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Abstract. Climate model emulators have a crucial role in
assessing warming levels of many emission scenarios from
probabilistic climate projections based on new insights into
Earth system response to CO2 and other forcing factors.
This article describes one such tool, MCE, from model for-
mulation to application examples associated with a recent
model intercomparison study. The MCE is based on im-
pulse response functions and parameterized physics of ef-
fective radiative forcing and carbon uptake over ocean and
land. Perturbed model parameters for probabilistic projec-
tions are generated from statistical models and constrained
with a Metropolis–Hastings independence sampler. Some of
the model parameters associated with CO2-induced warm-
ing have a covariance structure, as diagnosed from com-
plex climate models of the Coupled Model Intercomparison
Project (CMIP). Perturbed ensembles can cover the diversity
of CMIP models effectively, and they can be constrained to
agree with several climate indicators such as historical warm-
ing. The model’s simplicity and resulting successful calibra-
tion imply that a method with less complicated structures and
fewer control parameters offers advantages when building
reasonable perturbed ensembles in a transparent way. Ex-
perimental results for future scenarios show distinct differ-
ences between CMIP-consistent and observation-consistent
ensembles, suggesting that perturbed ensembles for scenario
assessment need to be properly constrained with new insights
into forced response over historical periods.

1 Introduction

Climate model emulators, or simple climate models, are
numerical tools for representing the complex Earth system
in reduced dimensions using aggregated variables, such as
global mean surface temperature (GMST) and global CO2
uptake over ocean and land. They offer the advantages of
ease and transparency, with a wide range of applications
in both scientific and decision-making contexts (Schwarber
et al., 2019). Their computational efficiency allows users to
conduct climate experiments for a number of emission sce-
narios with many different model parameters to derive prob-
abilistic climate projections. This article describes one such
tool, the Minimal CMIP Emulator (MCE), intended to em-
ulate state-of-the-art atmosphere–ocean general circulation
models (AOGCMs) in the Coupled Model Intercomparison
Project (CMIP; Meehl et al., 2014) with sufficient simplicity
and accuracy.

One key emulator application is climate assessment of
emission scenarios presented in Intergovernmental Panel on
Climate Change (IPCC) reports. In the case of the 2014
Working Group III Fifth Assessment Report (AR5), over
1000 scenarios were assessed with a well-established emula-
tor, MAGICC version 6 (Meinshausen et al., 2011), from its
600-member parameter ensemble runs (Clarke et al., 2014).
The method used was based on Meinshausen et al. (2009)
and has a range of future temperature increases similar to
that of multiple AOGCMs from the CMIP Phase 5 (CMIP5;
Taylor et al., 2012). The results from ensemble runs were
used to classify each scenario by climate indicators associ-
ated with warming levels and to probabilistically assess con-
sistency with long-term temperature goals for climate change
mitigation. The output of the CMIP5 models constitutes a
dominant part of the scientific basis of the Working Group I
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contribution to AR5, and the specific emulator plays a crucial
role in synthesizing the most comprehensive information on
climate projections available at the time.

However, the climate assessment of AR5 is regarded as
indicative as it is based on a single probability distribution
(Clarke et al., 2014). This is similar to the scenario assess-
ment of the 2018 IPCC Special Report on global warming
of 1.5 ◦C (SR15) (Rogelj et al., 2018), for which the same
method as in AR5 was used for scenario classification but
noticeable differences in radiative forcing and temperature
response were identified between the results of MAGICC
and of a different emulator, FaIR version 1.3 (Smith et al.,
2018). FaIR incorporates recent updates of radiative forcing
and shows greater non-CO2 anthropogenic forcing in histori-
cal and future periods than MAGICC (Forster et al., 2018). In
contrast, current and projected warming is generally greater
in MAGICC than in FaIR, implying greater climate sensitiv-
ity in the former.

With regard to climate sensitivity, the new CMIP Phase 6
(CMIP6; Eyring et al., 2016) has been providing differ-
ent outcomes from CMIP5. Equilibrium climate sensitivity
(ECS), a hypothetical value of global warming at equilibrium
in response to a doubling of the atmospheric CO2 concentra-
tion, is generally greater in CMIP6 models than in CMIP5
models, mainly attributed to the models’ cloud processes
(Zelinka et al., 2020). Transient climate response (TCR), a
value of global warming at the time of CO2 doubling with an
idealized 1 %-per-year concentration increase, is also greater
in CMIP6 than in CMIP5 models, but their relative differ-
ence is smaller than that of ECS (Meehl et al., 2020). This
characteristic, reflecting the tendency of realized warming
fractions, specifically TCR-to-ECS ratios, is consistent with
a theoretical relationship between climate feedback strength
and thermal response timescales (Tsutsui, 2020). However,
modeled historical warming generally appears greater in the
CMIP5 models than in the CMIP6 models, supported by ex-
tremely strong aerosol cooling as found in several CMIP6
models (Flynn and Mauritsen, 2020), as well as generally
weaker greenhouse gas (GHG) forcing in CMIP6 models
(Smith and Forster, 2021).

These confusing results require a more advanced and
transparent methodology to synthesize new insights into
forcing, response, and sensitivity, not only from climate
modeling but also from other lines of evidence. The Re-
duced Complexity Model Intercomparison Project (RCMIP;
Nicholls et al., 2020) is promising, providing the first com-
prehensive model intercomparison of emulators. During
Phase 1 of this project, a new framework was established to
systematically evaluate multiple emulators from scenario ex-
periments that mirror those in CMIP5 and CMIP6, and 15
emulators were compared in terms of their ability to approx-
imate each of the CMIP6 models, mainly in terms of global
mean temperature changes (Nicholls et al., 2020). Phase 2
then focused on probabilistic climate projections, and nine

models were compared under the same set of constraints for
model parameter perturbations (Nicholls et al., 2021).

The MCE has been used in both phases, and the present
article provides details of the version used in Phase 2. The
MCE model consists of prediction equations for thermal re-
sponse and carbon cycle. Although there are many emulators
with different complexities, their core modules appear to be
based on a few pioneering works and are often shared be-
tween different emulators. The thermal response of the MCE
is implemented as a pure impulse response model (IRM),
which is the most simplified form originated from the one
presented in Hasselmann et al. (1993). The carbon cycle of
the MCE is based on a part of the nonlinear impulse response
model of the coupled carbon–climate system (NICCS; Hooss
et al., 2001), which may be categorized to be of intermediate
complexity among RCMIP participants. One of them, ACC2
(Tanaka et al., 2007), also adopts the NICCS-based carbon
cycle.

Although complex formulations are generally more capa-
ble of emulation, they are not necessarily advantageous for
emulating individual CMIP models and representing their
uncertainty ranges. For thermal response, this has been con-
firmed by the author’s previous studies (Tsutsui, 2017, 2020),
which have demonstrated that a simple IRM can accurately
emulate a variety of CMIP models in terms of temperature
response to CO2 forcing and provide a basis of parameter
sampling that covers model diversity. These findings also
imply that less complex emulators are suitable for knowl-
edge transfer in a transparent way. From this perspective, key
considerations for emulator design are its subsidiary compo-
nents, such as forcing parameterizations, treatment of nonlin-
ear processes involving some state-dependent response prop-
erties, and parameter constraining for probabilistic projec-
tions.

The remainder of this article is structured as follows. Sec-
tion 2 describes model formulations and parameter sampling
methods. Section 3 presents the experimental application of
probabilistic climate projections. Section 4 discusses emula-
tor performance and constraining model parameters. Finally,
Sect. 5 presents the study’s main conclusions.

