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Abstract. Accurately predicting urban PM2.5 concentrations
and composition has proved challenging in the past, partially
due to the resolution limitations of computationally inten-
sive chemical transport models (CTMs). Increasing the res-
olution of PM2.5 predictions is desired to support emissions
control policy development and address issues related to en-
vironmental justice. A nested grid approach using the CTM
PMCAMx-v2.0 was used to predict PM2.5 at increasing reso-
lutions of 36 km× 36 km, 12 km× 12 km, 4 km× 4 km, and
1 km× 1 km for a domain largely consisting of Allegheny
County and the city of Pittsburgh in southwestern Pennsyl-
vania, US, during February and July 2017. Performance of
the model in reproducing PM2.5 concentrations and compo-
sition was evaluated at the finest scale using measurements
from regulatory sites as well as a network of low-cost mon-
itors. Novel surrogates were developed to allocate emissions
from cooking and on-road traffic sources to the 1 km× 1 km
resolution grid. Total PM2.5 mass is reproduced well by the
model during the winter period with low fractional error (0.3)
and fractional bias (+0.05) when compared to regulatory
measurements. Comparison with speciated measurements
during this period identified small underpredictions of PM2.5
sulfate, elemental carbon (EC), and organic aerosol (OA) off-
set by a larger overprediction of PM2.5 nitrate. In the sum-
mer period, total PM2.5 mass is underpredicted due to a
large underprediction of OA (bias=−1.9 µgm−3, fractional
bias=−0.41). In the winter period, the model performs well
in reproducing the variability between urban measurements

and rural measurements of local pollutants such as EC and
OA. This effect is less consistent in the summer period due
to a larger fraction of long-range-transported OA. Compari-
son with total PM2.5 concentration measurements from low-
cost sensors showed improvements in performance with in-
creasing resolution. Inconsistencies in PM2.5 nitrate predic-
tions in both periods are believed to be due to errors in
partitioning between PM2.5 and PM10 modes and motivate
improvements to the treatment of dust particles within the
model. The underprediction of summer OA would likely be
improved by updates to biogenic secondary organic aerosol
(SOA) chemistry within the model, which would result in
an increase of long-range transport SOA seen in the inner
modeling domain. These improvements are obvious topics
for future work towards model improvement. Comparison
with regulatory monitors showed that increasing resolution
from 36 to 1 km improved both fractional error and fractional
bias in both modeling periods. Improvements at all types of
measurement locations indicated an improved ability of the
model to reproduce urban–rural PM2.5 gradients at higher
resolutions.

1 Introduction

Fine particulate matter with aerodynamic diameter less than
2.5 µm (PM2.5) has been associated with public health con-
cerns due to short- and long-term exposure. Some of the
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health effects of PM2.5 include increased risk of heart dis-
ease, increased likelihood of heart attacks and strokes, im-
paired lung development, and increased risk of lung disease
(Dockery and Pope, 1994). Chemical transport models are
frequently used for supporting the development of air quality
policies designed to protect public health. To evaluate these
policies, chemical transport models (CTMs) must simulate
PM2.5 concentrations and their response to changes in emis-
sions accurately.

Grid resolution is an important factor for CTM studies fo-
cusing on major urban areas since on-road traffic, commer-
cial cooking, and biomass burning can have sharp gradients
at the urban scale (Lanz et al., 2007; Allan et al., 2010).
High-spatial-resolution measurements of PM1 in the city of
Pittsburgh in high-source-impact locations are on average
40 % higher than at urban background locations (Gu et al.,
2018). Heightened organic aerosol concentrations have been
observed in commercial districts containing multiple restau-
rants (Robinson et al., 2018). The demographic characteris-
tics of the population can also have large variations at the
neighborhood scale. High-resolution predictions of pollutant
concentrations allow for exposure assessments that compare
subpopulations within the same metropolitan area to answer
environmental-justice-related questions (Anand, 2002). The
benefits of high-resolution modeling must be balanced with
the increased complexity in the development of accurate,
high-resolution emission inventories and increased compu-
tational cost and storage requirements.

Previous studies have found small to modest improve-
ments on the predictive ability of regional CTMs for ozone
in the summers of 1995, 1996, and 1997 moving from 36
to 12 km resolution (Arunachalam et al., 2006) as well as in
July 1988 using a dynamic grid system, with sizes varying
from 18.5 to 4.625 km (Kumar and Russell, 1996). Stroud
et al. (2011) found that the accurate simulation of urban and
large industrial plumes required a grid resolution of 2.5 km
in order to properly capture contributions from local sources
of primary organic aerosol (POA) and volatile organic com-
pounds (VOCs). Zakoura and Pandis (2019) investigated the
effect of increasing grid resolution on PM2.5 nitrate predic-
tions and found that increasing the resolution to 4 km re-
duced bias by 65 %. Fountoukis et al. (2013) reported a re-
duction of the bias for black carbon (BC) concentrations in
the northeastern US when the grid resolution was reduced
from 36 km× 36 km to 4 km× 4 km. Pan et al. (2017) allo-
cated county-based emissions at 4 km and 1 km grid resolu-
tion using the default approach from the National Emissions
Inventory (NEI) and found small changes in model perfor-
mance for NOx and ozone. The 1 km simulation was able to
resolve the detailed spatial variability of emissions in heavily
polluted areas including highways, airports, and industrially
focused subregions.

