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Abstract. In the era of exascale computing, machines with
unprecedented computing power are available. Making effi-
cient use of these massively parallel machines, with millions
of cores, presents a new challenge. Multi-level and multi-
dimensional parallelism will be needed to meet this chal-
lenge.

Coarse-grained component concurrency provides an ad-
ditional parallelism dimension that complements typically
used parallelization methods such as domain decomposition
and loop-level shared-memory approaches. While these par-
allelization methods are data-parallel techniques, and they
decompose the data space, component concurrency is a
function-parallel technique, and it decomposes the algorith-
mic space. This additional dimension of parallelism allows
us to extend scalability beyond the limits set by established
parallelization techniques. It also offers a way to main-
tain performance (by using more compute power) when the
model complexity is increased by adding components, such
as biogeochemistry or ice sheet models. Furthermore, con-
currency allows each component to run on different hard-
ware, thus leveraging the usage of heterogeneous hardware
configurations.

In this work we study the characteristics of component
concurrency and analyse its behaviour in a general con-
text. The analysis shows that component concurrency in-
creases the “parallel workload”, improving the scalability
under certain conditions. These generic considerations are

complemented by an analysis of a specific case, namely
the coarse-grained concurrency in the multi-level parallelism
context of two components of the ICON modelling system:
the ICON ocean model ICON-O and the marine biogeochem-
istry model HAMOCC. The additional computational cost
incurred by the biogeochemistry module is about 3 times
that of the ICON-O ocean stand alone model, and data paral-
lelization techniques (domain decomposition and loop-level
shared-memory parallelization) present a scaling limit that
impedes the computational performance of the combined
ICON-O–HAMOCC model. Scaling experiments, with and
without concurrency, show that component concurrency ex-
tends the scaling, in cases doubling the parallel efficiency.
The experiments’ scaling results are in agreement with the
theoretical analysis.

1 Introduction

Since the dawn of modern computing, numerical weather
prediction and climate modelling have been among the first
scientific applications to make use of the new technology
(Dalmedico, 2001; Washington et al., 2009; Balaji, 2013).
In the decades following the creation of the first atmosphere
computer models, computational power has been increasing
exponentially (McGuffie and Henderson-Sellers, 2001), al-
lowing for the development of complex Earth system mod-
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els (Randall et al., 2018) running at ever higher resolutions.
A first impressive result was described by Miyamoto et al.
(2013), where the atmosphere model NICAM ran in a global
sub-kilometre resolution for 12 simulated hours, dynamically
resolving convection. Since then, other groups have followed
the path of reducing parameterizations by increasing the res-
olution, as, for example, in global storm resolving setups de-
scribed in Stevens et al. (2019). We are currently viewing the
perspective of constructing the Earth’s digital twin (Voosen,
2020; Bauer et al., 2021), where much of the Earth’s system
complexity will be captured by models at 1 km resolution.

These developments have been made possible by the avail-
ability of massively parallel computers. Since the begin-
ning of the 21st century the focus of CPU development has
switched from constructing more powerful processing units
to packing more units into an integrated chip. In response,
programmers had to turn much of their efforts from opti-
mizing the code to efficiently parallelizing it (Sutter, 2005;
Mattson et al., 2008). The era of exascale computing is here
with the construction of machines like the Frontier at the Oak
Ridge National Laboratory. While less than 15 years ago we
were facing the challenge of petascale computing (Washing-
ton et al., 2009), we are now facing a new level of challenge:
how to efficiently parallelize our codes for machines with
millions of cores.

The parallelization backbone of Earth system models con-
sists of domain decomposition techniques, where the hori-
zontal grid is decomposed into subdomains, which are as-
signed to different processing units, and the Message Pass-
ing Interface (MPI; Walker, 1992; The MPI Forum, 1993)
is used to communicate information between them. This ap-
proach has been designed primarily for distributed mem-
ory parallelization. In the last years it has become apparent
that domain decomposition methods alone cannot efficiently
scale when using a high number of cores placed on a shared
memory board. For 2 decades, shared-memory paralleliza-
tion mechanisms, such as OpenMP (Mattson, 2003), have
been being developed. These have been increasingly em-
ployed for providing loop-level shared-memory paralleliza-
tion, in order to exploit the new multi-core architectures.
More recently, GPUs have attracted a lot of attention due to
the high computing power they provide through massive par-
allelism while at the same time requiring lower power con-
sumption per FLOP (floating point operations per second)
than traditional CPUs. The two levels of parallelization that
are currently widely used, domain decomposition with MPI
for distributed memory parallelization and OpenMP shared-
memory loop-level parallelization (or similar approaches,
like OpenACC for GPUs), have so far been successful in
yielding satisfactory performance on parallel machines. They
still pose though some limitations, as their scaling efficiency
typically depends on the number of grid points available for
parallelization.

The concept of concurrency goes back to before parallel
computing came into practice (Lamport, 2015). It refers to

algorithmic dependencies and independencies and was first
developed in the context of multitasking. The term has come
to be synonymous to task parallelism, as independent tasks
can run in parallel. In contrast to the domain decomposi-
tion and loop-level parallelization methods, concurrency is
a function (or task) parallel approach. Coarse-grained com-
ponent concurrency is a special case of concurrency, where
the independent components are large model modules, es-
sentially sub-models, with comparable computational work-
load. It has been used in climate modelling for decades in
atmosphere–ocean coupled setups: the two models run in
parallel and are coupled every one or more time steps. More
recently, the same idea has been applied to the radiation com-
ponent of the atmosphere (Mozdzynski and Morcrette, 2014;
Balaji et al., 2016) and to the radiation and ocean wave com-
ponents (Mozdzynski, 2018). A concurrency approach by
splitting the atmosphere dynamics and physics processes is
presented in Donahue and Caldwell (2020).

Increasing the grid resolution allows us to resolve smaller
scales, to better approximate the physical processes, and to
rely less on parameterizing unresolved processes. This in-
creased problem size can still be effectively parallelized us-
ing data parallelism, at least up to a point. On the other hand,
there is interest to include more processes into Earth system
models, in order to have a more detailed representation of
the Earth system. Such processes may represent the atmo-
sphere chemistry, the cryosphere, and the ocean biogeochem-
istry and can have a significant impact on the Earth’s climate
and the biosphere.

Ocean biogeochemistry comprises a variety of chemical
and biological processes in the water column and the sed-
iments of the ocean (Sarmiento and Gruber, 2006). These
processes include, for example, biological activity of phy-
toplankton, zooplankton and different types of bacteria, the
chemical and biological cycles of carbon or nitrogen, and
the dissolution of gases in seawater. Ocean biogeochemistry
is therefore an important component for quantifying criti-
cal developments in the Earth system, like the oceanic up-
take of anthropogenic CO2 released from fossil fuels (Ciais
et al., 2014) or ocean acidification and deoxygenation un-
der the impact of global warming (Orr et al., 2005; Breitburg
et al., 2018). However, the number of processes that could
be included is extensive, and ocean biogeochemistry mod-
els are becoming ever more complex through the addition of
more tracers and processes (Ilyina et al., 2013). This results
in a large computational cost, which hinders their integra-
tion in high-resolution Earth system models, especially when
simulating the long timescales that are crucial to investigate
changes in the biogeochemical state of the ocean.

In contrast to increasing the grid size, the additional com-
putational cost imposed by introducing new processes cannot
be absorbed through grid decomposing parallel methods, as
these are limited by the grid size. Component concurrency
offers a way to increase the model complexity while main-
taining reasonable performance.
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In this paper we study the impact of component concur-
rency on the scaling behaviour of a model. We examine it in a
general abstract context, in what manner component concur-
rency differs from the more traditional approaches and what
its scaling characteristics are. We consider concurrency to be
part of a multi-level parallelism scheme, and we examine the
cases where it can improve performance and when this im-
provement is optimal. The ICON-O–HAMOCC ocean bio-
geochemistry model offers a good test case, as it is about 4
times slower than ICON-O alone. We have run two sets of
experiments on two different machines. The scaling results
obtained from the experiments are in good agreement with
the predictions from the theoretical analysis.