2 Model description

2.1 Impulse response models

The MCE model is essentially built on impulse response
functions for the fraction of the total CO2 emitted that re-
mains in the atmosphere (termed the airborne fraction), the
decay of land carbon accumulated by the CO2 fertilization
effect, and temperature change to radiative forcing of CO2
and other forcing agents. Under the linear response assump-
tion with regard to input forcing F , an impulse response
model (IRM) expresses the time change of a response vari-
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Figure 1. Schematic diagram of the box models equivalent to the MCE’s impulse response models. Bidirectional arrows represent heat and
carbon fluxes within each module of the thermal response and carbon cycle. The two modules are connected through CO2 forcing and climate
feedback mechanisms.

able x by a convolution integral:
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where t is time, and the sum of exponentials is an impulse
response function with parameters Ai and τi denoting the
ith component of the response amplitude and time constant,
respectively. The time derivative of this equation is given by

dx (t)
dt
=

∑
i

[
F (t)Ai −

xi (t)

τi

]
, (2)

or an equivalent box model form that is converted into the
original IRM through Laplace transform or eigenfunction ex-
pansion. The time derivative implemented in the MCE uses
an IRM form for land carbon decay and temperature change
and a box model form for the airborne fraction to address par-
titioning of excess carbon between the atmosphere and ocean
mixed layer. Figure 1 illustrates the MCE’s components in a
box model form representing heat or carbon reservoirs. Since
each component is formulated on its own impulse response
functions, the boxes are separately defined between the ther-
mal response and carbon cycle modules.

The IRM for the airborne fraction defines five components,
one of which has an infinity time constant, paired with an am-
plitude corresponding to an asymptotic long-term fraction. In
the current configuration, the remaining four time constants
are fixed at 236.5, 59.52, 12.17, and 1.271 years, adjusted

Figure 2. Response of the airborne fraction to an initial input of
100 Gt C without land CO2 uptake and climate feedback. The line
shows the case of reference amplitudes, and shading shows the
range of the 5th–95th percentiles of the Prior ensemble, which is
described in Sect. 3.1.

to a specific three-dimensional ocean carbon cycle model in
Hooss et al. (2001). The corresponding amplitudes assume
perturbations at reference values of 0.24, 0.21, 0.25, and 0.1,
respectively, with a reference long-term airborne fraction of
0.20. These reference values and perturbation ranges are set
empirically so that resulting carbon budgets – cumulative
land and ocean CO2 uptake – agree with those of historical
observations and CMIP experiments.
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As described below, IRM parameters are converted into a
set of parameters for an equivalent box model dealing with
carbon exchange between four layers. In this conversion, the
response of the shortest timescale component is interpreted
as equilibration between the atmosphere and ocean mixed
layer, which are combined into a composite layer in the box
model, as shown in the ocean carbon cycle in Fig. 1. Fig-
ure 2 shows response to an idealized instantaneous input of
100 Gt C without land carbon uptake and climate feedback.
In this case, the airborne fraction decreases from 0.9 to a
long-term equilibrium of about 0.2 at a gradually decreasing
rate. The asymptotic long-term airborne fraction is slightly
greater than an assumed value, depending on the size of pulse
input, due to the buffering mechanism of seawater.

The IRM for land carbon defines four carbon pools, rep-
resenting ground vegetation, wood, detritus, and soil organic
carbon, with distinct overturning times (τi). The forcing term
(F ) is net primary production (NPP) enhanced by the effect
of CO2 fertilization, generally expressed by βLN0, where βL
is a fertilization factor that depends on the atmospheric CO2
concentration, and N0 is base annual NPP (Gt C yr−1). The
response amplitude (Ai) is rewritten as Ãbiτi , where Ãbi de-
notes a decay flux after an initial carbon input. Based on Joos
et al. (1996), the IRM parameters of the four carbon pools
are set to 2.9, 20, 2.2, and 100 years for τi and 0.70211,
0.013414, −0.71846, and 0.0029323 yr−1 for Ãbi, respec-
tively. Figure 3 illustrates response to unit forcing in this con-
figuration.

In addition, the MCE deals with temperature dependency
for the time constants of wood and soil organic carbon, in-
dicating the tendency for warming to accelerate the decom-
position of organic matter. This is one of the climate–carbon
cycle feedback processes and is implemented with an adjust-
ment coefficient varied along a logistic curve with respect
to surface warming, as illustrated in Fig. 4. This scheme
has a parameter to control the asymptotic minimum value
of the coefficient. The figure shows three curves with differ-
ent control parameters, corresponding to the 5th, 50th, and
95th percentiles of the Prior ensemble, which is described
in Sect. 3.1, adjusted to be consistent with the variation of
CMIP Earth system models (ESMs). In the IRM form, land
accumulated carbon is proportional to

∑
i

Ãbiτ
2
i , expressing

the remaining carbon at an equilibrium state under unit con-
tinuous input, and the decrease in the time constants affects
accumulated carbon quadratically.

The IRM of the temperature change defines three compo-
nents with typical time constants of approximately 1, 10, and
> 100 years. Although the temperature response is usually
well represented by two separated time constants of approx-
imately 4 and > 100 years (e.g., Held et al., 2010; Geoffroy
et al., 2013), dividing fast response is advantageous when
considering instantaneous forcing changes, such as volcanic
eruptions (Gupta and Marshall, 2018) and geoengineering
mitigation, and using three time constants appears to be prac-

tically optimal choice (Cummins et al., 2020). Separating the
intermediate time constant is also beneficial for representing
a pattern effect – warming response affected on a decadal or
multi-decadal timescale by the changing pattern of surface
warming (e.g., Andrews et al., 2015). The response ampli-
tude is rewritten by Ãi/(λτi), where Ãi is normalized so that
the component sum is unity, and λ is the climate feedback pa-
rameter (W m−2 ◦C−1), defined as the derivative of the out-
going thermal flux with respect to temperature change. These
IRM parameters can be adjusted to emulate individual CMIP
models with sufficient accuracy, as demonstrated in Tsutsui
(2020), which serves a basis to build a perturbed parameter
ensemble.

2.2 Carbon uptake over ocean

The box model converted from the IRM for the airborne frac-
tion is as follows:
dc0

dt
=−
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hs
cs+
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h1
c1+ e− f, (3)

dc1
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dc3
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=
η3
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η3

h3
c3, (6)

where ck is the amount of excess carbon in layer k, hk is the
layer depth, ηk is the exchange coefficient between layer k−1
and layer k, e is anthropogenic emissions, and f is natural
uptake over land. The parameters hk and ηk are set through
numerical optimization for the box model to be equivalent to
the IRM form. The top layer, indexed with 0, is the composite
atmosphere–ocean mixed layer, and the three subsurface lay-
ers are indexed with 1, 2, and 3 in the order of ocean depth.
The amount of excess carbon in the top layer (c0) is parti-
tioned into atmospheric and ocean components, denoted by
ca and cs, subject to chemical equilibrium at the ocean sur-
face. The carbon exchange between the top layer and the first
subsurface is expressed in terms of cs.

For a given time series of CO2 emissions (emission-
driven) or atmospheric CO2 concentrations (concentration-
driven), time integration is performed. In the latter case, c0
and its partition within the composite layer are diagnostically
determined, and the top layer equation is dropped.

