural soil (fertilizer and manure
application) (a) and manure management (b).

Figure 7. Global and regional differences between NH3 emissions from the test simulation (TEST: CONC0.3, CONC3, pH7.5, TIM10,
TIM365, EFmax, pzact1.5 , and FERT0.75) and the reference simulation (REF) in teragrams of nitrogen (TgN). Percentages indicate change
relative to the REF value: (TEST−REF)/REF× 100. China–K–J accounts for China, Korea, and Japan.

Riddick et al. (2016) also studied the emission sensitivity
to pH change. They estimated an increase of 50 % and 70 %
in the manure and fertilizer emissions, respectively, when
changing the pH from 7 to 8. Even though the sensitivity that
we describe seems higher than that in Riddick et al. (2016),
no clear conclusion can be reached because we consider a
unique pool of TAN. Indeed, we calculate the impact of a
change in the total emissions, whereas Riddick et al. (2016)
calculated changes in both the manure and fertilizer emis-
sions by changing the pH of the two TAN pools (manure and
the fertilizer) separately.

Changing the duration of the N application (mineral fertil-
izer and stored manure) from 183 to 10 d induces a 30 % in-
crease in global NH3 emissions. The highest increase is cal-
culated in China (86 %), whereas Europe’s impact is slightly
negative (−4 %). Reducing the duration of fertilization in-
duces a significant change in the emission dynamic (Fig. 9),
with emission peaks occurring right after the start of the veg-
etation growing season, considered in our model as the first
day of the N application period (Fig. 10). However, the emis-

sion sensitivity to fertilization duration varies across regions,
depending on the environmental conditions after the start of
the vegetation growing season. In China, this signal is on av-
erage higher in April–May (Fig. 10). It is the period with
the lowest soil moisture value and the highest soil temper-
ature, which are conditions that maximize emissions. This
could explain the high sensitivity that we observe in this re-
gion. On the contrary, in Europe, the growing season signal
appears mainly in February and April, when the soil tempera-
ture is the lowest and the soil moisture the highest, indicating
that these conditions are the least favorable for emissions, re-
sulting in a negative sensitivity.

When N is constantly applied throughout the year (365 d),
the emissions are reduced by about 12 % globally, with In-
dia being the region with the strongest reduction (−28 %).
The emissions are lower when N is applied throughout the
year because it reduces the quantity of N emitted when con-
ditions are the most favorable for volatilization. The varia-
tion in pzact_deep from 1 to 1.5 m has a relatively constant
impact on NH3 emissions of about−20 % over every region.
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Figure 8. (a) The relative anomaly of gaseous ammonia in soil be-
tween the pH7.5 simulation and the reference simulation as a per-
centage (%). (b) The NH+4 (aq)/NH3(aq) dissociation constant from
the reference simulation (molL−1). (c) The soil NH4 concentration
modulated by the zactivity parameter (gNm−2).

Increasing pzact_deep increases the dilution of specific ammo-
nium sources (that were assumed to be “deep sources” such
as BNF, deposition, and mineralization) in soil, which in turn
reduces emissions. Concerning the sensitivity to the content
of ammonium in N fertilizers, when FracNH+4 ,fert is increased
by 20 %, emissions increase by about 14 % on average. In
China and India, where fertilizer use is the highest, the in-
crease can reach+24 % (see Fig. S5). When fixing the atmo-
spheric concentration at 0.3 and 3 µgNm−3, the global NH3
emissions increase by 5 % and decrease by 11 %, respec-
tively. In Africa, where the impact of using a concentration
of 3 µgNm−3 is the highest, emissions are reduced by 26 %,
whereas they slightly increase in India (3 %). Indeed, over
India, atmospheric NH3 concentrations from LMDZ-INCA
are higher than 3 µgNm−3, in particular during May which
experiences values up to 7 µgNm−3 (Fig. S4). Counterin-
tuitively, using a fixed atmospheric NH3 concentration (the
CONC0.3 and CONC3 simulations) does not induce any im-
portant change in the seasonality of emissions (Fig. 9). The
sensitivity to this parameter has also been tested in FANv1,
and the same range of model response was found (Riddick
et al., 2016).

Finally, higher emission factor values imply an increase
in total NH3 emissions of about 6 % globally. Although this

change is not as significant as other factors, it is worth noting
that this impact is only driven by indoor emissions, which
account for 22 % of the total emissions globally. In Europe
and Latin America, for instance, where the contribution of
indoor emissions to the total emissions can reach more than
90 % (Fig. S3), the impact of using higher EFmax values cal-
culated at the scale of these two regions (14 % and 12 %, re-
spectively) is higher than the impact calculated at the global
scale.

