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Abstract. Integrating the hybrid and multiscale analyses and
the parallel computation is necessary for current data assimi-
lation schemes. A local data assimilation method, Local DA,
is designed to fulfill these needs. This algorithm follows the
grid-independent framework of the local ensemble transform
Kalman filter (LETKF) and is more flexible in hybrid anal-
ysis than the LETKF. Local DA employs an explicitly com-
puted background error correlation matrix of model variables
mapped to observed grid points/columns. This matrix allows
Local DA to calculate static covariance with a preset cor-
relation function. It also allows the conjugate gradient (CG)
method to be used to solve the cost function and allows local-
ization to be performed in model space, observation space, or
both spaces (double-space localization). The Local DA per-
formance is evaluated with a simulated multiscale observa-
tion network that includes sounding, wind profiler, precip-
itable water vapor, and radar observations. In the presence of
a small-size time-lagged ensemble, Local DA can produce
a small analysis error by combining multiscale hybrid co-
variance and double-space localization. The multiscale co-
variance is computed using error samples decomposed into
several scales and independently assigning the localization
radius for each scale. Multiscale covariance is conducive to
error reduction, especially at a small scale. The results further
indicate that applying the CG method for each local analysis
does not result in a discontinuity issue. The wall clock time
of Local DA implemented in parallel is halved as the number
of cores doubles, indicating a reasonable parallel computa-
tional efficiency of Local DA.

1 Introduction

Data assimilation (DA), which estimates the atmospheric
state by ingesting information from model predictions, ob-
servations, and background error covariances, is crucial for
the success of numerical weather prediction (Bonavita et al.,
2017). Therefore, many previous studies on DA have focused
primarily on how to utilize observations and how to esti-
mate background error covariances (e.g., Huang et al., 2021;
Wang et al., 2012, 2013a, 2021; Lei et al., 2021; Zhang et
al., 2009; Brousseau et al., 2011, 2012; Kalnay and Yang,
2008; Buehner and Shlyaeva, 2015). At present, there are
two prevailing research orientations of DA: hybrid analysis,
which concerns the background error covariance, and multi-
scale analysis, which often addresses the difference in obser-
vation scales.

Hybrid analysis aims to utilize both the ensemble and
static covariances to leverage the advantages of flow-
dependent error information and prevents the analysis from
degrading due to a limited ensemble size (Wang et al., 2009;
Etherton and Bishop, 2004). A widely used hybrid approach
is to add an ensemble-associated control variable to a vari-
ational DA framework (Lorenc, 2003; Wang et al., 2008).
An alternative combines the ensemble and static covariances
(Hamill and Snyder, 2000). These two approaches are equiv-
alent (Wang et al., 2007). Another hybrid method averages
the analyses yielded by the ensemble Kalman filter (EnKF)
and the variational method (Bonavita et al., 2017; Penny,
2014). Recently, a hybrid scheme based on the EnKF frame-
work was developed (Lei et al., 2021) that uses a large en-
semble size (i.e., 800) to simulate the static error covariance.
Nevertheless, given the variety of hybrid approaches avail-
able, how to conduct hybrid DA is still a matter of debate. In
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this study, a hybrid scheme is implemented following Hamill
and Snyder (2000), although the proposed scheme differs re-
garding the details.

Multiscale DA is designed to utilize observations at dif-
ferent scales and performs multiscale localization in either
the model or observation space. Localization is inevitable
due to sampling errors (e.g., distant spurious correlations)
in ensemble-based DA, including in hybrid DA (e.g., Huang
et al., 2021; Wang et al., 2021). Varying the localization ra-
dius for observations according to the observation scale or
density is a straightforward method; examples include the
assimilation of synoptic-scale observations with a large lo-
calization radius and then performing radar DA with a small
radius of influence (e.g., Zhang et al., 2009; Johnson et al.,
2015). An alternative is to perform multiscale localization in
model space, requiring the scale decomposition of the en-
semble members (Buehner and Shlyaeva, 2015). The model
space localization allows all observations to be ingested on
different scales simultaneously. Recent studies have shown
that multiscale DA outperforms DA with fixed localization
(Caron and Buehner, 2018; Caron et al., 2019; Huang et al.,
2021).

In addition to the analysis quality of DA, computational
efficiency should also be considered (Bonavita et al., 2017).
A highly parallelized DA scheme is preferable due to the
continuously increasing model resolution and the number of
available observations. One DA scheme that can be highly
parallelized is the local ensemble transform Kalman fil-
ter (LETKF; Hunt et al., 2007), whose analysis is grid-
independent.

In brief, both hybrid DA and multiscale DA are neces-
sary, and the parallel computation efficiency of the LETKF
is attractive. Thus, it is desirable to utilize all their advan-
tages. A straightforward idea for achieving hybrid DA with
the LETKF is to use a large-size static ensemble, similar to
the EnKF-based hybrid scheme proposed by Lei et al. (2021).
The large ensemble (>= 800) is not always available in
practice because of the limited computational and storage re-
sources. However, it is inevitable to use such an ensemble to
realize the hybrid analysis in the original LETKF framework
because the LETKF works in the ensemble space. In this sit-
uation, it is desirable to design a flexible DA scheme that
follows the grid-independent analysis of the LETKF and can
perform both hybrid and multiscale analysis with or without
static ensemble members, similar to other variational-based
hybrid schemes. The scheme is named Local DA hereafter.

Compared with the LETKF, Local DA computes the linear
combination of columns of a local background error correla-
tion matrix rather than the combination of ensemble mem-
bers. The local background error correlation matrix is in
model space, but the model variables are interpolated to ob-
served grid points/columns. In other words, Local DA works
on unstructured grids. This framework is suitable for assimi-
lating integrated observations, such as precipitation water va-
por (PWV), because vertical localization can be performed

in model grid space. Explicitly computing the error corre-
lation matrix requires much more memory than the LETKF
but allows Local DA to calculate the static background error
correlation with a preset correlation function, such as the dis-
tant correlation function. Moreover, the computational cost
of the matrix is acceptable if observations are appropriately
thinned.

Since the error correlation matrix is explicitly constructed,
it is straightforward to realize the hybrid DA according to
the idea of Hamill and Snyder (2000). This approach is often
utilized with a simple model (Kleist and Ide, 2015; Penny,
2014; Etherton and Bishop, 2004; Lei et al., 2021) because
it explicitly computes and directly combines the background
error covariance matrices. In this study, we attempt to evalu-
ate the hybrid idea of Hamill and Snyder (2000) in a realistic
complicated scenario.

Another feature of Local DA is the ability to perform
multiscale analysis in model space, observation space, or
both spaces (double-space localization). In the model space,
Local DA adopts a scale-aware localization approach for
multiscale analysis that applies a bandpass filter to decom-
pose samples and individually performs localization at each
scale; no cross-scale covariance is considered in current Lo-
cal DA. A similar idea (i.e., lacking cross-scale covariance)
is the scale-dependent localization technique proposed by
Buehner (2012). Although cross-scale covariance is likely
to improve multiscale analysis, the relative performance de-
pends on ensemble size (Caron et al., 2019).

Local DA can perform observation-space localization sim-
ilar to LETKF, which magnifies the observation error as the
distance between the observation and model variables in-
creases. For the multiscale analysis in the observation space,
the localization radius increases as the scale of observation
increases. Compared with radar data, the scale of sounding
data is larger so that a larger radius is assigned.

Because model space localization and observation space
localization are conducted for covariances in different
spaces, it is possible to perform both localizations syn-
chronously. Although double-space localization may result
in a double penalty, it would be interesting to note the lo-
calization performance. Note that the LETKF of Wang et
al. (2021) can also realize double-space localization, but this
application has not yet been investigated.

As the first paper to report on Local DA, this study fo-
cuses on the following main issues: (i) how to locally conduct
the hybrid and multiscale analysis, (ii) the spatial continuity
of local analysis, (iii) the impact of the hybrid covariance,
and multiscale localization on Local DA, and (iv) the perfor-
mance of Local DA on cycling DA. Since Local DA is de-
signed to be a more flexible hybrid scheme than LETKF, we
do not expect Local DA to outperform LETKF in all scenar-
ios. The comparison of both methods only focuses on (i) if
they yield similar results in the case of using observation
space localization and ensemble covariance only and (ii) if
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Figure 1. The spatial distribution of different kinds of variables in
Local DA.

Local DA with hybrid covariance outperforms the LETKF
with a poor ensemble.

Observing system simulation experiments (OSSEs) are
adopted to avoid issues associated with the quality control
of observations. The simulated multiscale observing system
consists of sounding, wind profiler, PWV, and radar (radial
velocity and reflectivity) observations; the scales of these
observations vary from the synoptic scale to the convective
scale. A simulated typhoon case is selected for the evalua-
tion.

The remainder of this paper is organized as follows. In
Sect. 2, Local DA and its associated multiscale localization
technique are described, including the formula, workflow,
and other details. Section 3 describes the numerical exper-
iments, and Sect. 4 discusses the results. A summary and
conclusions are given in Sect. 5.

2 Method

2.1 The Local DA scheme

As mentioned above, Local DA performs analysis in model
space, but it needs to map model variables onto observed grid
points/columns before the analysis. All DA methods conduct
the mapping, but Local DA updates the mapped model vari-
ables. Both the background model state (xf) and the ensem-
ble perturbations (X) are mapped according to Hi, the vector
of interpolation operators. The mapped model state and per-
turbations are denoted by xf

o and Xo, respectively, where the
subscript “o” represents the observed grid points/columns.
Note that Local DA only stores xf

o and Xo for a local anal-
ysis rather than the whole forecast domain. An example of
the spatial distribution of variables involved in Local DA is
shown in Fig. 1.

The cost function of Local DA is written as

J =
1
2
vT

o vo+
1
2

(
HoX̂ovo− d

)TR−1 (HoX̂ovo− d
)
, (1)

where vo is the control variable (or a combination of error
samples); the observation error covariance is denoted by R,
which is a diagonal matrix in this study; Ho is the linear op-
erator of h that converts the model variables into observa-
tion variables; and d is the observation innovation vector.
X̂o (= αSoCoo) represents a constructed error-sample ma-
trix, where Coo is the local background error correlation ma-
trix, So stores the standard deviations (SDs) of the model
variables, and α is a parameter that adjusts the trace of Coo.
The dimensions of vectors and matrices in Eq. (1) depend
on the number of observations involved in a local analysis
and the complexity of observation operators. We will give
the dimensions and computations of the above variables in
the following subsections.

Once vo is obtained, the model state increment xi on the
model grids can be computed in terms of

xi
= X̂movo, (2)

where X̂mo = αSmCmo, Sm contains the SDs of the model
variables on the model grids, and Cmo is a correlation ma-
trix that contains the correlation coefficients between Xo and
X. Details regarding Coo and Cmo will be given later. The
analyzed model state xa is computed in accordance with
xa
= xf
+ xi.

To update ensemble perturbations, the current version of
Local DA adopts the stochastic method (Houtekamer and
Mitchell, 1998) that treats observations as random variables.
This method adds random perturbations with zero mean to
d in Eq. (1). For an M-member ensemble, Eqs. (1) and (2)
are conducted M times to update members with perturbed
observations, similar to the procedure of Li et al. (2012).
These analyses share the same background error covariance
but use different observations. The stochastic approach was
reported to be less accurate than the deterministic approach
(e.g., Whitaker and Hamill, 2002) because it introduces ad-
ditional sampling error. At this stage, Local DA mainly con-
cerns the deterministic analysis; further improvement of the
analysis ensemble is left in future work.