One of the weaknesses of several of the above studies has
been that the gridded emissions used at the higher resolu-
tions were the results of interpolation. It is not clear if the re-

maining discrepancies between model predictions and mea-
surements were due to errors in the spatial distribution of the
high-resolution emissions, errors in the overall magnitude of
the emissions over an urban area, or other modeling errors in
the simulation of various processes (chemistry and conden-
sation/evaporation, etc.). It is also not clear if errors in previ-
ous simulations of urban PM2.5 are due to inaccuracies in the
transport of regional PM2.5 to urban areas. In this work, we
explore the impacts of increasing the resolution of emissions
inputs and CTM output on PM2.5 predictions in southwestern
Pennsylvania during the months of February and July 2017,
including the ability of the model to reproduce observed dif-
ferences between urban and rural PM2.5 at the various grid
resolutions.

Garcia Rivera et al. (2022) investigated the effects of
increasing grid resolution of model inputs and CTM out-
put on source-resolved predictions of PM2.5 concentration
and population exposure at 36, 12, 4, and 1 km. Moving
to 12 km× 12 km resolution resolved much of the urban–
rural gradient. Increasing to 4 km× 4 km resolved stationary
sources such as power plants, and the 1 km× 1 km resolution
results revealed intra-urban variations and individual road-
ways. Regional pollutants with low spatial variability such
as PM2.5 nitrate showed modest changes when increasing
the resolution to 4 km× 4 km and higher. Local pollutants
such as black carbon and organic aerosol showed gradients
that were only resolved at the finest resolution. The ability of
these simulations to reproduce PM2.5 concentrations at dif-
ferent resolutions is evaluated here against multiple measure-
ment sources and types. The 2 months of February and July
2017 were chosen to maximize the information gained with
regard to the effects of seasonal variability of major emis-
sions sources and meteorology on predicted concentrations
while keeping the resources required for emissions inventory
development at a feasible level.

We apply the Particulate Matter Comprehensive Air qual-
ity Model with Extensions version 2.0 (PMCAMx-v2.0) to
study the impact of increasing model resolution on the abil-
ity to reproduce observed PM2.5 concentrations. We evaluate
the PMCAMx predictions at various grid resolutions against
regulatory measurements of PM2.5 concentration and com-
position, as well as measurements from a network of low-
cost sensors (Zimmerman et al., 2018) during February and
July 2017, which provide a unique opportunity for compari-
son not available to previous studies. Aerosol mass spectrom-
eter (AMS) measurements taken in Pittsburgh during Febru-
ary 2017 were also used to evaluate model predictions.

2 Model description

PMCAMx (Karydis et al., 2010; Murphy and Pandis, 2010;
Tsimpidi et al., 2010) is a state-of-the-art atmospheric chem-
ical transport model (CTM) that uses the framework of the
CAMx model (ENVIRON, 2005) with advanced aerosol
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chemistry modules. This model uses detailed emissions and
meteorology inputs to dynamically predict changes in pollu-
tant concentrations due to emission, transport, chemical re-
action, removal processes, and aerosol processes. To track
the dynamic evolution of aerosol mass, 10 moving size sec-
tions are used (Gaydos et al., 2003). The chemical mecha-
nism SAPRC99 (Carter, 2000) was used for gas-phase chem-
istry, including 237 individual chemical reactions involving
91 chemical species. Aqueous-phase chemistry is calculated
with a variable size-resolution model (Fahey and Pandis,
2001). PMCAMx-v2.0 considers the formation of aerosol
mass comprised of sulfate, nitrate, ammonium, sodium, chlo-
ride, water, and elemental carbon, as well as lumped organic
species (both primary and secondary). Inorganic aerosol
growth is modeled using an approach that assumes equi-
librium between the bulk aerosol and gas phases. Parti-
tioning of semivolatile inorganic aerosol is calculated us-
ing ISORROPIA-I (Nenes et al., 1998). The volatility ba-
sis set (VBS) was used to calculate partitioning of organic
aerosol components across a distribution of species volatil-
ity (Donahue et al., 2006). Volatility bins (10) with effective
saturation concentration from 10−3 to 106 µgm−3 (at 298 K)
are used for primary organic aerosol (POA). Secondary or-
ganic aerosol is split into anthropogenic (aSOA) and bio-
genic (bSOA) components, formed from a variety of SOA-
forming volatile organic compounds (VOCs) from human ac-
tivity and natural sources, respectively using NOx-dependent
SOA formation yields (Lane et al., 2008). Both aSOA and
bSOA are split into four volatility bins with effective satura-
tion concentration from 100 to 103 µgm−3 (at 298 K).

3 Model application

Air quality simulations of a 5184 km2 area comprised of
southwestern Pennsylvania and smaller parts of eastern Ohio
and northern West Virginia were performed using PMCAMx.
Two distinct simulation periods of February and July 2017
were investigated. The approach of Garcia et al. (2022) was
used to produce speciated PM2.5 concentration predictions
at spatial resolution of 36, 12, 4, and 1 km. Surface-level
boundary conditions for the 36 km× 36 km simulations are
provided in Table S1 in the Supplement.