In Sect. 2 we give a brief description of the ICON mod-
els. In Sect. 3 we examine the behaviour of component con-
currency in a general context. Section 4 describes the basic
steps to engineer concurrency for ICON-O–HAMOCC. Ex-
periments and the results are presented in Sect. 5. A compar-
ison of the experimental results with the theoretical analysis
is given here. In Sect. 6 we give an overview of the results
and future work.

2 ICON model description

ICON is an Earth system model framework developed in col-
laboration with the German Weather Service (DWD), the
Max Planck Institute for Meteorology (MPIM), the Insti-
tute of Meteorology and Climate Research at the Karlsruhe
Institute of Technology, and the German Climate Comput-
ing Centre (DKRZ). It consists of the numerical weather
prediction model ICON-NWP (Zängl et al., 2015), the cli-
mate atmosphere model ICON-A (Giorgetta et al., 2018;
Crueger et al., 2018), the land model JSBACH (Nabel
et al., 2020), the ocean model ICON-O (Korn et al., 2022),
the atmosphere aerosol and chemistry model ICON-ART
(Rieger et al., 2015), and the marine biogeochemistry model
HAMOCC (Ilyina et al., 2013). The ICON Earth system
model ICON-ESM consists of ICON-A, JSBACH, ICON-O,
and HAMOCC (Jungclaus et al., 2022).

The ICON horizontal grid consists of triangular cells con-
structed by recursively dividing the icosahedron (Tomita
et al., 2001), and it provides near-uniform resolution on the
sphere. More general non-uniform triangular grids can be
used by ICON-O (Logemann et al., 2021).

The ICON framework provides common infrastructure to
its components. It supplies the domain decomposition rou-
tines and model-contextual high-level communication inter-
faces to the Message Passing Interface (MPI). It also provides
flexible interfaces for input and automatic parallel asyn-
chronous output mechanisms. The YAC library (Hanke et al.,
2016) serves as a general coupler between models. Mod-
els are registered to a simple master control module through
namelists. The ICON models employ both domain decom-
position and OpenMP loop-level parallelism. ICON-A and

Figure 1. Left: the uniform ocean icosahedron-based grid at 160 km
resolution. Right: detail from the non-uniform global coastal ocean
grid with resolution 8–80 km used in Mathis et al. (2021).

JSBACH can also run on GPUs using OpenACC directives
(Giorgetta et al., 2022).

2.1 The ICON-O ocean model

ICON-O is the ocean general circulation model that provides
the ocean component to the ICON-ESM. Its horizontal spa-
tial discretization is based on unstructured triangular grids,
allowing for a variety of setups, from idealized basins (Korn
and Danilov, 2017) to global ocean domains, where the inte-
rior land points are removed; see Fig. 1 left. In non-uniform
setups, it has been tested with “telescoping” setups (Korn
et al., 2022), which can produce local grid spacings of 600 m
(Hohenegger et al., 2022). Furthermore, a topographic and
coastal adaptive local refinement (Logemann et al., 2021) has
been used for global coastal ocean simulations (see Fig. 1
right). This setup includes the HAMOCC biogeochemistry
model (see Mathis et al., 2021).

ICON-O solves the oceanic hydrostatic Boussinesq equa-
tions, also referred to as the “primitive equations”. The primi-
tive equations are solved on the triangular ICON grid with an
Arakawa C-type staggering, using a mimetic horizontal dis-
cretization, where certain conservation properties of the con-
tinuous formulation are inherited to the discretized one. The
staggering necessitates reconstructions to connect variables
that are located at different grid positions. This is accom-
plished in ICON-O by utilizing the novel concept of Hilbert
space admissible reconstructions; for details see Korn (2017)
and Korn and Linardakis (2018).

The vertical coordinate axis is given by the z coordinate,
which reflects the geopotential height. The two-dimensional
triangles are extended by a height-based dimension, which
generates three-dimensional prisms. Alternative vertical co-
ordinates such as the z∗ coordinate are also available in
ICON-O.

ICON-O is stepping forward in time with a semi-implicit
Adams–Bashforth-2 scheme. The free surface equation is
solved implicitly in time, using an iterative conjugate gradi-
ent solver. The remaining state variables are discretized ex-
plicitly. For details we refer to Korn (2017).
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Figure 2. Schematic of the biogeochemical processes simulated by
HAMOCC. HAMOCC needs to be coupled to an ocean model that
provides the fields of temperature, salinity, and sea-ice cover and
transports the HAMOCC tracers according to the flow field. The
surface inputs can either come from a coupled atmosphere model
or are prescribed. The biogeochemistry in HAMOCC can then feed
back to the ocean model via the impact of light absorption on tem-
perature and to the atmosphere model via the uptake or release of
CO2.

The ICON sea-ice model consists of a dynamic and a ther-
modynamic component. The sea-ice dynamics follows the
elastic–viscous–plastic (EVP) rheology formulation and is
based on the sea-ice dynamics component of FESIM; see
Danilov et al. (2015). The thermodynamics of the sea ice fol-
low the zero-layer formulation; see Semtner (1976).

A combination of a first-order upwind scheme and a
second-order scheme are utilized for the horizontal tracer
transport. The second-order method flux calculations are
based on compatible reconstructions, as described in Korn
(2017). The two schemes are combined through a Zale-
sak limiter (Zalesak, 1979), resulting in a “flux-corrected
transport”, which avoids the creation of new extrema (over-
/undershoots). This combination results in both monotonicity
and low numerical diffusion, which are essential for preserv-
ing the water density structure.

For the vertical tracer transport we use a combination
of the piecewise parabolic method (PPM; see Colella and
Woodward (1984)) as a high-order and upwind as a low-
order method.

2.2 The HAMOCC biogeochemistry model

The Hamburg Ocean Carbon Cycle (HAMOCC) model has
initially been developed in earlier work by Maier-Reimer
(1984) and Maier-Reimer and Hasselmann (1987) to address
the role of ocean processes driving the fate of carbon in the
climate system over timescales ranging from seasons to thou-
sands of years. To achieve a consistent evolution of the ocean

biogeochemistry, the biogeochemical variables are handled
as tracers on the three-dimensional grid of the ocean general
circulation model. They are transported in the same manner,
i.e. using the same numerical methods and time step, as salin-
ity and temperature.

The processes simulated by HAMOCC include biogeo-
chemistry of the water column and upper sediment, as well as
interactions with the atmosphere. Figure 2 shows a schematic
overview of the key components of the HAMOCC model. In
the water column, the biogeochemical tracers undergo mod-
ifications by biological and chemical processes, described in
detail in Ilyina et al. (2013) and Paulsen et al. (2017). At
the air–sea interface, the fluxes of O2, N2, and CO2 are cal-
culated. Furthermore, dust and nitrogen deposition from the
atmosphere to the ocean is accounted for. The simulation of
the oceanic sediment follows the approach of Heinze et al.
(1999), and biogeochemical tracers are exchanged with the
upper sediment.

Marine biology dynamics connects biogeochemical cy-
cles and trophic levels of the marine food web through the
uptake of nutrients and remineralization of organic matter.
It is represented by the extended NPZD approach with nu-
trients, i.e. dissolved inorganic nitrogen (N), phytoplankton
(P), zooplankton (Z), and detritus (D) (sinking particulate
matter) and also dissolved organic matter (Six and Maier-
Reimer, 1996). Explicit fixation of nitrogen is performed by
cyanobacteria (Paulsen et al., 2017). All organic compounds
have identical nutrient and oxygen composition following
the Redfield ratio concept, extended by a constant ratio for
carbon and the micronutrient iron. The treatment of carbon
chemistry follows the guide to best practices, as described in
Dickson et al. (2007) and Dickson (2010).