Compared with the LETKF or the En4DVar of Liu et
al. (2008), Local DA seeks the combination (v0) in model
space or, more specifically, the combination of the columns
of a local background error correlation matrix of model vari-
ables, rather than the combination in ensemble space. Thus
how to construct Coo and Cmo is key for Local DA. Explic-
itly computing Coo raises the question of how to solve the
cost function of Local DA in the case of large-size Coo. In
addition, how to deal with nonlinear observation operators
should be determined. The subsequent subsections present
the answers to these questions.
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2.1.1 The local background error correlation matrix

In Local DA, the actual correlation matrix C̃ is the square of
Coo multiplied by a rescaling parameter α2:

C̃= α2CooCT
oo. (3)

Using the rescaling parameter, the trace of C̃ is equivalent to
that of Coo. α is computed according to

α =

√
tr(Coo)

/
tr
(
CooCT

oo
)
, (4)

where tr( ) denotes the calculation of the trace of a matrix.
Notably, tr(CooCT

oo) is equal to the sum of squares of all el-
ements in Coo. There is no need to compute CooCT

oo. C̃ and
Coo are identical in terms of eigenvectors and the trace of the
matrix (total variance). The eigenvalues of C̃ are the squares
of the corresponding eigenvalues of Coo multiplied by α2.
Therefore, C̃ is an approximation of Coo. Storto and Andri-
opoulos (2021) proposed a hybrid DA scheme that also used
the rescaling parameter to tune the trace of a matrix (see their
Eq. 15), but they constructed the background error covari-
ance in a way differing from ours.

Coo is a K ×K matrix, where K is the number of model
variables associated with the observations to be assimilated.
K is computed according to

K =

Nt∑
i=1

[
No(i)Nop(i)

]
, (5)

where Nt is the number of observation types, such as the
zonal wind from soundings and the radial velocity from
radars; No(i) is the number of observations of the ith type;
and Nop(i) is the number of model variables used by the ob-
servation operator of the ith type. For instance, if radar re-
flectivity is the only available observation type, and there are
100 observations, K is equal to 300 (100× 3) in the case of
using the observation operator of Gao and Stensrud (2012)
because the operator requires three hydrometeors (qr , qs , and
qg). Now we are going to give an example of Coo. Assuming
there are three available observations (two zonal wind obser-
vations and a surface pressure observation), the background
error correlation matrix is

Coo =

cu1u1 cu1u2 cu1ps1
cu2u1 cu2u2 cu2ps1
cps1u1 cps1u2 cps1ps1

 , (6)

where c is the correlation coefficient in the space of Xo, and
the subscripts “u1”, “u2”, and “ps1” represent the two zonal
wind observations and a surface pressure observation, re-
spectively. Correspondingly, the SD matrix So can be written
as

So =

su1
su2

sps1

 , (7)

where s denotes the SDs of the model variables projected
onto the observed grids. So is a K ×K matrix, but a K × 1
array is sufficient to store So. After Coo and So are formed,vo
can be solved. In this example, vo is in the following form:

vo =
(
vu1 vu2 vps1

)T
, (8)

where subscripts “u1”, “u2”, and “ps1” have the same mean-
ing in Eqs. (6) and (7).

To obtain the model state increment xi, it is necessary to
form Cmo and the corresponding Sm. If the model variables
to be updated are the zonal wind (v1), potential temperature
(θ1), and water vapor mixing ratio (q1), Cmo is written as

Cmo =

cθ1u1 cθ1u2 cθ1ps1
cq1u1 cq1u2 cq1ps1
cv1u1 cv1u2 cv1ps1

 , (9)

where subscripts “u1”, “u2”, and “ps1” are the same as those
in Eqs. (6) and (7), while subscripts “v1”, “θ1”, and “q1”
denote the model variables to be updated. Cmo comprises the
error correlation coefficients between X and Xo. The size of
Cmo is NmK which depends on the number (Nm) of model
variables to be updated. However, there is no need to store
full Cmo in practice because one row of Cmo is needed to
update the corresponding model variable. Sm is the SD ma-
trix of model variables, containing sv1, sθ1, and sq1 in this
example. For convenience, a summary of the dimensions of
variables involved in Local DA is listed in Table 1.

Note that the variational DA methods and Local DA dif-
fer in the control variable transform viewpoint. The former
uses the square root of the background error covariance ma-
trix, while Local DA employs the error correlation matrix. It
is based on the consideration of computational cost because
it is expensive to obtain the square root of Coo if the size
of Coo is large. Moreover, modeling the square root of the
background error covariance matrix, as many variational DA
methods do, is also difficult for Local DA because the irreg-
ular distribution of observations makes it infeasible to utilize
a recursive filter.

Additionally, note that the size of Coo grows rapidly as K
increases. However, the memory requirement is affordable
since Coo is only used for local analysis. For high-resolution
observations, thinning can help reduce the cost, which is also
necessary to ensure that the observation errors are uncorre-
lated (e.g., Hoeflinger et al., 2001). We use the same model
variables for the data observing the same grid point/column.
For example, the same hydrometeor variables (qr , qs , and qg)
are used to compute the radar reflectivity and differential re-
flectivity at the same observed grid point. In this situation,
the size of Coo does not increase with the observations. This
strategy is also valid for passive microwave observations at
different frequencies obtained by a satellite because they ob-
serve the same column of the atmosphere. Therefore, the size
of Coo is controllable. We use a simple thinning approach to
control the matrix size in this study, as described in the Ap-
pendix.
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Table 1. The dimensions of variables in Local DA. M denotes the ensemble size, Nm is the total number of analysis variables, and K is
proportional to the number of observations (No).

Variable space Variable type Dimension

xf Model space Model variable Nm× 1
X Model space Model variable Nm×M

xo =Hix
f Observed grids/columns Model variable K × 1

Xo =HiX Observed grids/columns Model variable K ×M

Coo Observed grids/columns Model variable K ×K

vo Observed grids/columns Model variable K × 1
So Observed grids/columns Model variable K × 1
Cmo Cross space Model variable Nm×K
Sm Model grid space Model variable Nm× 1
d Observation space Observation variable No× 1

2.1.2 The solution of Local DA

There are two methods to solve the gradient of Eq. (1):
(i) matrix decomposition and (ii) an iterative algorithm. The
first approach is straightforward but is time-consuming and
sometimes infeasible if the Coo size is large. Therefore, Lo-
cal DA adopts an iterative algorithm, namely, the conjugate
gradient (CG) method (Shewchuk, 1994). Theoretically, the
CG method requires the background error covariance matrix
to be positive definite. However, with the control variable
transform, a positive semidefinite covariance matrix is suf-
ficient to obtain the best linear unbiased estimate (Ménétrier
and Auligné, 2015). A strictly diagonally dominant matrix
with nonnegative diagonal elements is positive semidefinite.

Although a positive semidefinite covariance matrix is suf-
ficient, using a higher-rank background error covariance ma-
trix helps obtain a lower analysis error (Huang et al., 2019).
Compared with the rank of X, which is not higher than the
ensemble size, that of X̂o is much higher after Coo is local-
ized. Our early test (not shown) indicates that X̂o is a full
rank matrix in most cases. For rank-deficient cases, the rank
of X̂o is often greater than 97 % of the full rank value. The
details of this localization will be given later.

Note that Local DA performs the CG step locally, un-
like other variational-based DA methods that apply the CG
method globally. Therefore, it is necessary to investigate
whether the local application of the CG method causes a
nonnegligible spatial discontinuity, which will be discussed
in Sect. 4. For computational efficiency, the maximum num-
ber of iterations is 100. If the error tolerance ε2 defined in
Shewchuk (1994) cannot reach 1× 10−6 by the 100th step,
the CG method is stopped.

2.1.3 The observation operator

The EnKF algorithm often approximates the linear projec-
tion, H in Eq. (1), according to the departure of the obser-
vation priors from their ensemble mean. It is straightforward
for Local DA to use the ensemble approximation approach.

However, for nonlinear observation operators, there is an al-
ternative, namely, the observation prior calculated using the
ensemble mean of the model variables. Tang et al. (2014)
demonstrated that this alternative could lead to better results.
Furthermore, Yang et al. (2015) examined the application
of this alternative in radar DA and showed that the alterna-
tive approach produced lower analysis errors for the model
variables associated with radial velocity (three wind compo-
nents) and reflectivity (mixing ratios of rain, snow, and grau-
pel). Given that remote sensing observations such as those
obtained by radars and satellites are important parts of a mul-
tiscale observation network, Local DA adopts the alternative
approach proposed by Tang et al. (2014).

Local DA approximates the linear projection Ỹ=HoX̂o
according to

Ỹ≈ h
(
xf
+ X̂o

)
−h

(
xf
+ X̂o

)
, (10)

where h is the nonlinear observation operator, xf is the
background model state vector, and X̂o is the mean of X̂o.
Note that Eq. (10) is written for a deterministic forecast in
this study. Compared with the results using the ensemble
mean of observation priors, Eq. (10) reduces the analysis er-
ror of reflectivity by approximately 2 dBZ in our early test
(not shown). This result is consistent with that of Yang et
al. (2015).

2.2 Multiscale localization

To realize multiscale localization in model space, Local DA
first performs scale decomposition with a bandpass filter. The
decomposed perturbation, X′b, is

X′b =
(

X1
b,X

2
b, . . .,X

l
b, . . .,X

Nb
b

)
, (11)

where the superscript “l” represents the lth scale, and Nb is
the number of scales. After decomposition, the number of
samples becomes Nb times as large as the original ensemble
size. As a localization approach lacking cross-scale covari-
ance (no Xi

bX
jT
b , i 6= j term in X′bX′b

T
), Local DA computes
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the SD of the perturbation, s, according to

s(i)=

√√√√ Nb∑
l=1

1
N

N∑
m=1

[
Xlb(i,m)

]2
, (12)

where i and m denote the ith model variable and the mth
sample, respectively, and N is the sample size. Compared

with the raw SD,

√√√√ 1
N

N∑
m=1

[
Nb∑
l=1

Xlb(i,m)

]2

, the cross influ-

ence among different scales of X′b is ignored in Eq. (12).
Nevertheless, we acknowledge the importance of the cross
influence of these perturbations and plan to investigate this
issue with regard to Local DA in our future work.

The multiscale correlation coefficient c(i,j) is calculated
according to

c(i,j)=

Nb∑
l=1

cov
[
Xlb(i),X

l
b(j)

]
s(i)s(j)

, (13)

where i andj denote the ith and j th variables, respectively.
For the case of i = j , Eq. (13) ensures c(i,j)= 1.0.

We perform localization for each scale independently to
construct the multiscale correlation matrix. In principle, our
multiscale localization method trusts the correlation coeffi-
cient of each scale when the distance between two variables
is smaller than the lower bound of the scale. For instance,
for the scale of 50–100 km, Local DA starts the localization
when the distance d is greater than 50 km. The decorrelation
coefficient r(l, i,j) for the lth scale and c(i,j) is calculated
according to
r(l, i,j)= 1.0, d <= dmin(l)

r(l, i,j)= e
−8
[
d−dmin(l)
dr(l)

]2

, d > dmin(l) ,

r(l, i,j)= 0.0d > dmax(l)

(14)

where dmin(l) and dmax(l) are the lower and upper bounds
of the lth scale, respectively, and dr(l) is the localization ra-
dius for the lth scale. Note that how to optimally localize the
background error covariance is still an open question; rather,
Eq. (14) is simply a preliminary implementation of multi-
scale localization for Local DA.