Meteorological fields were calculated using the Weather
Research and Forecasting model (WRF-v3.6.1) with hori-
zontal resolution of 12 km× 12 km, providing wind com-
ponents, eddy diffusivity, temperature, pressure, humidity,
clouds, and precipitation inputs for use in PMCAMx. Mete-
orology initial and boundary conditions were retrieved from
the ERA-Interim global climate reanalysis database. The
United States Geological Survey database was used to obtain
input data for terrain, land use, and soil type. When neces-
sary, WRF output was interpolated to higher resolutions. An
evaluation of interpolated meteorological inputs using data
from METAR stations near the city of Pittsburgh in south-

western Pennsylvania determined that errors in the magni-
tude and phasing of diurnal cycles of temperature, relative
humidity, and wind speed are appropriately small for use in
air quality studies. These results are provided in the Supple-
ment (Figs. S1 and S2).

Anthropogenic emissions are derived from the 2017 pro-
jections of the 2011 National Emissions Inventory (Eyth and
Vukovich, 2015) modeling platform. The Sparse Matrix Op-
erator Kernel Emissions modeling system (SMOKE) was
used, along with meteorological inputs to calculate emissions
at a horizontal resolution of 12 km× 12 km. Default spatial
surrogates were used to allocate these emissions to higher
resolutions. Custom surrogates were developed for commer-
cial cooking and on-road traffic emissions sectors within the
1 km× 1 km grid and used for the primary analysis in this
work. The use of these new surrogates results in different
spatial distribution of emissions for cooking and on-road traf-
fic sources than what would be observed with the default
spatial surrogates. Additional simulations were performed to
quantify the impact of these proposed surrogates on predicted
PM2.5 concentrations.

For commercial cooking, the normalized restaurant count
was used to distribute the emissions from the sector in
space within the 1 km× 1 km domain. This surrogate dis-
tributed commercial cooking emissions based on the den-
sity of restaurants identified by the Google Places application
programming interface. To allocate on-road traffic emissions,
the output from the traffic model of Ma et al. (2020) was
used. This model simulates hourly traffic using data from the
Pennsylvania Department of Transportation. Emissions from
the on-road traffic sector were then allocated based on these
values.

Model predictions of sulfate, nitrate, elemental carbon,
and organic aerosol were compared with measurements from
4 sites from the EPA Chemical Speciation Network (EPA-
CSN) (U.S. EPA, 2002). The locations of these four sites are
shown in Fig. 1a. These sites include Lawrenceville, an ur-
ban background site 4 km northeast of downtown Pittsburgh;
Hillman State Park, located in a state park in southwest Penn-
sylvania in a rural and remote location approximately 40 km
upwind of Pittsburgh; Steubenville in the Ohio River valley,
close to industrial installations and coal-fired power plants;
and the Liberty–Clairton monitor, which is located close to
the Clairton Coke Works in the Monongahela River valley,
14 km southeast of downtown Pittsburgh. Speciated PM2.5
measurements from EPA-CSN sites are available every 3 d
during the simulation periods. Daily non-speciated measure-
ments of total PM2.5 mass concentration are available from
17 sites within the inner simulation domain and are used to
further evaluate total PM2.5 mass concentration predictions.
The locations of these sites are also shown in Fig. 1a.

For February 2017, high-resolution AMS measurements
from the Carnegie Mellon University supersite (Gu et al.,
2018) are used to evaluate the predicted chemical compo-
sition of PM2.5 model predictions. Positive matrix factoriza-
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Figure 1. Monitoring sites. (a) Particulate matter speciation measurement sites from EPA-CSN and PM2.5 regulatory monitors. The entire
inner modeling domain is shown. (b) Low-cost sensor sites. City of Pittsburgh boundaries are shown in both panels for reference.

tion results are also used to investigate the breakdown of or-
ganic aerosol components. AMS measurements were taken
continuously from 1 to 14 February 2017. Due to uncertain-
ties with the AMS collection efficiency during this campaign,
here we only use the fractional particle composition data.

PMCAMx predictions of PM2.5 were also compared with
measurements taken with a network of Real-time, Afford-
able, Multi-Pollutant (RAMP) monitors (Zimmerman et al.,
2018) distributed in the city of Pittsburgh. During the winter
period, measurements at seven sites were available, all lo-
cated within the boundaries of the city of Pittsburgh, while
22 sites were in operation during the summer period, with a
few sites also outside the city (Fig. 1b). Uncertainty in these
low-cost measurements of PM2.5 mass concentration is be-
tween 3–4 µgm−3 for hourly averaging times (Malings et al.,
2019).

The model performance is assessed in terms of the mean
bias (BIAS), the mean error (ERROR), the fractional bias
(FBIAS), and the fractional error (FERROR):

BIAS=
1
N

N∑
i=1

Pi −Oi (1)

FBIAS=
2
N

N∑
i=1

Pi −Oi

Pi +Oi

(2)

ERROR=
1
N

N∑
i=1

|Pi −Oi | (3)

FERROR=
2
N

N∑
i=1

|Pi −Oi |

Pi +Oi

, (4)

where N is the number of valid measurements, Pi is the pre-
dicted concentration, and Oi is the corresponding observed
concentration. The fractional error metric is bounded by 0
(perfect prediction performance) and 2.0 (extremely poor
prediction performance). Fractional bias is bounded by −2.0

(extreme underprediction) and +2.0 (extreme overpredic-
tion).

