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Abstract. The Pathfinder model was developed to fill a per-
ceived gap within the range of existing simple climate mod-
els. Pathfinder is a compilation of existing formulations de-
scribing the climate and carbon cycle systems, chosen for
their balance between mathematical simplicity and physical
accuracy. The resulting model is simple enough to be used
with Bayesian inference algorithms for calibration, which
enables assimilation of the latest data from complex Earth
system models and the IPCC sixth assessment report, as well
as a yearly update based on observations of global tempera-
ture and atmospheric CO2. The model’s simplicity also en-
ables coupling with integrated assessment models and their
optimization algorithms or running the model in a back-
ward temperature-driven fashion. In spite of this simplic-
ity, the model accurately reproduces behaviours and results
from complex models – including several uncertainty ranges
– when run following standardized diagnostic experiments.
Pathfinder is an open-source model, and this is its first com-
prehensive description.

1 Introduction

Simple climate models (SCMs) typically simulate global
mean temperature change caused by either atmospheric con-
centration changes or anthropogenic emissions of CO2 and
other climatically active species. They are most often com-
posed of ad hoc parametric laws that emulate the behaviour
of more complex Earth system models (ESMs). The emu-
lation allows for simulating large ensembles of experiments
that would be too costly to compute with ESMs. However,

the SCM denomination refers to a fairly broad range of mod-
els whose complexity can go from a couple of boxes that only
emulate one part of the climate system (e.g. a global tem-
perature impulse response function; Geoffroy et al., 2013b)
to hundreds of state variables representing the different cy-
cles of greenhouse gases and their effect on climate change
(e.g. the compact Earth system model OSCAR; Gasser et al.,
2017). Simpler models are easier and faster to solve, but they
may not be adequate for all usages. Therefore, finding the
“simplest but not simpler” model depends on a study’s pre-
cise goals.

In our recent research, we have perceived a deficiency
within the existing offer of SCMs, in spite of their large
and growing number (Nicholls et al., 2020). We have there-
fore developed the Pathfinder model to fill this gap: it is a
parsimonious CO2-only model that carefully balances sim-
plicity and accuracy of representation of physical processes.
Pathfinder was designed to fulfil three key requirements:
(1) the capacity to be calibrated using Bayesian inference,
(2) the capacity to be coupled with integrated assessment
models (IAMs), and (3) the capacity to explore a very large
number of climate scenarios to narrow down those compat-
ible with limiting climate impacts. The latter motivated the
model’s name.

While these three requirements clearly call for the sim-
plest model possible, as they all need a fast solving model,
they also imply a certain degree of complexity. The Bayesian
calibration requires an explicit representation of the pro-
cesses (i.e. the variables) that are used to constrain the model.
Coupling with IAMs requires accurately embedding the lat-
est advances of climate sciences to be policy relevant (Na-
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tional Academies of Sciences and Medicine, 2017). Explor-
ing future climate impacts requires the flexibility to link addi-
tional (and potentially regional) impact variables to the core
carbon–climate equations.

The Pathfinder model is essentially an integration of ex-
isting formulations, adapted to our modelling framework
and goals. It is calibrated on Earth system models that con-
tributed to the Coupled Model Intercomparison Project phase
6 (CMIP6), on additional data from the sixth assessment re-
port of the IPCC (AR6), and on observations of global Earth
properties up to the year 2021. The calibration philosophy
of Pathfinder is to use complex models as prior information
and only real-world observations and assessments combining
many lines of evidence as constraints.

Compared to other SCMs (Nicholls et al., 2020),
Pathfinder is much simpler than models like MAGICC
(Meinshausen et al., 2011), OSCAR (Gasser et al., 2017),
or even HECTOR (Hartin et al., 2015). It is comparable in
complexity to FaIR (Smith et al., 2018) or BernSCM (Strass-
mann and Joos, 2018), although it is closer to the latter as
it trades off an explicit representation of non-CO2 species
for one of the carbon cycle’s main components. This choice
was made to help calibration, keep the model invertible, and
make the model compatible with IAMs such as DICE (Nord-
haus, 2017). While most SCMs are calibrated using pro-
cedures that resemble Bayesian inference (Nicholls et al.,
2021), Pathfinder relies on an established algorithm whose
implementation is fully tractable and that allows for an an-
nual update as observations of atmospheric CO2 and global
temperature become available.

Here, we present the first public release of Pathfinder and
its source code. We first provide a detailed description of the
model’s equations. We then describe the Bayesian setup used
for calibration, the sources of prior information for it, and the
resulting posterior configuration. We end with a validation of
the model using standard diagnostic simulations and quanti-
tative metrics for the climate system and carbon cycle.

2 Equations

An overview of Pathfinder is presented in Fig. 1. The model
is composed of a climate module, of three separate modules
for the carbon cycle (ocean, land without land use and land
permafrost), and of two additional modules describing global
impacts: sea level rise (SLR) and surface ocean acidification.
We do not emulate cycles of other non-CO2 gases. Mathe-
matically, the model is driven by prescribing time series of
any combination of two of four variables: global mean sur-
face temperature (GMST) anomaly (T ), global atmospheric
CO2 concentration (C), global non-CO2 effective radiative
forcing (Rx), and global anthropogenic emissions of CO2
(ECO2 ). The model can therefore be run in the traditional
emission-driven and concentration-driven modes but also in
a temperature-driven mode (in terms of code, implemented

as separate versions of the model). This is notably important
for the calibration, during which it is driven by observations
of GMST and atmospheric CO2.

The following presents all equations of the models. Vari-
ables are noted using Roman letters and compiled in Ta-
bles B1 and B2. With a few exceptions, parameters are noted
using Greek letters and are summarized in Tables B3 and B4.
The model has 21 state variables that follow first-order dif-
ferential equations in time. The time variable is denoted as t
and kept implicit unless required.

2.1 Climate

The GMST change (T ) induced by effective radiative forcing
(ERF; R) is represented using a widely used two-box energy
balance model with deep-ocean heat uptake efficacy (Geof-
froy et al., 2013a; Armour, 2017). The first box represents the
Earth surface’s temperature (including atmosphere, land, and
surface ocean), and the other one is the deep ocean’s temper-
ature (Td). Their time-differential equations are

2s
dT
dt
= R−

φ ln(2)
T2×

T − εheat θ (T − Td), (1)

and

2d
dTd

dt
= θ (T − Td), (2)

where φ is the radiative parameter of CO2, T2× is the equi-
librium climate sensitivity (ECS) at CO2 doubling, 2s is the
heat capacity of the surface, 2d is the heat capacity of the
deep ocean, θ is the heat exchange coefficient, and εheat is
the deep-ocean heat uptake efficacy.

The global ERF is simply the sum of the CO2 contribution
(RCO2 ) from its change in atmospheric concentration (C), ex-
pressed using the IPCC AR5 formula (Myhre et al., 2013),
and that of non-CO2 climate forcers (Rx):

R = RCO2 +Rx, (3)

with

RCO2 = φ ln
(
C

Cpi

)
, (4)

where Cpi is the preindustrial atmospheric CO2 concentra-
tion.

The above energy balance model naturally provides the
ocean heat content (OHC; Uohc) as

Uohc = αohc (2s T +2d Td), (5)

and the ocean heat uptake (OHU) as

dUohc

dt
= αohc

(
2s

dT
dt
+2d

dTd

dt

)
, (6)

where αohc is the fraction of energy used to warm the ocean
(i.e. excluding the energy needed to heat up the atmosphere
and land and to melt ice).
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Figure 1. Pathfinder in a nutshell. Green blocks represent the carbon cycle, and red blocks represent the climate response. Blue blocks with
dotted arrows are impacts that can be derived with the model. Grey blocks are variables that are directly related to anthropogenic activity.
Possible inputs of the model are distinguishable through the bold contours of the blocks. In this scheme, arrows correspond to a forward
mode where inputs would be ECO2 and Rx .

2.2 Sea level rise

Global SLR has been implemented in Pathfinder as a variable
of interest to model climate change impacts. In this version, it
is firstly a proof of concept, modelled in a simple yet sensible
manner. The total sea level rise (Htot) is the sum of contribu-
tions from thermal expansion (Hthx), the Greenland ice sheet
(GIS; Hgis), the Antarctic ice sheet (AIS; Hais), and glaciers
(Hgla):

Htot =Hthx+Hgis+Hais+Hgla. (7)

The thermal expansion contribution scales linearly with
the OHC (Goodwin et al., 2017; Fox-Kemper et al., 2021):

Hthx =3thx Uohc, (8)

where 3thx is the scaling factor of the thermosteric contribu-
tion to SLR. Note, however, that the thermal capacity of the
climate module does not match that of the real-world ocean
(Geoffroy et al., 2013b), and so this equation cannot describe
equilibrium SLR over millennial timescales.

To model contributions from ice sheets and glaciers, we
followed the general approach of Mengel et al. (2016). The
SLR caused by GIS follows a first-order differential equa-
tion with its specific timescale, and the equilibrium SLR from
GIS is assumed to be a cubic function of GMST:

dHgis

dt
= λgis+

1
τgis

(
3gis1 T +3gis3 T

3
−Hgis

)
, (9)

where λgis is an offset parameter introduced because GIS was
not in a steady state at the end of the preindustrial era, 3gis1
is the linear term of equilibrium of GIS SLR, 3gis3 is the cu-
bic term of equilibrium of GIS SLR, and τgis is the timescale
of the GIS contribution. The motivation for replacing the
quadratic term of Mengel et al. (2016) with a cubic one is
the oddness of the cubic function that leads to negative (and
not positive) SLR for negative T (which happens during the
earlier years of the calibration run).

The contribution from glaciers is also a first-order differ-
ential equation with an equilibrium inspired by Mengel et al.
(2016). We expanded it with a cubic term to account for the
fact that we aggregate all glaciers together and allow more
skewness in the curve describing the equilibrium SLR as a
function of T . In addition, we added an exponential sensi-
tivity to speed up the convergence to equilibrium under a
warmer climate:

dHgla

dt
= λgla+

exp
(
γgla T

)
τgla(

3gla

(
1− exp

(
−0gla1 T −0gla3 T

3
))
−Hgla

)
, (10)

where λgla is an offset parameter accounting for the lack of
initial steady state, 3gla is the SLR potential if all glaciers
melted, 0gla1 is the linear sensitivity of glaciers’ equilibrium
to climate change, 0gla3 is the cubic sensitivity of glaciers’
equilibrium to climate change, τgla is the timescale of the
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glaciers contribution, and γgla is the sensitivity of glaciers’
timescale to climate change.

Following Mengel et al. (2016), the contribution from
AIS is further divided into two terms, one for surface mass
balance (SMB; Hais,smb) and one for solid ice discharge
(SID;Hais,sid), so thatHais =Hais,smb+Hais,sid. It is expected
that precipitation will increase over Antarctica under higher
GMST, leading to an increase in SMB and to a negative sea
level rise contribution modelled as

dHais,smb

dt
=−3ais,smb T , (11)

where 3ais,smb is the AIS SMB sensitivity to climate change
(expressed in sea level equivalent). At the same time, increas-
ing surface ocean temperatures will cause more SID through
basal melting, which we model using a first-order differential
equation assumed to be independent of the SMB effect, and
with a term that speeds up the effect the more SID happened:

dHais,sid

dt
= λais+

1+αais Hais,sid

τais

(
3ais T −Hais,sid

)
, (12)

where λais is an offset parameter accounting for the lack of
initial steady state, 3ais is the SLR equilibrium of AIS SID,
τais is the timescale of the AIS SID contribution, and αais is
the sensitivity of the timescale to past SID. In the model’s
code, however, we directly solve for the total AIS contribu-
tion as

dHais

dt
=−3ais,smb T + λais+

1+αais (Hais−Hais,smb)

τais(
3ais T − (Hais−Hais,smb)

)
. (13)

2.3 Ocean carbon

To calculate the ocean carbon sink, we use the classic mixed-
layer impulse response function model from Joos et al.
(1996), updated to the equivalent box model formulation of
Strassmann and Joos (2018) and extended in places to intro-
duce parameter adjustments for calibration. In the model, the
mixed layer is split into five boxes (subscript j ), as repre-
sented in Fig. 2, so that the total carbon in the mixed-layer
pool (Co) is

Co =
∑
j

Co,j . (14)

This total carbon mass is converted into a molar concentra-
tion of dissolved inorganic carbon (DIC; cdic) as follows:

cdic =
αdic

βdic
Co, (15)

where αdic is a fixed conversion factor and βdic is a scaling
factor for the conversion. The latter can be seen as a fac-
tor multiplying the mixed-layer depth: it is 1 if the depth
is unchanged from the original Strassmann and Joos (2018)
model.

The non-linear carbonate chemistry in the mixed layer is
emulated in two steps. First, the model’s original polynomial
function is used to determine the partial pressure of CO2 af-
fected by changes in DIC only (pdic):

pdic =(1.5568− 0.013993 To) cdic

+(7.4706− 0.20207 To) 10−3 cdic
2

−(1.2748− 0.12015 To) 10−5 cdic
3

+(2.4491− 0.12639 To) 10−7 cdic
4

−(1.5768− 0.15326 To) 10−10 cdic
5, (16)

where To is the preindustrial surface ocean temperature. Sec-
ond, the actual partial pressure of CO2 (pCO2 ) is calculated
using an exponential climate sensitivity (Takahashi et al.,
1993; Joos et al., 2001):

pCO2 = (pdic+Cpi) exp(γdic T ), (17)

where γdic is the sensitivity of pCO2 to climate change.
The flux of carbon between the atmosphere and the ocean

(Focean, defined positively if it is a carbon sink) is caused by
the difference in partial pressure of CO2 in the atmosphere
and at the oceanic surface, following an exchange rate that
varies linearly with GMST, that is here used as a proxy for
wind changes:

Focean = νgx (1+ γgx T ) (C−pCO2), (18)

where νgx is the preindustrial gas exchange rate and γgx is its
sensitivity to climate change.