3.5 Emission seasonality

Seasonality patterns have been first explored by comparing
our emissions against the CEDS inventory and the FANv2-
simulated emissions. As shown in Fig. 11, we calculate
maximum emissions during the spring and summer seasons,
whereas the emissions peak almost everywhere only during
spring in CEDS and FAN. In the three datasets, the lowest
values are calculated during winter, when the meteorological
conditions are not favorable for emissions and N application
is lowest.

The summer peak observed in our emissions and the
spring peak in CEDS and FAN in the USA, more specifi-
cally in the central and southern central parts of the USA,
are also reported by the Magnitude And Seasonality of Agri-
cultural Emissions (MASAGE) bottom-up inventory from
Paulot et al. (2014). In MASAGE, two peaks are highlighted
during the year: one in March and the other in June. Goebes
et al. (2003) and Pinder et al. (2006) attributed these peaks
to the timing of the mineral fertilizer and manure applica-
tion. This is consistent with our approach, as indoor emis-
sions do not vary over the year and only the N application is
time dependent. In Europe, our emissions are higher in sum-
mer, whereas Paulot et al. (2014) estimated a clear peak in
spring, like in FANv2 and CEDS. In addition, the analysis
of Fortems-Cheiney et al. (2020), based on different emis-
sion inventories for France, showed the substantial contribu-
tion of mineral fertilizer application to emissions, leading to
a peak in April. Paulot et al. (2014) demonstrated that April
is when emissions reach a maximum over several European
agricultural regions, such as Portugal and Spain or Benelux,
Germany, and Denmark, due to local regulations preventing
farmers from applying manure outside of the growing sea-
son. These regions are also characterized by large emissions
in July, likely from livestock. This has recently been con-
firmed by top-down emissions based on Cross-track Infrared
Sounder (CrIS) and IASI observation estimates in the UK
(Marais et al., 2021). Our approach is constrained by the
low level of detail in crop diversity, mainly due to the spa-
tial resolution of the model. Thus, we choose a long enough
N application period to catch the crop system diversity. In
China, the highest emissions are calculated by our model in
summer, which is supported by previous inventories (Streets
et al., 2013; Kang et al., 2016; Xu et al., 2018) and satellite
observations such as the Tropospheric Emissions Spectrom-
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Figure 9. Regional NH3 emissions (gNm−2 yr−1) from different sets of simulations. Green lines are the emissions from the reference
CAMEO simulations. Dark and light blue lines are emissions from the respective TIM10 and TIM365 simulations. Dark red and orange lines
are emissions from the respective CONC0.3 and CONC3 simulations. China–K–J accounts for China, Korea, and Japan.

Figure 10. The regional monthly simulated soil moisture (m3 m−3, in blue) and soil temperature (K, in orange). The regional monthly signal
for leaves to start to grow in ORCHIDEE averaged over the different PFTs is drawn using dotted gray lines (this metric is unitless and can
be seen as a qualitative signal for the start of the vegetation growing season). Variables are for 2006. China–K–J accounts for China, Korea,
and Japan.

eter (TES) instrument (Shephard et al., 2011) and the At-
mospheric Infrared Sounder (AIRS) retrievals (Warner et al.,
2017). Our emissions in India peak in spring but remain high
during summer. This pattern is also highlighted in the HTAP
emissions and IASI satellite data (Janssens-Maenhout et al.,
2015; Van Damme et al., 2017), where no strong seasonality
is shown over the Indo-Gangetic Plain, but higher emissions
are noted from April to September.

To complete our analysis, monthly emissions derived from
the IASI satellite (IASIinv) averaged over the 2011–2015 pe-
riod are used as a comparison regarding different hot spot re-
gions defined in Fig. 5. The same operation has been carried
out for agricultural emissions from FANv2 and the CEDS
inventory, and the details of the CAMEO+, CEDS+, and
FAN+ dataset constituents are listed in Table 6. First, it
is worth noting that the seasonality of CAMEO+, CEDS+,
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Figure 11. Seasonal patterns of ammonia emissions (gNm−2 yr−1) from total agricultural sources simulated by CAMEO (2005–2015
average, first column), estimated in the CEDS inventory (2005–2015 average, second column), and simulated by the FANv2 model (2010–
2015 average, third column).