4 Evaluation of high-resolution model performance

4.1 Winter

Table 1 summarizes the performance metrics of daily average
PMCAMx-v2.0 PM2.5 predictions in the 1 km× 1 km reso-
lution, when compared with daily measurements from EPA
regulatory PM2.5 monitors. The speciated performance is il-
lustrated in Fig. 2. Predictions of total PM2.5 mass perform
well against regulatory measurements in the February simu-
lation period, with a fractional error of 0.3 and fractional bias
of +0.07.

Average measured PM2.5 sulfate for this time period
was 1.9 µgm−3. Lower sulfate levels were observed at the
Lawrenceville site in Pittsburgh (1.2 µgm−3), while sig-
nificantly higher levels were observed at the Steubenville
site (3.1 µgm−3). Predicted domain-average PM2.5 sulfate at
1 km× 1 km resolution was 1.3 µgm−3. Overall fractional
error for sulfate predictions was 0.41, and no overall bias
was observed (fractional bias of −0.02). PM2.5 sulfate was
slightly overpredicted at Hillman State Park (+0.18 frac-
tional bias) and Lawrenceville (+0.25 fractional bias) and
underpredicted at the industrial sites, Steubenville (−0.24
fractional bias), and Liberty/Clairton (−0.43 fractional bias),
where observed PM2.5 sulfate concentrations were higher.

Overpredictions were seen for PM2.5 nitrate, with a frac-
tional bias of +0.81. The average measured concentra-
tion at EPA-CSN sites within the simulation domain was
1.5 µgm−3, while the domain-average predicted concentra-
tion was 1.8 µgm−3. Observed average PM2.5 nitrate con-
centrations at Hillman State Park and Lawrenceville were
slightly lower at 1.1 µgm−3 and 1.2 µgm−3, respectively. Ni-
trate at the Steubenville location was observed to be higher
on average at 2.2 µgm−3. This overprediction is seen at
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Table 1. Comparison of daily average high-resolution PMCAMx-v2.0 predictions with daily EPA-CSN measurements during February and
July 2017.

February 2017

Sulfate Nitrate Ammon. Elemental carbon Organic aerosol PM2.5
∗

Measured avg. (µgm−3) 1.92 1.51 0.91 1.08 4.37 10.34
Predicted avg. (µgm−3) 1.70 2.90 1.62 0.94 3.68 10.52
Error (µgm−3) 0.79 1.54 1.03 0.78 2.15 3.02
Fractional error 0.41 0.83 0.96 0.71 0.53 0.30
Bias (µgm−3) −0.22 1.40 0.71 −0.14 −0.68 0.18
Fractional bias −0.02 0.81 0.83 −0.08 −0.01 0.05

July 2017

Sulfate Nitrate Ammon. Elemental carbon Organic aerosol PM2.5
∗

Measured avg. (µgm−3) 2.04 0.26 0.53 0.74 4.46 11.24
Predicted avg. (µgm−3) 1.60 0.68 0.79 0.56 2.67 7.26
Error (µgm−3) 1.12 0.45 0.39 0.39 2.46 4.67
Fractional error 0.62 0.82 0.62 0.60 0.67 0.49
Bias (µgm−3) −0.44 0.42 0.26 −0.18 −1.85 −4.01
Fractional bias −0.21 0.70 0.44 −0.33 −0.47 −0.39

∗Measurements from the regulatory EPA monitors.

all sites but is particularly prevalent at Hillman State Park,
Lawrenceville, and Liberty/Clairton, where errors are of the
order of a factor of 2. Previous PMCAMx modeling studies
have found similar overpredictions. Part of this overpredic-
tion was due to the use of coarse-grid resolution (Zakoura
and Pandis, 2018), but this is unlikely to be the cause here be-
cause 81 % of the predicted domain-average nitrate is trans-
ported from outside of the inner modeling domain. These in-
consistencies in PM2.5 nitrate predictions are likely due to
errors in the partitioning of nitrate between the fine (PM2.5)
and coarse (PM10) modes, resulting in an overprediction of
PM2.5 nitrate. Resolving this modeling error likely requires
improvements to the treatment of dust within the model and
the use of a dynamic approach for inorganic aerosol calcula-
tions rather than the bulk equilibrium approach.

The behavior of PM2.5 ammonium measurements is sim-
ilar to that of nitrate as most of it is in the form of am-
monium nitrate. The average measured concentration at the
four EPA-CSN stations was 0.9 µgm−3. At Hillman State
Park and Lawrenceville, the measured average was lower
at 0.5 µgm−3 but higher at the Liberty/Clairton location at
2.1 µgm−3. PM2.5 ammonium was overpredicted similarly to
PM2.5 nitrate, with +0.83 fractional bias.

The average measured concentration of PM2.5 elemen-
tal carbon at EPA-CSN sites during February 2017 was
1.1 µgm−3. Elemental carbon concentrations are more lo-
calized than the inorganic PM2.5 components. At Hillman
State Park the average measured concentration was only
0.5 µgm−3, while at Liberty/Clairton the averaged measured
concentration was 2.9 µgm−3. For elemental carbon, the pre-

dicted domain average was 0.4 µgm−3. Average elemental
carbon concentration in the 4 km× 4 km simulation grid out-
side of the inner modeling domain was 0.3 µgm−3. Black
carbon predictions at all sites had a fractional error of 0.71,
with a fractional bias of −0.08. Elemental carbon was over-
predicted at the urban site, with a fractional bias of 0.73, and
underpredicted at the other sites.