This flux of carbon entering the ocean is split between the
mixed-layer carbon sub-pools, and this added carbon is sub-
sequently transported towards the deep ocean at a rate spe-
cific to each sub-pool. This leads to the following differential
equations:

dCo,j

dt
=−

Co,j

κτo τo,j
+αo,j Focean, ∀j, (19)

where αo,j are the sub-pools’ splitting shares (with∑
jαo,j = 1), τo,j are the sub-pools’ timescales for transport

to the deep ocean, and κτo is a scaling factor applied to all
sub-pools. Finally, the deep-ocean carbon pool (Cd) is ob-
tained through mass balance:

dCd

dt
=

∑
j

Co,j

κτo τo,j
. (20)

2.4 Ocean acidification

While in the real world, ocean acidification is directly related
to the carbonate chemistry and the ocean uptake of anthro-
pogenic carbon, we do not have a simple formulation at our
disposal that could link it to our ocean carbon cycle mod-
ule. We therefore use a readily available emulation of the
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Figure 2. The ocean sink model in Pathfinder follows the structure of the mixed-layer pulse response function introduced by Joos et al.
(1996). The mixed layer is represented through five sub-pools that each have a different timescale for transport to the deep-ocean carbon
pool.

surface ocean acidification (pH) that links it directly to the
atmospheric concentration of CO2 (Bernie et al., 2010) with
the following polynomial approximation:

pH= κpH

(
8.5541− 0.00173 C+ 1.3264 10−6 C2

−4.4943 10−10 C3
)
, (21)

where κpH is a scaling factor (that defaults to 1). We note
that this approach is reasonable for the surface ocean, as it
quickly equilibrates with the atmosphere (but it would not
work for the deep ocean).

2.5 Land carbon

The land carbon module of Pathfinder is a simplified ver-
sion of the one in OSCAR (Gasser et al., 2017, 2020). It is
shrunk down to four global carbon pools: vegetation, litter,
and active and passive soil (see Fig. 3). All terrestrial biomes
are lumped together, and there is therefore no accounting for
the impact of land use change on the land carbon cycle in
this version of Pathfinder. This is an extreme assumption –
although very common in SCMs – motivated by simplicity,
and it implies that CO2 emissions from fossil fuel burning
and land use change are assumed to behave in the exact same
way, in spite of their not doing so in reality (Gitz and Ciais,
2003; Gasser and Ciais, 2013).

The vegetation carbon pool (Cv) results from the bal-
ance between net primary productivity (NPP; Fnpp), emis-
sion from wildfires (Efire), emission from harvest and grazing
(Eharv), and loss of carbon from biomass mortality (Fmort):

dCv

dt
= Fnpp−Efire−Eharv−Fmort. (22)

NPP is expressed as its own preindustrial value multiplied
by a function of CO2 and of GMST (rnpp). This function thus
embeds the so-called CO2 fertilization effect, whereby NPP
increases with atmospheric CO2, described using a general-
ized logarithmic functional form:

Fnpp = Fnpp0 rnpp, (23)

with

rnpp =

(
1+

βnpp

αnpp

(
1−

(
C

Cpi

)−αnpp
))

(1+ γnpp T ), (24)

where Fnpp0 is the preindustrial NPP, βnpp is the CO2 fer-
tilization sensitivity, αnpp is the CO2 fertilization shape pa-
rameter for saturation, and γnpp is the sensitivity of NPP
to climate change (that can be positive or negative). The
generalized logarithmic functional form implies that rnpp→

(1+βnpp ln(C/Cpi))(1+ γnppT ) as αnpp→ 0+.
Harvesting and mortality fluxes are taken proportional

to the carbon pool itself even though in reality the mor-
tality fluxes are climate dependent. For simplicity we as-
sume a constant mortality following the equations in OSCAR
(Gasser et al., 2017):

Eharv = νharv Cv, (25)

and

Fmort = νmort Cv, (26)

where νharv is the harvesting or grazing rate and νmort is the
mortality rate.
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Figure 3. The land sink model in Pathfinder is derived from OSCAR (Gasser et al., 2017) and represents the biosphere as a set of four carbon
pools: vegetation, litter, and active and passive soil. These pools exchange carbon through fluxes whose direction is given by the arrows.

Wildfires emissions are also assumed to be proportional to
the vegetation carbon pool, but with an additional linear de-
pendency of the emission rate on CO2 (as a proxy of changes
in leaf area index and evapotranspiration) and GMST (rfire):

Efire = νfire rfire Cv, (27)

with

rfire =

(
1+βfire

(
C

Cpi
− 1

))
(1+ γfire T ), (28)

where νfire is the wildfire rate, βfire is the sensitivity of wild-
fires to CO2, and γfire is their sensitivity to climate change.

Soil carbon is divided into three pools. The litter carbon
pool (Cs1) receives the mortality flux as sole input, it emits
part of its carbon through heterotrophic respiration (Erh1),
and it transfers another part to the next pool through stabi-
lization (Fstab):

dCs1

dt
= Fmort−Fstab−Erh1. (29)

Similarly, the active soil carbon pool (Cs2) receives the sta-
bilization flux, is respired (Erh2), and transfers carbon to the
last pool through passivization (Fpass):

dCs2

dt
= Fstab−Fpass−Erh2. (30)

The passive carbon pool (Cs3) receives this final input flux
and is respired (Erh3):

dCs3

dt
= Fpass−Erh3. (31)

Although information pertaining to this fourth pool is
not commonly provided by ESMs, it was introduced in
Pathfinder to adjust the complex models’ turnover time of
soil carbon to better match isotopic data (He et al., 2016).
For completeness, we note that the total heterotrophic respi-
ration is Erh = Erh1+Erh2+Erh3, and the total soil carbon
pool is Cs = Cs1+Cs2+Cs3.

All soil-originating fluxes are taken proportional to their
pool of origin and multiplied by a function (rrh) explained
hereafter. For the litter pool, this gives

Erh1 = νrh1 rrh Cs1, (32)

and

Fstab = νstab rrh Cs1, (33)

where νrh1 is the litter respiration rate and νstab is the stabi-
lization rate. For the active soil pool, we have

Erh2 =
νrh23− νrh3 αpass

1−αpass
rrh Cs2, (34)

and

Fpass = νrh3
αpass

1−αpass
rrh Cs2, (35)

and for the passive soil pool:

Erh3 = νrh3 rrh Cs3, (36)

where νrh23 is the soil respiration rate (averaged over active
and passive pools), νrh3 is the passive soil respiration rate,
and αpass is the fraction of passive carbon (over active plus
passive soil carbon). This slightly convoluted formulation is
motivated by the lack of information regarding the active/-
passive split in ESMs, which we alleviate using additional
data during calibration.

In addition, the function rrh, describing the dependency
of respiration (and related fluxes) on temperature and on the
availability of fresh organic matter to be decomposed, is de-
fined as follows:

rrh =(
1+βrh

(
Cs1

Cs1+Cs2+Cs3

(
1+

νstab

νrh23

)
− 1

))
︸ ︷︷ ︸(

1+βrh

(
Cs1

Cs

Cs(t0)

Cs1(t0)
− 1

))
exp(γrh T ), (37)

where βrh is the sensitivity of the respiration to fresh organic
matter availability (expressed here as the relative change in
the Cs1/Cs ratio with regard to preindustrial times), and γrh
is its sensitivity to climate change (equivalent to a “Q10” for-
mulation with Q10 = exp(10 γrh)).

Finally, the net carbon flux from the atmosphere to the land
(Fland, defined positively if it is a carbon sink) is obtained as
the net budget of all pools combined:

Fland = Fnpp−Efire−Eharv−Erh, (38)
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and this system of equations leads to the following preindus-
trial steady state:
Cv(t0)=

Fnpp0
νfire+νharv+νmort

Cs1(t0)= Cv(t0)
νmort

νrh1+νstab

Cs2(t0)= Cs1(t0)
νstab
νrh23

(1−αpass)

Cs3(t0)= Cs1(t0)
νstab
νrh23

αpass.

(39)

2.6 Permafrost carbon

As the land carbon cycle described in the previous section
does not account for permafrost carbon, we implemented
this feedback using the emulator developed by Gasser et al.
(2018) but aggregated into a unique global region. Figure 4
gives a representation of the permafrost module as described
in the following. The emulation starts with a theoretical
thawed fraction (ā) that represents the fraction of thawed car-
bon under steady-state for a certain level of local warming. It
is formulated with a sigmoid function (that equals 0 at prein-
dustrial and 1 under very high GMST):

ā =

− amin+
(1+ amin)(

1+
((

1+ 1
amin

)κa
− 1

)
exp(−γa κa αlst T )

) 1
κa

,

(40)

where−amin is the minimum thawed fraction (corresponding
to 100 % frozen soil carbon), κa is a shape parameter deter-
mining the asymmetry of the function, γa is the sensitivity of
the theoretical thawed fraction to local climate change, and
αlst is the proportionality factor between local and global cli-
mate change.

The actual thawed fraction (a) then moves towards its the-
oretical value at a speed that depends on whether it is thaw-
ing (i.e. a < ā) or freezing (i.e. a > ā). This is written as a
non-linear differential equation:

da
dt
= 0.5 (νthaw+ νfroz) (ā− a)

+ 0.5 |(νthaw− νfroz) (ā− a)|, (41)

where νthaw is the rate of thawing and νfroz is the rate of freez-
ing. Because νthaw > νfroz, the absolute value in the equation
leads to the right-hand side being νthaw(ā− a) if a < ā, or
νfroz(ā−a) if a > ā. The change in the pool of frozen carbon
(Cfr) naturally follows:

dCfr

dt
=−

da
dt
Cfr0, (42)

where Cfr0 is the amount of frozen carbon at preindustrial
times.

Thawed carbon is not directly emitted to the atmosphere: it
is split into three thawed carbon sub-pools (Cth,j ) that have

Figure 4. The permafrost carbon model in Pathfinder is taken from
Gasser et al. (2018). The frozen pool dynamic lags behind a theoret-
ical value that is determined by the temperature anomaly. Thawed
carbon is then split between three pools that are emitted to the at-
mosphere at different rates.

their own decay time but are all affected by an additional
function (rrt). This leads to the following budget equations:

dCth,j

dt
=−αth,j

dCfr

dt
−

Cth,j

κτth τth,j
rrt, ∀j, (43)

where αth,j is the sub-pools’ splitting shares (with∑
jαth,j = 1), τth,j is the sub-pools’ decay times, and κτth

is a scaling factor applied to all sub-pools. The additional
rrt function describes the sensitivity of heterotrophic respi-
ration to climate change in boreal regions using a Gaussian
formula:

rrt = exp
(
κrt γrt1 αlst T − κrt γrt2 (αlst T )

2
)
, (44)

where κrt is a factor scaling the sensitivity of thawed carbon
against that of regular soil carbon, γrt1 is the sensitivity to lo-
cal temperature change (i.e. a Q10), and γrt2 is the quadratic
term in the latter sensitivity that represents a saturation effect.
Noting that all the emitted carbon is assumed to be CO2, the
global emission from permafrost (Epf) is thus

Epf =
∑
j

Cth,j

κτth τth,j
rrt. (45)
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2.7 Atmospheric CO2

The change in atmospheric concentration of CO2 is the bud-
get of all carbon cycle fluxes to which we add the exogenous
anthropogenic emissions (ECO2 ):

αC
dC
dt
= ECO2 +Epf−Fland−Focean, (46)

where αC is the conversion factor from volume fraction to
mass for CO2.

3 Bayesian calibration

3.1 Principle

Bayesian inference is a powerful tool for assimilating ob-
servational data into reduced-complexity models such as
Pathfinder (Ricciuto et al., 2008). The approach consists in
deducing probability distributions of parameters from a pri-
ori knowledge on those distributions and on distributions of
observations of some of the model’s variables, using Bayes’
theorem (Bayes, 1763). Summarily, the Bayesian calibra-
tion updates the joint distribution of parameters to make it
as compatible with the constraints as possible given their
prior estimates, which increases the internal coherence of
Pathfinder by excluding combination of parameters that are
unlikely.

Such a Bayesian calibration is vulnerable to the possibil-
ity that the priors draw on the same information as the con-
straints. However, given that Pathfinder is a patchwork of em-
ulators whose parameters are obtained independently from
one another and following differing experimental setups, we
expect that the coherence of information contained within the
priors and the constraints is very low. Our choice of using
only complex models as prior information and only observa-
tions and assessments as constraints also aims at limiting this
vulnerability.

Concretely, the posterior probability Ppost of a sample k
from the joint parameters distribution ξ k , conditional to a set
of observations x, is proportional (symbol∝) to its own prior
probability Ppre and to the likelihood L of the model simu-
lating x given ξ k:

Ppost(ξ k|x)∝ L(x|ξ k) Ppre(ξ k). (47)

Here, we assume all observations are independently and
identically distributed following a normal distribution (with
mean valuesµx , and standard deviations σ x expressed in real
physical units), which leads to the following likelihood:

L(x|ξ k)=
nx∏
i=1

1

σx,i
√

2π
exp

(
−
(Fi(ξ k)−µx,i)2

2 σ 2
x,i

)
, (48)

where Fi(ξ k) is the model’s output for the ith observable
(out of nx) with input parameters ξ k .

3.2 Implementation

The Pathfinder model is a set of differential equations with
a number of input parameters, of which nξ are calibrated
through Bayesian inference, and an additional two input vari-
ables provided as time series (i.e. one value per time step
required). While the two input time series can be any combi-
nation of two out of four variables (anthropogenic CO2 emis-
sions, non-CO2 ERF, atmospheric CO2 concentration, or
GMST), for calibration we use the two most well-constrained
variables that are direct physical observations of the global
Earth system: atmospheric CO2 and GMST. These input time
series cover the historical period from 1751 to 2020. There-
fore, the ξ k vector is

ξ k =
{
{ξj }

nξ
j=1, {C(t)}

2021
t=1751, {T (t)}

2021
t=1751

}
k
. (49)

However, to ease the computation by reducing the dimension
of the system, we do not use annual time series of observa-
tions as inputs, but we assume that each input time series (for
variable X being C or T ) follows

X(t)=Xµ(t)+ σ̃X Xσ (t)+ εX AR1(t;ρX), (50)

where Xµ and Xσ are fixed exogenous annual time series
(i.e. structural parameters), σ̃X is the relative standard devi-
ation of the time series (without noise), εX is the noise in-
tensity, and AR1 is an autoregressive process of order 1 and
autocorrelation parameter ρX. This assumption leads to the
final expression of the ξ k vector:

ξ k =
{
{ξj }

nξ
j=1, σ̃C,εC,ρC, σ̃T ,εT ,ρT ,

}
k
. (51)

During this Bayesian assimilation, the Pathfinder model is
run solely over the historical period (from 1750 to 2021),
as the constraints concern only preindustrial or historical
years. For the computation, the time-differential system of
Pathfinder is solved using an implicit–explicit numerical
scheme (also called IMEX), with a time step of a quarter of
a year. This solving scheme relies on writing the differential
equations of all state variables X as

dX
dt
=−ν X+R, (52)

where ν is the constant speed of the linear part of the differ-
ential equation and R is its non-linear part, discretizing these
equations as

X(t + δt)−X(t)

δt
=−ν X(t + δt)+R(t), (53)

where δt is the solving time step (which is 1
nt

times the
annual time step of the model’s inputs and outputs, here
nt = 4), and finally explicitly solving for all X(t + δt). We
note this is also the default solving scheme for regular simu-
lations with the model, although the value of nt can be altered
and alternative schemes are available.
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The Bayesian procedure itself is implemented using the
Python computer language and specifically the PyMC3 pack-
age (Salvatier et al., 2016). The solving of Eq. (47) and its
normalization are done using the package’s full-rank auto-
matic differentiation variational inference (ADVI) algorithm
(Kucukelbir et al., 2017), with 100 000 iterations (and de-
fault algorithm options). The choice of variational inference
instead of Markov chain Monte Carlo is motivated by the sig-
nificant size of our model (Blei et al., 2017) and the speed of
ADVI. An additional strength of the full-rank version of the
ADVI algorithm is its ability to generate correlated posterior
distributions even if the prior ones are uncorrelated. Conver-
gence of the algorithm was controlled through convergence
of the ELBO metric (Kucukelbir et al., 2017). All results pre-
sented hereafter are obtained through drawing 2000 sets of
parameters – which we call configurations – from the poste-
rior or prior distributions.