The transport of biogeochemical tracers presents the most
expensive computational part of the HAMOCC model. The
number of advected tracers depends on the complexity of
the included processes. For example, including organic mat-
ter from riverine or terrestrial sources (Lacroix et al., 2021),
extending the nitrogen cycle by including ammonium and
nitrite, simulating carbon isotopes or using a more realis-
tic sinking method for particular organic matter (M4AGO
scheme: Maerz et al., 2020), or incorporation of stable car-
bon isotope 13C (Liu et al., 2021) increase the number of
advected tracers from the default value of 17 and therefore
increase the computational cost. Introducing concurrency en-
ables the use of currently simulated processes and may allow
for the addition of even more tracers, necessary for including
more processes, while maintaining an acceptable throughput.

3 Coarse-grained component concurrency and
multi-dimensional parallelism

In a coarse component concurrent setup, two or more com-
ponents of the model are run in parallel. The level of “coarse-
ness” is difficult to define; here we will understand it as being
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able to run concurrently the components throughout a whole
time step. The components are algorithmically independent
and may only need to receive input data from other compo-
nents once in each time step. For example, the ocean model
in a coupled setup requires the atmosphere surface fluxes at
the start of each time step and then can proceed indepen-
dently from the atmosphere model. Thus, we expect only one
point of communication between the components, where all
the information is exchanged. Such components may be the
radiation, the ocean biogeochemistry, the sea ice, and the ice
sheets, etc.

From here on, we will use the term “concurrency”, instead
of coarse-grained component concurrency, for brevity. We
will also use the term “sequential” as a synonym for “non-
concurrent”, in the sense that the components run sequential
to each other; other types of parallelization though may still
be present.

A schematic of concurrency is drawn in Fig. 3. Let A and
B be two components of the model. In the case of using do-
main decomposition parallelism only, the domain is decom-
posed, and the subdomains are distributed among the pro-
cessing units, while the two modules run sequential to each
other, as in Fig. 3a. In the case of concurrency the two mod-
ules run on two different groups of processing units, depicted
in Fig. 3b.

3.1 Levels of parallelism

We can identify three levels of parallelism:

a. High-level parallelism is applied over the whole model
or over the whole concurrent components of the model.
The most successful such technique is to decompose
the horizontal grid and use MPI for communicating
between the subdomain processes. Component concur-
rency falls into this category. The most well-known ex-
ample of concurrency in climate modelling is running
the atmosphere and the ocean models concurrently and
coupling them every one or more time steps. An impor-
tant characteristic of high-level parallelization is that it
is independent of the machine architecture. It can be ap-
plied across nodes of heterogeneous machines and can
facilitate hybrid setups, by running simultaneously on
different types of processing units.

b. In medium-level parallelism we identify parallel struc-
tures on a task or loop level. These are shared-memory
parallelization techniques, such as OpenMP or Ope-
nACC. We can consider them to be “medium- or fine-
grained” parallelism. In contrast to high-level paral-
lelization, the implementation of this level of paral-
lelization may not be independent from the type of ar-
chitecture.

c. In low-level parallelism we identify techniques closer to
the architecture, such as vectorization and out-of-order

execution. These techniques depend on the particular ar-
chitectures and will not be considered in the following
discussion.

Another way to characterize parallelism is by the type of de-
composition that is employed. In data parallelism the data
domain is decomposed, and the same operations are applied
to each sub-domain. Examples of data parallelism are the
domain decomposition techniques and the loop-level paral-
lelism. In the function (or task) parallelism, the algorithmic
space is “decomposed”. Examples are OpenMP task paral-
lelism, out-of-order execution, and also the coarse-grained
component concurrency. So, these two types of decomposi-
tion exist across the three levels of parallelism.

Domain decomposition parallelism comes with a commu-
nication and synchronization cost, typically caused from ex-
changing values of “halo” cells between processes. These
halo cells consist of the boundary of subdomains which are
replicated by their neighbour subdomains (see Fig. 4). The
total number of halo cells generally increases proportional
to
√
N , where N is the number of subdomains. In turn, the

parallelization gain for halos is only proportional to
√
N , in-

stead of N . This imposes a limit on how far we can use only
domain decomposition as a parallel paradigm for running on
massively parallel machines. We will further examine this
behaviour in the experiments in Sect. 5.1.

Another type of communication is global reduction opera-
tors, such as global sums. These are typically used in matrix
inversions, as is the case for ICON-O, and they also impose
scaling limits. We will also observe this behaviour in the ex-
periments in Sect. 5.2.

OpenMP parallelization provides complementary advan-
tages to the domain decomposition. It offers dynamic load
balancing and no communication cost.1 On the other hand,
performance is restricted by overheads, memory bandwidth,
and, in NUMA (non-uniform memory access), machines by
data locality. This last disadvantage is alleviated in the do-
main decomposition approach due to a smaller memory foot-
print per process.

Component concurrency also comes with a cost, which de-
pends on how it is implemented. If we keep the total MPI
tasks constant, equal to N , we have two options. In the case
of a distributed memory parallelization, we split the MPI
tasks among the two components, assigning N1 to the first
and N2 to the second, and apply shared-memory paralleliza-
tion inside each component. The cost comes from communi-
cating between the two components.

In the case of a shared-memory implementation of concur-
rency, both components will run onN MPI tasks. In this case
we do not have a communication cost, but the synchroniza-
tion cost remains. Moreover, the performance will partially
depend on how efficiently MPI can handle multiple commu-

1Here by “communication” direct communication between the
parallel tasks is meant. The cost of it can be significant when it
takes place through the network.
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Figure 3. (a) Two model components A and B running on four processing units using only domain decomposition parallelism. (b) The two
components run concurrently, each on 2 processing units.

Figure 4. (a) A domain of 64 grid points. It is assumed double-periodic for illustration purposes. (b) The domain decomposed in four
subdomains. Grid points with the same colour are duplicated, with halos depicted with shading.

nicators from the same MPI task concurrently. Other aspects
may also prove to be significant, like input and output (I/O).
In the case of distributed memory implementation, all infras-
tructure is automatically also distributed, including output.

The other aspect of these two options is the implementa-
tion. The distributed memory case is independent of the ar-
chitecture and can even be applied in hybrid mode. While
in principle the same functionality can be achieved using
shared-memory parallelization, no such standard, to the au-
thors’ knowledge, is currently mature enough to be imple-
mented across multiple architectures. Weighting the pros and
cons can only be done in some context. In this work we
choose to implement component concurrency as a distributed
memory approach due to the flexibility it offers.

3.2 Coarse-grained component concurrency and
scalability

For climate models the total computing workload is propor-
tional to the grid size2 and the number of operations per grid
point required to solve the problem. We have WT = a · s,
where WT is the total workload, s is the grid size, and a
is the number of operations per grid point. We define the
parallel workload as the workload inside a parallel region,
that is between two synchronization points, assigned on one
processing unit. For example, the total workload inside an
OpenMP parallel loop, divided by the number of OpenMP
threads, would constitute a parallel workload. Such a parallel

2The total 3-dimensional grid size.

region contains a constant number of operations ap per grid
point3, so we have

Wp = ap · s/N.