Average measured organic aerosol (OA) during this pe-
riod was 4.4 µgm−3 but with significant spatial variability.
At Hillman State Park and Lawrenceville, measured OA was
3.1 µgm−3 and 3.4 µgm−3, respectively. At Liberty/Clairton
and Steubenville, the average measured OA was 7 µgm−3

and 6.3 µgm−3, respectively. Domain-average predicted OA
was 2.2 µgm−3. Outside of the inner 1 km× 1 km domain,
average predicted OA was 1.6 µgm−3, suggesting that the
majority of predicted OA is transported from outside of the
1 km× 1 km grid. Overall OA prediction performance in the
winter is acceptable at 0.53 fractional error and low fractional
bias (−0.01). At individual sites, performance varies. OA is
predicted with low fractional bias (−0.10) at the rural Hill-
man State Park site. OA is overpredicted with +0.31 frac-
tional bias at the urban site in Lawrenceville and underpre-
dicted at both industrial sites. An added degree of uncertainty
exists with the industrial sites within the inner domain. The
emissions from these sources may be underestimated in the
inventory, and these locations are also difficult to accurately
model due to their geographic location in river valleys.

Average concentrations of PM2.5 sulfate, nitrate, and am-
monium in the 4 km× 4 km resolution domain were around
83 % of the average predicted concentrations in the inner
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Figure 2. Comparison of daily average PMCAMx-v2.0-predicted concentrations of PM2.5 (a) sulfate, (b) nitrate, (c) ammonium, (d) ele-
mental carbon, and (e) organic aerosol with daily measurements from EPA-CSN sites during February 2017.

1 km× 1 km simulation grid. For elemental carbon and OA,
the outer concentration was 64 % and 73 % of the inner con-
centration, respectively, indicating that these species had sig-
nificant local sources. For these more local pollutants, the
model appears to perform well in terms of capturing urban–
rural gradients but with a tendency towards underpredic-
tion at the rural site in Hillman State Park and overpredic-
tion at the urban site in Lawrenceville. The model also un-
derpredicts elemental carbon (EC) and OA at the industrial
locations, especially elemental carbon (−0.67 and −1.02
fractional bias at Steubenville and Liberty/Clairton, respec-
tively). This again suggests errors in the emissions inventory

or problems in simulating atmospheric dispersion near the
sources.

Comparisons with the PM1 composition, as determined
by the AMS from 3 through 14 February 2017, show ex-
cellent agreement for all species (Fig. 3a). Gu et al. (2018)
used positive matrix factorization (PMF) analysis and allo-
cated total measured OA into five factors. Three of them
corresponded to primary organic aerosol, hydrocarbon-like
OA (HOA), cooking OA (COA), and biomass burning OA
(BBOA), and there were two secondary OA factors, more-
oxidized organic aerosol (MO-OOA) and less-oxidized or-
ganic aerosol (LO-OOA). To compare PMCAMx predictions
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Figure 3. (a) Comparison of PMCAMx-v2.0-predicted composition of PM1 with the corresponding AMS measurements at the CMU site
and (b) organic aerosol composition based on the PMF analysis of the AMS measurements and predicted composition.

with the primary PMF factors, two additional simulations
were performed in which emissions from biomass burning
and commercial cooking were set to zero. The predicted con-
centrations were then subtracted from the base case to esti-
mate the contribution from each respective source. The re-
maining primary OA was assigned to HOA. The LO-OOA
and MO-OOA factors were added together and compared
with the PMCAMx SOA predictions.

The predicted cooking OA (COA) at the CMU site is 25 %
of the total OA and is in agreement with the PMF/AMS esti-
mate of 22 % (Fig. 3b). This is encouraging given the small
bias of the model for total OA levels. The predicted HOA and
BBOA are higher than measured by a factor of 2 or more. At
the same time, the measurements indicate a surprisingly high
contribution of SOA (53 % of the total OA) during a period
with little photochemical activity and low levels of OH radi-
cals. SOA is predicted to be just 20 % of the total during this
time period. These discrepancies may indicate transforma-
tion of the HOA and BBOA to OOA during this wintertime
period that is not included in the model. Kodros et al. (2020)
recently suggested that BBOA can react with the NO3 radical
during the winter and can be transformed to OOA.

4.2 Summer

Total PM2.5 mass concentrations are underpredicted in the
summer period. The average measured PM2.5 value in the
regulatory network in the area was 11.4 µgm−3, while the
average predicted value at the regulatory sites was 4 µgm−3

lower.
Speciated PM2.5 performance is illustrated in Fig. 4.

Average measured PM2.5 sulfate for the summer period
was 2 µgm−3. Slightly lower levels were observed at the
Lawrenceville site in Pittsburgh (1.9 µgm−3). Liberty/Clair-

ton had higher measured sulfate concentrations (2.6 µgm−3),
but this difference between locations is lower than what
was observed in the winter period. Predicted domain-average
PM2.5 sulfate at 1 km× 1 km resolution was 1.3 µgm−3.
Overall fractional error (0.62) and fractional bias (−0.21) for
sulfate predictions was higher than in the winter simulation
period. PM2.5 sulfate was underpredicted at all sites but to the
largest extent at Hillman State Park (−0.36 fractional error).