3.3 Constraints

We use a set of 19 constraints related to all aspects of the
model that correspond to the set of observations x in the
Bayesian calibration. Many of the constraints are observa-
tions, but some are ranges assessed by expert panels such as
the Global Carbon Project or the IPCC. They cover either a
recent point in time or an assumed preindustrial equilibrium,
and they are typically taken over a period of at least a few
years to reduce the effect of natural variability.

Table 1 summarizes these constraints, the periods over
which they are considered, and their distributions. The fol-
lowing subsections provide further details on the constraints,
and the constraint distributions are shown in Fig. 6.

3.3.1 Climate system

To constrain the temperature response, we use the same five
data sets of observed GMST as in Sect. 3.4.8 to derive av-
erage and standard deviation of two constraints: the average
GMST change and the average GMST yearly trend obtained
through second-order accuracy gradient (Fornberg, 1988),
both over the latest 20 years of data (2002–2021). Because
these data sets are already used as input to the Bayesian
setup, albeit in a different way, they do not provide much
of a constraint and are used mostly to ensure that the σ̃T and
εT parameters remain within sensible range.

To further constrain the climate system, we use the mean
OHU assessed by the IPCC AR6 over 2006–2018 (Gulev
et al., 2021, Table 2.7) and the non-CO2 ERF (averaged over
2010-2019) also estimated for the AR6. The central value of
the latter is taken from Dentener et al. (2021, Table AIII.3,
and corresponding GitHub repository), and its uncertainty is
constructed using data from Forster et al. (2021, Table 7.8)
and assuming the ERF of all species are normally distributed
and uncorrelated, but fully correlated in time for each sepa-
rate species (which likely overestimates the uncertainty).

To better align with the IPCC AR6, we also constrain the
ECS of our model (i.e. the T2× parameters). To do so, be-
cause the distribution of ECS cannot be assumed to be nor-
mal, we follow the framework of Roe and Baker (2007),
who define the climate feedback factor ff so that T2× =

T ∗2×/(1− ff), where T ∗2× is the minimal ECS value (roughly
corresponding to the Planck feedback). We assume this feed-
back factor follows a logit-normal distribution, which im-
plies logit(ff) = ln(ff/(1− ff)) = ln(T2×/T

∗

2×− 1) follows
a normal distribution. We therefore constrain logit(ff), using
distribution parameters and a value of T ∗2× calibrated to fit
the probabilistic ranges of ECS provided by the AR6. This
fit of the ECS distribution is illustrated in Fig. B9.

3.3.2 Carbon cycle

Similarly to what is done with GMST, we constrain the at-
mospheric CO2 level over the latest 10 years of data (2012–
2021) using the NOAA/ESRL data (Tans and Keeling, 2010).
The rest of the global CO2 budget is constrained using the
2021 Global Carbon Budget (GCB; Friedlingstein et al.,
2022). We use the net atmospheric CO2 growth and total
anthropogenic emissions (fossil and land use) over the last
10 years and the ocean and land carbon sinks accumulated
since the beginning of the instrumental measurement period
(1960–2020). Note that our definition of the land carbon sink
ignoring land use change is consistent with that of the GCB.

Given its number of parameters and their inconsistent
sources, we further constrain the land carbon module by
considering present-day (mean over 1998–2002) NPP (Ciais
et al., 2013; Zhao et al., 2005) and preindustrial vegetation
and soil carbon pools. These preindustrial pools are taken
from the AR6 for the central value (Canadell et al., 2021,
Fig. 5.12), but their relative uncertainty is taken from the
AR5 (Ciais et al., 2013, Fig. 6.1) since it is lacking in the
AR6. In addition, the soil carbon pool constraint is corrected
downward by estimates of peatland carbon (Yu et al., 2010,
Table 1), since it is an ecosystem missing in TRENDY mod-
els (and in ours) but not in the IPCC assessments.

3.3.3 Sea level rise

To constrain the separate SLR contributions from thermal
expansion, GIS, AIS, and glaciers, we use the model-based
SLR speed estimates over the recent past (averaged over
2006–2018) reported in the AR6 (Fox-Kemper et al., 2021,
Table 9.5). To constrain the total contribution, we also use
the historical (1901–1990) sea level rise inferred from tide
gauges from the same source, although the value is corrected
upward for the missed impact of uncharted glaciers (Parkes
and Marzeion, 2018).

Contrarily to all other modules, the SLR module is not as-
sumed to start at steady state in 1750, which is represented
through the λice (ice ∈ [gla,gis,ais]) parameters. We assume
this is entirely due to the so-called Little Ice Age (LIA) relax-
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Table 1. Constrained variables in Pathfinder, with values before and after calibration. Variables are noted under their text notation, and
Tables B1 and B2 provide the corresponding notation in code. The uncertainty correspond to the 1σ uncertainty range.

Variable Period Method Prior Posterior Constraints Unit

ECO2 2011–2020 Mean 9.1± 1.3 10.0± 0.7 11.0± 0.9 PgC yr−1

dC
ct 2011–2020 Mean 2.41± 0.06 2.40± 0.01 2.40± 0.01 ppm yr−1

Fland 1960–2020 Sum 95± 52 123± 26 145± 35 PgC
Focean 1960–2020 Sum 89± 12 97± 13 105± 20 PgC
Cv 1750 Mean 407± 54 407± 37 450± 50 PgC
Cs 1750 Mean 1181± 735 1086± 284 1088± 249 PgC
FNPP 1998–2002 Mean 60.0± 7.9 59.5± 3.9 55.0± 5.0 PgC yr−1

C 2012–2021 Mean 403.6± 0.3 403.6± 0.1 403.6± 0.1 ppm
Rx 2010–2019 Mean 0.01± 0.47 0.33± 0.37 0.56± 0.53 W m−2

T 2001–2020 Mean 0.96± 0.08 0.97± 0.06 1.00± 0.07 K
dT
dt 2000–2019 Mean 0.028± 0.003 0.028± 0.002 0.029± 0.002 K yr−1

dUohc
dt 2006–2018 Mean 16± 0.10 0.62± 0.09 12± 0.17 W m−2

dHthx
dt 2006–2018 Mean 1.02± 0.22 1.14± 0.21 1.39± 0.40 mm yr−1

dHgla
dt 2006–2018 Mean 0.63± 0.24 0.62± 0.04 0.62± 0.03 mm yr−1

dHais
dt 2006–2018 Mean −0.02± 0.23 0.30± 0.10 0.37± 0.08 mm yr−1

dHgis
dt 2006–2018 Mean 0.36± 0.12 17± 0.10 0.63± 0.07 mm yr−1

Htot 1901–1990 Difference 72± 17 83± 10 89± 32 mm

Hlia 1750 Mean 45± 17 45± 11 30± 13 mm

logit(ff) 1750 Mean 1.69± 0.38 1.47± 0.28 1.38± 0.37 1

ation, which we assume can be simply modelled in Pathfinder
through exponential decay of our three ice-related contri-
butions since t0 = 1750. This gives a net LIA contribution
of Hlia =

∑
iceλice τice exp

(
−
t−t0
τice

)
. We constrain this diag-

nostic variable using the global SLR reported by Slangen
et al. (2016) over 1900–2005 for their control experiment.

3.4 Parameters (prior distributions)

Out of the model’s 77 parameters, 33 are assumed to be
fixed (i.e. they are structural parameters), and the remain-
ing nξ = 44 parameters are estimated through Bayesian in-
ference. Prior distributions of the ξj parameters are assumed
log-normal if the physical parameter must be defined pos-
itive, logit-normal if it must be between 0 and 1, and nor-
mal otherwise. To avoid extreme parameter values that could
make the model diverge during calibration, the posterior dis-
tributions are bound to µξ,j ± 5 σξ,j , where µξ,j and σξ,j
are the mean and standard deviation of the j th parameter’s
prior distribution. These two values are taken from the lit-
erature, deduced from multi-model ensembles, or in a few
instances arbitrarily set, as described in the following sub-
sections. Note that when parameters are deduced from multi-
model ensembles, there are effectively two rounds of cal-
ibration: first, a calibration on individual models using or-
dinary least-squares regressions to obtain prior distributions

and, second, the Bayesian calibration itself that leads to the
posterior distributions. In addition, the prior distributions of
σ̃X, εX and ρX are assumed normal, half-normal, and uni-
form, respectively. All prior distributions are assumed inde-
pendent, meaning that the prior joint distribution ξ does not
exhibit any covariance.

All parameters are summarized in Tables B5 and B6 along
with their properties and values. The following subsections
further explain how the prior distributions of the parameters
are established, and these distributions are shown in Fig. 5.

3.4.1 Climate

All the parameters of the climate module are calibrated.
The prior distribution of the radiative parameter φ is taken
from the AR5 (Myhre et al., 2013, Table 8.SM.1). All other
prior distributions of the parameters of the climate module
(i.e. T2×, 2s, 2d, θ , and εheat) are taken from 35 CMIP6
models whose climate responses were derived for the AR6
using the “abrupt-4xCO2” experiment (Smith et al., 2021,
Sect. 7.SM.2.1, and corresponding GitHub repository). Here,
T2× is simply assumed to be half the reported equilibrium
temperature at quadrupled CO2. In addition, the prior distri-
bution of the ocean warming fraction αohc is taken from the
AR6 (Forster et al., 2021, Table 7.1).
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Figure 5. Parameter distributions before (black lines) and after (blue lines) the Bayesian calibration. Parameters are noted under their text
notation, and Tables B3 and B4 provide the corresponding notation in code.

3.4.2 Sea level rise

Some parameters from the SLR module are structural: the
maximum SLR contribution from glaciers (3gla) is taken
from Fox-Kemper et al. (2021, Sect. 9.6.3.2); the equilibrium
AIS SLR (3ais) is from (Church et al., 2013, Fig. 13.14); and
the τgis, τgla, and τais timescales are the mean values from
Mengel et al. (2016, Table S1) (assuming they provide the

90 % range of a log-normal distribution). All other parame-
ters are calibrated. The prior distribution of the thermosteric
parameter 3thx is taken from the AR6 (Fox-Kemper et al.,
2021, Sect. 9.2.4.1), as are the prior distributions of the prein-
dustrial offset parameters λgis, λgla and λais (Fox-Kemper
et al., 2021, earliest period of Table 9.5). For the remaining
parameters, we derive prior distributions using SLR projec-
tions compiled by Edwards et al. (2021) for a number of ice

https://doi.org/10.5194/gmd-15-8831-2022 Geosci. Model Dev., 15, 8831–8868, 2022



8842 T. Bossy et al.: Pathfinder v1.0.1

sheets and glaciers models over various Representative Con-
centration Pathway (RCP) and Shared Socioeconomic Path-
way (SSP) scenarios. Using the models’ outputs, we apply
Eq. (9) to estimate the 3gis1 and 3gis3 parameters; Eq. (10)
for the 0gla1, 0gla3, and γgla parameters; and Eq. (12) for the
3ais,smb and αais parameters. During these fits, all other pa-
rameters are assumed to take their default value if structural,
and their best-guess value otherwise. Results of this calibra-
tion on the individual models compiled by Edwards et al.
(2021) are shown for each SLR contribution in Figs. B6, B7
and B8.

3.4.3 Ocean carbon

The ocean carbon cycle module has a number of structural
parameters: αdic, all αo,j , and all τo,j are taken from Strass-
mann and Joos (2018, Tables A2 and A3, based on the
Princeton model). The prior distribution of the adjustment
factor κτo is arbitrarily taken to apply a 20 % uncertainty
on the oceanic transport timescales. All other prior distri-
butions for this module’s parameters are derived from 12
CMIP6 models with interactive carbon cycle that contributed
to C4MIP (Arora et al., 2020). To is taken on average over the
piControl simulation. νgx and γgx are calibrated by applying
Eq. (18) to the models’ outputs for the 1pctCO2, 1pctCO2-
rad, and 1pctCO2-bgc experiments, while βdic and γdic are
calibrated by applying Eqs. (14)–(17) and (19). Results of
this calibration on the individual CMIP6 models are shown
in Figs. B1 and B2.

3.4.4 Ocean acidification

In this version of Pathfinder, κpH is a structural parameter set
to 1.

3.4.5 Land carbon

Parameters related to the passive soil carbon pool are taken
from He et al. (2016, Table S5): νrh3 is structural, while
αpass is not. All the prior distribution of the parameters re-
lated to the preindustrial steady state of the land carbon (i.e.
Fnpp0, νfire, νharv, νmort, νstab, νrh1, and νcs) are derived from
11 TRENDYv7 models (Sitch et al., 2015; Le Quéré et al.,
2018), exactly as for OSCAR v3.1 (Gasser et al., 2020) ex-
cept that all biomes and regions are lumped together. The
prior distribution of the remaining parameters are derived
from 12 CMIP6 models that contributed to C4MIP (Arora
et al., 2020). Using the models’ outputs for the 1pctCO2,
1pctCO2-rad, and 1pctCO2-bgc experiments, we calibrated
βnpp, αnpp, and γnpp through Eq. (24); βfire and γfire through
Eq. (28); and βrh and γrh through Eq. (37). Results of this
calibration on the individual CMIP6 models is shown in
Figs. B3, B4, and B5.