Let A and B be two modules of the model using the same
grid (as in Fig. 3). Let WA be the total workload of module
A andWB = λ ·WA the total workload of module B. Propor-
tionally, let NA =N be the number of processing units that
A runs on its own and NB = λ ·N the additional number of
processing units we use when adding module B. The total
number of processing units is now NA+NB . Let us consider
the parallel workload as the workload assigned to a parallel
loop. In the typical data parallel case, where the grid space
is decomposed, the parallel workload of a parallel region is
WABp = ap

s
NA+NB

, independently if this parallel region be-
longs to module A or B. In the concurrent case, where mod-
ule A runs on NA units and module B on NB units, the par-
allel workload of this parallel region is WAp = ap

s
NA

if it be-
longs to module A and WBp = ap

s
NB

if it belongs to B. In
both cases concurrency increases the parallel workload com-
pared to data parallelism only. This is a main feature of con-
currency compared to data parallelism; it provides another
parallelism dimension by decomposing the function space a
instead of the problem size s.

3The number of operations per horizontal grid point may vary
depending on conditionals and number of active vertical levels.
These differences would create imbalance. Without loss of gener-
ality we can take the maximum workload among processes.
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How does increasing the parallel workload affect the to-
tal performance? If we ignore the scaling issues, there is no
effect. In the non-concurrent case the time to solution is pro-
portional to (WA+WB)/(NA+NB)= ((1+λ) ·WA)/((1+
λ) ·N)=WA/N , while in the concurrent case it is WA/N =

(λ ·WA)/(λ ·N)=WB/NB . The performance is the same.
Only when scaling is taken into account does concurrency
have an impact. We will examine this impact in the follow-
ing discussion.

Let T (1)= r ·WA = r ·a ·s be the time it takes to run mod-
ule A on one processing unit, where r is a constant that char-
acterizes the computing power of the processing unit andWA

the workload. We will only consider the homogeneous case,
where all units have the same processing power. Let T (N)
be the time for running on N processing units. The speed-up
is defined as S(N)= T (1)/T (N) and the parallel efficiency
as F(N)= T (1)/N/T (N)= S(N)/N . We have

T (N)= T (1)/(F (N) ·N).

Let us now add another component B to the model A as
above that adds a workload of WB = λ ·WA, increasing the
time cost for running on one processing unit to T (1) ·(1+λ).
We increase the number of processing units proportionally,
from N to N(1+ λ). We will assume that our new compo-
nent B has the same scaling behaviour as A, so that the same
efficiency function F(N) also applies to B. When using data
decomposition parallelization, our new time cost is

Td(N · (1+ λ))=
T (1) · (1+ λ)

F (N · (1+ λ)) ·N · (1+ λ)

=
T (1)

F (N · (1+ λ)) ·N
.

When on the other hand we run componentB concurrently
on λ ·N nodes, with A on N nodes, then the total time cost is

Tc(N · (1+ λ))=max(TAc,TBc),

where TAc =
T (1)

F (N)·N
+C(N · (1+ λ)), TBc =

T (1)·λ
F(N ·λ)·λ·N

+

C(N ·(1+λ))= T (1)
F (N ·λ)N

+C(N ·(1+λ)) are the time costs for
running componentsA andB concurrently, andC(N ·(1+λ))
is the cost incurred by the concurrency.

We assume that the parallel efficiency is a non-increasing
function of N , that is F ′(N)≤ 04. Without loss of gener-
ality we take λ≤ 1 (in the opposite case we can just swap
the modules A and B). Then F(N ·λ)≥ F(N) and Tc = TAc.
Comparing Tc with Td, we have

Tc

Td
=

T (1)
F (N)·N

+C(N · (1+ λ))
T (1)

F (N ·(1+λ))·N

=
F(N · (1+ λ))

F (N)

+
C(N · (1+ λ)) ·F(N · (1+ λ)) ·N

T (1)
.

4We take the liberty to considerN continuous whenever needed.

We set

L(N,λ)=
F(N · (1+ λ))

F (N)
,

termed relative efficiency. We have

Tc

Td
= L(N,λ)+

C(N · (1+ λ)) ·L(N,λ) ·F(N) ·N
T (1)

.

Taking into account that T (N)= T (1)
F (N)·N

, we have

Tc

Td
= L(N,λ)+L(N,λ) ·

C(N · (1+ λ))
T (N)

= L(N,λ) ·

(
1+

C(N · (1+ λ))
T (N)

)
. (1)

We seek the conditions where Tc
Td

is smaller than 1 and as
small as possible. In a linear or near-linear scaling regime,
where the efficiency F(N) is nearly constant as a function of
N , we have L(N,λ)≈ 1, and concurrency will provide little,
if any, benefit.

Let us examine the sub-linear scaling regime. Then F(N)
is a strictly decreasing function of N , and L(N,λ) < 1.
Moreover L(N,λ) is a strictly decreasing function of λ;
when we keep N constant, we have

∂L(N,λ)

∂λ
=

1
F(N)

∂F (N · (1+ λ))
∂λ

< 0.

Concurrency will provide the maximum benefits when λ is
maximum, that is λ= 1 (recall that λ≤ 1), and the two mod-
ules have the same workload. On the other hand, if λ� 1,
we have L(N,λ)≈ 1, and the benefits would be significantly
reduced. In this case the bulk of the workload is borne by
module A, and the additional parallelism for B provides lit-
tle profit. The “coarse-grained” part of the concurrency does
not hold, and one should consider using fine-grained paral-
lelism.

The sub-linear scaling property is not sufficient to allow
us to deduce the behaviour of L(N,λ) as a function of
N . We will further assume that the scaling behaviour fol-
lows Amdahl’s law (Amdahl, 1967). In this case T (N)=
T (1) (1−σ)+σ ·N

N
, where 0< σ < 1 is the part of the code that

does not scale. Then S(N)=
T (1)
T (N)
=

N
(1−σ)+σ ·N , F(N)=

S(N)
N
=

1
(1−σ)+σ ·N , andL(N,λ)= (1−σ)+σ ·N

(1−σ)+σ ·N ·(1+λ) . We have

∂L(N,λ)

∂N
=

σ [(1− σ)+ σ ·N · (1+ λ)] − σ · (1+ λ) · [(1− σ)+ σ ·N ]
[(1− σ)+ σ ·N · (1+ λ)]2

=
−σ · λ · (1− σ)

[(1− σ)+ σ ·N · (1+ λ)]2
< 0.

L in this case is a decreasing function of N , with a lower
limit Ll =

1
1+λ , which provides yet another piece of evidence

of the optimality of λ= 1.
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Experiment results show that in the case of ICON-O–
HAMOCC, L is in general a decreasing function of N (see
Sect. 5), and concurrency is effective only after a scaling
threshold has been reached. Scaling tests for the ICON-A
also indicate that L(N,λ) is a decreasing function of N ; see
Giorgetta et al. (2022), Table 3.

Let us now examine the concurrency communication cost
C. The load of the point-to-point communication is propor-
tional to 1/N unlike to the halo communication cost, which
is proportional to 1/

√
N . So we do not expect the ratio

C(N · (1+ λ))/T (N) to change significantly as a function
of N , but load imbalance, interconnect, and latency costs
may influence it. In some cases concurrency may also require
a halo exchange (this is the case for ICON-O–HAMOCC).
Concurrency, obviously, will perform better when the rela-
tive cost of the communication C to the computational cost
TA is small. If we take C(N · (1+ λ))/T (N)= c, constant
then Tc

Td
= L(N,λ) · (1+ c), which implies that the scaling

threshold L(N,λ) < 1
1+c has to be reached before concur-

rency is effective.
The case of super-linear scaling is rare but not unknown.

Typically it occurs on cache-based architectures, when a
smaller memory footprint allows for more efficient use of
the cache memory. We can still use Eq. (1) to deduce some
conclusions (we can switch modules A and B if necessary).
In this regime we have F(N1) < F(N2) for N1 <N2, and
L(N,λ) > 1; so concurrency will result in worse perfor-
mance.