Overpredictions of PM2.5 nitrate were also seen in the
summer period and at all types of sites. Average measured
PM2.5 nitrate was 0.3 µgm−3, much lower than in the winter.
The domain-average predicted PM2.5 nitrate was 0.7 µgm−3.
Again, predicted PM2.5 nitrate in the inner domain is dom-
inated by material transported from outside the boundaries
(75 %), so the issue is not resolved by using a high-resolution
grid. Improvements to PM2.5 nitrate formation are needed in
the form of dust models with increased complexity to resolve
the issues with fine–coarse-mode partitioning of particulate
nitrate. These issues have been highlighted by decreased con-
centrations of PM2.5 pollution in recent years.

Observed PM2.5 ammonium concentrations at EPA-CSN
sites were also much lower in the summer, with an aver-
age value of 0.5 µgm−3. Slightly higher average concen-
trations were observed at Liberty/Clairton (0.7 µgm−3), and
slightly lower concentrations were observed at Steubenville
(0.4 µgm−3). The domain-average predicted PM2.5 ammo-
nium concentration was 0.6 µgm−3. The average concentra-
tion directly outside of the inner domain was 0.5 µgm−3.
Overall performance was better for ammonium in the sum-
mer than in the winter, with a fractional error of 0.62 and
fractional bias of+0.44. The strongest overprediction is seen
at the Steubenville site (+0.57 fractional bias).
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Figure 4. Comparison of PMCAMx-v2.0-predicted concentrations of PM2.5 (a) sulfate, (b) nitrate, (c) ammonium, (d) elemental carbon,
and (e) organic aerosol with measurements from EPA-CSN sites during July 2017.

The average measured elemental carbon (EC) concentra-
tion in July was 0.7 µgm−3. Measured EC carbon was sig-
nificantly higher at Liberty/Clairton (1 µgm−3) and lower at
rural Hillman State Park (0.4 µgm−3). Domain-average pre-
dicted EC was 0.3 µgm−3. Outside of the inner domain, the
average predicted concentration was 0.2 µgm−3. Elemental
carbon predictions in July had a lower fractional error com-
pared to the winter at 0.60 but showed a stronger negative
fractional bias at−0.33. The model severely underpredicts at
Hillman State Park (−0.86 fractional bias), where measured
concentrations were lowest, but also at the industrial sites

of Steubenville (−0.55 fractional bias) and Liberty/Clairton
(−0.65 fractional bias). EC was slightly overpredicted at the
urban Lawrenceville location (+0.14 fractional bias). While
the urban–rural gradient in EC is slightly overpredicted, the
model is still able to capture the variability between rural
(Hillman State Park) and urban (Lawrenceville) sites well.
The model struggles to reproduce high measurements of EC
at the Steubenville site, reiterating the issues with industrial
EC seen in the winter.

Average measured OA concentration was 4.5 µgm−3 in
July. Higher concentrations were observed at the industrial
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Table 2. Comparison of daily average PMCAMx-v2.0-predicted PM2.5 concentrations during February and July 2017 with daily measure-
ments from 17 EPA regulatory monitors.

36 km× 36 km 12 km× 12 km 4 km× 4 km 1 km× 1 km

February 2017

Measured avg. (µgm−3) 10.34 10.34 10.34 10.34
Predicted avg. (µgm−3) 9.78 9.68 10.49 10.52
Error (µgm−3) 3.35 3.16 3.04 3.02
Fractional error 0.34 0.32 0.30 0.30
Bias (µgm−3) −0.56 −0.66 0.15 0.18
Fractional bias −0.09 −0.10 0.06 0.05

July 2017

Measured avg. (µgm−3) 11.24 11.24 11.24 11.24
Predicted avg. (µgm−3) 6.90 6.86 7.26 7.23
Error (µgm−3) 4.89 5.05 4.67 4.65
Fractional error 0.53 0.53 0.49 0.48
Bias (µgm−3) −4.34 −4.39 −3.98 −4.01
Fractional bias −0.45 −0.47 −0.39 −0.39

sites, Liberty/Clairton and Steubenville (5.0 µgm−3), respec-
tively. The lowest observed concentration was in Hillman
State Park (3.6 µg m−3). The average predicted concentra-
tion at CSN sites was 2.7 µgm−3. On average, OA is un-
derpredicted, with a fractional bias of −0.47. This underpre-
diction occurs at all sites but is less prevalent at the urban
Lawrenceville location (−0.19 fractional bias) and is most
dramatic in Steubenville (−0.65 fractional bias). Because
such a large fraction of the OA in the summer is predicted
to be secondary (50 % of local OA on average) and trans-
ported from outside of the inner modeling domain (84 % of
total OA), treatment of SOA formation is likely a key factor
contributing to the underprediction of PM2.5 in the summer.
While these improvements are necessary for overall model
improvement, they do not have significant impact on the
urban–rural gradients which are the focus of this work and
are driven by primary species. The performance of EC pre-
dictions in various locations is encouraging with regard to
primary PM2.5 performance.

5 Effect of grid resolution on PM2.5 performance

To determine the effect of grid resolution on the ability of
the model to resolve geographical variations in PM2.5 con-
centrations, daily average measurements from the 17 EPA
regulatory sites were compared with PMCAMx predictions
from simulations at 36, 12, 4, and 1 km. The PMCAMx per-
formance metrics are summarized in Table 2.