3.4.6 Permafrost carbon

The permafrost module’s parameters are recalibrated using
the same algorithm as used by Gasser et al. (2018) but
adapted to the global formulation of Pathfinder. First, the al-
gorithm is run once to obtain a set of parameters reproducing
the behaviour of the global average of five permafrost models
(with data from UVic (MacDougall, 2021) added to the four
original models). This gives the values of the structural pa-
rameters (i.e. αlst, γrt1, γrt2, κrt, amin, all αth,j , all τth,j , νthaw,
and νfroz). Second, the algorithm is run five additional times
for each of the five permafrost models separately, with the
structural parameters established in the first step, to obtain
prior distributions of the remaining parameters (i.e. Cfr0, κa ,
γa , and κτth ).

3.4.7 Atmospheric CO2

The conversion factor αC is a structural parameter whose
value is taken from the latest GCBs (e.g. Le Quéré et al.,
2018). The prior distribution of preindustrial CO2 concen-
tration (Cpi) is taken from the AR6 (Gulev et al., 2021,
Sect. 2.2.3.2.1), assuming the difference between minimum
and maximum over the 0–1850 period is representative of the
90 % uncertainty range.

3.4.8 Historical CO2 and GMST

The structural Xµ and Xσ time series are taken from the lat-
est observations, as follows. Tµ and Tσ are taken as the aver-
age and standard deviation of five observational GMST data
sets: HadCRUT5 (Morice et al., 2021), Berkeley Earth (Ro-
hde et al., 2013; Rohde, 2013), GISTEMP (Hansen et al.,
2010), NOAAGlobalTemp (Huang et al., 2020), and JMA
(2022). We use the 1850–1900 period to define our prein-
dustrial baseline, and GMST change is assumed to be zero
before the earliest date available in each data set. Regarding
atmospheric CO2, Cµ is taken as the global value reported
by NOAA/ESRL (Tans and Keeling, 2010) and Cσ as a con-
stant ±1 ppm uncertainty for 1980 onward (this uncertainty
is arbitrarily taken higher than the actual uncertainty esti-
mated through instrumental measures to increase freedom in
the calibration). Before that period, Cµ comes from the IPCC
AR6 (Dentener et al., 2021, Table AIII.1a), andCσ is linearly
interpolated backwards from the instrumental uncertainty in
1980 to the preindustrial one (Gulev et al., 2021) in 1750. Fi-
nally, the prior distribution of ρX is set to uniform over [0,1],
that of σ̃X is a unit normal distribution, and that of εX is set
arbitrarily to a half-normal of parameter 0.05 K for GMST
and 0.5 ppm for CO2.

Geosci. Model Dev., 15, 8831–8868, 2022 https://doi.org/10.5194/gmd-15-8831-2022



T. Bossy et al.: Pathfinder v1.0.1 8843

3.5 Results (posterior distributions)

The following subsections discuss the adjustments between
the prior and posterior parameters that are the results of the
Bayesian calibration, as well as the matching of the con-
straints. These sections constantly refer to Fig. 5 that shows
the prior and posterior distributions of the model’s parame-
ters, Fig. 6 that shows those of the constrained variables, and
Fig. 7 that displays the correlation matrix of the posterior
parameters (there is no correlation among the prior parame-
ters). Prior and posterior values of the parameters can also be
retrieved from Table B6.

3.5.1 Climate system

Our climate-related constraints lead to adjusting all the pa-
rameters of the climate module. As explained in Sect. 3.4.8,
the constraints for present-day GMST change and its deriva-
tive are met by construction.

The ECS (T2×) is the parameter with the strongest adjust-
ment, since it is directly constrained. Its precise value is dis-
cussed hereafter in Sect. 4.2, but we note that it is unsur-
prisingly decreased, as the CMIP6 model ensemble tends to
overestimate the ECS compared to the IPCC-assessed value.
Consequently, our posterior logit(ff) matches the constraint
well. The adjustment of the ECS significantly reduces the gap
between our posterior distribution of the non-CO2 ERF and
its constraint, although the posterior central value remains
41 % lower (but well within uncertainty range).

Among the dynamic parameters that are adjusted, we note
that the deep-ocean heat capacity 2d is somewhat increased
compared to the prior and that the heat exchange coefficient
θ is also increased. These dynamic parameters are likely ad-
justed through our OHU constraint that is corrected in the
posterior so the difference in the central values is lowered
from 22 % to 14 %, which remains well within the uncer-
tainty range.

In addition, a number of weak but physically meaning-
ful correlations across the climate module’s parameters are
found, such as a positive correlation between T2× and εheat
(see, e.g. Geoffroy et al., 2013a), a positive correlation be-
tween T2× and 2d (that tends to exclude configuration that
would warm fast and high), and a negative correlation be-
tween T2× and φ (to match the GMST and ERF constraints
together).

3.5.2 Carbon cycle

Similarly to GMST, the posterior distribution of atmospheric
CO2 concentration matches the constraint by construction.
Its derivative, however, is (slightly overly) corrected to match
the GCB estimate. Global anthropogenic CO2 emissions are
significantly increased to get closer to the GCB constraint,
but their central value remains 9 % too low. Since these emis-
sions are determined through mass balance and the atmo-

spheric CO2 matches observations, this implies that the total
carbon sinks (i.e. Fland+Focean) must be weaker.

This is confirmed for the ocean sink, as the posterior cen-
tral value of Focean is 8 % lower than the constraint but still
noticeably corrected if compared to the prior. This correc-
tion is explained by small adjustments in some parameters of
the ocean carbon module. The mixed-layer depth is slightly
increased through βdic. All other parameters remain mostly
unaffected by the calibration, and only minor correlations are
found. These results, along with the fact that our prior distri-
bution spans only about half of the constraint’s distribution,
suggest that there is a structural limitation in our ocean car-
bon module that warrants further investigation.

It is also confirmed that the posterior land sink is weaker
than the constraint, by 15 % for the central value, which is
nevertheless a significant reduction of the prior gap of 34 %.
To explain this adjustment, we observe that the CO2 fertil-
ization sensitivities (βnpp and γnpp) are adjusted upwards.
However, our constraint on present-day NPP prevents these
adjustments from being too important, as the posterior dis-
tribution of this variable is similar to the prior and its cen-
tral value remains 8 %–9 % higher than its constraint. An in-
creased preindustrial NPP mechanically leads to an increase
in preindustrial carbon pools, but these require further adjust-
ments of the land carbon turnover rates, and most notably the
mortality rate νmort and the passive carbon fraction αpass, to
better match their constraints (of which the one on total soil
carbon is perfectly met).

The land carbon module exhibits significant correlations
among posterior parameters. This is likely a consequence
of all the constraints combined as they dictate both the
preindustrial steady state of the module and its transient re-
sponse over the historical period. Eliminated configurations
are those, for instance, that would show high initial car-
bon pools that are very sensitive to climate change (as these
would lead to a very weak land sink) or that would exhibit a
weak CO2 fertilization effect associated with a fast turnover
time (that would also lead to a weak sink).

3.5.3 Sea level rise

The prior parameters of the SLR module are the least in-
formed of our Bayesian setup. The model initially underes-
timates the thermal expansion, as well as the GIS and AIS
SLR rates. The calibration brings the posterior distributions
closer to their respective constraints but it always remains in
the lower end of the uncertainty range. The correction is done
by adjusting many of the module’s parameters (most notably
3gis1,3ais,smb, λais or λgla) and by finding strong correlations
among them (thus excluding physically unrealistic combina-
tions).

The historical SLR is markedly corrected by the con-
straint: from a 19 % gap between the central values of the
constraint and the prior estimate, to only 7 % after calibra-
tion. Here, we also note that the sum of individual contribu-
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Figure 6. Distributions of the constrained variables. Dashed lines give the distributions used to constrain. Black lines give the distribution
before calibration, while blue lines give the distribution posterior to calibration. Under a variable’s name, we give the period over which
the constraint is estimated and the data processing method: mean over the period, difference between last and first year, or sum of all the
years over the period. (1750 is the preindustrial period). Variables are noted under their text notation, and Tables B1 and B2 provide the
corresponding notation in code.

Table 2. Diagnostics of climate and carbon cycle responses in Pathfinder before and after Bayesian calibration. Comparison with AR6
(Forster et al., 2021; Canadell et al., 2021) and CMIP6 data (Arora et al., 2020; Meehl et al., 2020) is shown. For AR6 data we give the
median and 90 % confidence interval, while for every other value we give the mean ±1σ .

2× CO2 Pathfinder unconstrained Pathfinder constrained CMIP6 AR6

ECS (K) 4.1± 1.3 3.3± 0.7 3.7± 1.1 3.0 (2.0, 4.5)
TCR (K) 2.2± 0.5 1.9± 0.3 2.0± 0.4 1.8 (1.4, 2.2)
TCRE (K EgC−1) 2.20± 0.63 1.65± 0.32 1.77± 0.37 1.65 (1.0, 2.3)

βocean (PgC ppm−1) 0.81± 0.10 0.87± 0.11 0.91± 0.09
γocean (PgC K−1) −12.9± 5.4 −12.5± 6.0 −8.6± 2.9
βland (PgC ppm−1) 1.05± 0.5 1.26± 0.30 1.22± 0.40
γland (PgC K−1) −33.2± 26.6 −25.3± 24.2 −34.1± 38.4

tions to historical SLR reported in AR6 do not match that
total SLR (Fox-Kemper et al., 2021, Table 9.5), which likely
has some impact on the consistency between our constraints.
Finally, although the LIA relaxation contribution is not al-
tered by the calibration, as its central value remains 50 % too
high, it is the likely source of the strong correlations found

among the parameters of this module because it straightfor-
wardly links the individual SLR contributions together.
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Table 3. Comparison of SSP scenarios for GMST change projections (w.r.t. 1850–1900) to AR6 (Lee et al., 2021, Table 4.5), and for ocean
and land carbon storage projections to CMIP6 (Liddicoat et al., 2021). Land carbon storage projections were corrected using the land use
change emissions data from SSPs (Riahi et al., 2017; Gidden et al., 2019). For GMST data we give the median and the 90 % confidence
interval while for every other values we give the mean ±1σ .

Experiment Model GMST GMST GMST Ocean carbon Land carbon
(K) (K) (K) storage (PgC) storage (PgC)

2021–2040 2041–2060 2081–2100 2015–2100 2015–2100

ssp119 Pathfinder 1.5 (1.3, 1.8) 1.6 (1.4, 1.9) 1.5 (1.2, 1.7) 132± 21 49± 33
ssp119 AR6 or CMIP6 1.5 (1.2, 1.7) 1.6 (1.2, 2.0) 1.4 (1.0, 1.8) 111± 11 73± 33

ssp126 Pathfinder 1.5 (1.3, 1.8) 1.8 (1.6, 2.1) 1.9 (1.6, 2.2) 179± 28 109± 45
ssp126 AR6 or CMIP6 1.5 (1.2, 1.8) 1.7 (1.3, 2.2) 1.8 (1.3, 2.4) 162± 8 120± 50

ssp245 Pathfinder 1.6 (1.4, 1.8) 2.1 (1.8, 2.4) 2.8 (2.4, 3.3) 265± 41 225± 76
ssp245 AR6 or CMIP6 1.5 (1.2, 1.8) 2.0 (1.6, 2.5) 2.7 (2.1, 3.5) 252± 11 178± 76

ssp370 Pathfinder 1.6 (1.4, 1.8) 2.2 (1.9, 2.6) 3.7 (3.2, 4.3) 354± 53 330± 112
ssp370 AR6 or CMIP6 1.5 (1.2, 1.8) 2.1 (1.7, 2.6) 3.6 (2.8, 4.6) 338± 15 269± 124

ssp585 Pathfinder 1.7 (1.5, 1.9) 2.5 (2.2, 2.9) 4.4 (3.8, 5.2) 420± 63 409± 148
ssp585 AR6 or CMIP6 1.6 (1.3, 1.9) 2.4 (1.9, 3.0) 4.4 (3.3, 5.7) 398± 17 311± 162

4 Model diagnosis

4.1 Historical period

Because in the Bayesian setup we do not use annual time
series of observations as constraints, the posterior distribu-
tions given in Fig. 6 do not inform on the whole dynamic
of the model over the historical period. To further diagnose
the model’s behaviour, Fig. 8 gives the time series from 1900
to 2021 of six key variables. GMST and atmospheric CO2
match the historical observations very well via construction
of these input time series. The non-CO2 ERF exhibits a very
high variability, owing to our temperature-driven setup and
the natural variability in the GMST input. Beyond that, the
ERF time series is consistent with the AR6 estimates (Smith
et al., 2021), albeit somewhat lower on average in the re-
cent past, as seen with the posterior distribution. Consistently
with the interpretation of carbon cycle variables in the cali-
bration results, anthropogenic CO2 emissions, and the ocean
and land carbon sinks are slightly underestimated compared
to the GCB estimates (Friedlingstein et al., 2022). Several
reasons could explain this discrepancy, from the lack of land
use change in Pathfinder to the inconsistency of the GCB fig-
ures (that do not close the budget, while ours do). Neverthe-
less, the interest of the calibration is clearly illustrated, as the
posterior uncertainty range covers observations much better
than the prior one.

4.2 Idealized simulations

To complete the diagnosis of our model with common met-
rics used with climate and carbon models, we ran a set of
standard idealized experiments, corresponding to the CMIP6
abrupt-2xCO2, 1pctCO2, 1pctCO2-bgc, and 1pctCO2-rad.

A summary of these metrics’ values is given in Table 2, and
the resulting time series are shown in Fig. 9.

The abrupt-2xCO2 experiment sees an abrupt doubling
of atmospheric CO2, and it is used to diagnose the model’s
ECS that is defined as the equilibrium temperature for a dou-
bling of the preindustrial atmospheric concentration of CO2
(we acknowledge that it is superfluous with this version of
Pathfinder since it is also a parameter). Using the GMST
anomaly at the end of 1500 years of this experiment leads
to an unconstrained estimate of ECS of 4.1± 1.3 K and a
constrained estimate of 3.3± 0.7 K. Consistently, the latter
value is between the ECS value extracted from CMIP6 mod-
els (Meehl et al., 2020) that is higher (3.7± 1.1 K) and the
final value assessed in the AR6 that is lower (3.0 K, with a
67 % confidence interval between 2.5 and 4.0 K).