Substituting Eqs. (13) and (14) into Eq. (6), an example of
Coo in Eq. (6) is written as

Coo =
∑Nb
l=1r(l,u1,u1) cov

[
Xlb(u1),Xlb(u1)

]
s(u1)s(u1) . . . . . .∑Nb

l=1r(l,u2,u1) cov
[
Xlb(u2),Xlb(u1)

]
s(u2)s(u1) . . . . . .∑Nb

l=1r(l,ps1,u1) cov
[
Xlb(ps1),Xlb(u1)

]
s(ps1)s(u1) . . . . . .

 , (15)

where i and j in Eq. (13) are replaced by subscripts in
Eq. (6). For brevity, only the first column of Coo is listed. Ob-
viously, applying multiscale localization does not change the

size of Coo. Correspondingly, an example of Cmo in Eq. (8)
can be written as

Cmo =
∑Nb
l=1r(l,v1,u1) cov

[
Xlb(v1),Xlb(u1)

]
s(v1)s(u1) . . . . . .∑Nb

l=1r(l,θ1,u1) cov
[
Xlb(θ1),Xlb(u1)

]
s(θ1)s(u1) . . . . . .∑Nb

l=1r(l,q1,u2) cov
[
Xlb(q1),Xlb(u1)

]
s(q1)s(u1) . . . . . .

 .
(16)

Because the multiscale localization does not change the sizes
of Coo and Cmo, there is no modification for vo, xi, xf,
and xa. The only modification to realize multiscale local-
ization in model space is to store the error sample of each
scale and compute the corresponding correlation coefficient.
Therefore, realizing multiscale analysis within the Local DA
framework is easy.

The multiscale localization proposed in this subsection
gradually diminishes the contribution of small-scale covari-
ance as the distance between two variables increases while
retaining that of large-scale covariance until the distance is
very large. Table 2 shows an example of multiscale local-
ization. In this example, there are two arbitrary variables of
which the error samples are decomposed into three scales.
The values of covariance between the two variables are C1,
C2, and C3 at three scales. When the two variables are close
(8 km), the localization coefficients of C2 and C3 are 1.0,
according to the first formula in Eq. (14). As the distance
increases to 300 km, the localization coefficients of C1 and
C2 become nearly zero, and the total covariance is mainly
attributable to C3. Note that the multiscale covariance pro-
posed in this section naturally excludes cross-scale covari-
ance, and it is hard to incorporate cross-scale localization.
How to determine the localization between two scales is also
a question. The existing cross-scale localization (e.g., Huang
et al., 2021; Wang et al., 2021) is implemented in spectral
space and cannot be directly applied in Eqs. (15) and (16).
We plan to deal with the cross-scale issue in future work.

In addition to multiscale localization in the model space,
Local DA can perform localization in the observation space,
similar to LETKF. Observation space localization is con-
ducted by enlarging the observation error as the distance be-
tween variables increases. The localization coefficient in the
observation space is calculated according to the second for-
mula of Eq. (14), but d − dmin(l) and dmin(l) are replaced by
d and do, respectively, where do is the localization radius that
varies among different observation types.

Because Coo and R are independently localized, Local DA
can perform both localizations synchronously. Although per-
forming localization in both spaces may result in a double
penalty, it would be interesting to note the performance of the
double-space localization approach, which has not yet been
investigated. The related experiments and results are given in
the following sections.
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Table 2. Examples of applying the model-space multiscale localization.C1,C2, andC3 represent the covariance of the small scale (0–20 km),
middle scale (20–200 km), and large scale (> 200 km), respectively.

Case Distance Variable name Scale Scale Scale Multiscale covariance
between two 0–20 km 20–200 km > 200 km
variables

1 8 km
Localization coefficient 0.5 1 1

0.5C1+C2+C3Localized covariance 0.5C1 C2 C3

2 80 km
Localization coefficient 0.01 0.5 1

0.01C1+ 0.5C2+C3Localized covariance 0.01C1 C2 C3

3 300 km
Localization coefficient 0.0 0.05 0.5

0.05C2+ 0.5C3Localized covariance 0 0.05C2 0.05C3

2.3 Hybrid covariance

The current version of Local DA calculates a simple “static”
correlation matrix using the second formula of Eq. (14), ex-
cept that d-dmin(l) and dmin(l) are replaced by d and ds , re-
spectively, where ds is a preset radius. For the ith and j th
variables, the hybrid correlation coefficient c(i,j) in Coo is
computed according to

c(i,j)= γ

Nb∑
l=1

r(l, i,j)
cov

[
Xlb(i),X

l
b(j)

]
s(i)s(j)

+ (1− γ )e
−8
[
d
ds

]2

, (17)

where γ is the weight of the dynamic correlation. The hybrid
c(i,j) in Cmo is also computed according to Eq. (17), but
Xlb(i) and s(i) represent the variable at the model grid point.
To prevent s(i) and s(j) in Eq. (17) from being forced to zero
(which often occurs for convective-related variables such as
the mixing ratios of rainwater, snow, and graupel), we add
small, random perturbations with an SD of 1× 10−7 to the
variables for which the SDs are smaller than 1× 10−7.

Note that the static part of Eq. (17) represents merely a dis-
tant correlation. It is valid for the univariate correlation rather
than the cross-variable scenario. Therefore, the static part of
Eq. (17) is forced to zero if the ith and j th variables are dif-
ferent types of variables. In other words, the cross-variable
correlation is contributed only by the ensemble part. The au-
thors acknowledge that the cross-variable correlation is im-
portant for DA, but the static cross-variable correlation must
be carefully modeled, such as the correlation between wind
components and geopotential height or between the stream
function and potential temperature. The modeling work is in
progress.

2.4 The workflow of Local DA

Here, we present a step-by-step description of how the hybrid
and multiscale analyses described in the previous sections
are performed for all the model variables. There is a way for
Local DA to perform analysis much faster; we will discuss
this method later.

1. Apply a bandpass filter to decompose X′b into Nb
scales.

2. Store the background model state, decomposed sam-
ples, and observations in separate arrays denoted by xf,
X′b, and yo, respectively.

3. For each model variable to be updated, search its am-
bient observations according to their scales, and store
these observations in array ŷo; for example, search for
sounding data within 300 km while searching for radar
data within 15 km. In addition, according to the obser-
vation operators of ŷo, store the observation-associated
model variables that have been projected onto observed
grids/columns into arrays denoted by x̂fand X̂′b, respec-
tively.

4. Calculate the vector d in Eq. (1) with ŷo and x̂f.

5. Use X̂′b to generate So, Coo, Sm, and Cmo according to
Eqs. (12), (15), and (16).

6. Compute α for Coo using Eq. (4).

7. Compute X̂o = αSoCoo.

8. Calculate Y= R−0.5HoX̂o using Eq. (9).

9. Use the CG method to solve (I+YTY)vo = YTR−0.5d

and obtain vo.

10. Compute the model state increment xm according to
Eq. (2).
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In step 1, there are many ways to realize the bandpass fil-
ter. In this study, the difference between two low-pass anal-
yses defines the bandpass field (Maddox, 1980), where the
low-pass filter is the Gaussian filter. An example of a band-
pass field is shown in Fig. 2. For convenience, the radius
of the Gaussian filter is used to represent the scale in this
study. For the scale of 0–20 km (Fig. 2a), the small-scale
feature prevails and corresponds to convection in the simu-
lated typhoon. As the radius increases (Fig. 2b), larger-scale
information is extracted. A large-scale anticyclonic shear is
observed when the radius is greater than 200 km (Fig. 2c).
The results (Fig. 2d–f) also show that the contribution of the
small-scale ensemble spread is often less than 10 % out of
the convective area, while in most areas of the forecast do-
main, the contribution of the large-scale (> 200 km) spread
is greater than 20 %.

Steps 5–9 contribute the most to the computational cost of
Local DA. Computing Coo requires MK2 operations, which
is not less than N2

o , where M represents the size of the en-
semble, and No denotes the number of observations to be
assimilated. Step 7 requires two K2 operations. To calculate
step 8, NoK

2 operations are needed. For each iteration step
of the CG method, the number of operations is slightly larger
than 2NoK . Ni iteration steps require 2NiNoK operations.

As mentioned above, step 9 can also be solved through
eigenvalue decomposition as the LETKF does. However, Y
in Local DA has more columns than the LETKF. In the
LETKF, Y has M columns, while the corresponding value
is K in Local DA. Therefore, Local DA has to deal with a
K by K matrix, while the LETKF only needs to solve an M
byM matrix.M is often smaller than 102; thus, I+YTY can
be handled efficiently by eigenvalue decomposition. In con-
trast, K could be 103 or higher; thus, the CG method is more
suitable.

Despite the large number mentioned above, we do not
have to do that many operations in practice. For example,
step 8 requires just N2

o operations if only scalar observations
are available. Notably, for a 3-D domain containing Ng grid
points and Nv variables, the total number of operations will
be NgNv times that of one local analysis. However, it is pos-
sible to reduce the cost.

Considering that Sm, Cmo, and xm can be applied to all
variables influenced by ŷo, it is not necessary to compute
Coo for each model variable. Moreover, Sm, Cmo, and xm
may contain variables in more than one vertical column (N -
column analysis). The total number of operations in an N -
column analysis is reduced to Ng/(NNz) times one local
analysis, where Nz is the number of levels in one column.
Due to using the same Coo for neighboring columns, the N -
column analysis is slightly rasterized (not shown), leading
to slightly higher errors than the one-column analysis. How-
ever, the extent of this degeneration is acceptable as long
as N is not too large (< 9). The wall clock time of the N -
column analysis is close to 1/N of the one-column analysis.
All Local DA results are generated using a five-column anal-

ysis in this study. A similar N -column analysis approach is
the weighted interpolation technique in the LETKF (Yang
et al., 2009), which performs LETKF analysis every 3 grid
points in both the zonal and meridional directions.

3 Experimental design

3.1 The simulated typhoon

The third typhoon of the 2021 western Pacific season, In-fa,
is selected for the OSSEs performed herein. The true sim-
ulation, starting at 00:00 UTC on 25 July 2021 and ending
at 18:00 UTC on 26 July 2021, simulates the stage in which
In-fa approaches China. The Weather Research and Forecast-
ing (WRF; Skamarock et al., 2018) model V3.9.1 is used for
the simulation. The central latitude and longitude of the fore-
cast domain are 30.5 and 122.0◦, respectively. The domain
size is 201 grids× 201 grids× 34 levels, with a horizontal
resolution of 5 km and a model top pressure of 50 hPa. The
physical parameterization schemes are as follows. The WRF
Single-Moment 6-Class Microphysics Scheme (Hong and
Lim, 2006) is adopted for microphysical processes. For long-
wave and shortwave radiation, the rapid radiative transfer
model (RRTM) scheme (Mlawer et al., 1997) and the Dudhia
scheme (Dudhia, 1989), respectively, are used. The Yonsei
University (YSU) scheme (Hong et al., 2006) is employed
for the planetary boundary layer simulation. For the cumulus
parameterization, the Kain–Fritsch (new Eta) scheme (Kain,
2004) is enabled. The unified Noah land surface model is
used to simulate the land surface. We adopt the global fore-
cast system (GFS) analysis at 00:00 UTC on 25 July 2021 as
the initial condition of the Truth simulation.