5.1 Winter

During the winter period, increasing grid resolution reduces
the average fractional error from 34 % at 36 km× 36 km to

30 % at 1 km× 1 km. The higher resolution also improved
the fractional bias, from −0.09 at 36 km× 36 km to +0.05
at 1 km× 1 km. The performance is illustrated in Fig. 5. Per-
formance at urban locations stayed steady in the winter, with
fractional error changing from 0.30 to 0.26 and fractional
bias changing from +0.02 to +0.08 moving from 36 to 1 km
resolution (Fig. S3 in the Supplement). Rural performance
improved to a greater extent, with fractional error improving
from 0.33 to 0.28 and fractional bias lowering from +0.21
to +0.11.

The comparison with low-cost sensor measurements
largely represents the performance of the model in terms
of urban PM2.5 predictions. The performance metrics of
PMCAMx-v2.0 when compared to measurements from low-
cost sensors are shown in Table 3. Moving from low to high
resolution, the predictions go from no bias (−0.02) to a bias
of +0.24. Due to the slight overprediction of the urban–
rural gradient seen earlier (particularly with EC), the high
resolution would likely lead to more positive biases when
compared to a largely urban network. Fractional error in-
creases slightly but still exhibits good performance moving
from 0.33 to 0.37.

5.2 Summer

In the summer period (Fig. 6), the model performance im-
proved as the resolution increased from 36 to 1 km. Frac-
tional error decreased from 0.53 to 0.48, while fractional
bias increased from −0.46 to −0.39. In July, performance
at the urban locations significantly increased with resolution
(Fig. S4 in the Supplement). Fractional error decreased from
52 % at 36 km× 36 km to 0.42 at 1 km× 1 km. Fractional
bias also improved from −0.46 at the coarse grid resolution
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Figure 5. Comparison of daily average PMCAMx-v2.0-predicted concentrations of PM2.5 with daily regulatory measurements and daily
low-cost sensor measurements at (a) 36× 36, (b) 12× 12, (c) 4× 4, and (d) 1 km× 1 km during February 2017.

Table 3. Comparison of daily average PMCAMx-v2.0-predicted PM2.5 concentrations during February and July 2017 with daily low-cost
sensor (RAMP) measurements.

36 km× 36 km 12 km× 12 km 4 km× 4 km 1 km× 1 km

February 2017

Measured avg. (µgm−3) 11.65 11.65 11.65 11.65
Predicted avg. (µgm−3) 10.23 11.64 12.04 13.50
Error (µgm−3) 4.53 4.53 4.51 5.12
Fractional error 0.33 0.33 0.34 0.37
Bias (µgm−3) −1.43 −0.02 0.4 1.85
Fractional bias −0.02 <0.01 0.14 0.24

July 2017

Measured avg. (µgm−3) 12.59 12.59 12.59 12.59
Predicted avg. (µgm−3) 7.19 7.44 8.06 8.83
Error (µgm−3) 5.60 5.70 5.29 4.89
Fractional error 0.51 0.51 0.46 0.42
Bias (µgm−3) −5.40 −5.15 −4.53 −3.76
Fractional bias −0.48 −0.43 −0.36 −0.27

to −0.39 at the finest scale. Rural predictions of PM2.5 were
also better, with increasing resolution in the summer. Frac-
tional error decreased from 0.31 to 0.22, while fractional bias
decreased from +0.05 to −0.05.

Larger improvements are seen with increasing resolution
during the summer when compared to measurements from
low-cost sensors. Starting from a large negative bias of
−5.4 µgm−3 (fractional bias of −0.48) at the 36 km× 36 km
resolution, performance consistently improved with each in-
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Figure 6. Comparison of daily average PMCAMx-v2.0-predicted concentrations of PM2.5 with daily regulatory measurements and daily
low-cost sensor measurements at (a) 36× 36, (b) 12× 12, (c) 4× 4, and (d) 1 km× 1 km during July 2017.

creasing resolution step, with the bias eventually reaching
−3.7 µgm−3 (fractional bias of −0.27) at the 1 km× 1 km
resolution. There was also a reduction in fractional error from
0.52 at the coarse resolution to 0.41 at the fine 1 km× 1 km
resolution. These metrics are encouraging, although they are
likely impacted by an overprediction of the urban–rural gra-
dient, similar to winter. Improvement of the secondary PM2.5
predictions is still the largest source of error between predic-
tions and this source of measurements.

6 Evaluation of novel emissions surrogates

For commercial cooking, the normalized restaurant count
was used to distribute the emissions from the sector in space
within the 1 km× 1 km domain. Geographical information
was collected for all restaurant locations in the inner domain
from the Google Places application programming interface.
This includes southwestern Pennsylvania as well as parts of
eastern Ohio and northern West Virginia. To allocate on-road
traffic emissions, the output from the traffic model of Ma
et al. (2020) was used. This model simulated hourly traffic
using data from the Pennsylvania Department of Transporta-
tion sites located throughout the inner modeling domain. The
use of new surrogates resulted in a new spatial distribution of
emissions for both cooking and on-road traffic sources when

compared to those developed using default emissions surro-
gates. The changes in spatial distributions are illustrated in
the Supplement (Figs. S5–S8). These novel emissions surro-
gates resulted in larger emissions of both traffic and cooking
in the downtown area. In the case of on-road traffic, major
highways in the inner domain are emphasized with the new
surrogates.