The partition of c0 is solved through numerical compu-
tation with regard to hydrogen ion concentration associ-
ated with changes in dissolved inorganic carbon concen-
tration (DIC) under the assumption of constant alkalinity
(Alk). DIC, defined as the sum of [CO2], [HCO−3 ], and
[CO2−

3 ], where [x] denotes the concentration of a substance
x (mol L−1), is expressed as

DIC=

(
1+

K1[
H+
] + K1K2

[H+]2

)
[CO2] , (7)
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Figure 3. Response of land carbon to instantaneous unit input (a) and accompanying flux from carbon pools (b).

Figure 4. Adjustment coefficient as a function of surface tempera-
ture change to multiply the time constants for the decay of wood and
soil organic matter. The three curves are functions corresponding to
the 5th, 50th, and 95th percentiles of the Prior ensemble, which is
described in Sect. 3.1, with different asymptotic minimum values,
as described in the legend. The temperature at which a curve has the
maximum gradient is fixed at 3.5 ◦C.

where K1 and K2 are equilibrium constants for bicarbon-
ate and carbonate, defined asK1 = [H+][HCO−3 ]/[CO2] and
K2 = [H+][CO2−

3 ]/[HCO−3 ]. [CO2], defined as the sum of
[CO2(aq)] and [H2CO3(aq)], is related to the partial pres-
sure of CO2 (pCO2) with equilibrium constant K0, as in
K0 = [CO2]/pCO2. Alkalinity, here considering borate ions
as well as bicarbonate and carbonate ions, is represented as

Alk=
K1
[
H+
]
+ 2K1K2

[H+]2
[CO2]+

KbBT

Kb+
[
H+
]

+
Kw[
H+
] − [H+] , (8)

where BT is total borate concentration [B(OH)3] +
[B(OH)−4 ], and Kb and Kw are equilibrium constants for

borate and water, defined as [H+][B(OH)−4 ]/[B(OH)3] and
[H+][OH−].

The values of Alk, BT, and the equilibrium constants
of K0, K1, K2, Kb, and Kw are set based on Dickson et
al. (2007). The equilibrium constants depend on water tem-
perature, and carbon uptake decreases with temperature, rep-
resenting a climate–carbon cycle feedback process. This tem-
perature dependency is implemented as a linear regression
for empirical expressions, as shown in Fig. 5.

The amount of excess carbon that can be accumulated
in the ocean is proportional to a change in DIC from its
preindustrial value. This carbon uptake potential and its tem-
perature dependency are illustrated in Fig. 6. CO2-induced
global warming increases the airborne fraction in two ways
– through the buffering mechanism of seawater and through
temperature dependency of chemical equilibrium. The for-
mer is shown as a decreasing change rate of the DIC with
regard to atmospheric CO2 concentration (Fig. 6a), while the
latter is shown as a reduction in rates of carbon uptake po-
tential with temperature, which also depends on the concen-
tration (Fig. 6b). The reduction rate is approximately propor-
tional to the warming level, typically about 4 % per 1 ◦C at
doubling CO2.

2.3 CO2 fertilization

The land carbon uptake term f in Eq. (3) is calculated from
Eq. (2), rewritten as

f (t)=
∑
i

[
βL (t)N0Ãbiτi −

cbi

τi

]
, (9)

where cbi is the ith component of accumulated carbon by
CO2 fertilization. The base NPP (N0) is set to 60 Gt C yr−1

and the fertilization factor (βL) is formulated with a sigmoid
curve with regard to CO2 concentration C(t), as described in
Meinshausen et al. (2011). This implementation is connected
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Figure 5. Temperature-dependent equilibrium constants of K0, K1, K2, Kb, and Kw (a–e) in the MCE model (solid lines), which approx-
imate empirical expressions in Dickson et al. (2007) (D07, dotted lines). Values at a reference seawater temperature of 13.5 ◦C (dots) are
assigned to those in the MCE’s preindustrial state.

Figure 6. DIC in the ocean mixed layer as a function of atmospheric CO2 concentration (a) and changes in ocean carbon uptake potential,
measured by the increase in DIC from preindustrial levels, due to 1 and 2 ◦C warming (b). The preindustrial CO2 concentration is assumed
to be 284.317 ppm, and preindustrial DIC is about 2.17 mmol L−1.

to a conventional logarithmic formula,

βL = 1+ β̂Lln
[
C (t)

C (0)

]
, (10)

such that the sigmoid and logarithmic curves are equal in
terms of an increase ratio at 680 ppm relative to 340 ppm, and
the latter factor β̂L is used as a control parameter. Figure 7
illustrates three curves with different control parameters in
the MCE model.

2.4 Effective radiative forcing

The forcing term in the IRM for temperature change is as-
sumed to be effective radiative forcing (ERF), defined as top-
of-atmosphere (TOA) radiative imbalance due to a change in
a forcing agent through rapid adjustments in the stratosphere
and troposphere prior to a response in surface temperature
(Myhre et al., 2013; Sherwood et al., 2015). Forcing, defined
as such, serves as a good predictor of surface temperature
change.
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Figure 7. CO2 fertilization factor as a function of atmospheric CO2
concentration with different control parameters (β̂L) of 0.17, 0.45,
and 0.69, corresponding to the 5th, 50th, and 95th percentiles of
the Prior ensemble described in Sect. 3.1. The colored lines show
sigmoid curves used in the MCE model, and the black dashed lines
show reference logarithmic curves.

CO2 forcing is evaluated with the following quadratic for-
mula in terms of the logarithm of CO2 concentration:

FC (x)= (βC− 1)
[
F̂C (x)− 2FC (2)

]
·

[
2F̂C (x)

FC (2)
− 1

]
+βCF̂C (x) , (11)

F̂C (x)= αCln
[

CO2 (t)
CO2 (0)

]
, (12)

where x is the ratio of CO2 concentrations to a preindus-
trial level, αC is a scaling parameter (W m−2), and βC is
an amplification factor defined as FC(4)= βC× F̂C(4). This
scheme was presented in Tsutsui (2017) to emulate the
CMIP’s core CO2 increase experiments for instantaneous
quadrupling and 1 %-per-year increase, referred to as abrupt-
4xCO2 and 1pctCO2, respectively. Thus, the scheme is valid
in the range of 1≤ x ≤ 4. The two control parameters are
diagnosed consistently with IRM parameters for individual
CMIP models (Tsutsui, 2020). The current diagnosing pro-
cedure solves numerical optimization to approximate the first
150-year and 140-year time series from abrupt-4xCO2 and
1pctCO2 experiments, respectively, in terms of TOA energy
imbalance and the surface air temperature anomaly, respec-
tively. The quadratic term is activated when the concentra-
tion exceeds 2 times (x > 2), and βC is set to unity in the
range x ≤ 2 so that FC is equivalent to F̂C. The forcing am-
plification is expected to be valid in the range x ≤ 4 and the
quadratic term is dropped beyond a level of 4 times. Figure 8
illustrates example outputs of the CO2 forcing scheme in a
range of 5th–95th percentiles of the Prior ensemble for con-
trol parameters.

Figure 8. Effective radiative forcing (ERF) of CO2 as a function of
the ratio of CO2 concentrations to a preindustrial level. The scaling
parameter αC is set to three different values, corresponding to the
5th, 50th, and 95th percentiles of the Prior ensemble described in
Sect. 3.1. For each αC value, the amplification factor βC is varied
between the 5th and 95th percentiles (shaded area) and is set to two
specific values of the 50th percentile (solid line) and unity (dashed
line, no amplification).

The forcing of CH4 and N2O is evaluated with the expres-
sions given in Etminan et al. (2016). The forcing of halo-
genated gases is simply calculated as changes in concentra-
tion from preindustrial levels multiplied by radiative efficien-
cies assessed in the latest IPCC report (at the time of this
paper preparation AR5; Myhre et al., 2013).