According to Hoffman and Atlas (2016), a criterion for
reasonable OSSEs is that true simulation agrees with the real
atmosphere. The typhoon central pressure in the Truth simu-
lation gradually increases from 968 to 980 hPa by 18:00 UTC
on 26 July 2021 (not shown), which is consistent with the real
observation obtained from the China Meteorological Admin-
istration (CMA), except that the observed pressure increases
more rapidly, reaching 985 hPa by 18:00 UTC on 26 July
2021. The simulated typhoon’s central location also agrees
with the CMA observation. Therefore, the Truth simulation
is eligible for OSSEs.

3.2 Multiscale observation network

The simulated multiscale observation network (Fig. 3) com-
prises sounding, wind profiler, PWV, and radar observations.
Soundings are available at 00:00 and 12:00 UTC on 26 July
2021, whereas the other types of observations are available
hourly on 26 July 2021.

For each sounding, we simply extract the perturbed model
variables, u, v, θ , and qv , every two model levels as the
observations. The simulated soundings also record the per-
turbed surface pressure, ps. The sounding perturbations fol-
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Figure 2. An example of scale decomposition for scales of (a, d) 0–20 km, (b, e) 50–100 km, and (c, f) greater than 200 km. The upper panels
show the decomposed v perturbation (m s−1), while the lower panels show the contribution of each scale to the ensemble spread in terms of
percentage.

Figure 3. The distribution of simulated observations, where the
black rings denote the maximum observation ranges of radars.

low a Gaussian distribution with zero mean. The perturba-
tion SDs are 0.5, 5 m s−1, 0.5 K, 5×10−5 kg kg−1, and 10 Pa
for u, v, θ , qv , and ps, respectively. To better reflect reality,
no simulated soundings are available over the ocean, and the
horizontal resolution of each sounding is 100 km.

The simulated wind profiler provides data on horizontal
wind components, u and v, at all model levels. The perturba-
tions added to the wind profiler data follow a Gaussian dis-
tribution with zero mean and an SD of 0.5 m s−1. The wind
profilers, the data from which have a horizontal resolution of
50 km, provide data only on land.

The PWV observations are computed according to

PWV=
1
g

p2∫
p1

qvdp, (18)

where g is the gravitational constant of acceleration, and
p1 and p2 represent the bottom and top of a model col-
umn, respectively. Perturbations with zero mean and an SD
of 0.5 kg m−2 are added to the PWV observations. Because
the PWV is observed by satellites, this type of observation is
available for the whole forecast domain, and the horizontal
observation interval is 50 km in both the x and y directions.

The radar data to be assimilated are radial velocity and
reflectivity. We adopt Eq. (3) of Xiao and Sun (2007) to
compute the radial velocity, but we ignore the terminal ve-

https://doi.org/10.5194/gmd-15-8869-2022 Geosci. Model Dev., 15, 8869–8897, 2022



8878 S. Wang and X. Qiao: Local DA v1.0

locity in OSSEs. For reflectivity, the operator proposed by
Gao and Stensrud (2012) is employed. Three radars located
at approximately Shanghai (31.23◦ N, 121.48◦ E), Hangzhou
(30.28◦ N, 120.16◦ E), and Ningbo (29.88◦ N, 121.55◦ E) are
simulated with a maximum observation range of 230 km.
The simulated radars work on the volume coverage pattern
(VCP) 11 mode, which has 14 elevation levels from 0.5 to
19.5◦. Radar data are created on volume-scan elevations,
but they are on model grids in the horizontal direction, as
shown in Xue et al. (2006). The radial velocity and reflec-
tivity observation errors are 1.0 m s−1 and 2.0 dBZ, respec-
tively. The horizontal resolution of the radar data is identical
to the model grid spacing.

In total, 2795 simulated soundings, 400 PWV data points,
5332 wind profiler observations, and 391 618 radar observa-
tions (including radial velocity and reflectivity) are utilized
in this study.

3.3 DA experiments

In this study, two sets of experiments are designed. The first
set of experiments consists of single deterministic analyses
and is used to examine the impact of the hybrid covariance,
the multiscale localization in model space, and the double-
space localization. The other set of experiments comprises
several cycling analyses, mainly focusing on the analysis bal-
ance (in terms of surface pressure tendency) and the impact
of Local DA on cycling analysis. To perform the analysis
with ensemble covariance, it is necessary to generate the en-
semble first. Therefore, in this subsection, we first describe
the generation of the ensemble and then introduce the exper-
imental design.

3.3.1 Ensemble perturbations

For the single deterministic analysis, the time-lagged ap-
proach (e.g., Branković et al., 1990) is employed to gener-
ate the ensemble perturbations, which are created by using
deterministic forecasts with different initial times and vary-
ing GFS data. For example, the first sample at 00:00 UTC on
26 July 2021 stores the difference between two determinis-
tic forecasts initialized at 06:00 UTC UTC on 25 July 2021
and 12:00 UTC on 25 July 2021. To distinguish these fore-
casts from the forecasts of the DA experiments, the forecasts
used to produce ensemble members are referred to as sample
forecasts. The sample forecasts used in this study are shown
in Fig. 4a. Note that some sample forecasts are initialized
by the 3 or 6 h GFS forecast data (highlighted by the thick
tick marks in Fig. 4). A small-size ensemble is employed;
it combines six sample forecasts according to C(6,2)= 6!

2!4!
and thus has 15 members.

Focusing on the result of a small-size ensemble is based
on two concerns. First, Local DA is designed as a flexible
scheme for hybrid analysis; hybrid analysis is often benefi-
cial in the presence of a small ensemble or a poor ensem-

ble. In the case of using a well sampled ensemble, the pure
ensemble DA is preferred. Second, the available computa-
tional resources are not always sufficient to support a large-
size ensemble. The authors have tested a larger ensemble
with 36 members and obtained lower analysis errors than the
15-member counterpart. For brevity, the results with the 36-
member ensemble are not shown.

For the cycling analysis, the first analysis uses the time-
lagged 15-member ensemble. In the remaining cycles, the
ensemble forecast initialized from the previous analysis en-
semble provides the ensemble perturbations. The analysis en-
semble is created by performing Local DA 15 times with per-
turbed observations. The perturbations are added to Ctrl so
that the ensemble center is on Ctrl. The Ctrl in the first cy-
cle is obtained using GFS analysis at 00:00 UTC on 26 July
2021. Figure 4b shows the flowchart of the cycling DA.

3.3.2 The DA configurations

A total of 14 experiments for deterministic analyses at
00:00 UTC on 26 July 2021 are examined. The first three ex-
periments investigate the influence of using the pure ensem-
ble covariance (Ens_noFLTR), distant correlation covariance
(Static_BE), and hybrid covariance (Hybrid_noFLTR) on the
Local DA analysis. The model variables to be analyzed are
the three wind components (u, v, w), potential temperature
(θ), water vapor mixing ratio (qv), dry-air mass in column
(mu), and hydrometeor mixing ratios (qc, qr , qi, qs , and qg).
A fixed localization radius of 200 km is used for most vari-
ables. For ps and hydrometeor variables (qc, qr , qi, qs , and
qg), the fixed influence radii are 1000 and 20 km, respec-
tively. These values are tuned for the case in which Typhoon
In-fa made landfall in this study and are only used for static
correlation and experiments without multiscale localization
(e.g., Ens_noFLTR). The background error covariance is em-
pirically inflated by 50 %. For Hybrid_noFLTR, the weight
between the dynamic and static covariances is 0.5.

Then, the impact of model-space multiscale localization
is evaluated through six experiments with/without the hy-
brid covariance. Ens_2band, Ens_3band, and Ens_5band use
the pure ensemble covariance, but the ensemble is decom-
posed into two, three, and five scales, respectively. The two-
band experiment uses samples with a scale of 0–200 km and
a scale greater than 200 km. In this experiment, the con-
tribution of a scale greater than 200 km is amplified be-
cause the localization coefficient is 1.0 until the distance
between two grid points is greater than 200 km. For the
Ens_3band, the three scales are 0–50, 50–200, and> 200 km.
The corresponding values for Ens_5band are 0–20, 2–50,
50–100, 100–200, and > 200 km, respectively. Through the
above three experiments, we can examine the sensitivity of
Local DA to the configuration of multiscale analysis. Hy-
brid_2band, Hybrid_3band, and Hybrid_5band use the same
ensemble covariance as Ens_3band, and Ens_5band, respec-
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Figure 4. (a) The flowchart of the time-lagged ensemble generation, where the thick blue arrows represent the sample forecasts used by the
15-member ensemble. The sample forecasts initialized using the GFS forecast data are highlighted with orange tick marks. Sample forecasts
used to form a member are denoted by thin colored arrows. (b) The flowchart of cycling DA. Each member assimilates the observations
containing a different set of perturbations.

tively; the ensemble covariance and static covariance weight
equally in the hybrid covariance.

The last five experiments are designed to discuss the
impact of the localization space. Ens_noFLTR_OL per-
forms localization in observation space. The horizon-
tal radii are 360, 150, 120, and 15 km for sounding,
wind profiler, PWV, and radar data, respectively. Notably,
Ens_noFLTR_OL performs vertical localization in model
space, identical to Ens_noFLTR. Ens_LETKF uses the
LETKF algorithm and the same horizontal localization radii
as Ens_noFLTR_OL. The vertical radius for all observa-
tions is 5 km in Ens_LETKF, where the PWV observations
are treated as being located at 4000 m for LETKF local-
ization. Ens_noFLTR_DSL performs localization in both
the model and observation space. In the model space,
a fixed localization radius is used, as in Ens_noFLTR,
while the localization parameters of Ens_noFLTR_OL are
adopted for observation-space localization. Using five-band
samples, Ens_noFLTR_DSL becomes Ens_5band_DSL.
Adding hybrid covariance to Ens_5band _DSL yields Hy-

brid_5band_DSL. For convenience, all single deterministic
analysis experiments are listed in Table 3, where “M”, “O”,
and “M+O” denote model-space, observation-space, and
double-space localization, respectively. The vertical localiza-
tion in the observation space is disabled for all Local DA ex-
periments.

For experiments with cycling analysis, we examine Lo-
cal DA in the cases of (i) using the ensemble covariance
without multiscale localization and (ii) using hybrid co-
variance and multiscale localization. The DA configuration
of Ens_noFLTR is employed for the first scenario, while
that of Hybrid_5band_DSL is adopted for the second sce-
nario. Cycling intervals of 3 and 6 h are examined, where
we mainly focus on the experiments with the 6 h interval.
The experiment with a 3 h cycle interval is used to show the
impact of imbalance analysis to forecast. A total of three
experiments are examined, namely, Ens_noFLTR_6h, Hy-
brid_5band_DSL_6h, and Hybrid_5band_DSL_3h, where
the suffixes represent the cycling intervals. During cycling,
sounding observations are available at 00:00 and 12:00 UTC,
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Table 3. DA experimental configurations.