For both February and July 2017, the largest observed
change when using the novel surrogates is an increase in pre-
dicted PM2.5 of around 3 µgm−3 in the downtown Pittsburgh
area (Fig. 7). Differences in predicted PM2.5 concentrations
outside of the urban areas of the inner domain are very small
(less than 0.5 µgm−3 in magnitude).

Model performance at 1 km× 1 km resolution is detailed
in Table 4. Negligible changes in performance were seen us-
ing EPA regulatory PM2.5 data in February 2017. Small im-
provements were seen at regulatory sites in July 2017, where
fractional error was reduced from 51 % to 48 % and frac-
tional bias increased from −43 % to −39 %. A positive shift
in fractional bias was seen with the use of the new surro-
gates during both periods when compared to low-cost sensor
measurements, resulting in a modest overprediction of PM2.5
in the winter (+0.24 fractional bias) and a modest underpre-
diction of PM2.5 in the summer (−0.27 fractional bias). The
larger changes when compared to the low-cost sensor mea-
surements are a result of the location of the low-cost sensors
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Figure 7. Difference between predicted monthly average PM2.5 mass concentration when using novel surrogates and original surrogates
in (a) February 2017 and (b) July 2017 for the 1 km× 1 km resolution simulation grid. A positive value indicates a higher concentration
predicted with the novel surrogates.

Table 4. Performance of daily average predicted total PM2.5 concentrations compared to daily measurements from regulatory sites and low-
cost sensors with the use of old surrogates and new surrogates for on-road traffic and commercial cooking within the 1 km× 1 km resolution
grid.

February 2017

Old surrogates New surrogates

Regulatory network Low-cost sensors Regulatory network Low-cost sensors

Observed average (µgm−3) 10.34 11.65 10.34 11.65
Predicted average (µgm−3) 10.23 11.32 10.52 13.50
Error (µgm−3) 2.94 4.12 3.02 5.12
Fractional error 0.29 0.31 0.30 0.37
Bias (µgm−3) −0.11 −0.33 0.18 1.85
Fractional bias −0.04 0.08 0.05 0.24

July 2017

Old surrogates New surrogates

Regulatory network Low-cost sensors Regulatory network Low-cost sensors

Observed average (µgm−3) 11.24 12.58 11.24 12.58
Predicted average (µgm−3) 7.09 7.98 7.26 8.83
Error (µgm−3) 4.91 5.32 4.67 4.89
Fractional error 0.51 0.47 0.49 0.42
Bias (µgm−3) −4.33 −4.61 −4.01 −3.76
Fractional bias −0.43 −0.37 −0.39 −0.27

in urban areas, where the new surrogates predicted elevated
PM2.5 mass concentrations.

7 Conclusions

We applied PMCAMx-v2.0 over southwestern Pennsylvania
during February and July 2017 at grid resolutions of 36, 12,
4 and 1 km. Emissions were calculated for the relevant grids
using the spatial surrogates provided along with the 2011
NEI for all emissions sectors except traffic and cooking, for
which 1 km× 1 km spatial surrogates were developed.

PMCAMx predicts winter sulfate, elemental carbon, and
organic aerosol concentrations with fractional biases below

10 % at high resolution. Nitrate concentrations are overpre-
dicted (bias +1.4 µgm−3), following the trend of previous
studies in both the US and Europe. Agreement with total
PM2.5 measurements is also encouraging, with a fractional
bias of +5 %. Variability between urban and rural predic-
tions of local pollutants EC and organic aerosol (OA) is re-
produced well in the winter period. Underpredictions of sum-
mer OA concentrations led to underpredictions of total PM2.5
mass. Summer sulfate is reproduced with a fractional bias of
−21 %, and elemental carbon (EC) is predicted with a frac-
tional bias of −33 %. Nitrate is similarly overpredicted in
the summer, with a fractional bias of +70 %, although with
a much smaller magnitude than in the winter (+0.4 µgm−3).
Differences between urban and rural EC are also predicted
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well in the summer, while OA is predicted to vary little be-
tween urban and rural locations. This is indicative of a greater
contribution of secondary species to OA during this period.

PM2.5 prediction performance improved in almost all
cases when increasing the resolution from 36 to 1 km. Un-
derpredictions at urban sites and overpredictions at rural sites
were reduced at the same time. This is true when compar-
ing against measurements from regulatory sites as well as
low-cost monitors. The improved performance here is evi-
dence of the enhanced ability of the model to capture im-
portant urban–rural gradients in PM2.5 pollution by increas-
ing the resolution of predictions to 1 km× 1 km. Increasing
resolution of predictions has been shown here to improve
model performance when comparing predicted PM2.5 con-
centrations with observations from regulatory monitors and
low-cost sensors. However, these simulations highlight the
need for specific improvements to some of the secondary
PM2.5 formation pathways in the model. Improvement of the
treatment of dust in the model is required to better model the
distribution of particulate nitrate between PM2.5 and PM10
modes. Additionally, improvements to SOA formation chem-
istry within the model, particularly from biogenic sources
outside of the inner modeling domain, will likely have a sig-
nificant impact on PM2.5 predictions around the city of Pitts-
burgh.
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