Finally we examine the case of “flattening” scaling, the
limit after which the speed-up does not increase. This can be
the case for massively multi-core architectures, like GPUs,
when the workload per node is not enough to occupy the
computing units, and resources are idling. LetN be the num-
ber of nodes beyond which scaling does not increase. Then,
from the previous analysis, we see that in the concurrent case
scaling can still be increased up to N · (1+ λ) nodes but not
beyond this. This in essence underlines the fact that concur-
rency increases the parallel workload when compared to data
parallelism.

4 Engineering concurrency for the
ICON-O–HAMOCC model

Constructing coarse-grained component concurrency is a
software engineering task. The candidate components have
to present “natural” concurrency; this in practice means that
they will present one communication point between them,
while the algorithmic part of the components can run inde-
pendently. Having identified the two components, the next
steps are as follows:

a. encapsulating the components,

b. creating an interface between them, and

c. providing the necessary infrastructure for the two com-
ponents to run independently and to communicate.

The procedure is not dissimilar to that of constructing stand-
alone models, as described, for example, in Eastham et al.
(2018), or constructing coupled setups, as described in Long
et al. (2015).

The original structure and workflow of the sequential
ICON-O HAMOCC process are sketched in Fig. 5a. The call
to the HAMOCC biogeochemistry takes place just before the
tracer transport is called (we will use the term “transport” for
brevity). Upon returning, the HAMOCC tracers have been
updated regarding the biogeochemistry processes, and the
tracer transport routine is called. The HAMOCC tracers are
transported along with the other two ICON-O tracers, tem-
perature and salinity. In this scheme ICON-O and HAMOCC
are entangled through the memory usage and the tracer trans-
port. The HAMOCC tracers are part of the ICON-O tracer
structure. Other HAMOCC variables, like tendencies and
sediment, while exclusive to HAMOCC, were still created
in ICON-O in order to allow for the use of the ICON infras-
tructure, like I/O. The ICON-O–HAMOCC interface handles
the memory recasting between ICON-O and HAMOCC, as
they use different memory layouts. The surface fluxes for
HAMOCC are also handled in ICON-O. On the other hand,
ICON-O does not have any dependencies on HAMOCC, ex-
cept optionally the calculation of solar short-wave radiation
absorption ratio, which is calculated in HAMOCC based on
the chlorophyll’s concentration.

While the two components are entangled, the basic pre-
requisites for concurrency exist: algorithmic independence
and one-point communication. There is though a point for
further consideration: most of the time when running ICON-
O–HAMOCC is actually spent in the tracer transport, rather
than in the HAMOCC biogeochemistry itself (see Sect. 5).
HAMOCC transports 17 tracers, making it the most expen-
sive part in the ICON-O–HAMOCC execution. Paralleliz-
ing only the HAMOCC biogeochemistry would result in
only modest performance benefits, as the bulk of the exe-
cution would still be sequential (following the discussion in
Sect. 3.2).

The solution that we follow is to allow the biogeochem-
istry to transport its own tracers, independently of the ocean.
This requires the encapsulation of the tracer transport, so that
it can be called by both ICON-O and HAMOCC. Two struc-
tures were created as interface to the tracer transport:

a. A tracer collection structure was created that contains
the information of the tracers required for the transport.

b. A transport state structure was created that contains all
the required fluxes. The transport state can be commu-
nicated from ICON-O to HAMOCC, allowing it to run
the transport independently of ICON-O.

The tracer transport is an “embarrassingly” parallel process
with regard to the number of tracers; every tracer can be
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Figure 5. (a) Diagram of the sequential ICON-O–HAMOCC flow. (b) Diagram of the concurrent ICON-O–HAMOCC structure. The same
interface is used for both the sequential and the concurrent mode.

transported independently of the others. This offers another
level of data-parallel, medium-level parallelism, but it also
presents some technical challenges, such as how to efficiently
handle multiple communicators. We note that this approach
does not replace concurrency, as a large part of the code, no-
tably the dynamical core, still runs sequentially, presenting a
scaling bottleneck. This level of parallelization has not been
implemented in this project.

The next task was to disentangle the HAMOCC mem-
ory from ICON-O. The memory management of HAMOCC
was moved into the HAMOCC component, and references to
common global memory between the two components were
removed. The surface flux calculations for the biogeochem-
istry were also moved from the ICON-O surface module to
HAMOCC.

In the next step an interfacing mechanism between ICON-
O and HAMOCC was created. This mechanism passes as
parameters the information required for the two models. To
HAMOCC the ocean and atmosphere variables are passed as
described in Sect. 2.2; in addition the transport state is passed
to HAMOCC to be used by the HAMOCC tracer transport.
To ICON-O the short-wave penetration is passed and, in the
case of a coupled setup, the CO2 fluxes, which in turn are
passed to the atmosphere through the coupler.

The final task was to provide HAMOCC with the neces-
sary infrastructure to run autonomously. ICON provides a
simple mechanism through namelists for registering the com-
ponents that run concurrently, by defining the component and
the group of MPI processes assigned to it. The calls to the
infrastructure setup, such as domain decomposition, setting
the communicators, the I/O, and the coupler, are done in the
initialization phase in each of the components. While this
mechanism does not provide the sophistication and power of
more complex infrastructure frameworks, like the Earth Sys-
tem Modeling Framework (Hill et al., 2004; Collins et al.,
2005), and it requires us to partly duplicate the code of set-
ting up the infrastructure, it provides high-level infrastructure
interfaces, and it is serviceable.

The final construction is presented in Fig. 5b. Two inter-
faces are constructed to send and receive information be-

tween ICON-O and HAMOCC on each side. The communi-
cation takes place just before the tracer transport for ICON-
O while for HAMOCC at the beginning of each time step.
The information communicated from ICON-O to HAMOCC
includes the temperature, salinity, and pressure, used in the
chemistry processes, surface fluxes, such as the total sur-
face water flux, the solar radiation flux, the CO2 concentra-
tion, and the wind stress. For the tracer transport, HAMOCC
receives the fluxes and velocities from ICON-O, as well
as the sea surface height. On the other side, ICON-O re-
ceives optionally the solar radiation absorption ratio and, in
the case of a coupled setup with the atmosphere, the CO2
ocean–atmosphere fluxes, which in turn are communicated
to ICON-A.

The interfaces can serve two modes: sequential or concur-
rent. Both modes are transparent; the two components are
“unaware” of the mode they run, as this is handled within the
interfacing mechanism. This process also works in the cou-
pled ICON-O–HAMOCC ICON-A setup, so the three com-
ponents can run concurrently.

The interfacing mechanism serves only to communicate
information between the two components on the same grid,
without providing any further functionality that general cou-
plers may provide. In the concurrent mode we use the
communication library YAXT (Yet Another eXchange Tool;
https://swprojects.dkrz.de/redmine/projects/yaxt, last access:
16 December 2022) developed at DKRZ. It provides a flex-
ible interface that allows us to define both 2D and 3D com-
munication patterns and can also aggregate the communica-
tion into one call. YAXT provides an abstraction for defining
communication without any explicit MPI-message-passing
calls. The communication scheme is automatically derived
from descriptions of locally available data on each process.
Thus, very different communication patterns, like transpo-
sitions or boundary exchanges, can be generated in a user-
friendly manner, independently of the complexity of the do-
main decomposition. This leads to a significantly reduced
and less error-prone programming effort. YAXT can also be
used to generate the communication patterns for the redistri-
bution of data between two sets of processes that use different
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domain decompositions but the same grid. This is an essen-
tial functionality for implementing concurrency communica-
tion between components, that do not necessarily share the
same decomposition but do share the same grid.