The current MCE model does not support non-CO2 gas
cycles and ERF schemes for other forcing agents, such as
aerosols, tropospheric and stratospheric ozone, solar radia-
tion, and volcanic eruptions. Experiments considering non-
CO2 forcing require prescribed concentrations for long-lived
GHGs and prescribed ERF for others.

2.5 Parameter sampling

Probabilistic runs use an ensemble of perturbed model pa-
rameters designed to encompass the variation of multiple
CMIP models with additional constraints with regard to as-
sessed ranges of key climate indicators. In general, a series of
candidate values of an uncertain parameter is generated from
its statistical model and, if necessary, sampled from the series
with an acceptance algorithm for given constraints. The latter
process is Bayesian updating from a prior probability distri-
bution to a posterior and uses a Metropolis–Hastings (MH)
independence sampler here. As mentioned above, uncertain
parameters include IRM amplitudes for the airborne fraction,
control parameters for land carbon decay timescales and CO2
fertilization, IRM parameters for temperature change, and
control parameters for the CO2 forcing scheme.

https://doi.org/10.5194/gmd-15-951-2022 Geosci. Model Dev., 15, 951–970, 2022
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In a Bayesian framework, some difficulties arise from set-
ting appropriate prior distributions and dealing with large-
dimension likelihood functions. Although the latter can be
avoided by using the Markov chain Monte Carlo (MCMC)
approach, its implementation, typically based on the MH
algorithm, is not necessarily straightforward in exploring a
large-dimension parameter space with the detailed balance
that underlies MCMC. One of the relevant issues is sampling
efficiency. Goodwin and Cael (2021), for example, generated
a prior by varying a set of ∼ 25 model parameters indepen-
dently with a very large size of∼ 109 and constrained it by an
acceptance algorithm with an observation-based likelihood
function. Although the prior ensemble size can be reduced
by improving the acceptance algorithm (Goodwin, 2021), it
appears to need ∼ 107 to get a posterior for typical applica-
tion, such as climate sensitivity estimation and probabilistic
climate projections.

The current MCE approach is one way to deal with the
above difficulties. Setting a prior with statistical models rep-
resenting a CMIP multi-model ensemble allows the use of an
efficient MH independence sampler, with the size of a prior
series for typical applications expected to be∼ 104 or at most
∼ 105. It is also convenient that this sampler is free from
adjustment, unlike random-walk-based MCMC implementa-
tion that requires step-size adjustment. One thing to note is
that the independence sampler is suitable when the proposed
prior series encompasses the target posterior series, and the
acceptance rate of sampling is high to some extent. However,
this requirement is not met for the case presented below. This
problem is addressed in the implementation of the MH algo-
rithm in Sect. 3 and further discussed in Sect. 4.

The carbon cycle parameters are individually generated
from a uniform distribution with a given mean and pertur-
bation range. The means and ranges are determined on a trial
basis so that ranges of carbon budgets in historical and sce-
nario experiments are consistent with those from multiple
CMIP ESMs. Since the sum of IRM amplitudes for the air-
borne fraction is unity, their perturbed values are normalized
as such, subject to a modified distribution with more samples
about the mean resulting from the operation.

The temperature response and CO2 forcing parameters are
synthetically generated from a multivariate normal distribu-
tion reflecting the variation of multiple CMIP AOGCMs. The
IRM for temperature change has three pairs of time constant
(τi) and dimensional amplitude (Ai), and the CO2 forcing
scheme has two control parameters (αC and βC). A total of
eight parameters have been diagnosed for each of the multi-
ple CMIP models, revealing characteristic covariance struc-
tures, such as a noticeable negative correlation between feed-
back strength (1/λ) and a realized warming fraction (typi-
cally TCR-to-ECS ratio), as well as a weakly negative corre-
lation between the forcing scale (αC) and feedback strength
(Tsutsui, 2020). The multivariate normal distribution is built
on principal components (PCs) of these diagnosed parame-
ters, as described in Tsutsui (2017).

The eight parameters to be fed into PC analysis can include
some derived parameters from the following expressions:

Ai =
Ãi

λτi
,
∑
i

Ãi = 1, (13)

ECS=
αCln(2)
λ

, (14)

ECSG =
αCβCln(2)

λ
, (15)

TCR= ECS

{
1−

∑
i

Ãi
τi

t70

[
1− exp

(
−
t70

τi

)]}
, (16)

where ECS is defined using a diagnosed forcing of CO2 dou-
bling, while ECSG uses CO2 quadrupling with a factor of 0.5
as in Gregory et al. (2004). Equation (16) is derived from
time integration of Eq. (1) to the 70th year (t70) along a 1 %-
per-year increasing path that defines TCR. One possible set
consists of TCR, Ã0/Ã2, Ã1/Ã2, τ0, τ1, τ2, αC, and βC, ap-
plied with logarithmic transformation, except for αC. This set
was adopted in the experiments described below. The loga-
rithmic transformation is intended to allow fair normality of
PC scores as a basis for fitting a multivariate normal distri-
bution and to make generated candidates positive.

Probabilistic runs can also use different scaling factors to
adjust individual non-CO2 ERF time series. This is a simple
implementation to deal with non-CO2 forcing uncertainties,
typically assessed as a range at a reference time point. The
scaling factor is perturbed with a suitable statistical model
fitted to the range.

All uncertain parameters and ERF scaling parameters are
not necessarily independent. The current sampling procedure
incorporates covariance between the eight parameters rele-
vant to temperature change in response to CO2 forcing. How-
ever, the procedure assumes no other correlations, implying
that uncertainties of the CO2-induced temperature response
are independent from those of the carbon cycle and non-CO2
forcing.

3 Application examples

3.1 Scenario experiments

To demonstrate a typical application of the MCE model,
a number of scenario experiments that mirror those of
CMIP6 were conducted, including idealized abrupt-4xCO2
and 1pctCO2, as well as historical–future scenarios based
on the Shared Socioeconomic Pathways (SSPs; Riahi et al.,
2017). In the latter experiments, the model was initialized for
the year 1850 and driven with GHG concentrations and other
prescribed ERF, both provided from the RCMIP (Nicholls et
al., 2020).

For each scenario, two sets of 600-member ensemble runs
were conducted; one was perturbed to be consistent with a
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CMIP multi-model ensemble and the other was further con-
strained according to the RCMIP Phase 2 protocol (Nicholls
et al., 2021), here labeled Prior and Constrained, respectively.
Prior refers to 25 CMIP5 and 38 CMIP6 AOGCMs for the
PC analysis input and to 8 CMIP5 and 11 CMIP6 ESMs
diagnosed in Arora et al. (2020) for simulated carbon bud-
gets in the 1pctCO2 experiment. Diagnosed forcing and re-
sponse parameters of the multiple AOGCMs are presented in
the MCE’s code repository.

The uncertain carbon cycle parameters for Prior were gen-
erated from the abovementioned statistical models, as shown
in Figs. 1, 3, and 6, and were processed by the MH sam-
pler to constrain accumulated land carbon at doubling CO2
along the 1 %-per-year pathway. In this case, 1pctCO2 sce-
nario runs with a set of proposed parameters were conducted
to obtain data fed into the sampler. This single constraint was
selected as it works inclusively for other relevant constraints
through a trade-off relationship between ocean and land in
terms of accumulated carbon.