Using the 1pctCO2 experiment that sees a 1 % yearly in-
crease in atmospheric CO2, we can estimate the model’s
transient climate response (TCR), which is defined as the
GMST change after 70 years, when atmospheric concentra-
tion CO2 has just doubled. The CMIP6 models have a TCR of
2.0± 0.4 K (Meehl et al., 2020). Pathfinder’s unconstrained
value is higher, at 2.2± 0.5 K, while the constrained one goes
down to 1.9± 0.3 K. If we divide the TCR by the cumula-
tive anthropogenic CO2 emissions compatible with the atmo-
spheric CO2 increase in this experiment, we obtain an esti-
mate of the transient climate response to emissions (TCRE).
Similarly to the TCR, it is higher in the unconstrained en-
semble and lower in the constrained one, when compared to
CMIP6 models (Arora et al., 2020). Both downward adjust-
ments of the TCR and TCRE are consistent with that of ECS,
with the posterior TCRE matching the AR6 assessed range
very well (Canadell et al., 2021).
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Figure 7. Correlation matrix of Pathfinder’s parameters after the Bayesian calibration. Parameters are classified according to the equations
they are related to, i.e. climate system, sea level, ocean carbon, land carbon, and permafrost carbon. Parameters are noted under their text
notation, and Tables B3 and B4 provide the corresponding notation in code.

To look more closely at the carbon cycle, we perform
two variants of the latter experiment: in 1pctCO2-rad, atmo-
spheric CO2 only has a radiative effect, as it is kept at prein-
dustrial level for the carbon cycle, whereas in 1pctCO2-bgc,
atmospheric CO2 only has a biogeochemical effect, as the
climate system sees only the preindustrial level. These three
experiments are used to calculate the carbon–concentration
(β) and carbon–climate (γ ) feedback metrics that measure
the carbon sinks’ sensitivities to changes in atmospheric CO2
and GMST, respectively. We apply the same method as Arora
et al. (2020) to calculate these, which leads to metrics at the
time of CO2 doubling that are in line with CMIP6 models
(Arora et al., 2020). As both carbon sinks were adjusted up-
wards by the Bayesian calibration, the constraints logically

increased both βocean and βland, to values fairly close to those
of the complex models. The γocean is not affected by the cal-
ibration and remains 45 % too low, which again suggests a
structural limitation in our formulation of the ocean sink.
This is, however, compensated for during calibration by the
γland being 26 % higher than in complex models.

4.3 Scenarios

To further validate Pathfinder, we run the five SSP scenar-
ios (Riahi et al., 2017) for which climate and carbon cycle
projections were reported by a large enough number of mod-
els in the AR6 (namely, ssp119, ssp126, ssp245, ssp370, and
ssp585). These simulations are run with prescribed CO2 con-
centration and non-CO2 ERF (the latter is taken from Smith
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Figure 8. Historical time series of key variables from Pathfinder. Red lines are observations, black lines are the model’s outputs before
calibration, and blue lines are the same after calibration. Shaded areas and vertical bars correspond to the 1σ uncertainty range. Temperature
observations are taken from HadCRUT5 (Morice et al., 2021), Cowtan and Way (2014), Berkeley Earth (Rohde et al., 2013; Rohde, 2013),
GISTEMP (Hansen et al., 2010), and NOAA/MLOST (Vose et al., 2012). Other sources are NOAA/ESRL (Tans and Keeling, 2010), GCB
2021 (Friedlingstein et al., 2022), and AR6 (Smith et al., 2021).

et al., 2021). Time series of GMST and cumulative land and
ocean sinks are shown in Fig. 9. Table 3 shows a comparison
of the projected changes in GMST to the CMIP6 estimates
(Lee et al., 2021, Table 4.2) and of carbon pools to Liddicoat
et al. (2021) (since this was not directly reported in the AR6).

Be it on short-, mid- or long-term scales, Pathfinder’s pro-
jections of GMST are very much in line with the one assessed
by the IPCC in the AR6 based on multiple lines of evidence
(Lee et al., 2021, Table 4.5). The only significant difference is
a smaller uncertainty range in our projections for the longer-
term periods. Although this is the result of the efficiency of
the Bayesian calibration, one might wonder whether the cli-

mate module is over-constrained (or equivalently, too limited
in its number of parameters).

The ocean carbon storage appears to be overestimated by
5 % to 20 % by Pathfinder across SSP scenarios. This is con-
sistent with the upward adjustment of the ocean carbon sink
stemming from our Bayesian calibration. To compare the
land carbon storage with CMIP6 models, because our land
carbon module does not include land use change processes,
we correct the value reported by complex models by the cu-
mulative land use change emissions of each scenario (Ri-
ahi et al., 2017; Gidden et al., 2019). While the land car-
bon storage of Pathfinder is well in line under ssp126 (a sce-
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Figure 9. Time series of GMST change, integrated land carbon uptake and integrated ocean carbon uptake for idealized experiments (abrupt-
2xCO2, 1pctCO2, 1pctCO2-bgc and 1pctCO2-rad) and projections according to SSP scenarios in Pathfinder. Shaded areas give the 1σ
uncertainty range.

nario consistent with the 2 ◦C target), it is underestimated in
ssp119 (consistent with the 1.5 ◦C target) and increasingly
overestimated in higher warming scenarios. A likely expla-
nation is that the climate–carbon feedback on land is under-
estimated in Pathfinder, as suggested by the γ metric seen in
Sect. 4.2. Alternatively (or concurrently), the absence of loss
of sink capacity caused by land cover change (Gasser and
Ciais, 2013; Gasser et al., 2020) can explain the overestima-
tion of the land sink under high CO2. The Pathfinder model’s
estimates of both sinks nonetheless remain well within the
CMIP6 models’ uncertainty ranges.

Our SLR emulator gives estimates (Table 4) that are al-
ways on the lower end of the range reported in the AR6 (Fox-
Kemper et al., 2021, Table 9.9). This can be explained by the
fact that our individual SLR rate estimates are on the lower

end of their respective constraints (see Sect. 3.5.3). This dis-
crepancy also highlights potential structural limitations in the
SLR module (e.g. too few separate contributions) and the dif-
ficulty of calibrating the module given the short time period
of data available, both from complex models (that cover the
21st century only) and observations, compared to the long
timescale of the SLR processes. Nevertheless, our estimates
remain within the uncertainty range of the IPCC assessment,
especially as we do not account for contribution from land
water storage that causes an additional 0.03 [0.01, 0.04] m of
SLR in all scenarios in 2100 (Fox-Kemper et al., 2021).
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Table 4. Comparison of SSP scenarios between Pathfinder and AR6 for SLR (with respect to 1995–2014) and SLR speed projections (Fox-
Kemper et al., 2021, Table 9.9). We give the median value and the 90 % confidence interval in parentheses.

Experiment Model SLR (m) SLR (m) SLR rate (mm yr−1) SLR rate (mm yr−1)
2050 2100 2040–2060 2080–2100

ssp119 Pathfinder 0.15 (0.13, 0.18) 0.30 (0.25, 0.36) 3.5 (2.9, 4.2) 2.7 (2.2, 3.4)
ssp119 AR6 0.18 (0.15, 0.23) 0.38 (0.28, 0.55) 4.1 (2.8, 6.0) 4.2 (2.4, 6.6)

ssp126 Pathfinder 0.16 (0.14, 0.19) 0.35 (0.30, 0.43) 4.1 (3.5, 5.0) 3.6 (2.9, 4.5)
ssp126 AR6 0.19 (0.16, 0.25) 0.44 (0.32, 0.62) 4.8 (3.5, 6.8) 5.2 (3.2, 8.0)

ssp245 Pathfinder 0.17 (0.15, 0.20) 0.46 (0.39, 0.56) 5.0 (4.2, 6.0) 6.2 (5.1, 8.0)
ssp245 AR6 0.20 (0.17, 0.26) 0.56 (0.44, 0.76) 5.8 (4.4, 8.0) 7.7 (5.2, 11.6)

ssp370 Pathfinder 0.18 (0.15, 0.21) 0.56 (0.47, 0.69) 5.5 (4.7, 6.7) 9.1 (7.4, 11.7)
ssp370 AR6 0.22 (0.18, 0.27) 0.68 (0.55, 0.90) 6.4 (5.0, 8.7) 10.4 (7.4, 14.8)

ssp585 Pathfinder 0.19 (0.17, 0.23) 0.67 (0.56, 0.82) 6.4 (5.4, 7.8) 11.4 (9.1, 15.0)
ssp585 AR6 0.23 (0.20, 0.29) 0.77 (0.63, 1.01) 7.2 (5.6, 9.7) 12.1 (8.6, 17.6)

5 Concluding remarks

In this paper, we have presented the Pathfinder model: a sim-
ple global carbon–climate model with selected impact vari-
ables, carefully designed to balance accuracy of represen-
tation and simplicity of formulation and calibrated through
Bayesian inference on the latest data from Earth system mod-
els and observations. Pathfinder has been shown to perform
very well in comparison to complex models, although there
remains room for further improvement of the model and its
calibration setup. We identify four main avenues to improve
the model.

First, some parts of the model may well lean too much on
the complexity side of the simplicity–accuracy balance we
aimed to strike, owing to the creation process of Pathfinder
that mostly compiled existing formulations. Future develop-
ment should therefore strive to reduce complexity wherever
possible. The ocean carbon sub-pools and perhaps the land
carbon pools are potential leads in this respect.

Second, the ocean carbon module alone appears to be lim-
ited by its structure, which has been inherited from a 25-year-
old (yet seminal) article (Joos et al., 1996). Although it is
undoubtedly a significant undertaking, developing an alter-
native formulation of the ocean carbon dynamic, calibrated
on state-of-the-art ocean models and properly connected to
ocean pH and the ocean of the climate module, would bene-
fit more than just the SCM community.

Third, integration of land use and land cover change in
such a model appears warranted, despite the difficulty of do-
ing so in a physically sensible yet simple manner. Given our
expertise with the OSCAR model and its bookkeeping mod-
ule (Gasser et al., 2020), we are confident that this can be
done, although it will demand extra care to keep the model
compatible with the IAMs it is also meant to be linked to.

Fourth, the Bayesian setup can be extended, notably by
including more time periods for the existing constraints but

also by introducing and constraining entirely new variables
such as isotopic ratios (Hellevang and Aagaard, 2015) or
inter-hemispheric gradients (Ciais et al., 2019); however, a
balance must be struck with respect to the calibration’s com-
putation time. Here, we caution against including complex
models’ results as constraints in the Bayesian calibration, as
was done for the IPCC AR6 (Smith et al., 2021; Nicholls
et al., 2021), as it goes against the philosophy of Pathfinder
to use complex models’ results as prior information only.

Fifth, although our model is restricted to CO2 by de-
sign because of how IAMs like DICE (Nordhaus, 2017) are
also limited to CO2 emissions, we can imagine many rea-
sons why one would want to add non-CO2 climate forcers
into Pathfinder. We would suggest doing so by following
the model’s philosophy: that is, by taking existing reduced-
complexity formulations such as something between FaIR
(Leach et al., 2020) and OSCAR (Gasser et al., 2017) and
adding the new parameters into the Bayesian setup with the
relevant observational constraints.

In spite of these few shortcomings and potential devel-
opment leads, Pathfinder v1.0.1 is a powerful tool that fits
the niche it has been created for perfectly. We will fur-
ther demonstrate the strengths and flexibility of Pathfinder
in other publications. Meanwhile, we invite the community
to seize this open-source model and use it in any study
that could benefit from a simple, fast, and accurate carbon–
climate model aligned with the latest climate science.
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Appendix A: Additional information about the model

A1 Technical requirements

Pathfinder has been developed and run in Python (v3.7.6)
(https://docs.python.org/3.7/, last access: 5 December 2022),
preferentially using IPython (v7.19.0) (Pérez and Granger,
2007). Currently, packages required to run it are NumPy
(v1.19.2) (Harris et al., 2020), SciPy (v1.5.2) (Virtanen et al.,
2020), and Xarray (v0.16.0) (Hoyer and Hamman, 2017),
and it has hard-coded dependencies on PyMC3 (v3.8) (Sal-
vatier et al., 2016) and Theano (v1.0.4) (Theano Develop-
ment Team, 2016) that are in fact used only for calibration.
Other versions of Python or these packages were not tested.

The calibration procedure takes about 9 h to run on a desk-
top computer (with a base speed of 3.4 GHz). Simple use of
the model is much faster: the idealized experiments and SSP
scenarios for this description paper, which represent 2984
simulated years, were run in about 20 min for all 2000 config-
urations and on a single core. A single simulated year takes
a few tenths of a second, although a number of options in
the model can drastically alter this performance. Note also
that this scales sub-linearly with the amount of configurations
or scenarios because of the internal workings of the Xarray
package, albeit at the cost of increased demand in random-
access memory.

A2 Known issues

Two relatively benign issues that have been identified dur-
ing development remain unsolved. First, the model requires
a high number of sub-time steps (i.e. high nt ) to remain stable
under high CO2 because of the ocean carbon cycle. Second,
the version of the model that is driven by T and Rx time
series is extremely sensitive to its inputs because it mathe-
matically requires the first two derivatives of T and the first
derivative of Rx .

A3 Changelog

Brief description of the successive versions of Pathfinder.

v1.0.1. Exact same physical equations and numerical values
as v1.0. Added best-guess parameters calculated as the
average of the posterior distribution, and correspond-
ing historical outputs, for single-configuration runs. Im-
proved README and MANUAL files.

v1.0. First release. Exact model described in the preprint
version of this paper (Bossy et al., 2022).