The new ICON-O–HAMOCC implementation gives bit-
identical results with the original one, both in the sequen-
tial and concurrent mode, when the HAMOCC feedbacks
(the ocean solar radiation absorption ratio and the ocean–
atmosphere CO2 fluxes) are disabled. Bit-identical results
cannot be obtained in the case these feedbacks are activated
in the concurrent mode, due to the different workflow from
the sequential mode. It has been technically checked though
for correctness when running with these feedbacks activated.
The impact of concurrency on the results in this case still
needs to be evaluated.

A final step was taken to introduce OpenMP directives
in HAMOCC. While this is not directly related to coarse-
grained concurrency, it provides the shared-memory level of
parallelization. The memory layout currently used in ICON
is suboptimal regarding the performance on CPUs, due to
poor data locality (especially for stencil operators). This also
has a negative impact on the OpenMP scaling, and thus the
results do not represent the true potential of OpenMP paral-
lelization.

A first study on the impact of the memory layout on per-
formance and direct vs indirect (unstructured grid) indexing
is presented in MacDonald et al. (2011) but without a dis-
cussion on its impact on shared-memory parallelization and
scaling.

5 Experiments and performance results

We have performed two sets of experiments, one at a low
horizontal resolution of 160 km on a 36 cores-per-node ma-
chine and another at a medium resolution of 40 km on a 128
cores-per-node machine. The two setups were measured for
strong scaling, both in sequential and concurrent mode. Each
of the runs was repeated three times, and the best of the three,
in terms of the total time, was selected for the analysis.

We study the behaviour of the combined MPI, OpenMP
parallelization, and the coarse-grained concurrency. Most of
the ICON-O code is OpenMP-parallelized but not all. In par-
ticular, the sea-ice dynamics is not OpenMP-parallelized, and
it was disabled in order not to distort the scaling behaviour.
The Gent–McWilliams and the Redi parameterizations have
not yet been included in the concurrent version, and they
were also disabled. As we focus on the scaling behaviour,
with and without concurrency, rather than the performance
itself, these two modules would not change our conclusions
on the effect of the concurrency.5 All output was disabled in
these runs. The time measures do not include the initializa-

5In fact, we expect that concurrency would be improved by in-
cluding these two modules, as λ would get closer to 1 (see also
Table 1).

Figure 6. The 160 km grid decomposed into 12 subdomains.

tion phase of the models, as this is a one-time cost and would
distort the scaling analysis for short runs.

In fine-tuning a setup for performance we would typically
calculate the number of OpenMP threads, the vector size, and
the MPI tasks, so that shared-memory parallelization is bal-
anced. No such effort was taken in these setups. We did ex-
amine though the effect of different vector sizes on the low-
resolution experiment.

A discussion on scaling bottlenecks for a similar ocean-
biogeochemistry setup is presented in Epicoco et al. (2016).

5.1 Low-resolution experiment, 160 km

The 160 km grid consists of 14 298 horizontal ocean cells and
40 vertical levels. This setup was run on the Mistral com-
pute2 partition at DKRZ. Each node is equipped with two
Intel Broadwell CPUs, providing a total of 36 cores. The ex-
periments ran for 5 simulated years.

For the domain decomposition, a recursive weighted me-
dial decomposition is employed. Each subdomain is as-
signed the number of total further “cuts” and is bisected in
a weighted manner across the longest axis of weighted lon-
gitudes or latitudes. For example, if a subdomain is to be
decomposed into five subdomains, the longest axis is found
and is bisected with weights two and three. The two child
subdomains are assigned two and three cuts respectively, and
the process continues recursively. An example of the domain
decomposition is given in Fig. 6.

First, we examine the behaviour of the sequential experi-
ments. In the case that the domain decomposition would pro-
duce perfectly balanced square subdomains, the number of
halo cells per subdomain would be proportional to 4

√
A/N ,

where A is the total number of grid cells and N the num-
ber of subdomains. The total number of halo cells would be
proportional to 4

√
N ·A. In Fig. 7a, the ratio of halo cells to

the grid cells is depicted, as well as the ratio of 4
√
N ·A

to A. The actual halo ratio is significantly larger than the
ideally calculated one, due to the imperfect decomposition
with regard to the number of halo points. The relative cost of
the halo communication is also depicted, which only partly
reflects the increase of halos. In ICON, whenever possible,
halo values are computed, instead of communicated, unless
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Figure 7. (a) The ratio of halo to non-halo cells. (b) Scaling results from the 160 km experiment, and scaling computed from formula (2).

Figure 8. Scaling for the sequential 160 km setups for different
numbers of OpenMP threads and vector lengths.

the computation is expensive. So the total computation cost
is increased as well.

We can further approximate the scaling behaviour of the
experiment by considering three types of workload: a se-
quential part Ws, a purely parallel part Wp, and a halo part
Wh. We have for the total workload Wt =Ws+Wp+Wh,
where we measure it in terms of time cost. The time cost
when running on N MPI processes (i.e. subdomains) is

TN =Ws+Wp/N +Wh/
√
N. (2)

We estimated the workloads based on the sequential runs
on 2, 16, and 80 nodes as Ws = 243 s, Wp = 101535 s, and
Wh = 774 s. In Fig. 7b, the scaling results from the experi-
ments and the above formula are shown. The formula cap-
tures the scaling behaviour of the experiments well, high-
lighting the importance of the non-scaling parts of the code.

For this experiment we tested the scaling for one, two,
three, six, and nine OpenMP threads. More than three threads

performed worse, and we do not include them in the results.
We also checked the impact of a vector length 8 and 4 on
the scaling behaviour. The results are presented in Fig. 8.
The OpenMP parallelization becomes more important for a
higher number of nodes. The vector length of 4 provides finer
granularity and better balancing in higher number of nodes,
and so it improves performance. We note that even as the
number of halo cells exceeds the number of the original grid
cells, we still get some scaling. As discussed above, the theo-
retical scaling in the case of the halo computation being dom-
inant would still be proportional to

√
N .

Next we will only consider the best of the runs from Fig. 8
(that is the ones with the smallest total time). The relative
costs and the times for the major components of the model
are presented in Fig. 9. The highest cost comes from the
HAMOCC tracer transport, while HAMOCC itself incurs
relatively small cost. The halo communication cost imposes
the most important restriction to scaling. This also includes
load imbalance costs, which increase with the number of sub-
domains. The dycore (dynamical core) process consists of
the calculation of the horizontal velocities and the sea sur-
face height. ICON-O uses the iterative conjugate gradient
method (CG) for inverting the matrix required by the implicit
sea surface height calculation. In each iteration the computa-
tion of a global sum is required for calculating the magnitude
of the residual. The time cost for the global sum used by the
CG solver remains constant6, imposing a sequential scaling
limit, as described by Amdahl’s law. Its relative cost though
remains small in these runs due to the large cost of the tracer
transport.

In the concurrent setup we kept the number of OpenMP
threads constant, equal to 2. The vector length was set to 8,
except for the experiments on 80 and 96 nodes, where it was
set to 4. The MPI tasks are organized into two contiguous
groups, the first containing the ICON-O tasks and the sec-

6This cost is included in the dycore cost.
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Figure 9. (a) Relative cost ratio of the ICON-O–HAMOCC components in the sequential 160 km setup. (b) Run time of the components.

Figure 10. Scaling (solid line) and parallel efficiency (dashed line)
for the 160 km sequential and concurrent setups. The 0.5 efficiency
line is marked.

ond the HAMOCC tasks. The scaling behaviour of both the
concurrent and the sequential case is depicted in Fig. 10. The
performance is improved only after the sequential parallel
efficiency has gone down to about 60 %. The limit of 50 %
efficiency is reached in the sequential case at about 24 nodes
while in the concurrent at about 40 nodes.

In Figs. 11 and 12 the relative costs and timers for the com-
ponents of ICON-O and HAMOCC respectively are given for
the concurrent experiments.