Experiment names DA scheme Static Dynamic Localization Multiscale
covariance covariance space localization

Ens_noFLTR Local DA No Yes M No
Static_BE Local DA Yes No M No
Hybrid_noFLTR Local DA Yes Yes M No
Ens_2band Local DA No Yes M Yes
Ens_3band Local DA No Yes M Yes
Ens_5band Local DA No Yes M Yes
Hybrid_2band Local DA Yes Yes M Yes
Hybrid_3band Local DA Yes Yes M Yes
Hybrid_5band Local DA Yes Yes M Yes
Ens_noFLTR_OL Local DA No Yes O Yes
Ens_LETKF LETKF No Yes O Yes
Ens_noFLTR_DSL Local DA No Yes M+O Yes
Hybrid_5band_DSL Local DA Yes Yes M+O Yes
Ens_5band_DSL Local DA No Yes M+O Yes

while other observation types are available hourly. A total
of 15 sets of perturbed observations are created to update
15 members in cycling DA. The standard deviations of ob-
servation perturbations are identical to the observation errors
mentioned in Sect. 3.2. The covariance inflation factor is also
1.5 for cycling analysis.

4 Results and discussion

4.1 The convergence of minimization

We examine the minimization convergence using the data ex-
tracted from Hybrid_5band. Figure 5 shows the number of
iterations and the ratio of the final value of the cost func-
tion (Jfinal) to the initial value (Jinitial). Fewer than 100 iter-
ations indicate that the tolerance ε2 reaches 1× 10−6 within
100 steps. If the minimization does not converge within 100
steps, the CG iteration is stopped by the program. The num-
ber of iterations is large near the center of the forecast domain
but decreases rapidly outward. According to the distribution
of observations (Fig. 3), the results (Fig. 5a) indicate that the
minimization converges more slowly as the number of obser-
vations to be assimilated increases.

Although the minimization fails to converge within
100 steps in the area where the observation density is high,
the cost function is reduced by 70 % or 80 % (Fig. 5b). In
contrast, near the northeastern and southeastern corners of
the domain, where the minimization converges within 10
steps, the final value of the cost function is greater than 70 %
of its initial value. However, in those areas, the initial cost
function is small, implying no need for a large extent of
correction. The results also indicate that no severe discon-
tinuity occurs in Hybrid_5band, which is desired. Similar to
the LETKF, using slightly different Coo between neighboring
columns does not yield remarkably different analyses.

Figure 5. The spatial distributions of (a) the number of iterations
and (b) the ratio of the final value of the cost function to the initial
value.
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Figure 6. Box plots of (a) ε2 and (b) the ratio of the final J to the
initial J in the dashed rectangle area shown in Fig. 3, where “ALL”
denotes the DA using all observations, and “RADAR” corresponds
to the DA using radar data only. The upper and lower bounds of the
boxes are the 75th and 25th percentiles, respectively. The middle
line indicates the median.

Further investigation (for data within the yellow rectan-
gle plotted in Fig. 5a) indicates that approximately 25 % of
minimizations fail to converge within 100 steps (Fig. 6a), all
associated with the application of radar data. Therefore, we
rerun Hybrid_5band using only radar data and observe that
only 4 % of all minimizations require more than 100 steps
to converge. In the case of setting the maximum number of
iterations to 500 for Hybrid_5band, all minimizations con-
verge within 300 iteration steps. The results also show that
assimilating only radar data produces a smaller ratio of Jfinal
to Jinitial than the case using all observations (Fig. 6b). Ac-
cording to previous studies (e.g., Wang and Wang, 2017), the
inefficient minimization may be caused by the assimilation
of radar reflectivity due to the use of the mixing ratios as
state variables. Too small hydrometeor mixing ratio values
can lead to an overestimated cost function gradient. Never-
theless, despite the slow convergence, Local DA reduces the
cost function by more than 70 % within 100 iteration steps in
most cases (Fig. 6b). Further suppressing the error may re-
quire a better background error covariance, which we plan to
seek in future work.

4.2 The single deterministic analysis

The domain-averaged root mean square root error (RMSE)
is examined first. For convenience, the initial condition ex-
tracted from GFS analysis is referred to as BAK. All ex-
periments reduce the errors in the observation space after
DA, but their differences are significant (Table 4). The ex-
periments (Ens_noFLTR, Ens_ noFLTR_OL, Ens_LETKF,
and Ens_noFLTR_DSL) without the hybrid covariance
and model-space multiscale localization produce relatively
higher analysis errors than other experiments for wind com-
ponents, temperature, radial velocity, and reflectivity. Using
distance correlation (Static_BE) results in lower errors than
Ens_noFLTR for most variables, while Hybrid_noFLTR fur-
ther suppresses the errors except for reflectivity. The benefit
of using hybrid covariance is consistent with many previous
studies (e.g., Wang et al., 2009, 2013b; Tong et al., 2020).

Model-space multiscale localization (Ens_2band,
Ens_3band, and Ens_5band) is conducive to error reduction.
Even with two-scale samples, Ens_2band dramatically
reduces the errors of wind-related variables, compared
with Ens_noFLTR. Involving more scales further improves
the analysis, but the benefit is not as great as the case of
comparing Ens_noFLTR with Ens_2band. Combining the
hybrid covariance and model-space multiscale localization
does not further narrow the gap between the analysis and
observation.

Double-space localization does not necessarily ensure
small analysis errors (Ens_noFLTR_DSL). However, when
the localization is combined with the hybrid covariance and
model-space multiscale localization (Hybrid_5band_DSL
and Ens_5band_DSL), the analysis error can be substantially
reduced, especially for PWV and reflectivity.

In model space, similar results can be observed (Ta-
ble 5). The hybrid covariance, model-space localization, and
double-space localization are helpful for error reduction. No-
tably, unlike the result in the observation space, the analysis
errors in some experiments are higher than those of BAK.
Because the RMSE in model space counts for grid points
that are not directly observed and are updated through error
covariance, the error becoming higher after DA is likely due
to the poor error covariance in model space.

In the following subsections, the background and analysis
errors in model space are decomposed into three scales using
a Gaussian filter with radii of 50–200 km, respectively, rep-
resenting errors of the small scale (0–50 km), middle scale
(50–200 km), and large scale (> 200 km). Through this de-
composition, we can investigate the results in detail. The ver-
tical velocity (w) and hydrometeor variables (qc, qr , qi, qs ,
and qg) are not decomposed because their scales are often
small. In addition, convective-scale DA usually computes the
errors for grid points with reflectivity larger than a threshold,
which is another way to investigate small-scale errors. The
difference between errors in the convective area (reflectiv-
ity> 10 dBZ) and the rest of the area is similar to that be-

https://doi.org/10.5194/gmd-15-8869-2022 Geosci. Model Dev., 15, 8869–8897, 2022



8882 S. Wang and X. Qiao: Local DA v1.0

Table 4. The RMSEs in observation space for all single deterministic analyses, where BAK represents the background error, SND denotes
the sounding observation, and PRO corresponds to profile observation. The values of 1 and 15 in the legend represent the smallest and the
largest error among all experiments, respectively.

Table 5. As in Table 4 but for the RMSEs in model space.
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Figure 7. The analysis error decomposed into scales of 0–50, 50–200 km, and greater than 200 km (shown on the x axis), where BAK
represents the initial condition before DA.

tween small-scale and large-scale errors (not shown). There-
fore, the errors in the convective area are not discussed in
subsequent sections.

4.2.1 Hybrid analysis

Figure 7 shows that the smallest-scale error contributes most
to the background and analysis error, while the quantities of
large-scale errors are often half of their small-scale counter-
parts. Ens_noFLTR reduces errors at all scales for horizon-
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Figure 8. As in Fig. 7 but for Ens_2band, Ens_3band, Ens_ 5band, Hybrid_2band, Hybrid_3band, and Hybrid_5band, where BAK and
Ens_noFLTR are duplicated for comparison.

tal wind components, where the error reduction is relatively
higher at a large scale. For T , qv , and ps, Ens_noFLTR sup-
presses the large-scale errors but amplifies the small-scale
ones. This result implies that the large-scale error covariance
is likely reliable, but the smaller one is not.

When the static correlation is enabled for Local DA
(Static_BE and Hybrid_noFLTR), the small-scale and
middle-scale errors are substantially decreased. This differ-
ence becomes much larger for ps when Ens_noFLTR is com-
pared with Static_BE, even at a large scale. The analysis er-
rors of Static_BE and Hybrid_noFLTR are nearly identical
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Figure 9. As in Fig. 7 but for Ens_noFLTR_DSL, Hybrid_ 5band_DSL, and Ens_5band_DSL, where BAK and Ens_noFLTR are duplicated
for comparison.

at all scales for u, v, T , and qv , but the reason for this phe-
nomenon is still unknown. We plan to determine the cause
in future work. Overall, the main contribution of employing
static correlation to the lower analysis errors of Static_BE
and Hybrid_noFLTR is at a small scale. The result implies
that constraining the small-scale ensemble correlation in a

small radius may be conducive to the small analysis error,
which is what the model-space multiscale localization does.

4.2.2 Multiscale analysis

After decomposing the ensemble samples into two parts
(Ens_2band) and independently applying the localization ra-
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Figure 10. The DTE at 850 hPa (left column), 500 hPa (middle column), and 200 hPa (right column) for (a–c) BAK, (d–f) Ens_noFLTR,
(g–i) Hybrid_5band, and (j–l) Hybrid_5band_DSL.

dius for each scale, the small-scale analysis error becomes
lower than that of Ens_noFLTR for all examined variables
(Fig. 8). Compared with Ens_2band, further decomposing
the ensemble samples into more scales (Ens_3band and
Ens_5band) and using smaller radii for small scales slightly
reduces the analysis error for wind components and surface

pressure but increases the error for qv . This result confirms
the assumption that restricting the impact of small-scale cor-
relation in a small region is beneficial. The difference be-
tween Ens_3band and Ens_5band is small, indicating that
three or five scales should be sufficient for the model-space
multiscale localization in Local DA.
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Figure 11. As in Fig. 7 but for Ens_noFLTR_OL and Ens_LETKF, where BAK and Ens_noFLTR are duplicated for comparison.

Experiments combining multiscale localization with hy-
brid covariance (Hybrid_2band, Hybrid_3band, and Hy-
brid_5band) produce lower analysis errors for most
variables, compared with Ens_2band, Ens_3band, and
Ens_5band. However, the improvement is not substantial.
The small difference implies that we need more approaches
to make further improvements. Employing double-space lo-

calization is one of the approaches, according to the result
shown in Table 5.

4.2.3 Double-space localization

Compared with Ens_noFLTR, Ens_noFLTR_DSL has a
small but positive impact on the analysis of u, v, T , and qv at
a small scale, while its influence on larger-scale errors is neg-
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Figure 12. The difference in the dry-air mass in column (mu) between the truth (contours) and analysis (shading) for (a) BAK,
(b) Ens_noFLTR_ OL, and (c) Ens_LETKF, where rectangles highlight the areas where Ens_noFLTR_OL and Ens_LETKF analyses are
similar.

ligible (Fig. 9). In contrast, Ens_noFLTR_DSL substantially
reduces the analysis error of ps at all scales. After combining
the model-space localization (Ens_5band_DSL), the analysis
errors further decline at a small scale. Adding a hybrid co-
variance to Ens_5band_DSL (Hybrid_5band_DSL) leads to
lower analysis error for most variables. The large-scale anal-
ysis error of ps is increased after using hybrid covariance,
implying that the large-scale error correlation related to ps
and computed by using ensemble samples is better than the
distant correlation with a fixed influence radius. It is encour-
aging to see that Hybrid_5band_DSL and Ens_5band_DSL
produce the analysis error of qv lower than BAK at small and
middle scales, while Ens_5band and Hybrid_5band yield a
higher analysis error than BAK. The result indicates the ben-
efit of double-space localization.