Geosci. Model Dev., 15, 8831–8868, 2022 https://doi.org/10.5194/gmd-15-8831-2022
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Appendix B: Additional figures and tables

Figure B1. Calibration to estimate prior νgx and γgx from CMIP6 time series of Focean. We fit our equation on the results of the +1 % CO2
(1pctCO2) experiment (in blue) and its variants 1pctCO2-rad (in green) and 1pctCO2-bgc (in orange). Coloured markers are CMIP6 model
data, while the solid black lines show the fit from Pathfinder. Panels without a black line indicate that at least one of the required variables
was not reported by the complex model.
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Figure B2. Calibration to estimate prior βdic and γdic from CMIP6 time series of pCO2 . We fit our equation on the results of the +1 % CO2
(1pctCO2) experiment (in blue) and its variants 1pctCO2-rad (in green) and 1pctCO2-bgc (in orange). Coloured markers are CMIP6 model
data, while the solid black lines show the fit from Pathfinder. Panels without a black line indicate that at least one of the required variables
was not reported by the complex model.
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Figure B3. Calibration to estimate prior βef and γef from CMIP6 time series of rfire, shown as a ratio over its preindustrial value. We fit
our equation on the results of the +1 % CO2 (1pctCO2) experiment (in blue) and its variants 1pctCO2-rad (in green) and 1pctCO2-bgc
(in orange). Coloured markers are CMIP6 model data, while the solid black lines show the fit from Pathfinder. Panels without a black line
indicate that at least one of the required variables was not reported by the complex model.
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Figure B4. Calibration to estimate prior βrh and γrh from CMIP6 time series of rrh, shown as a ratio over its preindustrial value. We fit
our equation on the results of the +1 % CO2 (1pctCO2) experiment (in blue) and its variants 1pctCO2-rad (in green) and 1pctCO2-bgc
(in orange). Coloured markers are CMIP6 model data, while the solid black lines show the fit from Pathfinder. Panels without a black line
indicate that at least one of the required variables was not reported by the complex model.
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Figure B5. Calibration to estimate prior βnpp, αnpp, and γnpp from CMIP6 time series of rnpp, shown as a ratio over its preindustrial value.
We fit our equation on the results of the+1 % CO2 (1pctCO2) experiment (in blue) and its variants 1pctCO2-rad (in green) and 1pctCO2-bgc
(in orange). Coloured markers are CMIP6 model data, while the solid black lines show the fit from Pathfinder. Panels without a black line
indicate that at least one of the required variables was not reported by the complex model.
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Figure B6. Calibration to estimate the prior of GIS SLR module parameters (3gis1, 3gis3, and λgis0). We fit our equation on the compiled
outputs from Edwards et al. (2021) for which there is more than one scenario available. Each panel’s title displays the name of the institute,
model, and configuration used. Coloured markers are the model data, while the solid black lines show the fit from Pathfinder.
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Figure B7. Calibration to estimate the prior of glacier SLR module parameters (0gla1, 0gla3, γgla, and λgla0). We fit our equation on the
compiled outputs from Edwards et al. (2021) for which there is more than one scenario available. Each panel’s title displays the name of the
model or study used. Coloured markers are the model data, while the solid black lines show the fit from Pathfinder.
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Figure B8. Calibration to estimate the prior of AIS SLR module parameters (3ais,smb, αais, and λais0). We fit our equation on the compiled
outputs from Edwards et al. (2021) for which there is more than one scenario available. Each panel’s title displays the name of the institute,
model and configuration used. Coloured markers are the models data while the solid black lines show the fit from Pathfinder.
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Figure B9. Distribution of the logit of the ECS (T2×) inferred from AR6. Blue points are the assessments from AR6, the solid line is the
cumulative distributive function (CDF) fitted on those assessments, and the dashed line is the PDF associated with the CDF (arbitrary scale).
The value of the fitted parameters is given above the plot.

Table B1. Summary of Pathfinder’s equation variables in climate, sea level, and ocean carbon modules.

Manual Code Description Units

Rc RFco2 CO2 (effective) radiative forcing W m−2

Rx ERFx Non-CO2 effective radiative forcing W m−2

R ERF Effective radiative forcing W m−2

T T Global surface temperature anomaly K
Td Td Deep-ocean temperature anomaly K
logit(ff) logit_ff Logit of the climate feedback factor (for calib.) 1

Uohc OHC Ocean heat content (anomaly) W yr m−2

Hthx Hthx Thermosteric sea level rise mm
Hgla Hgla Glaciers’ contribution to sea level rise mm
Hgis Hgis Greenland ice sheet’s contribution to sea level rise mm
Hais,smb Hais_smb Surface mass balance component of Hais mm
Hais Hais Antarctic ice sheet’s contribution to sea level rise mm
Htot Htot Total sea level rise mm
Hlia Hlia Sea level rise from relaxation after LIA between 1900 and 2005 (for calib.) mm

Co,j Co_j Change in surface ocean carbon sub-pools PgC j ∈ [[1,5]]
Co Co Change in surface ocean carbon pool PgC
Cd Cd Change in deep-ocean carbon pool
cdic dic Change in surface DIC µmol kg−1

pdic pdic Subcomponent of pCO2 ppm
pCO2 pCO2 CO2 partial pressure at the ocean surface ppm
Focean Focean Ocean carbon sink PgC yr−1
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Table B2. Summary of Pathfinder’s equation variables for land carbon, permafrost, and atmospheric modules.

Manual Code Description Units

rnpp r_npp Relative change in NPP 1
rfire r_fire Relative change in wildfire intensity 1
rrh r_rh Relative change in heterotrophic respiration rate 1
Fnpp NPP Net primary productivity PgC yr−1

Efire Efire Emissions from wildfire PgC yr−1

Eharv Eharv Emissions from harvest and grazing PgC yr−1

Fmort Fmort Mortality flux PgC yr−1

Erh1 RH1 Litter heterotrophic respiration PgC yr−1

Fstab Fstab Stabilization flux PgC yr−1

Erh2 RH2 Active soil heterotrophic respiration PgC yr−1

Fpass Fpass Passivization flux PgC yr−1

Erh3 RH3 Passive soil heterotrophic respiration PgC yr−1

Fland Fland Land carbon sink PgC yr−1

Erh RH Heterotrophic respiration PgC yr−1

Cv Cv Vegetation carbon pool PgC
Cs1 Cs1 Litter carbon pool PgC
Cs2 Cs2 Active soil carbon pool PgC
Cs3 Cs3 Passive soil carbon pool PgC
Cs Cs Total soil carbon pool PgC

rrt r_rt Relative change in permafrost respiration rate 1
ā abar Theoretical thawed fraction 1
a a Actual thawed fraction 1
Epf Epf Emissions from permafrost PgC yr−1

Cth,j Cth_j Thawed permafrost carbon sub-pools PgC j ∈ [[1,3]]
Cfr Cfr Frozen permafrost carbon pool PgC

ECO2 Eco2 Anthropogenic CO2 emissions PgC yr−1

C CO2 Atmospheric CO2 concentration ppm
pH pH Surface ocean pH 1

Geosci. Model Dev., 15, 8831–8868, 2022 https://doi.org/10.5194/gmd-15-8831-2022



T. Bossy et al.: Pathfinder v1.0.1 8861

Table B3. Parameters used in the climate, ocean carbon, and sea level modules.

/ Manual Code Description Units

φ phi Radiative parameter of CO2 W m−2

T2× T2x Equilibrium climate sensitivity K
2s THs Heat capacity of the surface W yr m−2 K−1

2d THd Heat capacity of the deep ocean W yr m−2 K−1

θ th Heat exchange coefficient W m−2 K−1

εheat eheat Deep-ocean heat uptake efficacy 1
T ∗2× T2x0 Minimal value of the ECS distribution (for calib.) K

αohc aOHC Fraction of energy warming the ocean 1
3thx Lthx Proportionality factor of thermosteric SLR mm m2 W−1 yr−1

λgla lgla0 Initial imbalance in SLR from glaciers mm yr−1

3gla Lgla Maximum contribution to SLR from glaciers mm
0gla1 Ggla1 Linear sensitivity of steady-state glaciers SLR to climate K−1

0gla3 Ggla3 Cubic sensitivity of steady-state glaciers SLR to climate K−3

τgla tgla Timescale of glaciers’ contribution to SLR year
γgla ggla Sensitivity of glaciers’ timescale to climate K−1

λgis lgis0 Initial imbalance in SLR from GIS mm yr−1

3gis1 Lgis1 Linear sensitivity of steady-state GIS SLR to climate mm K−1

3gis3 Lgis3 Cubic sensitivity of steady-state GIS SLR to climate mm K−3

τgis tgis Timescale of GIS contribution to SLR year
3ais,smb Lais_smb Sensitivity of AIS SMB increase due to climate mm yr−1 K−1

λais lais Initial imbalance in SLR from AIS mm yr−1

3ais Lais Sensitivity of steady-state AIS SLR to climate mm K−1

τais tais Timescale of AIS contribution to SLR year
αais aais Sensitivity of AIS timescale to AIS SLR mm−1

αdic adic Conversion factor for DIC µmol kg−1 PgC−1

βdic bdic Inverse scaling factor for DIC 1
γdic gdic Sensitivity of pCO2 to climate K−1

To To Preindustrial surface ocean temperature °C
νgx vgx Surface ocean gas exchange rate yr−1

γgx ggx Sensitivity of gas exchange to climate K−1

αo,j aoc_j Surface ocean sub-pool fractions 1 j ∈ [[1,5]]
τo,j toc_j Timescales of surface ocean sub-pools year j ∈ [[1,5]]
κτo k_toc Scaling factor for timescales of surface ocean sub-pools 1
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Table B4. Parameters used in the permafrost, land carbon modules, and for calibration.

Manual Code Description Units

βnpp bnpp Sensitivity of NPP to CO2 (fertilization effect) 1
αnpp anpp Shape parameter for fertilization effect 1
γnpp gnpp Sensitivity of NPP to climate K−1

βfire bfire Sensitivity of wildfire intensity to CO2 1
γfire gfire Sensitivity of wildfire intensity to climate K−1

βrh brh Sensitivity of heterotrophic respiration to fresh organic matter 1
γrh grh Sensitivity of heterotrophic respiration to climate K−1

Fnpp,0 npp0 Preindustrial NPP PgC yr−1

νfire vfire Wildfire intensity yr−1

νharv vharv Harvest and grazing rate yr−1

νmort vmort Mortality rate yr−1

νstab vstab Stabilization rate yr−1

νrh1 vrh1 Litter heterotrophic respiration rate yr−1

νrh23 vrh23 Soil (active and passive) respiration rate yr−1

νrh3 vrh3 Passive soil respiration rate yr−1

αpass apass Fraction of passive soil 1
αlst aLST Climate scaling factor over permafrost regions 1
γrt1 grt1 Sensitivity of (boreal) heterotrophic respiration to climate K−1

γrt2 grt2 Sensitivity of (boreal) heterotrophic respiration to climate (quadratic) K−2

κrt krt Scaling factor for sensitivity of permafrost respiration to climate 1
amin amin Minimal thawed fraction 1
κa ka Shape parameter for theoretical thawed fraction 1
γa ga Sensitivity of theoretical thawed fraction to climate K−1

νthaw vthaw Thawing rate yr−1

νfroz vfroz Freezing rate yr−1

αth,j ath_j Thawed permafrost carbon sub-pool fractions 1 j ∈ [[1,3]]
τth,j tth_j Timescales of thawed permafrost carbon sub-pools year j ∈ [[1,3]]
κτth k_tth Scaling factor for timescales of surface ocean sub-pools 1
Cfr,0 Cfr0 Preindustrial frozen permafrost carbon pool PgC
αC aCO2 Conversion factor for atmospheric CO2 PgC ppm−1

Cpi CO2pi Preindustrial CO2 concentration ppm
κpH k_pH Scaling factor for surface ocean pH 1
σ̃C std_CO2 Relative standard deviation of the historical CO2 time series (for calib.) 1
εC ampl_CO2 Noise amplitude of the historical CO2 time series (for calib.) ppm
ρC corr_CO2 Autocorrelation of the historical CO2 time series (for calib.) 1
σ̃T std_T Relative standard deviation of the historical T time series (for calib.) 1
εT ampl_T Noise amplitude of the historical T time series (for calib.) K
ρT corr_T Autocorrelation of the historical T time series (for calib.) 1
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Table B5. Structural parameter values. Parameters are noted under their code notation, and Tables B3 and B4 provide the corresponding
notation in text.

Parameters Prior Unit

Lgla 380 mm
Lais 1200 mm
tgla 190 year
tgis 481 year
tais 2090 year
T2x0 0.61 K
adic 4.49 µmol kg−1 PgC−1

aoc_1 0.87 1
aoc_2 0.06 1
aoc_3 0.04 1
aoc_4 0.02 1
aoc_5 0.01 1
toc_1 1.29 year
toc_2 16.7 year
toc_3 65.1 year
toc_4 348 year
toc_5 109 year
vrh3 8.27× 10−5 yr−1

aLST 1.87 1
grt1 0.12 K−1

grt2 0.0029 K−2

krt 1.34 1
amin 0.98 1
vthaw 0.14 yr−1

vfroz 0.011 yr−1

ath_1 0.05 1
ath_2 0.12 1
ath_3 0.83 1
tth_1 18.2 year
tth_2 252 year
tth_3 3490 year
aCO2 2.124 PgC ppm−1

k_pH 1 1
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Table B6. Calibrated parameter values before and after Bayesian calibration. Parameters are noted under their code notation, and Tables B3
and B4 provide the corresponding notation in text. The uncertainty corresponds to the 1σ uncertainty range.