The different scaling characteristics of the two modules
create additional imbalance; some care has been taken to im-
prove this by reducing the number of ICON-O nodes (see
Table 1). The imbalance becomes apparent in the cost of ex-
changing data and synchronizing ICON-O and HAMOCC.
This cost in ICON-O is large, reaching more than 20 %, while
in HAMOCC it is negligible. This indicates that the actual
communication cost is small, while the cost of imbalance is

borne by ICON-O. This imbalance though does not affect
the total performance significantly, as on a total of 96 nodes
for example, 76 are used for HAMOCC, and increasing this
number by a few nodes would result in little improvement.

In Sect. 3.2 an analysis was provided regarding the scal-
ing characteristics of concurrency in relation to the sequen-
tial parallel efficiency. We expect that concurrency would
be beneficial after a parallel efficiency threshold has been
reached, and this is confirmed by the experimental results.
In Table 1 we compare the values of Tc/Td, as computed
by formula (1) in Sect. 3.2 and the ones given by the ex-
periments. In Sect. 3.2 we defined the workload as the total
number of operations and λ as the ratio of the workload be-
tween component A and B; both of them were considered to
be constant numbers, independent of the number of nodes.
We further assumed that the scaling behaviour of A and B
is the same. In our experiment setup though the situation is
different. The scaling behaviour of the two models is differ-
ent, with the ICON-O scaling being worse that HAMOCC. In
the sequential runs, the total relative cost of HAMOCC (in-
cluding the HAMOCC tracer transport) is about 80 % on two
nodes, while on 96 nodes this cost is about 62 %. The rela-
tive cost of ICON-O almost doubles in this range. In order to
account for this difference, we will consider λ not to be con-
stant but dependent on the number of nodes, so that it reflects
the relative cost of HAMOCC in the sequential experiments.

In the experiment case, taking ICON-O as component A
and HAMOCC as component B, we have λ≥ 1. In this case
we have L(N,λ)= F(N ·(1+λ))

F (N ·λ)
and Tc/Td = L(N,λ) · (1+

C(N ·(1+λ))/T (N ·λ)). We setC(N ·(1+λ))/T (N ·λ)= 0.1
as a first guess. We calculate L(N,λ) from the sequential ex-
periments for λ= 1,2,3, and the corresponding ratio Tc/Td
is given in columns 6, 5, and 4 respectively. We note that
λ≥ 1, so we have L(N,λ)= F(N ·(1+λ))

F (N ·λ)
. In column 3 we

give an estimation of λexp based on the sequential runs, com-
puted as the ratio of the HAMOCC time to the ICON-O time.
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Figure 11. (a) Relative costs of the ICON-O components in the concurrent 160 km setup. (b) Run times of the ICON-O components.

Figure 12. (a) Relative costs of the HAMOCC components in the concurrent 160 km setup. (b) Run times of the HAMOCC components.

In column 7 the estimation of the concurrent to the se-
quential time ratio Tc/Td is given by linearly interpolating
the Tc/Td values from the λ= 1,2,3 parameter to the λexp. In
the last column the actual ratio Tc/Td is given from the exper-
iments. While formula (1) is a great simplification of the real
model behaviour, it still gives a reasonable approximation of
the scaling behaviour of the concurrent setup, based on the
behaviour of the sequential one. Furthermore, by comparing
columns 4, 5, and 6, we observe that the predicted concur-
rency efficiency declines when λ deviates from the optimal
value of 1, as expected, and the experiments Tc/Td similarly
improve as λexp approaches 1.

5.2 Medium-resolution experiment, 40 km

The 40 km grid consists of 230 124 horizontal ocean cells and
64 vertical levels. The experiments ran for 1 simulated year.
They were run on the Levante machine at DKRZ, and each
node is equipped with two AMD 7763 CPUs, giving a total
of 128 cores per node. The number of OpenMP threads is
constant, equal to 4, and the vector length is equal to 8. The

MPI tasks are placed in a cyclic way in groups of eight across
the nodes, so that the first eight MPI tasks occupy half of the
first CPU of the first node, the second group occupies half of
the first CPU of the second node, and so on. In the concurrent
case the group of eight tasks consists of two ICON-O tasks
and six HAMOCC tasks. This placement alleviates load im-
balance, as it allows for improved memory bandwidth for the
slower processes.

In Fig. 13 the sequential setup time costs are presented.
The picture differs from the 160 km setup in the time cost
of the CG global sum, which here takes 25 % of the time
on 128 nodes. The total communication cost, including the
global sum and the halo exchange, on 128 nodes exceeds
60 % of the total time, while for the 160 km on 96 nodes
this cost is about 47 %. This underlines the communication
bottlenecks when using machines equipped with powerful
multi-core nodes.

The scaling of the sequential and the concurrent setup is
shown in Fig. 14. Scaling is measured against the sequential
run on two nodes. The first thing to observe is the super-linear
scaling of both the sequential and the concurrent setups when
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Table 1. The first two columns describe the nodes used for the ICON-O–HAMOCC concurrent setup. Columns 4–6 describe the estimated
ratio of concurrent to the sequential time Tc/Td calculated using Eq. (1) and the relative efficiency for different values of λ from the
sequential runs. In column 3 λ= λexp is computed from the sequential runs and in column 7 the estimation of the Tc/Td ratio for this λ
through interpolation. In the last column the actual Tc/Td is computed from the runs.

Total ICON-O λexp Tc/Td, Tc/Td, Tc/Td, Tc/Td, Tc/Td
nodes nodes λ= 3 λ= 2 λ= 1 λ= λexp exp.

4 1 3.10 1.07 1.11 1.07 1.07 1.17
8 2 2.82 1.01 1.01 0.93 1.01 1.04
16 3 2.51 0.97 0.94 0.83 0.96 0.94
32 6 2.14 0.94 0.91 0.78 0.92 0.79
48 9 1.81 0.92 0.90 0.74 0.86 0.76
64 10 1.75 0.94 0.87 0.74 0.84 0.77
80 14 1.77 0.98 0.83 0.74 0.81 0.77
96 20 1.63 0.95 0.82 0.71 0.78 0.73

Figure 13. (a) Relative costs of the ICON-O–HAMOCC components in the sequential 40 km setup. (b) Run times for each component.

Figure 14. Scaling (solid line) and parallel efficiency (dashed line)
for the 40 km sequential and concurrent setups. The 0.5 efficiency
line is marked.

using up to 16 nodes. This behaviour typically is caused by
more efficient cache usage in NUMA machines. An indica-
tion towards this inference is provided from the behaviour of
the HAMOCC tracer transport in Fig. 13a. The tracer trans-
port process is memory-intensive due to the large number of
stencil operations, which, as we have noted, are sub-optimal
due to poor data locality. Its cost drops sharply when using
up to 16 nodes, which indicates better relative memory effi-
ciency. Another related consequence is that the parallel effi-
ciency in the sequential run reaches the 0.5 mark at a rela-
tively high count of nodes, 96, while in the concurrent case
it never reaches this limits and stays above 0.7. This is due
to the poor performance on the reference number of nodes of
two.

We note that the assumptions for formula (2) do not ap-
ply to this experiment. This is partly due to the super-linear
behaviour of this setup in the low count of nodes but also
because this setup exhibits a part that its cost increases with
the number of nodes, namely the global sum (see Fig. 13b).
This cost is significant and has not been accounted for in for-
mula (2).
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Figure 15. (a) Relative costs of the ICON-O components in the concurrent 40 km setup. (b) Run times for each component.

Figure 16. (a) Relative costs for the HAMOCC components in the concurrent 40 km setup. (b) Run times for each component.