To qualitatively assess the analysis error, we compute the
difference in total energy (DTE; Meng and Zhang, 2007).
Wang et al. (2012) used the square root of the mean DTE
to evaluate the error of DA to simplify the presentation. The

DTE is computed in the form of the difference between the
analysis and truth. Ens_noFLTR (Fig. 10d–f) decreases the
background errors (Fig. 10a–c) at 850 and 500 hPa but gener-
ates many spurious increments over the ocean, increasing the
error there; this problem is more pronounced at 200 hPa. Ac-
cordingly, the error after Ens_noFLTR analysis is still high.
The spurious increment corresponds to the large analysis er-
ror at a small scale. In contrast, utilizing the hybrid covari-
ance and model-space multiscale localization suppresses the
small-scale spurious errors (Hybrid_5band; Fig. 10g–i) from
the lower to the upper levels. The spurious increment is fur-
ther reduced in Hybrid_5band_DSL, especially at 850 and
500 hPa, indicating that the positive impact of double-space
localization corresponds to less noise in the analysis. Accord-
ing to the above result, double-space localization may serve
as a supplement to pure model-space localization, which de-
termines the level of analysis error.
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Figure 13. (a) The ratio of ensemble spread to RMSE at 00:00 UTC
on 26 July 2021 and (b) the spatial correlation coefficient between
ensemble spread and RMSE for scales of 0–50, 50–200 km, and
greater than 200 km.

4.2.4 The similarity between Local DA with
observation space localization and the LETKF

Considering that Local DA can perform observation space
localization only as in the LETKF, it is interesting to see
if their analyses are similar. Note that Ens_noFLTR_OL
and Ens_LETKF merely share the same horizontal localiza-
tion configuration; they differ in vertical localization. Fig-
ure 11 shows that the difference in analysis error between
Ens_noFLTR_OL and Ens_LETKF is small for all variables
and at all scales. Figure 12 gives an intuitive comparison
between the Ens_noFLTR_OL and Ens_LETKF analyses.
The overlarge negative increment in both experiments is con-
strained in a much smaller area than Ens_noFLTR (marked
by red rectangles in Fig. 12). They also suppress the small-
scale noise in the Ens_noFLTR analysis, corresponding to
the lower error in Fig. 11e. Overall, in the case of using
observation-space localization, Local DA can produce an
analysis similar to the LETKF.

In addition, the small-scale error of qv yielded by
Ens_noFLTR_OL is lower than that of Ens_noFLTR
(Fig. 11d). The result is similar to the difference between
Ens_noFLTR_DSL and Ens_noFLTR, indicating that the im-
provement of Ens_noFLTR_DSL on qv analysis compared

Figure 14. The RMSE (shaded) and ensemble spread (contours)
of ps decomposed into scales of (a) 0–50 km and (b) greater than
200 km.

with Ens_noFLTR is mainly attributable to observation-
space localization.

4.2.5 Error and ensemble spread

For a well-sampled ensemble, a criterion is that the spa-
tial distribution of the ensemble spread is similar to that of
RMSE. In addition, the amplitudes of the ensemble spread
must be close to the RMSE. The relationship is shown
in Fig. 13 for the time-lagged ensemble at 00:00 UTC on
26 July 2021. For u, v, and ps, the ratio of ensemble spread
to RMSE ascends as the error scale increases, indicating that
the quality of the time-lagged ensemble is rational at a large
scale. This relationship is also valid for the spatial distribu-
tion (Fig. 13b), but the correlation coefficient does not vary
from small scale to large scale too much for most variables,
except for ps. The correlation coefficient for ps is nearly
1.0 at a large scale, while it is approximately 0.6 at a small
scale. This large difference explains why the hybrid covari-
ance and multiscale localization can substantially reduce the
error at a small scale for ps. For qv , the small-scale spread
is greater than the large-scale spread; the correlation coeffi-
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Figure 15. The tendency of surface pressure (Pa h−1) for
Truth (black), BAK (green), Ens_noFLTR (blue), Hybrid_5band_
DSL_6h (orange), and Hybrid_5band_DSL_3h (light blue).

cients at all scales are close. This result implies that suppress-
ing the small-scale error covariance does not necessarily im-
prove the analysis quality of qv . Therefore, it is not irrational
for Ens_5band and Hybrid_5band to produce a higher analy-
sis error for qv than Ens_2band.

An example related to the ensemble spread and RMSE of
ps is shown in Fig. 14. The RMSE is smooth at a small scale,
and there is a maximum near the typhoon center. Although
the ensemble spread also has a maximum near the typhoon
center, there is a large bias concerning the location. More-
over, the ensemble spread is much noisier than the RMSE,
which is a cause of the noisy analysis shown in Fig. 12b. In
contrast, the large-scale ensemble spread matches the error
well, which is conducive to error reduction. Therefore, even
with a large localization radius, the surface pressure analysis
of Ens_noFLTR at a large scale is not much worse than that
of the other experiments.

4.3 The cycling DA

Because ensemble DA approaches often take several cy-
cles to obtain a reasonable analysis, it is worth seeing if
Ens_noFLTR produces a better analysis after some cycles
and if Hybrid_5band_DSL maintains the advantage in cy-
cling DA. Before looking at the RMSE evolution during cy-
cling, the ps tendency is examined as it is a metric of dynamic
imbalance (Zeng et al., 2021). If the unphysical ps tendency
is large, the analysis may be degenerated, and the forecast
could be unstable. Although it is better to analyze the ps ten-
dency at each time step, in this study, the hourly ps tendency
is sufficient to demonstrate the impact of imbalance analysis.

The forecast from GFS analysis is referred to as BAK in this
subsection.

4.3.1 The tendency of ps

The ps tendency in the truth simulation is selected as a cri-
terion as it is assumed to be in balance status after a 24 h
forecast. The balanced tendency is approximately 20 Pa h−1

(Fig. 15), which is reached by BAK in 3 h. After the first
DA cycle, the ps tendency becomes much larger than that of
BAK, no matter the DA configuration. The large ps tendency
after the first DA cycle is not surprising because the land-
ing typhoon is not fully observed by the simulated observa-
tion network, especially for the wind field, causing an imbal-
ance between the corrected part and the rest of the analyzed
typhoon. A similar phenomenon was discussed by Wang et
al. (2012) in a simulated supercell case. They concluded that
such an imbalance shocks the model forecast and increases
the forecast error.

After a 6 h forecast, the ps tendencies in Hy-
brid_5band_DSL_6h and Ens_noFLTR_6h are close
to the balance status. As expected, the ps tendency
increases again after the second DA cycle. However,
Hybrid_5band_DSL_6h produces a much smaller ps
tendency than Ens_ noFLTR_6h, indicating that Hy-
brid_5band_DSL_6h has a more balanced analysis. The
peaks of ps tendency in Hybrid_5band_DSL_6h and
Ens_noFLTR_6h gradually decline as the number of cycles
increases. By 18:00 UTC, Hybrid_5band_DSL_6h reaches
the balance status, while Ens_noFLTR_6h does not. The
above result indicates that using the hybrid covariance and
multiscale localization is beneficial for cycling DA.

Note that the advantage of Hybrid_5band_DSL_6h has a
precondition that the cycling interval is sufficiently long for
the model to spin up. When the cycling interval becomes
shorter (Hybrid_5band_DSL_3h), the ps tendency cannot be
effectively suppressed as Hybrid_5band_DSL_6h does.

4.3.2 The performance of cycling DA

We only discuss the results of u, v, qv , and ps in this sub-
section for brevity. For u and v, all experiments reduce the
forecast error compared with BAK (Fig. 16a and b). How-
ever, the error evolution of these experiments substantially
differs. Ens_noFLTR_6h fails to decrease the forecast error
after the second cycle, while Hybrid_5band_DSL_6h succes-
sively reduces the forecast and analysis error as the number
of cycles increases. For Hybrid_5band_ DSL_3h, an oscilla-
tion in error evolution is observed, which is likely associated
with the imbalance analysis and the insufficient cycle interval
for spinup. Despite the oscillation, the forecast and analysis
errors of Hybrid_5band_ DSL_3h are comparable to those of
Hybrid_5band_DSL_6h for wind components.

However, in regard to water vapor and surface pres-
sure (Fig. 16c and d), Hybrid_5band_DSL_6h becomes
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Figure 16. The evolution of RMSE for BAK (black), Ens_noFLTR (blue), Hybrid_5band_DSL_6h (orange), and Hybrid_5band_DSL_3h
(light blue), where the solid markers denote the forecast error, while the hollow markers represent the analysis error.

better than Hybrid_5band_DSL_3h. Hybrid_5band_DSL_6h
also outperforms Ens_noFLTR_6h; the latter fails to sup-
press the forecast error of qv and produces a higher
ps error after analysis. Figure 17 shows the spatial
distribution of forecast error at 18:00 UTC for Hy-
brid_5band_DSL_6h and Ens_noFLTR_6h. The area of large
error in Hybrid_5band_DSL_6h is much lower than that
of Ens_noFLTR_6h for both v and ps. The large error in
Ens_noFLTR_6h corresponds to a weak cyclonic rotation
and weak low pressure. The above result confirms the benefit
of using the hybrid covariance and multiscale localization.

4.3.3 The evolution of the relationship between
ensemble spread and RMSE

For Hybrid_5band_DSL_6h, the initial ensemble spread is
smaller than the RMSE at all scales (Fig. 18a) for both u and
ps. As the number of cycles increases, the ratio of ensem-
ble spread to RMSE increases. By 18:00 UTC, the ensem-
ble spread is comparable to or greater than the correspond-
ing RMSE at all scales for u. The underestimation of RMSE
by the ensemble spread is alleviated for ps (Fig. 18b). For
the spatial distribution, the relationship between the ensem-
ble spread and RMSE does not vary much for u at all scales
(Fig. 18c). In contrast, the relationship becomes better for ps
at a small scale (Fig. 18d). Overall, the ensemble is improved
in Hybrid_5band_DSL_6h.
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Figure 17. The difference in (a, b) meridional wind and (c, d) the dry-air mass in column (mu between the truth (contours) and forecast
(shading) at 18:00 UTC 26 July 2021 (the last analysis cycle) for (a, c) Ens_noFLTR_6h and (b, d) Hybrid_5band_DSL_6h.

For Ens_noFLTR_6h, the ensemble spread of u and ps
at the small-scale remains smaller than the corresponding
RMSE during the cycling DA. In contrast, the ensemble
spread at the large scale dramatically increases after the sec-
ond cycle. The amplitude of the large-scale ensemble spread
is even higher than that of the small-scale spread, leading to
a severe overestimation of the large-scale error. Meanwhile,
the correlation between ensemble spread and RMSE at the
small scale is not improved during cycling. In general, the
ensemble in Ens_noFLTR_6h does not become better after
four cycles, which explains why Ens_noFLTR_6h produces
a large analysis error.