and FAN+ is primarily due to their respective agricultural
emissions; the other sources have no important role in the
seasonality. Indeed industrial and waste sources show very
low annual standard deviations (in the ranges of 10−7 and
10−8 gNm−2 yr−1, respectively) compared with the agricul-
tural emissions estimated by CEDS, FANv2, or CAMEO (0–
8 gNm−2 yr−1). Biomass burning emissions have a standard
deviation reaching 0.6 gNm−2 yr−1 in areas characterized by
high fire activity, whereas the deviation is intermediate in
agricultural regions (∼ 10−2 gNm−2 yr−1; Fig. S7). Over-
all, our emissions seem to be consistent with IASIinv, with
the general patterns and the absolute values being similar
(Fig. 12), except for the equatorial Africa and central Brazil
regions where CAMEO+ largely underestimates IASIinv.
Seasonal emission patterns of CEDS+ and FAN+ are quite
close to each other but very different from IASIinv. FAN+
and CEDS+ usually depict a sharp peak in spring (1 month
in advance in FAN+) as well as another smaller peak only
for CEDS+ in September–October. While the seasonality in
CEDS+ is artificially retrieved from a specific profile, the
temporal variability in FAN+ is driven by the meteorolog-
ical conditions and the crop types present within the pixel.
Even though the representation of crops in version 5.0 of
the Community Land Model (CLM5.0) used in FANv2 is
more precise than in ORCHIDEE (eight crop types compared
with two), we observe that the temporal variability is bet-

ter represented in our approach when compared to IASIinv.
In FANv2, the fertilizer application is triggered 20 d after
leaf emergence. This might explain the single sharp peak ob-
served in spring, while the long period (6 months) that we
have chosen seems to capture the general pattern of emis-
sions better. More specifically, there is very good agreement
between CAMEO+ and IASIinv in the central USA, where
emissions peak in summer (> 2 gNm−2 yr−1). In Europe,
our calculated emissions show a clear and strong peak in
July, whereas IASIinv patterns are different. In northern Eu-
rope, IASIinv presents two peaks, in March and in August,
with very low emissions in winter, whereas emissions re-
main at around 0.5–0.8 gNm−2 yr−1 in CEDS+, CAMEO+
and FAN+. These differences might be explained by high
uncertainties associated with the IASI instrument during this
period. Van Damme et al. (2014) highlighted limitations in
the IASI (Metop-A) measurement availability over Europe
in winter 2011. The number of cloud-free observations is
low, especially in December and January, with only 4 % of
the dataset being associated with an error lower than 50 %
due to the thermal contrast (defined as the temperature dif-
ference between the Earth’s surface and the atmosphere at
1.5 km) and the amount of ammonia present in the atmo-
sphere. In southern Europe (the Spanish region), IASIinv

emissions show a weaker seasonal cycle than CAMEO+,
peaking in summer. Spain is characterized by a diversity of
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agricultural production types (e.g., crops, fruits, and olives)
which are not differentiated in our model. This highlights a
limitation in our approach: the homogeneous representation
of agricultural lands causes emissions to have the same sea-
sonal pattern over this region. In the northern part of India,
CAMEO+ highlights a peak in May, which is 2 months ear-
lier than the peak in the IASIinv. In agreement with IASIinv

results, Tanvir et al. (2019) also depicted a clear peak in the
NH3 concentration in July using the TES data for the Indo-
Gangetic Plain. It is worth noting that IASI observations in
this specific region might be associated with a high level of
uncertainties (Marais et al., 2021). Marais et al. (2021) in-
dicated that, in addition to the intense biomass burning sea-
son and the relatively low abundance of acidic aerosols in
northern India, warm temperatures may increase emissions
and suppress the partitioning of NH3 to aerosols, thereby
inducing an enhancement in the spectral signal. In the Chi-
nese hot spot, we observe the same peak in summer for both
CAMEO+ and IASIinv, even though our maximum value is
almost 2 times higher than that of IASIinv (Fig. 12).

In Africa and Latin America, our emissions show a less
pronounced variability over the year than IASIinv. Results in
Africa show three peaks (February, May, and October) in the
IASIinv, whereas our emissions highlight only one peak in
June (Fig. 12). Equatorial Africa is a specific region with re-
spect to emission seasonality that has recently been studied
in Hickman et al. (2021). The aforementioned work revealed
different ecoregion drivers of the atmospheric NH3, explain-
ing the seasonal patterns observed by the IASI satellite. The
region chosen in our study is between the two northern ecore-
gions, wet and dry savannas, which are characterized by im-
portant livestock densities and intense biomass burning ac-
tivities.