Parameters Prior Posterior Unit Parameters Prior Posterior Unit

phi 5.35± 0.54 5.29± 0.54 W m−2 T2x 4.13± 1.37 3.37± 0.77 K
THs 8.14± 0.99 8.21± 1.06 W yr m−2 K−1 THd 108.6± 61.8 123.8± 57.8 W yr m−2 K−1

th 0.61± 0.13 0.67± 0.12 W m−2 K−1 eheat 1.35± 0.40 1.41± 0.43 1
aOHC 0.91± 0.02 0.91± 0.02 1 Lthx 1.82± 0.21 1.85± 0.23 mm m2 W−1 yr−1

lgla0 0.59± 0.24 0.40± 0.21 mm yr−1 Ggla1 0.34± 0.18 0.34± 0.05 mm K−1

Ggla3 0.022± 0.013 0.022± 0.013 mm K−3 ggla 0.12± 0.09 0.11± 0.07 K−1

Lgis1 82± 45 189± 55 mm K−1 Lgis3 5.7± 1.4 5.8± 1.5 mm K−3

Lais_smb 0.61± 0.19 0.40± 0.10 mm K−1 yr−1 lais0 0.00± 0.11 0.07± 0.08 mm yr−1

aais 0.002± 0.003 0.004± 0.003 mm−1 lgis0 0.33± 0.14 0.35± 0.14 mm yr−1

k_toc 1.00± 0.20 0.91± 0.18 1 vgx 0.19± 0.06 0.20± 0.07 PgC ppm−1 yr−1

ggx 0.018± 0.029 0.019± 0.033 K−1 To 18.0± 0.5 18.0± 0.5 K
bdic 0.87± 0.08 0.90± 0.09 1 gdic 0.04± 0.02 0.04± 0.02 K−1

npp0 48.2± 5.1 46.5± 3.3 PgC yr−1 vfire 0.006± 0.003 0.006± 0.002 yr−1

vharv 0.003± 0.003 0.003± 0.002 yr−1 vmort 0.11± 0.01 0.11± 0.01 yr−1

vstab 0.32± 0.28 0.30± 0.22 yr−1 vrh1 0.33± 0.29 0.27± 0.20 yr−1

vrh23 0.024± 0.009 0.024± 0.008 yr−1 bnpp 0.93± 0.37 1.09± 0.25 1
anpp 0.48± 0.57 0.36± 0.38 1 gnpp −0.014± 0.023 −0.005± 0.024 K−1

bfire −0.05± 0.12 −0.06± 0.14 1 gfire 0.052± 0.072 0.044± 0.088 K−1

brh 1.06± 0.43 1.01± 0.41 1 grh 0.056± 0.053 0.042± 0.035 K−1

apass 0.69± 0.19 0.63± 0.20 1 ga 0.13± 0.04 0.13± 0.04 K−1

ka 2.6± 2.0 2.4± 1.8 1 k_tth 0.96± 0.93 1.00± 0.87 1
Cfr0 546± 120 538± 122 PgC CO2pi 278± 3 279± 3 ppm

Code and data availability. The source code of Pathfinder is
openly available at https://github.com/tgasser/Pathfinder (last ac-
cess: 5 December 2022). A frozen version of the code and
data as developed in the paper can be found on Zenodo at
https://doi.org/10.5281/zenodo.7003848 (Gasser, 2022).
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A., Radić, V., Reese, R., Rounce, D. R., Rückamp, M., Sakai, A.,
Shafer, C., Schlegel, N.-J., Shannon, S., Smith, R. S., Straneo, F.,
Sun, S., Tarasov, L., Trusel, L. D., Van Breedam, J., van de Wal,
R., van den Broeke, M., Winkelmann, R., Zekollari, H., Zhao,
C., Zhang, T., and Zwinger, T.: Projected land ice contributions
to twenty-first-century sea level rise, Nature, 593, 74–82, 2021.

Fornberg, B.: Generation of finite difference formulas on arbitrarily
spaced grids, Math. Comput., 51, 699–706, 1988.

Forster, P., Storelvmo, T., Armour, K., Collins, T., Dufresne, J. L.,
Frame, D., Lunt, D. J., Mauritsen, T., Palmer, M. D., Watanabe,
M., Wild, M., and Zhang, H.: The Earth’s Energy Budget, Cli-
mate Feedbacks, and Climate Sensitivity, Climate Change 2021:
The Physical Science Basis. Contribution of Working Group I to
the Sixth Assessment Report of the Intergovernmental Panel on
Climate Change, https://doi.org/10.1017/9781009157896.009,
2021.

Fox-Kemper, B., Hewitt, H. T., Xiao, C., Aðalgeirsdóttir, G.,
Drijfhout, S. S., , Edwards, T. L., Golledge, N. R., Hemer,
M., Kopp, R. E., Krinner, S. S., Mix, A., Notz, D., Now-
icki, S., Nurhati, I. S., Ruiz, L., Sallée, J.-B., and Slan-
gen, A. B. A., a. Y. Y.: Ocean, Cryosphere and Sea Level
Change, Climate Change 2021: The Physical Science Basis,
Contribution of Working Group I to the Sixth Assessment
Report of the Intergovernmental Panel on Climate Change,
https://doi.org/10.1017/9781009157896.011, 2021.

Friedlingstein, P., Jones, M. W., O’Sullivan, M., Andrew, R. M.,
Bakker, D. C. E., Hauck, J., Le Quéré, C., Peters, G. P., Peters,
W., Pongratz, J., Sitch, S., Canadell, J. G., Ciais, P., Jackson,
R. B., Alin, S. R., Anthoni, P., Bates, N. R., Becker, M., Bel-
louin, N., Bopp, L., Chau, T. T. T., Chevallier, F., Chini, L. P.,
Cronin, M., Currie, K. I., Decharme, B., Djeutchouang, L. M.,
Dou, X., Evans, W., Feely, R. A., Feng, L., Gasser, T., Gilfil-
lan, D., Gkritzalis, T., Grassi, G., Gregor, L., Gruber, N., Gürses,
Ö., Harris, I., Houghton, R. A., Hurtt, G. C., Iida, Y., Ilyina,
T., Luijkx, I. T., Jain, A., Jones, S. D., Kato, E., Kennedy, D.,
Klein Goldewijk, K., Knauer, J., Korsbakken, J. I., Körtzinger,
A., Landschützer, P., Lauvset, S. K., Lefèvre, N., Lienert, S.,
Liu, J., Marland, G., McGuire, P. C., Melton, J. R., Munro, D.
R., Nabel, J. E. M. S., Nakaoka, S.-I., Niwa, Y., Ono, T., Pier-
rot, D., Poulter, B., Rehder, G., Resplandy, L., Robertson, E.,
Rödenbeck, C., Rosan, T. M., Schwinger, J., Schwingshackl,
C., Séférian, R., Sutton, A. J., Sweeney, C., Tanhua, T., Tans,
P. P., Tian, H., Tilbrook, B., Tubiello, F., van der Werf, G. R.,
Vuichard, N., Wada, C., Wanninkhof, R., Watson, A. J., Willis,
D., Wiltshire, A. J., Yuan, W., Yue, C., Yue, X., Zaehle, S., and
Zeng, J.: Global Carbon Budget 2021, Earth Syst. Sci. Data, 14,
1917–2005, https://doi.org/10.5194/essd-14-1917-2022, 2022.

https://doi.org/10.5194/gmd-15-8831-2022 Geosci. Model Dev., 15, 8831–8868, 2022

https://doi.org/10.5194/bg-17-4173-2020
https://doi.org/10.1029/2010GL043181
https://doi.org/10.5194/egusphere-2022-802
https://doi.org/10.1017/9781009157896.007
https://doi.org/10.1017/CBO9781107415324.026
https://doi.org/10.1017/CBO9781107415324.015
https://doi.org/10.1017/9781009157896.017
https://doi.org/10.1017/9781009157896.009
https://doi.org/10.1017/9781009157896.011
https://doi.org/10.5194/essd-14-1917-2022


8866 T. Bossy et al.: Pathfinder v1.0.1

Gasser, T.: tgasser/Pathfinder: v1.0, Zenodo [code],
https://doi.org/10.5281/zenodo.7003849, 2022.

Gasser, T. and Ciais, P.: A theoretical framework for the net land-
to-atmosphere CO2 flux and its implications in the definition of
“emissions from land-use change”, Earth Syst. Dynam., 4, 171–
186, https://doi.org/10.5194/esd-4-171-2013, 2013.

Gasser, T., Ciais, P., Boucher, O., Quilcaille, Y., Tortora, M., Bopp,
L., and Hauglustaine, D.: The compact Earth system model OS-
CAR v2.2: description and first results, Geosci. Model Dev., 10,
271–319, https://doi.org/10.5194/gmd-10-271-2017, 2017.

Gasser, T., Kechiar, M., Ciais, P., Burke, E. J., Kleinen,
T., Zhu, D., Huang, Y., Ekici, A., and Obersteiner, M.:
Path-dependent reductions in CO2 emission budgets caused
by permafrost carbon release, Nat. Geosci., 11, 830–835,
https://doi.org/10.1038/s41561-018-0227-0, 2018.

Gasser, T., Crepin, L., Quilcaille, Y., Houghton, R. A., Ciais, P.,
and Obersteiner, M.: Historical CO2 emissions from land use
and land cover change and their uncertainty, Biogeosciences, 17,
4075–4101, https://doi.org/10.5194/bg-17-4075-2020, 2020.

Geoffroy, O., Saint-Martin, D., Bellon, G., Voldoire, A., Olivié,
D. J., and Tytéca, S.: Transient climate response in a two-layer
energy-balance model. Part II: Representation of the efficacy of
deep-ocean heat uptake and validation for CMIP5 AOGCMs,
J. Climate, 26, 1859–1876, https://doi.org/10.1175/JCLI-D-12-
00196.1, 2013a.

Geoffroy, O., Saint-Martin, D., Olivié, D. J. L., Voldoire, A.,
Bellon, G., and Tytéca, S.: Transient Climate Response in a
Two-Layer Energy-Balance Model. Part I: Analytical Solution
and Parameter Calibration Using CMIP5 AOGCM Experiments,
J. Climate, 26, 1841–1857, https://doi.org/10.1175/JCLI-D-12-
00195.1, 2013b.

Gidden, M. J., Riahi, K., Smith, S. J., Fujimori, S., Luderer, G.,
Kriegler, E., van Vuuren, D. P., van den Berg, M., Feng, L.,
Klein, D., Calvin, K., Doelman, J. C., Frank, S., Fricko, O.,
Harmsen, M., Hasegawa, T., Havlik, P., Hilaire, J., Hoesly, R.,
Horing, J., Popp, A., Stehfest, E., and Takahashi, K.: Global
emissions pathways under different socioeconomic scenarios for
use in CMIP6: a dataset of harmonized emissions trajectories
through the end of the century, Geosci. Model Dev., 12, 1443–
1475, https://doi.org/10.5194/gmd-12-1443-2019, 2019.

Gitz, V. and Ciais, P.: Amplifying effects of land-use change on fu-
ture atmospheric CO2 levels, Global Biogeochem. Cy., 17, 1024,
https://doi.org/10.1029/2002GB001963, 2003.

Goodwin, P., Haigh, I. D., Rohling, E. J., and Slangen,
A.: A new approach to projecting 21st century sea-
level changes and extremes, Earth’s Future, 5, 240–253,
https://doi.org/10.1002/2016EF000508, 2017.

Gulev, S. K., Thorne, P. W., Ahn, J., Dentener, F. J., Domingues,
C. M., Gerland, S., Gong, D., Kaufman, D. S., Nnamchi, H. C.,
Quaas, J., Rivera, J. A., Sathyendranath, S., Smith, S. L., Trewin,
B., von Shuckmann, K., and Vose, R.: Changing State of the
Climate System, Climate Change 2021: The Physical Science
Basis, Contribution of Working Group I to the Sixth Assess-
ment Report of the Intergovernmental Panel on Climate Change,
https://doi.org/10.1017/9781009157896.004, 2021.

Hansen, J., Ruedy, R., Sato, M., and Lo, K.: Global Sur-
face Temperature Change, Rev. Geophys., 5, 1–29,
https://doi.org/10.1029/2010RG000345, 2010.

Harris, C. R., Millman, K. J., Van Der Walt, S. J., Gommers, R., Vir-
tanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith,
N. J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M. H., Brett,
M., Haldane, A., del R’ıo, J. F., Wiebe, M., Peterson, P., G’erard-
Marchant, P., Sheppard, K., Reddy, T., Weckesser, W., Abbasi,
H., Gohlke, C., and Oliphant, T. E.: Array programming with
NumPy, Nature, 585, 357–362, 2020.

Hartin, C. A., Patel, P., Schwarber, A., Link, R. P., and Bond-
Lamberty, B. P.: A simple object-oriented and open-source
model for scientific and policy analyses of the global cli-
mate system – Hector v1.0, Geosci. Model Dev., 8, 939–955,
https://doi.org/10.5194/gmd-8-939-2015, 2015.

He, Y., Trumbore, S. E., Torn, M. S., Harden, J. W., Vaughn, L. J.,
Allison, S. D., and Randerson, J. T.: Radiocarbon constraints im-
ply reduced carbon uptake by soils during the 21st century, Sci-
ence, 353, 1419–1424, 2016.

Hellevang, H. and Aagaard, P.: Constraints on natural global atmo-
spheric CO2 fluxes from 1860 to 2010 using a simplified explicit
forward model, Sci. Rep., 5, 1–12, 2015.

Hoyer, S. and Hamman, J.: xarray: N-D labeled arrays
and datasets in Python, J. Open Res. Soft., 5, 10,
https://doi.org/10.5334/jors.148, 2017.

Huang, B., Menne, M. J., Boyer, T., Freeman, E., Gleason, B. E.,
Lawrimore, J. H., Liu, C., Rennie, J. J., Schreck III, C. J., Sun,
F., Vose, R., Williams, C. N., Yin, X., and Zhang, H.-M.: Un-
certainty estimates for sea surface temperature and land surface
air temperature in NOAAGlobalTemp version 5, J. Climate, 33,
1351–1379, 2020.

Japan Meteorological Agency: Global Average Surface Temper-
ature Anomalies, https://ds.data.jma.go.jp/tcc/tcc/products/gwp/
temp/ann_wld.html, last access: 28 July 2022.

Joos, F., Bruno, M., Fink, R., Siegenthaler, U., Stocker, T. F., Le
Quéré, C., and Sarmiento, J. L.: An efficient and accurate repre-
sentation of complex oceanic and biospheric models of anthro-
pogenic carbon uptake. Tellus B, 48, 397–417, 1996.

Joos, F., Prentice, I. C., Sitch, S., Meyer, R., Hooss, G., Plattner,
G.-K., Gerber, S., and Hasselmann, K.: Global warming feed-
backs on terrestrial carbon uptake under the Intergovernmen-
tal Panel on Climate Change (IPCC) emission scenarios, Global
Biogeochem. Cy., 15, 891–907, 2001.

Kucukelbir, A., Tran, D., Ranganath, R., Gelman, A., and Blei,
D. M.: Automatic differentiation variational inference, J. Mach.
Learn. Res., 18, 430–474, 2017.

Leach, N. J., Nicholls, Z., Jenkins, S., Smith, C. J., Lynch, J., Cain,
M., Wu, B., Tsutsui, J., and Allen, M. R.: GIR v1.0.0: a gener-
alised impulse-response model for climate uncertainty and future
scenario exploration, Geosci. Model Dev. Discuss. [preprint],
https://doi.org/10.5194/gmd-2019-379, 2020.

Lee, J. Y., Marotzke, J., Bala, G., Cao, L., Corti, S., Dunne,
J. P., Engelbrecht, F., Fischer, E., Fyfe, J. C., Jones, C., May-
cock, A., Mutemi, J., Ndiaye, O., Panickal, S., and Zhou, T.:
Future Global Climate: Scenario-Based Projections and Near-
Term Informations, Climate Change 2021: The Physical Science
Basis, Contribution of Working Group I to the Sixth Assess-
ment Report of the Intergovernmental Panel on Climate Change,
https://doi.org/10.1017/9781009157896.006, 2021.