The relative costs and times for ICON-O and HAMOCC in
the concurrent setup are given in Figs. 15 and 16 respectively.
We again see that the communication costs within each mod-
ule are significant, while the coupling cost between ICON-O
and HAMOCC remains relatively small.

In Table 2 we perform the same calculations for the 40 km
setup, as we did in Table 1 for the 160 km setup. We see
a similar picture, except for the first two rows, where both
the predicted and the actual concurrency efficiency declines
as a function of N and as a function of λ. This a result of
the super-linear scaling. Only after the threshold of 16 nodes
does concurrency become beneficial, and thereafter its effi-
ciency, relatively to the sequential setup, increases. While
the theoretical prediction underestimates the effect of con-
currency (this is due to the different scaling behaviour of the
two components, which is not accounted in the formula), it
still gives a reasonable estimation.

We note that the concurrency efficiency is significantly
better in this setup, compared to the 160 km. The ratio Tc/Td
reaches 0.52, while for the 160 km it is 0.73. This behaviour
reflects the limitations of the data parallel approaches when

using highly parallel architectures. Figure 13 reveals the is-
sue: the cost of communicating the halos dominates the per-
formance at 128 nodes, along with the solver global sum.

The two setups of the 160 and the 40 km present a sce-
nario where the resolution is increased, in combination with
the transition to a more powerful and parallel machine. We
examine the impact of concurrency in this scenario. Two ex-
periments were selected from the two setups, so that they
have approximately the same number of 2D cells per core,
and at the same time they are at a similar scaling limit in the
sequential case of each setup, where the parallel efficiency
drops below 50 %. The details of these two experiments are
given in Table 3.

In row 6 the number of 3D cells per core, normalized for
one simulated minute, is given. Their ratio suggests the rel-
ative workload per core for the two experiments: the 40 km
has 2.3 times more load per core.7 In rows 7 and 8 the times

7Some details are not taken into account here, such as the num-
ber of iterations the CG solver requires, which is higher for the
40 km.
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Table 2. As Table 1, for the 40 km experiment. The ratio of the ICON-O to the HAMOCC cores is constant, 1/3, and is omitted.

Total λexp Tc/Td, Tc/Td, Tc/Td, Tc/Td, Tc/Td
nodes λ= 3 λ= 2 λ= 1 λ= λexp exp.

4 3.20 1.17 1.12 1.19 1.17 1.17
8 2.73 1.21 1.14 1.26 1.19 1.19
16 2.18 1.11 1.14 1.15 1.14 1.00
32 1.64 0.97 1.01 0.89 0.96 0.84
64 1.19 0.90 0.89 0.73 0.76 0.64
96 0.92 0.81 0.87 0.64 0.64 0.62
128 0.74 0.87 0.78 0.61 0.61 0.52

Table 3. Detailed numbers for the two experiments selected from the two setups of 160 and 40 km. The description is provided in the text. A
total of 1152 Mistral cores correspond to 32 nodes, while 16 384 Levante cores correspond to 128 nodes.

160 km, 40 km, Ratio
1152 Mistral cores 16 384 Levante cores 40 km / 160 km

(1) 2D cells 14 298 230 124 16.10
(2) 3D cells 481 402 11 960 498 24,85
(3) 2D cells/core 12.41 14.05 1.13
(4) 3D cells/core 417.88 730.01 1.75

(5) Time step (min) 60 45 0.75
(6) 3D cells/core/sim.min. 6.97 16.22 2.33

(7) Seq. time (s), 1 simulated year 90.50 271.63 3.00
(8) Conc. time (s), 1 simulated year 71.22 140.00 1.97

for simulating 1 year are given. In the sequential case, the
40 km is 3 times slower than the 160 km, a value that is above
the estimated 2.3. On the other hand, in the concurrent case,
the 40 km experiment is less than 2 times slower, which pro-
vides another indication of the increased impact of concur-
rency when moving to highly parallel machines.

6 Discussion and outlook

By decomposing the algorithmic space, coarse-grained com-
ponent concurrency offers another parallelization dimension,
in addition to the existing data parallel approaches. It im-
proves scalability when certain scaling limits have been
reached through the data parallel methods. It is more ef-
fective in the regimes where the relative parallel efficiency
drops. In the regimes of linear scaling it results in little,
if any, improvements. It produces higher parallel workload
when compared to data parallel approaches. This makes it
suitable, and probably indispensable, for efficiently utiliz-
ing massively parallel machines. Our experiments show that
the concurrency effectiveness increased from 1.4 times im-
provement on a 36 cores-per-node machine to 2 times im-
provement on a 128 cores-per-node machine. We also see
that the “coarseness” is an important factor to this approach.
It gives the best results when the two components incur ap-
proximately the same cost, while its effectiveness deterio-

rates when moving away from this balance. Both our theo-
retical analysis and our experimental results concur with the
above conclusions.

It is clear that coarse-grained concurrency does not make
the code faster, and the more traditional code optimization
and scaling improvement procedures are still an important
part of the process of getting the models to run efficiently. We
expect for example that improving data locality for ICON-
O–HAMOCC would have a higher performance impact on
Levante than concurrency. These more intricate optimization
processes require a high level of expertise and in cases exten-
sive code restructuring. In comparison, engineering coarse-
grained component concurrency is in general a simpler pro-
cess and requires only a modest effort when good software
engineering practices were already in place.

Coarse-grained concurrency can always be applied on
top of the other optimizations, allowing us to use more
computational resources and to use these more efficiently.
This implies that enough parallel computational resources
should be available in order to be practically useful. On
the other hand, the new machines are massively parallel,
with nodes equipped with hundreds or thousands of cores,
providing computing power that has reached the exaflop
level. The most effective way to make use of this massively
parallel computing power is through multi-level and multi-
dimensional parallelism. Highly parallel architectures, like
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GPUs, require a minimum of parallel workload to provide the
best efficiency. Experiments show that we need millions of
3D grid points per GPU to make full use of them (Leutwyler
et al., 2016; Giorgetta et al., 2022). This limits the extend
that data parallelism can be used on such machines. We ex-
pect that coarse-grained concurrency will provide an effec-
tive leverage for making use of these architectures.

Coarse-grained concurrency is a high-level parallelization
and thus independent of architectures. This makes it ap-
plicable on different architectures, without the need to re-
implement the concurrency mechanism. Furthermore, it can
be applied on heterogeneous environments in hybrid mode,
as on CPUs and GPUs, providing the potential to make use
of all the resources of heterogeneous machines.

A positive side effect of coarse-grained component con-
currency is that it naturally bequeaths concurrency to the in-
frastructure attached to these components, like I/O and real-
time post-processing. In particular, I/O can pose a signifi-
cant performance bottleneck, and parallel asynchronous I/O
approaches have already been developed; see, for example,
Brown et al. (2020), Yepes-Arbós et al. (2022), and Hoheneg-
ger et al. (2022). The naturally inherited concurrency to the
components’ infrastructure can further enhance the perfor-
mance of such schemes. While these side effects have not
been the subject of this paper, we expect them to help in-
crease the efficiency of the existing approaches.

The applicability of coarse-grained concurrency seems
plausible to other components of Earth system models. One
such component can be the sea-ice model. The coarse-
grained concurrency effectiveness will depend how much
“coarseness” the components present and how tightly they
are connected, which will reflect on the coupling cost. Ques-
tions related to the handling of the feedbacks between the
components have to be considered. We have not addressed
this question regarding the concurrent ICON-O–HAMOCC
when the interactive carbon cycle is activated in a coupled
setup. This would be a subject of future work.

Code availability. The ICON code is available under licenses;
see https://mpimet.mpg.de/en/science/modeling-with-icon/
code-availability (Max-Planck-Institut für Meteorologie, 2022).
The experiments were performed with ICON v.2.6.5. The code is
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