The June peak retrieved in CAMEO+ and IASIinv can be
attributed to the seasonal pattern of the dry savanna. This
time of the year corresponds to the rainy season in the dry
ecoregions, and emissions from soil (from livestock excreta
and natural processes) are expected to be stimulated through
microbial activity enhanced by precipitation (Hickman et al.,
2018). Hickman et al. (2021) demonstrated that precipitation
and temperature are the most important predictors to explain
the seasonality of the emissions in this region. The two other
peaks in the IASIinv during the dry season (February and Oc-
tober) could be a contribution from the wetter region located
just below the dry savanna. Hickman et al. (2021) demon-
strated that, in addition to the importance of the soil emis-
sions in this region, vegetation fires during this period might
explain additional emissions. This result is also supported
by the long-term measurements from INDAAF (International
Network to study Deposition and Atmospheric composition
in Africa), which suggest that the seasonality in the wet sa-
vanna is the result of biomass burning, with a high increase in
the concentrations during the dry season (Adon et al., 2010).
The absence of these two peaks in our estimate can be ex-
plained by an underestimation of the biomass burning emis-

sions from the GFEDs4 inventory used to complement our
emissions (van der Werf et al., 2017). This inventory is based
on MODIS biomass burning area, and recent analysis has
suggested that MODIS underestimates fire emissions by a
factor of 2–5 due to the non-detection of small fires (Roteta
et al., 2019; Hickman et al., 2021; Ramo et al., 2021), mainly
from agricultural practices.

The case of Latin America has been much less studied, and
we observe strong seasonality in IASIinv. The two regions
in Latin America are characterized by croplands, intensive
livestock farming, and biomass burning activities. Over cen-
tral Brazil, IASIinv reveals an important peak in September
(> 4 gNm−2 yr−1) that is only represented in the CAMEO+
and FAN+ time series by a smooth increase. Andela et al.
(2017) has shown a strong positive spatial correlation be-
tween burned area and cropland fractions in this ecoregion,
probably suggesting significant agricultural waste burning.
In addition, Castro Videla et al. (2013) have also shown a
maximal biomass burning activity measured by MODIS via
the monthly mean number of fires (MODIS fire dataset) in
the Brazilian Caatinga shrublands and in the northeastern
part of the Cerrado region in September. In the Pampas re-
gion, the general seasonality from IASIinv and our emissions
describes the highest emissions from September to March
and low emissions during the rest of the year. However, our
emissions do not highlight the clear peaks in March and
September that are shown by IASIinv. The work of Cas-
tro Videla et al. (2013) has pointed out sugarcane and soy-
bean expansion in this region as the main drivers of biomass
burning. This can lead to the same conclusion as for Africa
with respect to the small fires that are often not detected by
MODIS and, thus, might be not considered in the GEFDs4
inventory used in our work. It is also worth noting that ma-
nure application as a fertilizer is not a common practice in
Argentina (Vázquez Amabile et al., 2015). In our approach,
all of the manure is applied. This would potentially lead to a
distinct seasonal cycle compared with a case in which all of
the manure is stored for the whole year.

The temporal correlation scores between the reference
(here IASIinv) and CAMEO+, CEDS+, and FAN+ calcu-
lated over the monthly time series for the 2011–2015 pe-
riod are plotted in Fig. 13. The results highlight excellent
month-to-month agreement with respect to variability be-
tween CAMEO+ and IASIinv in most regions of the globe.
In the main hot spot regions, such as China, India, Europe,
and the USA, correlations are between 0.7 and 0.9, while cor-
relations between IASIinv and CEDS+ and between IASIinv

and FAN+ hardly exceed 0.5. This means that our modeling
approach enables a satisfying representation of the seasonal
cycle in terms of agricultural and natural emissions in com-
parison with CEDS agricultural emissions, where a forced
seasonal profile (two respective high volatilization peaks in
May and September) is used, and with the FANv2 model, ac-
counting for a more realistic representation. However, in the
southeastern part of the USA and the Chaco region in Latin