Le Quéré, C., Andrew, R. M., Canadell, J. G., Sitch, S., Kors-
bakken, J. I., Peters, G. P., Manning, A. C., Boden, T. A., Tans,
P. P., Houghton, R. A., Keeling, R. F., Alin, S., Andrews, O. D.,

Geosci. Model Dev., 15, 8831–8868, 2022 https://doi.org/10.5194/gmd-15-8831-2022

https://doi.org/10.5281/zenodo.7003849
https://doi.org/10.5194/esd-4-171-2013
https://doi.org/10.5194/gmd-10-271-2017
https://doi.org/10.1038/s41561-018-0227-0
https://doi.org/10.5194/bg-17-4075-2020
https://doi.org/10.1175/JCLI-D-12-00196.1
https://doi.org/10.1175/JCLI-D-12-00196.1
https://doi.org/10.1175/JCLI-D-12-00195.1
https://doi.org/10.1175/JCLI-D-12-00195.1
https://doi.org/10.5194/gmd-12-1443-2019
https://doi.org/10.1029/2002GB001963
https://doi.org/10.1002/2016EF000508
https://doi.org/10.1017/9781009157896.004
https://doi.org/10.1029/2010RG000345
https://doi.org/10.5194/gmd-8-939-2015
https://doi.org/10.5334/jors.148
https://ds.data.jma.go.jp/tcc/tcc/products/gwp/temp/ann_wld.html
https://ds.data.jma.go.jp/tcc/tcc/products/gwp/temp/ann_wld.html
https://doi.org/10.5194/gmd-2019-379
https://doi.org/10.1017/9781009157896.006


T. Bossy et al.: Pathfinder v1.0.1 8867

Anthoni, P., Barbero, L., Bopp, L., Chevallier, F., Chini, L. P.,
Ciais, P., Currie, K., Delire, C., Doney, S. C., Friedlingstein, P.,
Gkritzalis, T., Harris, I., Hauck, J., Haverd, V., Hoppema, M.,
Klein Goldewijk, K., Jain, A. K., Kato, E., Körtzinger, A., Land-
schützer, P., Lefèvre, N., Lenton, A., Lienert, S., Lombardozzi,
D., Melton, J. R., Metzl, N., Millero, F., Monteiro, P. M. S.,
Munro, D. R., Nabel, J. E. M. S., Nakaoka, S., O’Brien, K.,
Olsen, A., Omar, A. M., Ono, T., Pierrot, D., Poulter, B., Rö-
denbeck, C., Salisbury, J., Schuster, U., Schwinger, J., Séférian,
R., Skjelvan, I., Stocker, B. D., Sutton, A. J., Takahashi, T., Tian,
H., Tilbrook, B., van der Laan-Luijkx, I. T., van der Werf, G.
R., Viovy, N., Walker, A. P., Wiltshire, A. J., and Zaehle, S.:
Global Carbon Budget 2016, Earth Syst. Sci. Data, 8, 605–649,
https://doi.org/10.5194/essd-8-605-2016, 2016.

Liddicoat, S. K., Wiltshire, A. J., Jones, C. D., Arora, V. K.,
Brovkin, V., Cadule, P., Hajima, T., Lawrence, D. M., Pongratz,
J., Schwinger, J., Séférian, R., Tjiputra, J. F., and Ziehn, T.: Com-
patible Fossil Fuel CO2 Emissions in the CMIP6 Earth System
Models’ Historical and Shared Socioeconomic Pathway Exper-
iments of the Twenty-First Century, J. Climate, 34, 2853–2875,
2021.

MacDougall, A. H.: Estimated effect of the permafrost carbon
feedback on the zero emissions commitment to climate change,
Biogeosciences, 18, 4937–4952, https://doi.org/10.5194/bg-18-
4937-2021, 2021.

Meehl, G. A., Senior, C. A., Eyring, V., Flato, G., Lamarque, J.-F.,
Stouffer, R. J., Taylor, K. E., and Schlund, M.: Context for in-
terpreting equilibrium climate sensitivity and transient climate
response from the CMIP6 Earth system models, Sci. Adv., 6,
eaba1981, https://doi.org/10.1126/sciadv.aba1981, 2020.

Meinshausen, M., Raper, S. C. B., and Wigley, T. M. L.: Em-
ulating coupled atmosphere-ocean and carbon cycle models
with a simpler model, MAGICC6 – Part 1: Model descrip-
tion and calibration, Atmos. Chem. Phys., 11, 1417–1456,
https://doi.org/10.5194/acp-11-1417-2011, 2011.

Mengel, M., Levermann, A., Frieler, K., Robinson, A., Marzeion,
B., and Winkelmann, R.: Future sea level rise constrained by ob-
servations and long-term commitment, P. Natl. Acad. Sci. USA,
113, 2597–2602, 2016.

Morice, C. P., Kennedy, J. J., Rayner, N. A., Winn, J., Hogan, E.,
Killick, R., Dunn, R., Osborn, T., Jones, P., and Simpson, I.:
An updated assessment of near-surface temperature change from
1850: The HadCRUT5 data set, J. Geophys. Res.-Atmos., 126,
e2019JD032361, https://doi.org/10.1029/2019JD032361, 2021.

Myhre, G., Shindell, D., Bréon, F.-M., Collins, W., Fuglestvedt,
J., Huang, J., Koch, D., Lamarque, J.-F., Lee, D., Men-
doza, B., Nakajima, T., Robock, A., Stephens, G., Take-
mura, T., and Zhang, H.: AR5 – Working Group 1, Chap-
ter 8: Anthropogenic and Natural Radiative Forcing – Contri-
bution of Working Group I, Cambridge University Press, 23,
https://doi.org/10.1017/CBO9781107415324.018, 2013.

National Academies of Sciences and Medicine: Valuing climate
damages: updating estimation of the social cost of carbon diox-
ide, National Academies Press, https://doi.org/10.17226/24651,
2017.

Nicholls, Z., Meinshausen, M., Lewis, J., Corradi, M. R., Dorheim,
K., Gasser, T., Gieseke, R., Hope, A. P., Leach, N., McBride,
L. A., Quilcaille, Y., Rogelj, J., Salawitch, R. J., Samset, B.
H., Sandstad, M., Shiklomanov, A., Skeie, R. B., Smith, C.

J., Smith, S. J., Su, X., Tsutsui, J., Vega-Westhoff, B., and
Woodard, D. L.: Reduced complexity Model Intercomparison
Project Phase 2: Synthesizing Earth system knowledge for prob-
abilistic climate projections, Earth’s Future, 9, e2020EF001900,
https://doi.org/10.1029/2020EF001900, 2021.

Nicholls, Z. R. J., Meinshausen, M., Lewis, J., Gieseke, R., Dom-
menget, D., Dorheim, K., Fan, C.-S., Fuglestvedt, J. S., Gasser,
T., Golüke, U., Goodwin, P., Hartin, C., Hope, A. P., Kriegler,
E., Leach, N. J., Marchegiani, D., McBride, L. A., Quilcaille, Y.,
Rogelj, J., Salawitch, R. J., Samset, B. H., Sandstad, M., Shiklo-
manov, A. N., Skeie, R. B., Smith, C. J., Smith, S., Tanaka, K.,
Tsutsui, J., and Xie, Z.: Reduced Complexity Model Intercom-
parison Project Phase 1: introduction and evaluation of global-
mean temperature response, Geosci. Model Dev., 13, 5175–5190,
https://doi.org/10.5194/gmd-13-5175-2020, 2020.

Nordhaus, W. D.: Revisiting the social cost of car-
bon, P. Natl. Acad. Sci. USA, 114, 1518–1523,
https://doi.org/10.1073/pnas.1609244114, 2017.

Parkes, D. and Marzeion, B.: Twentieth-century contribution to sea-
level rise from uncharted glaciers, Nature, 563, 551–554, 2018.

Pérez, F. and Granger, B. E.: IPython: a System for Inter-
active Scientific Computing, Comput. Sci. Eng., 9, 21–29,
https://doi.org/10.1109/MCSE.2007.53, 2007.

Riahi, K., van Vuuren, D. P., Kriegler, E., Edmonds, J., O’Neill,
B. C., Fujimori, S., Bauer, N., Calvin, K., Dellink, R., Fricko,
O., Lutz, W., Popp, A., Cuaresma, J. C., KC, S., Leimbach, M.,
Jiang, L., Kram, T., Rao, S., Emmerling, J., Ebi, K., Hasegawa,
T., Havlik, P., Humpenöder, F., Da Silva, L. A., Smith, S., Ste-
hfest, E., Bosetti, V., Eom, J., Gernaat, D., Masui, T., Rogelj,
J., Strefler, J., Drouet, L., Krey, V., Luderer, G., Harmsen, M.,
Takahashi, K., Baumstark, L., Doelman, J. C., Kainuma, M.,
Klimont, Z., Marangoni, G., Lotze-Campen, H., Obersteiner, M.,
Tabeau, A., and Tavoni, M.: The Shared Socioeconomic Path-
ways and their energy, land use, and greenhouse gas emissions
implications: An overview, Glob. Environ. Chang., 42, 153–168,
https://doi.org/10.1016/j.gloenvcha.2016.05.009, 2017.

Ricciuto, D. M., Davis, K. J., and Keller, K.: A Bayesian calibration
of a simple carbon cycle model: The role of observations in es-
timating and reducing uncertainty, Global Biogeochem. Cy., 22,
GB2030, https://doi.org/10.1029/2006GB002908, 2008.

Roe, G. H. and Baker, M. B.: Why is climate sensitivity so unpre-
dictable?, Science, 318, 629–632, 2007.

Rohde, R.: Comparison of Berkeley Earth, NASA GISS, and
Hadley CRU averaging techniques on ideal synthetic data,
Berkeley Earth Memo, January, https://static.berkeleyearth.org/
memos/robert-rohde-memo.pdf (last access: 5 December 2022),
2013.

Rohde, R., Muller, R., Jacobsen, R., Perlmutter, S., Rosenfeld, A.,
Wurtele, J., Curry, J., Wickham, C., and Mosher, S.: Berkeley
Earth temperature averaging process, Geoinformatics & Geo-
statistics: An Overview, 1, 1–13, 2013.

Salvatier, J., Wiecki, T. V., and Fonnesbeck, C.: Probabilistic pro-
gramming in Python using PyMC3, PeerJ Comput. Sci., 2, e55,
https://doi.org/10.7287/peerj.preprints.1686v1, 2016.

Sitch, S., Friedlingstein, P., Gruber, N., Jones, S. D., Murray-
Tortarolo, G., Ahlström, A., Doney, S. C., Graven, H., Heinze,
C., Huntingford, C., Levis, S., Levy, P. E., Lomas, M., Poul-
ter, B., Viovy, N., Zaehle, S., Zeng, N., Arneth, A., Bonan,
G., Bopp, L., Canadell, J. G., Chevallier, F., Ciais, P., Ellis,

https://doi.org/10.5194/gmd-15-8831-2022 Geosci. Model Dev., 15, 8831–8868, 2022

https://doi.org/10.5194/essd-8-605-2016
https://doi.org/10.5194/bg-18-4937-2021
https://doi.org/10.5194/bg-18-4937-2021
https://doi.org/10.1126/sciadv.aba1981
https://doi.org/10.5194/acp-11-1417-2011
https://doi.org/10.1029/2019JD032361
https://doi.org/10.1017/CBO9781107415324.018
https://doi.org/10.17226/24651
https://doi.org/10.1029/2020EF001900
https://doi.org/10.5194/gmd-13-5175-2020
https://doi.org/10.1073/pnas.1609244114
https://doi.org/10.1109/MCSE.2007.53
https://doi.org/10.1016/j.gloenvcha.2016.05.009
https://doi.org/10.1029/2006GB002908
https://static.berkeleyearth.org/memos/robert-rohde-memo.pdf
https://static.berkeleyearth.org/memos/robert-rohde-memo.pdf
https://doi.org/10.7287/peerj.preprints.1686v1


8868 T. Bossy et al.: Pathfinder v1.0.1

R., Gloor, M., Peylin, P., Piao, S. L., Le Quéré, C., Smith, B.,
Zhu, Z., and Myneni, R.: Recent trends and drivers of regional
sources and sinks of carbon dioxide, Biogeosciences, 12, 653–
679, https://doi.org/10.5194/bg-12-653-2015, 2015.

Slangen, A., Church, J. A., Agosta, C., Fettweis, X., Marzeion, B.,
and Richter, K.: Anthropogenic forcing dominates global mean
sea-level rise since 1970, Nat. Clim. Change, 6, 701–705, 2016.

Smith, C., Nicholls, Z. R. J., Armour, K., Collins, W., Forster,
P., M. M., Palmer, M. D., and Watanabe, M.: The Earth’s En-
ergy Budget, Climate Feedbacks, and Climate Sensitivity Sup-
plementary Material, Climate Change 2021: The Physical Sci-
ence Basis, Contribution of Working Group I to the Sixth Assess-
ment Report of the Intergovernmental Panel on Climate Change,
https://www.ipcc.ch/ (last access: 5 December 2022), 2021.

Smith, C. J., Forster, P. M., Allen, M., Leach, N., Mil-
lar, R. J., Passerello, G. A., and Regayre, L. A.: FAIR
v1.3: a simple emissions-based impulse response and car-
bon cycle model, Geosci. Model Dev., 11, 2273–2297,
https://doi.org/10.5194/gmd-11-2273-2018, 2018.

Strassmann, K. M. and Joos, F.: The Bern Simple Climate
Model (BernSCM) v1.0: an extensible and fully documented
open-source re-implementation of the Bern reduced-form
model for global carbon cycle–climate simulations, Geosci.
Model Dev., 11, 1887–1908, https://doi.org/10.5194/gmd-11-
1887-2018, 2018.

Takahashi, T., Olafsson, J., Goddard, J. G., Chipman, D. W., and
Sutherland, S.: Seasonal variation of CO2 and nutrients in the
high-latitude surface oceans: A comparative study, Global Bio-
geochem. Cy., 7, 843–878, 1993.

Tans, P. and Keeling, R.: NOAA, ESRL, http://www.esrl.noaa.gov/
gmd/ccgg/trends/ (last access: 5 December 2022), 2010.

Theano Development Team: Theano: A Python framework for
fast computation of mathematical expressions, arXiv [preprint],
https://doi.org/10.48550/arXiv.1605.02688, 2016.

Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy,
T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W.,
Bright, J., van der Walt, S. J., Brett, M., Wilson, J., Millman,
K. J., Mayorov, N., Nelson, A. R. J., Jones, E., Kern, R., Larson,
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