RCMIP Phase 2 defines a number of constraints for cli-
mate indicators, including ERF levels, carbon budgets, re-
cent warming trends, and climate sensitivity metrics of ECS,
TCR, and transient climate response to cumulative CO2
emissions (TCRE). Here, TCRE is defined as the ratio of
the TCR to implied cumulative CO2 emissions at the time
of CO2 doubling along the same 1 %-per-year trajectory as
that for TCR. These constraints use literature-based assessed
ranges, referred to as a “proxy assessment”, to distinguish
these from the formal IPCC assessment. The Constrained un-
certain parameters were sampled from those of Prior through
a sequence of the MH sampler with a subset of RCMIP
constraints, as follows: (1) CO2 ERF in 2014 relative to
1750 evaluated in Smith et al. (2020), (2) TCR estimated
in Tokarska et al. (2020, Table S3, both constrained), and
(3) GMST in the period 1961–1990 relative to the period
2000–2019 from the HadCRUT.4.6.0.0 dataset (Morice et al.,
2012) and ocean heat content (OHC) in 2018 relative to 1971
from the dataset of von Schuckmann et al. (2020). In this
case, in addition to 1pctCO2 runs, historical scenario runs
with a set of proposed parameters were conducted to obtain
data fed into the sampler.

The IRM for temperature change is transformed into a
three-layer heat exchange model in physical space (Fig. 1).
The top layer is representative of fast-responding Earth sys-
tem components – the atmosphere and Earth’s surface includ-
ing a part of the ocean mixed layer. However, when diagnos-
ing the CO2 forcing and response parameters, the top layer
temperature was treated as global mean surface air tempera-
ture (GSAT) in practice. As in HadCRUT GMST was defined
as a surface air–ocean blended temperature change; here, a
factor of 1.04 was used to convert observed GMST change
into the MCE’s GSAT change. Likewise, as the MCE’s three
layers cannot be allocated to specific climate system compo-
nents, a factor of 1.08 was used to convert observed OHC
change into the MCE’s total heat content change.

Besides CO2 forcing, the RCMIP constraints include
the ranges of non-CO2 forcing over a historical period
for CH4, N2O, halocarbons (aggregated into “Montreal
gases” – CFCs, HCFCs, halons – and other “F gases”
– HFCs, PFCs, SF6), aerosols (aggregated), tropospheric
ozone, stratospheric ozone, stratospheric water vapor from
CH4, and albedo change due to land use and black carbon
aerosols on snow and ice. Ranges are based on AR5 (Myhre
et al., 2013), except for those for CH4 and aerosols, which
consider recent updates (Etminan et al., 2016; Smith et al.,
2020). To incorporate these uncertainty ranges in historical-
future scenarios, the scaling factors to adjust individual non-
CO2 ERF time series were perturbed using normal or skewed
normal distributions fitted to the prescribed ranges.

The RCMIP constraints are provided as likely ranges and
optionally very likely ranges, corresponding to 17 %–83 %
and 5 %–95 % according to the IPCC’s likelihood terms.
These ranges were applied to generate uncertain parameter
proposals and to build the MH sampler requiring probability
densities for a target distribution.

Although a number of indicators were prepared for the
RCMIP constraints, a very limited number of those were
used here, partly because the prior was designed to match
some of them like the forcing constraints and partly because
the proxy assessment ranges are not necessarily consistent
with each other. The sequence of the MH sampler for the
above three items, which relaxes the detailed balance re-
quired for MCMC, was established to deal with those con-
straints and needs to be improved using fully consistent as-
sessment ranges.

Other details of the constraining procedures and experi-
mental specifications are provided in the MCE’s code repos-
itory (see “Code and data availability” at the end).

3.2 Results: climate indicators

Figure 9 illustrates relationships between key indicators as-
sociated with the carbon budget and climate sensitivity of the
two ensembles in comparison with the CMIP models. The
carbon budget is measured by the amount of accumulated
carbon and its allocation to ocean and land reservoirs. Here,
total accumulation and the ocean allocation ratio at doubling
and quadrupling CO2 levels are used as key indicators. The
CMIP ESMs indicate a clear negative correlation between the
two quantities (Fig. 9a and b), reflecting much greater uncer-
tainties relating to land carbon. This feature is well repre-
sented by the MCE parameter ensembles. Although there are
some model differences between CMIP5 and CMIP6 eras,
such as a reduced model spread in the latter associated with
nitrogen cycle implementation (Arora et al., 2020), the MCE
ensembles currently do not distinguish between the two. The
carbon indicators of the Constrained ensemble do not differ
significantly from those of Prior but are distributed toward
higher total accumulations, which is attributed to warming
differences that affect carbon cycle–climate feedbacks.
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Figure 9. Relationships between key indicators associated with carbon budget and climate sensitivity in comparison with CMIP models.
Contours indicate kernel density levels at which the circles cover 90 % and 66 % of members. The legend indicates the number of the CMIP
models. (a) The fraction of ocean accumulated carbon as well as ocean and land totals in the 70th year of 1pctCO2. (b) Same as panel (a),
but in the 140th year. (c) Effective radiative forcing (ERF) of CO2 doubling and climate feedback parameter. (d) Transient climate response
(TCR) and equilibrium climate sensitivity diagnosed from abrupt-4xCO2 (ECSG). The dashed line is located where the ratio of TCR to
ECSG is 0.6 as a reference.

In contrast, climate sensitivity differences are most promi-
nent and well characterized with key indicators’ distribu-
tions on two-dimensional domains: the ERF of CO2 dou-
bling derived from αC vs. the climate feedback parameter
(λ) (Fig. 9c) and TCR vs. ECSG (Fig. 9d). While the Prior
distributions cover the CMIP AOGCMs effectively, the Con-
strained distributions are confined to lower sensitivity val-
ues – greater λ and smaller TCR and ECSG, which is at-
tributed to the observed GMST and OHC constraints. The
Prior distribution of the CO2 forcing agrees well with the
CMIP distribution, which shows a weakly positive correla-
tion with the climate feedback parameter. In contrast, the
Constrained forcing levels are confined to an upper half of
the CMIP AOGCMs, which is attributed to the historical CO2
forcing constraint, and the forcing–feedback correlation be-
comes weak. Transient sensitivity is not necessarily propor-
tional to equilibrium sensitivity, and greater CMIP6 sensitiv-

ity is more evident in ECSG than in TCR. The inherent rela-
tionship between feedback strength and response timescales
is responsible for the tendency, together with the forcing am-
plification effect represented by βC. The PC-analysis-based
statistical model captures such covariance structure effec-
tively.

Figure 10 illustrates historical GMST and OHC of the
MCE’s two ensembles in comparison with their observa-
tions, from which constraining data are considered for recent
warming trends. In the figure, the time series are adjusted
relative to the reference period 1961–1990 for GMST and
the reference year 1971 for OHC. While the Prior series are
well above the observed warming during the target period
2000–2019 for GMST and during the target year 2018 for
OHC, the Constrained series agree well with recent trends.
The observation-based constraining results in lower climate
sensitivity in the latter ensemble. However, considerable un-
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Figure 10. (a) Historical global mean surface temperature (GMST) relative to 1961–1990 and (b) historical ocean heat content (OHC) relative
to 1971 in the period 1850–2019 compared with observation data from HadCRUT4.6.0.0 for GMST and von Schuckmann et al. (2020) for
OHC. The black dots indicate the levels in two different periods or years used for the observation constraints.

certainties remain with regard to longer trends and unforced
climate variability. In an earlier period, observed GMST was
rather close to Prior, and the Constrained trend appears to be
underestimated. The OHC trend cannot be validated owing
to its limited observation period. Assessment of forced re-
sponse in the historical period, which is currently not avail-
able, would allow more reliable parameter sampling. Some
variation in the historical forcing time series, in particular for
aerosols (Smith et al., 2021), would also be worth exploring.