Geosci. Model Dev., 16, 1053–1081, 2023 https://doi.org/10.5194/gmd-16-1053-2023



M. Beaudor et al.: Global agricultural ammonia emissions simulated with ORCHIDEE 1073

Figure 12. Monthly regional NH3 emissions (gNm−2 yr−1). The CAMEO emissions accounting for natural and agricultural emissions
aggregated with other sources are represented by the solid green line (CAMEO+), and CAMEO emissions accounting for agricultural
emissions are shown using the dotted green line (CAMEOagri). The agricultural sector of CEDS alone and CEDS aggregated with other
sources are represented by black dotted (CEDSagri) and solid lines (CEDS+), respectively. The IASIinv product is shown in red (IASIinv).
The agricultural emissions from FANv2 aggregated with other sources are shown in blue (FAN+). Other sources include biomass burning
from van der Werf et al. (2010) and industrial and waste sectors from CEDS. The regions are defined in Fig. 5.

America, we observe a degradation of the seasonal pattern
in our emissions compared with both CEDS+ and FAN+,
which show high correlations. The Chaco region is one of
the main hot spot in terms of natural soil emissions in our
model, as highlighted in Fig. S6. It is characterized by sa-
vanna with grasslands, thorn forests, a mosaic of woods with
savanna, and shrubs, and coarse grasses predominate (Berry
et al., 1995). However, most of the natural emissions com-
puted in ORCHIDEE originate from temperate broad-leaved
summer green PFTs. Many studies have demonstrated the
importance of the biomass burning events with respect to the
emission quantities mainly occurring during the dry season in
September–October (Castro Videla et al., 2013; Pereira et al.,
2022). IASIinv depicts an important peak in the NH3 emis-
sions (See Fig. S6) during this time of the year which can
be attributed to fire events. We observe that natural and agri-
cultural emissions have very similar patterns and are in the
same range. However, the fire contribution in the CEDS+ and
CAMEO+ datasets appears to be very low, supporting the
limitation of using the GFEDs4 inventory in bottom-up NH3
emission estimates for comparison with IASIinv. The degra-
dation of the correlation between IASIinv and CAMEO+
compared with the correlation with CEDS+ in the Chaco re-
gion is explained by the fact that there is almost no temporal
variability in the CEDS+ at the annual scale.

In India, there is an interesting pattern with a clear longi-
tudinal delimitation – western negative and eastern positive
correlations – in CAMEO+ and CEDS+. In the northwest-
ern part of India, CAMEO+ performs better with respect to
capturing the IASIinv seasonality than CEDS+ and FAN+.

Based on the comparison with the seasonality of IASIinv,
there is a strong limitation in using CEDS as NH3 emission
information for a CTM in order to study its impact on at-
mospheric chemistry. More specifically, we demonstrate that
using ORCHIDEE land-based emissions has the potential to
improve the seasonal signal of the resulting ammonia con-
centration in the atmosphere.

However, using IASIinv to evaluate our model results also
has limitations due to the uncertainties associated with the
satellite product and the derivation method. For example,
many studies using IASI data do not consider winter obser-
vations in the USA nor Europe (Marais et al., 2021) due to a
potential degradation of the data because of atmospheric con-
ditions (e.g., cloud cover and low temperatures). The use of
the NH3 lifetime simulated by LMDZ-INCA in the inversion
method is also associated with uncertainty. Moreover, the in-
terpolation method used to regrid the IASI observations onto
the LMDZ-INCA grid can be a source of uncertainties, as
demonstrated in Evangeliou et al. (2020).

4 Conclusions

In this study, we implement a new module dedicated to global
NH3 emissions from agricultural practices including live-
stock waste management and mineral fertilizer application
within the ORCHIDEE land surface model. Our develop-
ment allowed us to consider dynamical variables (such as
surface temperature and humidity) through different physi-
cal soil processes for the calculation of the NH3 fluxes. This
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Figure 13. Temporal correlation scores between IASIinv and
CAMEO emissions aggregated with other sources (a) and between
IASIinv and total emissions from CEDS for agricultural, industrial,
and waste sources aggregated with biomass burning (b) over the
2011–2015 period. Temporal correlation scores between IASIinv

and FANv2 aggregated with other sources are shown in panel (c).
Other sources include biomass burning from van der Werf et al.
(2010) and industrial and waste sectors from CEDS. Gray grid cells
correspond to a standard deviation in the monthly IASIinv time se-
ries lower than 0.2 gNm−2 yr−1 in order to avoid biased correlation
scores.