4.4 The computational cost and efficiency

The computational cost and efficiency of Local DA are dis-
cussed in this subsection. All tests are conducted on a 36-core
workstation with an Intel Xeon Gold 6139 CPU (the maxi-
mum frequency is set to 2.30 GHz) and 48 GB of available

memory. Heretofore, we have implemented the parallel Local
DA with OpenMP, which is not suitable for large-scale paral-
lel computing; however, for this study, OpenMP is sufficient.
The parallel efficiency is examined first. LDA_HBC_MSL is
selected as an example. Figure 19 shows the wall clock time
as a function of the number of cores. The wall clock time
covers Local DA steps 3 through 9 (as described in Sect. 2.4).
As expected, the wall clock time is reduced by approximately
50 % upon doubling the number of cores, which is valid if the
number of cores is not greater than 16. In contrast, increas-
ing the number of cores from 16 to 32 does not shorten the
wall clock time; this is attributable to the fact that OpenMP is
only suitable when the number of processors is small (< 16;
Hoeflinger et al., 2001). Given that no messages need to be
passed between the cores for steps 3 through 9, the parallel
efficiency of Local DA is likely insensitive to the number of
cores. In general, the results demonstrate that Local DA can
be highly parallelized.
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Figure 18. The ensemble spread (solid lines), RMSE (dotted lines), and correlation coefficient between spread and RMSE (dotted dashed
lines) in three scales for Ens_noFLTR (rectangle markers) and Hybrid_5band_DSL_6h (circle markers), where scales of 0–50, 50–200, and
> 200 km are denoted by blue, orange, and light blue, respectively.

In addition to its parallelization, the computational speed
of Local DA is also investigated. Hybrid_5band takes 225 s
to complete all local analyses when 16 cores are used. Note
that the number of horizontal grid points within the forecast
domain is 40 000, and more than 200 000 observations are
assimilated. Given that the processors work at a frequency of
2.30 GHz, the computational speed of Local DA is accept-
able. On average, nearly 70 % of the computational time is
used to compute Coo and Cmo; for the minimization using the
CG method, the corresponding percentage is approximately
18 %.

We also assess the memory consumption of Local DA. To
complete Local DA steps 3 through 9, Hybrid_5band uses
approximately 4 GB when 16 cores are engaged to store Coo
and the associated matrices. In contrast, the LETKF uses
only hundreds of megabytes. For each five-column analy-
sis, the Coo size varies from 2000× 2000 to 4500× 4500,
which is affordable. However, for a much larger size, such

as 9000×9000, OpenMP is insufficient; under these circum-
stances, the MPI-OpenMP hybrid scheme is likely a viable
solution for both the computational speed and the mem-
ory consumption, which is in progress. In addition to Coo,
the model-space multiscale localization requires large mem-
ory. Memory consumption is proportional to the number of
scales. For example, Ens_3band requires 3 times as much
memory as Ens_noFLTR to store the decomposed perturba-
tions. In general, the total computational cost of Local DA is
high, but the cost of each local analysis is affordable.

5 Summary and conclusions

This study proposed a local data assimilation scheme (Local
DA) that can utilize hybrid covariance and multiscale local-
ization. Local DA explicitly computes a local background er-
ror correlation matrix and uses the correlation matrix to con-
struct a local error sample matrix. The error sample matrix
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Figure 19. The wall clock time as a function of the number of cores
used in the parallel test.

with proper localization allows Local DA to adopt the con-
jugate gradient (CG) method to solve the cost function. The
constructed matrix also renders Local DA a flexible hybrid
analysis scheme. Local DA is evaluated in a perfect model
scenario that includes a simulated multiscale observation net-
work for a typhoon case. We examined the impacts of the hy-
brid covariance and multiscale localization on Local DA and
evaluated the performance of cycling DA. Several conclu-
sions can be drawn from the results of the DA experiments:

1. Applying the CG method independently for each col-
umn group does not result in a severe discontinuity in
the Local DA analysis.

2. Explicitly computing the background correlation matrix
projected onto observation-associated grids/columns is
computationally affordable if the observations have
been properly thinned.

3. Local DA can effectively utilize the hybrid covariance
to produce a better analysis than the analysis using en-
semble covariance with a fixed localization radius.

4. The model-space multiscale localization can reduce the
analysis error at a small scale. Combining the hybrid co-
variance with the multiscale localization yields a small
improvement, and adding double-space localization to
the combination can further reduce the analysis error.

5. Local DA requires a large amount of memory, but its
computational efficiency is acceptable.

Despite the encouraging results, whether to use double-space
localization should be considered case by case. In this study,
the background error covariance is noisy, so double-space lo-
calization has a positive impact. With a well-sampled ensem-
ble and a well-designed multiscale localization, there is no

need to use double-space localization. In the case of apply-
ing Local DA in the four-dimensional DA scenario, double-
space localization should not be used because observation-
space localization does not consider the advection of error
covariance.

As the first study to present Local DA, this paper focuses
on its idea and basic formulation. Future efforts to enhance
the algorithm will include developing an MPI-OpenMP hy-
brid parallel scheme, a static covariance scheme that objec-
tively determines the error variance and scales, and a better
multiscale localization scheme. Furthermore, the current ver-
sion of Local DA introduces a strong shock to the model,
which limits the applicability of Local DA in cycling DA.
Therefore, we plan to add a cross-variable balance procedure
to improve the cycling DA performance. Moreover, many pa-
rameters of Local DA have yet to be tested; hence, the sen-
sitivity of Local DA to each of these parameters will also be
discussed in a future investigation.

Appendix A

This section provides an example of the procedure used to
thin the observations (as mentioned in Sect. 2.1.1). The ob-
servations are thinned horizontally, whereas thinning does
not occur in the vertical direction. First, we set several rings
with different radii at the center point or column of the model
variables to be updated. For the five-column analysis, the
center coordinates of the variable-radius rings are the mean
latitude and mean longitude of the five columns. The radius
of the outer ring is the observation search radius mentioned
in Sect. 2.4 (e.g., 300 km for sounding data and 15 km for
radar data). From small to large, the radii of the rings are de-
noted rr1, rr2, . . . rrNr , where Nr is the number of rings. We
successively search the observations from the inner ring to
the outer ring. Within the smallest ring, all ambient obser-
vations are selected; this is equivalent to no thinning. For
the observations located between two rings (between rri and
rri−1), we select one observation for each quadrant of the
space between the two rings. There are four quadrants: the
upper-right, lower-right, lower-left, and upper-left quadrants
(numbered I, II, III, and IV, respectively). A schematic plot
is shown in Figure A1. If no observation is available in the
smallest ring, the second ring is treated as the first ring.

Because no thinning occurs in the smallest ring, in
a one-column analysis, we still utilize all observations
throughout the forecast domain when Local DA is conducted
at a single point. In the five-column analysis, the thinning
approach discards some observations and slightly increases
the analysis error relative to the one-column analysis. Our
early test (not shown) indicates that Local DA becomes very
time-consuming when the thinning process is disabled, as ex-
pected. Moreover, the resulting analysis error increases be-
cause the assumption of observation errors being uncorre-
lated is not valid, which is not desired.
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Figure A1. A schematic of the observation searching approach used
in Local DA, where stars represent the selected observations near
the grid point (solid dark dot) to be analyzed.
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Branković, Č., Palmer, T., Molteni, F., Tibaldi, S., and Cubasch, U.:
Extended-range predictions with ECMWF models: Time-lagged
ensemble forecasting, Q. J. Roy. Meteorol. Soc., 116, 867–912,
1990.

Brousseau, P., Berre, L., Bouttier, F., and Desroziers, G.:
Background-error covariances for a convective-scale data-
assimilation system: AROME–France 3D-Var, Q. J. Roy. Mete-
orol. Soc., 137, 409–422, 2011.

Brousseau, P., Berre, L., Bouttier, F., and Desroziers, G.: Flow-
dependent background-error covariances for a convective-scale
data assimilation system, Q. J. Roy. Meteorol. Soc., 138, 310–
322, 2012.

Buehner, M.: Evaluation of a spatial/spectral covariance localiza-
tion approach for atmospheric data assimilation, Mon. Weather
Rev., 140, 617–636, 2012.

Buehner, M. and Shlyaeva, A.: Scale-dependent background-
error covariance localisation, Tellus A, 67, 28027,
https://doi.org/10.3402/tellusa.v67.2802, 2015.

Caron, J.-F. and Buehner, M.: Scale-dependent background er-
ror covariance localization: Evaluation in a global determinis-
tic weather forecasting system, Mon. Weather Rev., 146, 1367–
1381, 2018.

Caron, J.-F., Michel, Y., Montmerle, T., and Arbogast, É.: Improv-
ing background error covariances in a 3D ensemble–variational
data assimilation system for regional NWP, Mon. Weather Rev.,
147, 135–151, 2019.

Dudhia, J.: Numerical study of convection observed during the
winter monsoon experiment using a mesoscale, two-dimensional
model, J. Atmos. Sci., 46, 3077–3107, 1989.

Etherton, B. J. and Bishop, C. H.: Resilience of hybrid ensem-
ble/3DVAR analysis schemes to model error and ensemble co-
variance error, Mon. Weather Rev., 132, 1065–1080, 2004.

Gao, J. and Stensrud, D. J.: Assimilation of reflectivity data in a
convective-scale, cycled 3DVAR framework with hydrometeor
classification, J. Atmos. Sci., 69, 1054–1065, 2012.

Hamill, T. M. and Snyder, C.: A hybrid ensemble Kalman filter–
3D variational analysis scheme, Mon. Weather Rev., 128, 2905–
2919, 2000.

Hoeflinger, J., Alavilli, P., Jackson, T., and Kuhn, B.: Producing
scalable performance with OpenMP: Experiments with two CFD
applications, Parallel Comput., 27, 391–413, 2001.

Hoffman, R. N. and Atlas, R.: Future Observing System Sim-
ulation Experiments, B. Am. Meteorol. Soc., 97, 1601–1616,
https://doi.org/10.1175/bams-d-15-00200.1, 2016.

Hong, S.-Y. and Lim, J.-O. J.: The WRF single-moment 6-class mi-
crophysics scheme (WSM6), Asia-Pac. J. Atmos. Sci., 42, 129–
151, 2006.

https://doi.org/10.5194/gmd-15-8869-2022 Geosci. Model Dev., 15, 8869–8897, 2022

https://doi.org/10.5281/zenodo.6609906
https://www.ncdc.noaa.gov/data-access/model-data/model-datasets/global-forcast-system-gfs
https://www.ncdc.noaa.gov/data-access/model-data/model-datasets/global-forcast-system-gfs
https://doi.org/10.21957/tx1epjd2p
https://doi.org/10.3402/tellusa.v67.2802
https://doi.org/10.1175/bams-d-15-00200.1


8896 S. Wang and X. Qiao: Local DA v1.0

Hong, S.-Y., Noh, Y., and Dudhia, J.: A new vertical diffusion pack-
age with an explicit treatment of entrainment processes, Mon.
Weather Rev., 134, 2318–2341, 2006.

Houtekamer, P. L. and Mitchell, H. L.: Data assimilation using an
ensemble Kalman filter technique, Mon. Weather Rev., 126, 796–
811, 1998.

Huang, B., Wang, X., and Bishop, C. H.: The High-Rank Ensemble
Transform Kalman Filter, Mon. Weather Rev., 147, 3025–3043,
https://doi.org/10.1175/mwr-d-18-0210.1, 2019.

Huang, B., Wang, X., Kleist, D. T., and Lei, T.: A simultaneous
multiscale data assimilation using scale-dependent localization
in GSI-based hybrid 4DEnVar for NCEP FV3-based GFS, Mon.
Weather Rev., 149, 479–501, 2021.

Hunt, B. R., Kostelich, E. J., and Szunyogh, I.: Efficient
data assimilation for spatiotemporal chaos: A local en-
semble transform Kalman filter, Physica D, 230, 112–126,
https://doi.org/10.1016/j.physd.2006.11.008, 2007.