The greater warming in Prior is not only due to its greater
climate sensitivity, but also partly due to non-CO2 forcing
differences, as shown in Fig. 11. The scaling factors of the
non-CO2 forcing agents are independently perturbed in the
Prior ensemble and probabilistically selected through the se-
ries of the MH sampler. Although the sampling process does
not directly refer to forcing levels of non-CO2 agents, it can
modify their distributions to be consistent with other con-
straints. This modification is found for non-CO2 GHGs and
ozone time series (Fig. 11b), and the most dominant contri-
bution is of Montreal gases (not shown). The ERF of Mon-
treal gases rapidly increases from the 1960s and levels off
from the 1990s, and the sampling results imply that this ten-
dency is not consistent with the recent warming trend. To-
tal ERF fluctuates with changes in solar irradiance and vol-
canic eruptions, for which the RCMIP’s prescribed forcing
was used without their efficacy uncertainties.

Figure 12 displays the ranges of climate indicators from
the two ensembles associated with the carbon cycle, climate
sensitivity, warming trends, and historical ERF changes in
comparison with their proxy assessment ranges. The consis-
tency between modeled and proxy ranges can be most dis-
tinctively shown for warming trends by GMST and OHC
changes (Fig. 12k and l), with Prior ranges substantially

wider and higher than assessed ranges but comparable Con-
strained ranges. The consistency of sensitivity indicators, in-
cluding TCRE (Fig. 12h–j), is complex because the proxy
assessment ranges (black error bars) themselves are not nec-
essarily consistent with each other, as discussed in the next
section, and narrowed from the AR5-assessed ranges (grey
error bars). Overall, consistency is better for Prior ranges, al-
though Constrained ranges, which are considerably narrowed
and lowered, are still within the AR5-assessed ranges. The
ranges of the carbon cycle indicators (Fig. 12a–g), includ-
ing accumulated carbon and implied cumulative emissions
in the historical period 1750–2011, are not significantly dif-
ferent between the two ensembles and broadly agree with as-
sessed ranges. Ensemble runs for the extended historical pe-
riod starting from 1750 were conducted for calibration. The
ranges of the ERF indicators (Fig. 12m–t) are consistent with
assessed ranges, except for Prior CO2 and Constrained Mon-
treal gases, as mentioned above. Other minor changes from
Prior to Constrained include a reduced range for aerosols and
lowered ranges for stratospheric and tropospheric ozone.

3.3 Results: projected warming

Figure 13 illustrates temperature response in two SSP sce-
narios, SSP1–2.6 and SSP2–4.5, wherein warming is mea-
sured by an increase in global mean surface air temperature
(GSAT) relative to 1850–1900, and the period up to 2100 is
presented. In the scenario labeled SSPn-x.x, “n” (1–5 num-
bers) identifies different socioeconomic development path-
ways, and “x.x” expresses a nominal forcing level (W m−2)
at the end of the 21st century. The shaded areas indicate
33 %–66 % ranges. The upper bound corresponds to the level
to which warming is likely (66 %–100 %) to be limited at the
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Figure 11. Historical effective radiative forcing (ERF) in the period 1850–2019 for total ERF (a) and aggregated components (b). The
ensembles’ medians are shown by lines, and the 5 %–95 % range of the Constrained ensemble is shown for the total by shading.

time, while the lower bound corresponds to the level which
warming is likely to exceed. These thresholds are shown in
Table 1 for peak and end-of-century (end-21C) warming for
eight SSP scenarios, wherein the end-21C period is set to
2081–2100 in accordance with the AR5.

Regarding consistency with target warming levels, such
as 2 ◦C above preindustrial levels, the Constrained ensem-
ble agrees relatively well with the AR5 assessment (Collins
et al., 2013) for each of the comparable Representative Con-
centration Pathways (RCPs; van Vuuren et al., 2011) such as
RCP2.6 with SSP1–2.6. For example, AR5 states that end-
21C temperature change above 2 ◦C is unlikely (0 %–33 %)
under RCP2.6, which implies that temperature is likely lim-
ited to 2 ◦C. This assessment is consistent with the SSP1–2.6
result from Constrained (likely limited to 1.51 ◦C) but not
from Prior (likely limited to 2.27 ◦C). Some threshold tem-
peratures in Constrained are not consistent with AR5 such
that the temperature in SSP2–4.5 likely exceeds 2.06 ◦C,
while in AR5 it is more likely than not (> 50 %–100 %) to
exceed 2 ◦C in RCP4.5. There is a similar difference in the
possibility of limiting to 4 ◦C in SSP5–8.5 and RCP8.5. AR5
assessed these cases with medium confidence rather than
high confidence, implying that the reduced likely ranges (as
in Constrained) can update the AR5 assessment more au-
thentically. However, at present, the Constrained ensemble
does not incorporate possible uncertainties, as discussed in
the next section. It should also be noted that SSP forcing is
not exactly the same as corresponding RCP forcing, leading
to noticeable temperature differences between the compara-
ble scenarios (Nicholls et al., 2020).

There are also some issues with handling of historical
warming. The AR5 refers to a specific level of 0.61 ◦C from
HadCRUT data for the period 1986–2005, which is added to
the CMIP5 projected warming. However, HadCRUT warm-

ing is defined as an air–ocean blended temperature and is
thereby somewhat underestimated for the GSAT definition
(Schurer et al., 2018) with which modeled future warming
is evaluated. In any case, the AR5 assessment is effectively
constrained by observed warming, which may be responsi-
ble for its better agreement with the Constrained ensemble.
Figure 13 indicates medians and likely (17 %–83 %) ranges
of temperature changes in 2017 by the GMST (air–ocean
blended) definition: 1.30 [0.96–1.81] ◦C in Prior and 0.90
[0.80–1.01] ◦C in Constrained. The latter warming levels are
also closer to the SR15 assessment of 1.0 [0.8–1.2] ◦C for
human-induced warming (Allen et al., 2018), despite some
bias towards the lower end of the assessed range.

4 Discussion

4.1 Performance as an emulator

It has already been confirmed that the MCE reproduces many
different CMIP models effectively in terms of thermal re-
sponse to idealized CO2 forcing changes, as demonstrated in
Nicholls et al. (2020). The forcing and response parameters
are adjusted to emulate two of the CMIP’s basic experiments
for step-shaped (abrupt-4xCO2) and ramp-shaped (1pctCO2)
forcing increases. The forcing scheme uses different func-
tions depending on concentration levels: a quadratic expres-
sion in terms of logarithmic concentrations in the range from
2 to 4 times the base level, smoothly connecting to linear ex-
pressions outside this range. This flexibility suits the CMIP
models’ tendency to deviate from logarithmic concentration
proportions at higher concentrations, leading to better emu-
lation not only for responses to quadrupling increases com-