aspect, which is often neglected in bottom-up approaches, is
key for a realistic seasonal representation of the emissions. In
contrast to other emission models, our module interacts with
the ORCHIDEE model for vegetation variables such as the
biomass productivity. It allows the calculation of a grazing
index, a global indicator of the pressure exerted on the veg-
etation. We estimate global agricultural emissions of about
44 TgNyr−1, with soil volatilization from fertilizer and ma-
nure application accounting for 78 % of emissions and in-
door emissions (from livestock housing, yard and storage)
accounting for the remainder. The spatial distribution of the
calculated emissions is consistent with previous studies (the
CEDS bottom-up inventory from McDuffie et al., 2020, and
the process-based model by Vira et al., 2020) highlighting
the most important emission regions, such as eastern China,
northern India, the USA, and Europe, which are character-

ized by either a high N application rate or intensive livestock
farming.

In order to evaluate the modeled emissions, different sen-
sitivity simulations involving key parameter variations have
been performed. The most important parameter driving the
emissions is the pH of the N input, which induces an in-
crease of about 74 % for NH3 emissions when shifted from
7 to 7.5. Assuming a constant value for the pH simplifies our
approach. Using a soil pH map would imply more complex
processes, involving a change in the pH during N application.
In addition to the ammonium content, the pH used is rarely
available in the literature.

Manure management emissions are also associated with
uncertainties due to the use of EFs. Even though EFs are cal-
culated using an extensive definition of livestock and man-
agement systems as well as considering variations in cli-
mate and management practices, the use of European EFs
for the whole globe is an important assumption. However, we
demonstrate that the overall emissions are moderately sensi-
tive to the EFs, with a global change of 6 % for emissions
when the maximum range given by Sommer et al. (2019)
is used. Similarly, regional parameters given by FAO (2018)
were simplified to match the representation of the vegeta-
tion distribution in ORCHIDEE. Assuming livestock feed is
composed of only grass and crop products neglects the use
of the agro-industrial by-products, which is standard practice
in Europe and the USA. Modeled emissions are also sensi-
tive to the timing of the N application, especially in China,
where a shortening of the fertilization period induces very
high volatilization rates. Apart from this parameter, none of
the other factors tested appear to be important drivers of the
emission seasonality. Finally, the seasonality patterns have
been further analyzed using satellite-derived emissions. The
comparison suggests that ORCHIDEE simulates a very good
representation of the seasonality of NH3 emissions, with cor-
relation scores larger than 0.7 in the most important emission
regions.

In addition to the gain with respect to realistic season-
ality, our approach fills the lack of estimates for emissions
from natural soils, which are missing in almost every inven-
tory. This is highly interesting for Africa and Latin America,
where these sources are important (Hickman et al., 2018) and
not well studied. These encouraging results prove the poten-
tial of coupling ORCHIDEE land-based emissions to CTMs,
which are currently forced by bottom-up anthropogenic-
centered inventories such as CEDS. This framework provides
room to improve the representation of the emissions, as at-
mospheric variables are dynamically simulated by CTMs.
For instance, the surface NH3 concentrations used in the fi-
nal calculation of the emissions could be updated at each
time step instead of prescribing an external monthly file for
a given climatology. In addition, a tight relationship exists
between emission and deposition of NH3, as NH3 is particu-
larly reactive, and deposition of NH+4 contributes to the ree-
mission of NH3 from natural and managed soils. By cou-
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pling emissions with the global LMDZ-INCA CTM through
the dynamic calculation of wet and dry deposition, we plan
to improve the representation of the emissions as well as the
atmospheric concentrations. In addition, a further evaluation
will consist of comparisons with atmospheric composition
observations.

Code and data availability. The ORCHIDEE model is available
at https://forge.ipsl.jussieu.fr (last access: 6 February 2023). The
modified version of ORCHIDEE including the CAMEO module
used in this paper is available at https://doi.org/10.14768/db1cf5ce-
6fd2-4b4c-a3d1-598e2283c19d (Beaudor et al., 2022b). The NH3
emissions simulated by CAMEO as well as the manure produc-
tion data and the soil ammonium concentrations are available at
https://doi.org/10.5281/zenodo.6818373 (Beaudor et al., 2022a);
other model outputs and the IASI-derived emissions are available
upon reasonable request from the authors. The NH3 emission in-
ventories used in this study are available in McDuffie et al. (2020)
for the CEDS and at https://doi.org/10.5281/zenodo.3841723 (Vira
et al., 2020) for the FANv2 data.
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