Johnson, A., Wang, X., Carley, J. R., Wicker, L. J., and Karstens,
C.: A comparison of multiscale GSI-based EnKF and 3DVar data
assimilation using radar and conventional observations for mid-
latitude convective-scale precipitation forecasts, Mon. Weather
Rev., 143, 3087–3108, 2015.

Kain, J. S.: The Kain–Fritsch convective parameterization: an up-
date, J. Appl. Meteorol., 43, 170–181, 2004.

Kalnay, E. and Yang, S. C.: Accelerating the spin-up of Ensemble
Kalman Filtering, Q. J. Roy. Meteorol. Soc., submitted, 2008.

Kleist, D. T. and Ide, K.: An OSSE-based evaluation of hybrid
variational–ensemble data assimilation for the NCEP GFS. Part
I: System description and 3D-hybrid results, Mon. Weather Rev.,
143, 433–451, 2015.

Lei, L., Wang, Z., and Tan, Z.-M.: Integrated Hybrid Data Assimi-
lation for an Ensemble Kalman Filter, Mon. Weather Rev., 149,
4091–4105, 2021.

Li, Y., Wang, X., and Xue, M.: Assimilation of radar radial velocity
data with the WRF hybrid ensemble–3DVAR system for the pre-
diction of Hurricane Ike (2008), Mon. Weather Rev., 140, 3507–
3524, 2012.

Liu, C., Xiao, Q., and Wang, B.: An ensemble-based four-
dimensional variational data assimilation scheme. Part I: Tech-
nical formulation and preliminary test, Mon. Weather Rev., 136,
3363–3373, 2008.

Lorenc, A.: The potential of the ensemble Kalman filter for NWP –
a comparison with 4D-Var, Q. J. Roy. Meteor. Soc., 129, 3183–
3204, 2003.

Maddox, R. A.: An Objective Technique for Separating Macroscale
and Mesoscale Features in Meteorological Data, Mon.
Weather Rev., 108, 1108–1121, https://doi.org/10.1175/1520-
0493(1980)108<1108:aotfsm>2.0.co;2, 1980.

Ménétrier, B. and Auligné, T.: An Overlooked Issue of Varia-
tional Data Assimilation, Mon. Weather Rev., 143, 3925–3930,
https://doi.org/10.1175/mwr-d-14-00404.1, 2015.

Meng, Z. Y. and Zhang, F. Q.: Tests of an ensemble Kalman filter
for mesoscale and regional-scale data assimilation. Part II: Im-
perfect model experiments, Mon. Wea. Rev., 135, 1403–1423,
https://doi.org/10.1175/Mwr3352.1, 2007.

Mlawer, E. J., Taubman, S. J., Brown, P. D., Iacono, M. J., and
Clough, S. A.: Radiative transfer for inhomogeneous atmo-
spheres: RRTM, a validated correlated-k model for the longwave,
J. Geophys. Res.-Atmos., 102, 16663–16682, 1997.

NCEP (National Centers for Environmental Prediction): GFS Fore-
cast (GFS Model), NCEI (National Centers for Environmental
Information) [data set], https://www.ncdc.noaa.gov/data-access/
model-data/model-datasets/global-forcast-system-gfs, last ac-
cess: 7 December 2022.

Penny, S. G.: The hybrid local ensemble transform Kalman filter,
Mon. Weather Rev., 142, 2139–2149, 2014.

Shewchuk, J. R.: An introduction to the conjugate gradient method
without the agonizing, Edition 1 1/4, School of Computer
Science, Carnegie Mellon University, https://www.cs.cmu.edu/
~quake-papers/painless-conjugate-gradient.pdf (last access: 7
Decemeber 2022), 1994.

Skamarock, W. C., Klemp, J. B., Dudhia, J., Gill, D. O., Barker, D.
M., Duda, M. G., Huang, X.-Y., Wang, W., and Powers, J. G.: A
description of the advanced research WRF version 3, National
Center For Atmospheric Research, Boulder, CO, NCAR/TN-
475+STR, 91, 2018.

Storto, A. and Andriopoulos, P.: A new stochastic ocean physics
package and its application to hybrid-covariance data assimila-
tion, Q. J. Roy. Meteorol. Soc., 147, 1691–1725, 2021.

Tang, Y., Ambandan, J., and Chen, D.: Nonlinear measurement
function in the ensemble Kalman filter, Adv. Atmos. Sci., 31,
551–558, 2014.

Tong, C. C., Jung, Y., Xue, M., and Liu, C.: Direct As-
similation of Radar Data With Ensemble Kalman Filter
and Hybrid Ensemble-Variational Method in the National
Weather Service Operational Data Assimilation System GSI
for the Stand-Alone Regional FV3 Model at a Convection-
Allowing Resolution, Geophys. Res. Lett., 47, e2020GL090179,
https://doi.org/10.1029/2020GL090179, 2020.

Wang, S.: children1985/Local_DA_lib: Local
DA v1.00 for GMD (v1.00), Zenodo [code],
https://doi.org/10.5281/zenodo.6609906, 2022.

Wang, S., Xue, M., and Min, J.: A four-dimensional asynchronous
ensemble square-root filter (4DEnSRF) algorithm and tests with
simulated radar data, Q. J. Roy. Meteor. Soc., 139, 805–819,
https://doi.org/10.1002/qj.1987, 2012.

Wang, S., Xue, M., Schenkman, A. D., and Min, J.: An iterative
ensemble square root filter and tests with simulated radar data
for storm-scale data assimilation, Q. J. Roy. Meteorol. Soc., 139,
1888–1903, 2013a.

Wang, X., Hamill, T. M., Whitaker, J. S., and Bishop, C. H.: On
the theoretical equivalence of differently proposed ensemble –
3DVAR hybrid analysis scheme, Mon. Wea. Rev., 135, 1055–
1076, 2007.

Wang, X., Barker, D. M., Snyder, C., and Hamill, T. M.: A hybrid
ETKF–3DVAR data assimilation scheme for the WRF model.
Part I: Observing system simulation experiment, Mon. Weather
Rev., 136, 5116–5131, 2008.

Wang, X., Hamill, T. M., Whitaker, J. S., and Bishop, C. H.: A com-
parison of the hybrid and EnSRF analysis schemes in the pres-
ence of model errors due to unresolved scales, Mon. Weather
Rev., 137, 3219–3232, 2009.

Wang, X., Parrish, D., Kleist, D., and Whitaker, J.: GSI 3DVar-
based ensemble–variational hybrid data assimilation for NCEP
Global Forecast System: Single-resolution experiments, Mon.
Weather Rev., 141, 4098–4117, 2013b.

Wang, X., Chipilski, H. G., Bishop, C. H., Satterfield, E., Baker,
N., and Whitaker, J. S.: A multiscale local gain form ensemble

Geosci. Model Dev., 15, 8869–8897, 2022 https://doi.org/10.5194/gmd-15-8869-2022

https://doi.org/10.1175/mwr-d-18-0210.1
https://doi.org/10.1016/j.physd.2006.11.008
https://doi.org/10.1175/1520-0493(1980)108<1108:aotfsm>2.0.co;2
https://doi.org/10.1175/1520-0493(1980)108<1108:aotfsm>2.0.co;2
https://doi.org/10.1175/mwr-d-14-00404.1
https://doi.org/10.1175/Mwr3352.1
https://www.ncdc.noaa.gov/data-access/model-data/model-datasets/global-forcast-system-gfs
https://www.ncdc.noaa.gov/data-access/model-data/model-datasets/global-forcast-system-gfs
https://www.cs.cmu.edu/~quake-papers/painless-conjugate-gradient.pdf
https://www.cs.cmu.edu/~quake-papers/painless-conjugate-gradient.pdf
https://doi.org/10.1029/2020GL090179
https://doi.org/10.5281/zenodo.6609906
https://doi.org/10.1002/qj.1987


S. Wang and X. Qiao: Local DA v1.0 8897

transform Kalman filter (MLGETKF), Mon. Weather Rev., 149,
605–622, 2021.

Wang, Y. and Wang, X.: Direct Assimilation of Radar Reflec-
tivity without Tangent Linear and Adjoint of the Nonlin-
ear Observation Operator in the GSI-Based EnVar System:
Methodology and Experiment with the 8 May 2003 Oklahoma
City Tornadic Supercell, Mon. Weather Rev., 145, 1447–1471,
https://doi.org/10.1175/mwr-d-16-0231.1, 2017.

Whitaker, J. S. and Hamill, T. M.: Ensemble data assimilation with-
out perturbed observations, Mon. Weather Rev., 130, 1913–1924,
2002.

Xiao, Q. and Sun, J.: Multiple-radar data assimilation and short-
range quantitative precipitation forecasting of a squall line ob-
served during IHOP_2002, Mon. Weather Rev., 135, 3381–3404,
2007.

Xue, M., Tong, M. J., and Droegemeier, K. K.: An OSSE framework
based on the ensemble square root Kalman filter for evaluating
the impact of data from radar networks on thunderstorm analysis
and forecasting, J. Atmos. Oceanic Technol., 23, 46–66, 2006.

Yang, C., Min, J., and Tang, Y.: Evaluation of two modified Kalman
gain algorithms for radar data assimilation in the WRF model,
Tellus A, 67, 25950, https://doi.org/10.3402/tellusa.v67.25950,
2015.

Yang, S. C., Kalnay, E., Hunt, B., and E. Bowler, N.: Weight inter-
polation for efficient data assimilation with the local ensemble
transform Kalman filter, Q. J. Roy. Meteor. Soc., 135, 251–262,
2009.

Zeng, Y., de Lozar, A., Janjic, T., and Seifert, A.: Apply-
ing a new integrated mass-flux adjustment filter in rapid
update cycling of convective-scale data assimilation for the
COSMO model (v5.07), Geosci. Model Dev., 14, 1295–1307,
https://doi.org/10.5194/gmd-14-1295-2021, 2021.

Zhang, F., Weng, Y., Sippel, J. A., Meng, Z., and Bishop, C. H.:
Cloud-resolving hurricane initialization and prediction through
assimilation of Doppler radar observations with an ensemble
Kalman filter, Mon. Weather Rev., 137, 2105–2125, 2009.

https://doi.org/10.5194/gmd-15-8869-2022 Geosci. Model Dev., 15, 8869–8897, 2022

https://doi.org/10.1175/mwr-d-16-0231.1
https://doi.org/10.3402/tellusa.v67.25950
https://doi.org/10.5194/gmd-14-1295-2021

	Abstract
	Introduction
	Method
	The Local DA scheme
	The local background error correlation matrix
	The solution of Local DA
	The observation operator

	Multiscale localization
	Hybrid covariance
	The workflow of Local DA

	Experimental design
	The simulated typhoon
	Multiscale observation network
	DA experiments
	Ensemble perturbations
	The DA configurations


	Results and discussion
	The convergence of minimization
	The single deterministic analysis
	Hybrid analysis
	Multiscale analysis
	Double-space localization
	The similarity between Local DA with observation space localization and the LETKF
	Error and ensemble spread

	The cycling DA
	The tendency of ps
	The performance of cycling DA
	The evolution of the relationship between ensemble spread and RMSE

	The computational cost and efficiency

	Summary and conclusions
	Appendix A
	Code and data availability
	Author contributions
	Competing interests
	Disclaimer
	Acknowledgements
	Financial support
	Review statement
	References