Geosci. Model Dev., 15, 951–970, 2022 https://doi.org/10.5194/gmd-15-951-2022



J. Tsutsui: MCE v1.2: a new simplified method for probabilistic climate projections 963

Figure 12. Distributions of climate indicators: (a) accumulated carbon over ocean at doubling CO2 in 1pctCO2; (b) same as (a) but over land;
(c) same as (a) but at quadrupling CO2; (d) same as (c) but over land; (e) accumulated carbon over ocean in 1750–2011; (f) same as (e) but
over land; (g) implied cumulative emissions in 1750–2011; (h) equilibrium climate sensitivity diagnosed with CO2 quadrupling forcing
(ECSG); (i) transient climate response (TCR); (j) transient climate response to 1000 Gt C cumulative CO2 emissions (TCRE); (k) global
mean surface temperature (GMST, air–ocean blended) in 2000–2019 relative to 1961–1990; (l) ocean heat content (OHC) in 2018 relative to
1971; (m) effective radiative forcing (ERF) of CO2 in 2014 relative to 1750; (n) ERF of CH4 in 2011 relative to 1750; (o) same as (n) but
of N2O; (p) same as (n) but of “Montreal gases” (CFCs, HCFCs, halons); (q) same as (n) but of “F gases” (HFCs, PFCs, SF6); (r) same as
(m) but of aerosols; (s) same as (n) but of stratospheric O3; (t) same as (n) but of tropospheric O3. Error bars and pairs of triangle markers
indicate likely ranges (17 %–83 %) and very likely ranges (5 %–95 %), respectively. The black and grey error bars indicate proxy assessment
ranges and AR5-assessed ranges, respectively. The proxy ranges are based on 5 %–95 % ranges of the CMIP Earth system models in (a)–(d)
but are otherwise taken from the RCMIP Phase 2 protocol that partly includes the AR5-assessed ranges.

monly used in basic experiments, but also for responses to
considerably lower increases in many mitigation scenarios.

However, the scheme assumes constancy of the climate
feedback parameter; emulation accuracy will therefore be de-
creased in scenarios in which state dependency of feedbacks
emerges. A typical example appears in a cooling scenario.
The RCMIP Phase 1 results include a case in which the MCE
fails to emulate a halving CO2 experiment, while success-
fully emulating both doubling and quadrupling (see Fig. 2

of Nicholls et al., 2020). It is also known that state depen-
dency becomes significant when the time integration of the
step response continues over multi-centennial to millennial
timescales (Knutti and Rugenstein, 2015; Rohrschneider et
al., 2019). As CMIP models tend to deviate from linearity
between the TOA energy imbalance and the surface temper-
ature anomaly so that additional warming occurs with time,
the MCE would result in underestimated warming in such a
case. In practice, this issue is not significant up to the time
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Figure 13. Global mean surface air temperature (GSAT) changes relative to 1850–1900 in SSP1–2.6 (a) and SSP2–4.5 (b) scenarios from
Prior and Constrained ensembles. Medians and 33 %–66 % ranges at each time point are shown by lines and shading. The error bars indicate
medians and likely (17 %–83 %) ranges of global mean surface temperature (GMST, air–ocean blended) changes in 2017. For visual purposes
the two error bars are slightly shifted from the reference year of 2017 on the horizontal axis.

Table 1. Critical global mean surface air temperature (GSAT) change relative to 1850–1900 in different Shared Socioeconomic Pathway
(SSP) scenarios. Warming levels at peak during the 21st century and averaged over the period 2081–2100 (end-21C) are shown for those
likely to be limited (66th percentile) and likely to exceed (33rd percentile) from Prior and Constrained ensembles.

SSP1–1.9 SSP1–2.6 SSP4–3.4 SSP5–3.4* SSP2–4.5 SSP4–6.0 SSP3–7.0 SSP5–8.5

Likely limited to at peak
2.08 2.34 2.34 3.10 3.51 4.25 5.20 6.15
1.39 1.60 2.09 2.16 2.43 2.96 3.70 4.44

Likely limited to at end-21C
1.82 2.27 3.05 2.78 3.38 4.01 4.72 5.54
1.20 1.54 2.07 1.90 2.36 2.82 3.34 3.98

Likely exceed at peak
1.68 1.89 2.50 2.54 2.83 3.47 4.30 5.17
1.24 1.41 1.84 1.92 2.14 2.61 3.25 3.94

Likely exceed at end-21C
1.44 1.82 2.47 2.23 2.76 3.29 3.86 4.64
1.04 1.34 1.83 1.65 2.08 2.48 2.94 3.55

Units: ◦C. * Overshoot type pathway. Upper: Prior ensemble. Lower (in italics): Constrained ensemble

horizon of 2100, which is commonly used in mitigation sce-
narios, in particular for lower than doubling CO2 levels.

For non-CO2 forcing, additivity is assumed across differ-
ent agents, except for overlapping effects for CH4 and N2O,
as parameterized in Etminan et al. (2016). The forcing am-
plification for CO2 is not extended to total forcing. These
are reasonable assumptions for most mitigation scenarios in
which non-CO2 components are presumably not extreme.

The carbon cycle module has a mixture of fixed and ad-
justable parameters, including those for several feedback
mechanisms from temperature changes. The current config-
uration successfully works to represent the CMIP ESMs’
ranges in terms of carbon budget in the idealized 1 %-per-

year CO2 increase experiment. However, it has not yet been
verified that each of the ESMs can be accurately emulated.

Diagnosing the carbon cycle parameters to individual
ESMs is a main issue to be addressed in the future. Accu-
mulated carbon in response to atmospheric CO2 input has
a trade-off relationship between ocean and land, and both
components have their own mechanisms of climate–carbon
cycle feedbacks, which are also subject to the magnitude of
temperature response. This implies that calibrating the MCE
parameters for each ESM requires a series of pulse response
experiments designed to allow each of the ocean and land
contributions to be isolated, with and without temperature
feedback. Besides the standard 1 %-per-year increase exper-
iment, the CMIP6 provides idealized ESM experiments, in-
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cluding 1 %-per-year increase variants with different config-
urations and a variety of pathways to zero emissions (Jones
et al., 2019; Keller et al., 2018). The extent to which differ-
ent ESMs are emulated for these scenarios needs to be ver-
ified with calibrated parameters, leading to further insights
into carbon cycle behavior in terms of amount of emissions,
hysteresis effects after attaining zero emissions, and state de-
pendency.

While the covariance of MCE parameters is incorporated
for the CMIP models’ variability of CO2-induced warming,
the carbon cycle parameters and the non-CO2 scaling fac-
tors are independently sampled. There may be other covari-
ance between key indicators. As different types of aerosol
schemes constitute a major source of model variations, incor-
porating covariance associated with aerosol forcing would
improve parameter sampling, leading to more appropriate in-
dicator ranges.

The results shown in the previous section are outputs from
concentration-driven experiments in which implied emis-
sions are available for CO2 only. Likewise, the emission-
driven option is currently limited to CO2. The two types of
experiments are equivalent within numerical errors associ-
ated with a time integration scheme, for which Runge–Kutta
fourth order is used. However, implied emissions tend to be
noisy when pulse-like non-CO2 forcing is given, owing to the
temperature dependency implemented in carbon cycle mod-
ules. This is the case in historical experiments including vol-
canic forcing.

4.2 Further improvement on constraints

The Constrained ensemble was applied to that compared in
the RCMIP Phase 2 exercise, wherein the MCE is recog-
nized as one of two models that have commonly used the
target constraints, implying that they are successfully con-
strained, among nine participant models with different de-
grees of complexity (Nicholls et al., 2021). The MCE is a
relatively simple emulator that is conceivably cited with a
simple thermal response, an intermediate-complexity carbon
cycle, simply parameterized non-CO2 GHG forcing, and no
other Earth system components. This simplicity and the suc-
cessful results obtained imply that a method with less com-
plicated structures and fewer control parameters offers ad-
vantages when building reasonable parameter ensembles, de-
spite less capacity to emulate detailed Earth system compo-
nents.

Several issues require clarification with regard to the dif-
ferences between Prior and Constrained ensembles. First of
all, it should be emphasized that the constraints used in the
RCMIP were preliminary, as the formal IPCC Sixth Assess-
ment was not yet available during the project. Since the re-
sults from the Constrained ensemble heavily depend on re-
cent warming trends from specific datasets without any addi-
tional uncertainties, which led to lower sensitivity indicators
(Fig. 12h and i), the Constrained future warming projections

and their uncertainty ranges would be underestimated com-
pared to those based on formally assessed trends from multi-
ple lines of evidence (IPCC, 2021).

The current proxy constraints such as the ones for the three
climate sensitivity ranges of ECSG, TCR, and TCRE adopted
from individual studies are not necessarily consistent with
each other. The range of ECSG is based on multiple lines
of evidence, including feedback process understanding, his-
torical records, and paleoclimate records (Sherwood et al.,
2020). Here, ECSG, rather than ECS, is referred to, assuming
that process understanding is largely based on the CMIP’s
quadrupling CO2 experiments. The range of TCR is based on
30 and 22 AOGCMs from the CMIP5 and CMIP6, both con-
strained by warming trends during recent decades (Tokarska
et al., 2020). In contrast to these observations and model-
ing studies, the range of TCRE is based on 11 CMIP6 ESMs
(Arora et al., 2020). Improved ensembles based on compre-
hensively assessed constraints would increase reliability of
probabilistic projections, leading to better insights into future
warming.

In comparison with the AR5 assessment, the Constrained
ensemble has considerably low-biased climate sensitivity,
but nevertheless indicates comparable future warming across
different scenarios. As stated above, this inconsistency can
be partly explained on the basis of the AR5 method for
warming levels that adds up observed historical warming to
CMIP5-modeled future projections. With regard to consis-
tency throughout the whole period, the emulator approach
would be more desirable. In any case, it is necessary to im-
pose appropriate weighting on CMIP models to be emulated,
in particular when the model ensemble has a wide spread and
some outliers in terms of reproducibility of past and current
climates (Cox et al., 2018; Tokarska et al., 2020). The MH
sampler with observed warming constraints corresponds to
an indirect method for such weighting. As the present results
decisively depend on surface temperature and OHC obser-
vations during recent decades, their validity as a constraint
needs to be discussed from a broad perspective across forc-
ing, response, and sensitivity.

The current constraining assumes observed warming as an
entirely forced response. Recent findings from warming at-
tribution studies may support this, suggesting that human-
induced warming is similar to observed warming (Allen et
al., 2018). However, the attribution depends on temporal and
spatial patterns of forced response in multiple AOGCMs as
well as their diagnosed forcing, leading to a complicated sit-
uation in which constraining data and AOGCMs to be con-
strained are mutually dependent. Also, substantial uncertain-
ties of response patterns to changes in individual forcing
factors remain owing to the diversity of AOGCMs (Jones
et al., 2016). Moreover, the new CMIP6 models appear to
have marked differences in the magnitude of internal vari-
ability underlying attribution studies (Parsons et al., 2020).
The GMST constraint does not consider such uncertainties
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and may be replaced with broader ranges from new insights
into forced response.

Furthermore, it is also necessary to constrain forced re-
sponse on a centennial timescale. Besides the HadCRUT
data available since 1850, the OHC data, limited to the late
20th century, may include delayed response components on
a much longer timescale. In fact, major volcanic eruptions
occurred frequently in the 18th and 19th centuries. The ini-
tial year of 1850 is commonly used as a proxy preindustrial
time point to avoid difficulties that arise from limited obser-
vations and major eruptions (Allen et al., 2018). However,
the pre-1850 volcanic impact on the deep ocean should be
examined carefully. In fact, it has been recognized in histori-
cal runs with the MCE that the OHC increase during the late
20th century significantly depends on the initial year, while
the surface warming does not. A series of volcanic eruptions
in the period 1750–1850 appears to have contributed to heat-
ing after the period and has amplified heat content increase
since 1850. The results suggest that human-induced OHC in-
crease should be distinguished from observed total increase
for better constraints.

Aerosol cooling is one of the key factors influencing tem-
perature changes in the latter half of the 20th century, re-
sulting in different ranges of other climate indicators. The
present method relies on the prescribed ERF time series
prepared for the CMIP6, which is scaled to the proxy as-
sessment range in 2014 (Fig. 12r). Although this proce-
dure ensures that cooling magnitude is constrained to the
given range at the specific time point, the base time series
is fixed. The constraint, adopted from Smith et al. (2020), is
the outcome of the Radiative Forcing Model Intercompari-
son Project (RFMIP; Pincus et al., 2016), one of the CMIP6-
endorsed model intercomparisons. Better insight into aerosol
forcing may update its historical time series, thereby leading
to improvement of forced response and other climate indica-
tors, including climate sensitivity.

Technical issues exist when sampling from the Prior en-
semble with observed warming constraints, associated with
their distinct differences. The proxy ranges of the constraints
are much more biased and localized compared to the Prior
distributions, leading to inefficient sampling. The acceptance
rate in the present case reached only about 1 %, requiring
∼ 105 member calibration runs to obtain a 600-member Con-
strained ensemble. Besides the efficiency issue, the sampling
process should be visually monitored to verify whether the
acceptance or rejection is reasonable. As the MH indepen-
dence sampler compares a probability density ratio of the
next state to the current between candidate and target den-
sities, care is to be exercised at the distributions’ tail re-
gions where relatively large approximation errors may exist.
The present method introduced ad hoc criteria to avoid ac-
ceptance with an unexpectedly large density ratio. As men-
tioned in Sect. 3.1 and confirmed from Fig. 12, the current
method does not technically meet the MCMC requirement
but still generates a reasonable ensemble that generally sat-

isfies the RCMIP constraints. Nevertheless, methodological
issues should be addressed using improved constraints.

5 Conclusions

A new climate model emulator, MCE, was developed, and its
probabilistic climate projections for representative scenarios
were demonstrated and thoroughly discussed. The MCE is
based on impulse response functions and several parameter-
ized physics, including key climate–carbon cycle feedbacks,
and it may be categorized as a relatively low-complexity
model among recent model intercomparison participants. It
has an advantage when building reasonable perturbed en-
sembles transparently, despite its lower capacity to emulate
detailed Earth system components. Perturbed ensembles can
cover complex climate models’ diversity effectively, reflect-
ing their covariance structure of diagnosed forcing response
parameters associated with CO2-induced warming. They can
be constrained with several ranges of climate indicators, in-
cluding CO2 and other forcing factors as well as observed
warming trends over recent decades. The constraining pro-
cedure, implemented with a Metropolis–Hastings algorithm,
effectively works as weighting given to complex models.

Results from climate assessments for future scenarios in
terms of their compatibility with climate mitigation goals
are preliminary, and experiments should be conducted with
newly assessed constraining data. There are considerable un-
certainties about forced components of historical warming as
well as different forcing factors and consistency of assessed
ranges among different climate sensitivity metrics. These
are main issues to be clarified considering updated indicator
ranges in the latest assessment. There is some room for im-
provement in emulator functionality. The carbon cycle mod-
ule has not been configured to individual complex models,
full emissions-driven experiments have not been supported,
and perturbed parameter ensembles have not reflected full
covariance structures of complex models. These issues are to
be addressed in future work.

Code and data availability. MCE source code and example us-
age scripts as used in this submission are available from
the MCE GitHub repository at https://github.com/tsutsui1872/
mce (last access: 18 October 2021) and archived by Zenodo
(https://doi.org/10.5281/zenodo.5574895, Tsutsui, 2021).
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