

Supplement of

Inclusion of a cold hardening scheme to represent frost tolerance is essential to model realistic plant hydraulics in the Arctic–boreal zone in CLM5.0-FATES-Hydro

Marius S. A. Lambert et al.

Correspondence to: Marius S. A. Lambert (marius.lambert@geo.uio.no)

The copyright of individual parts of the supplement might differ from the article licence.

Figure S1: Gross primary productivity for needleleaf evergreen trees at the sites of a) Farstanäs, and b) Spasskaya Pad, during the period 2000-2008. The default simulation is shown in red, and the hardening simulation is shown in blue.

Figure S2: Cumulative total precipitation for needleleaf evergreen trees at the sites of a) Farstanäs, and b) Spasskaya Pad, during the period 2000-2008. The default simulation is shown in red, and the hardening simulation is shown in blue.

Figure S3: Living biomass for broadleaf deciduous trees at the sites of a) Farstanäs, and b) Spasskaya Pad, during the period 1921-2011 (atmospheric forcing: 3*[1981-2011]). The default simulation is shown in red, and the hardening simulation is shown in blue.

Figure S4: Plant water fluxes from dehardening and maximum hardiness level sensitivity analysis simulations for needleleaf evergreen trees at the sites of: Left) Farstanäs, and Right) Spasskaya Pad, during the period 2002/09-2004/07. Top: transpiration, middle: root water uptake, and bottom: stored plant water.

Figure S5: Mortality rates from dehardening and maximum hardiness level sensitivity analysis simulations for needleleaf evergreen trees at the sites of: Left) Farstanäs, and Right) Spasskaya Pad, during the period 2002/09-2004/07. Top: hydraulic failure mortality, and bottom: carbon starvation mortality.

3

20 Figure S6: Trade-off between hydraulic failure mortality and gross primary productivity for evergreen needleleaf trees at Spasskaya Pad for 5 dehardening sensitivity experiments. The mortality rates are averaged over the 30 year period 1981 to 2011.

Figure S7: Trade-off between hydraulic failure mortality and carbon starvation mortality for evergreen needleleaf trees at Spasskaya Pad for 5 maximum hardiness level sensitivity experiments. The mortality rates are averaged over the 30 year period 1981 to 2011.

Figure S8: Absorbing root water potential from PV curve sensitivity analysis simulations for needleleaf evergreen trees at the sites of a) Farstanäs, and b) Spasskaya Pad, during the period 2002/09-2004/07.

Figure S9: Plant water fluxes from Kmax sensitivity analysis simulations for needleleaf evergreen trees at the sites of: Left) Farstanäs, and Right) Spasskaya Pad, during the period 2002/09-2004/07. Top: transpiration, middle: root water uptake, and bottom: stored plant water.

Figure S10: Plant water fluxes from g0 sensitivity analysis simulations for needleleaf evergreen trees at the sites of: Left) Farstanäs, and Right) Spasskaya Pad, during the period 2002/09-2004/07. Top: transpiration, middle: root water uptake, and bottom: stored plant water.

40 Figure S11: Leaf water potential from g0 sensitivity analysis simulations for needleleaf evergreen trees at the sites of a) Farstanäs, and b) Spasskaya Pad, during the period 2002/09-2004/07.

Figure S12: Mortality rates from hydraulic failure mortality sensitivity analysis simulations for needleleaf evergreen trees at the sites of: Left) Farstanäs, and Right) Spasskaya Pad, during the period 2002/09-2004/07. Top: hydraulic failure mortality, and bottom: carbon starvation mortality.

Figure S13: Carbon starvation mortality rate from carbon starvation mortality sensitivity analysis simulations for needleleaf evergreen trees at the sites of a) Farstanäs, and b) Spasskaya Pad, during the period 2002/09-2004/07.

Figure S14: Target hardiness and hardiness level for needleleaf evergreen trees at the sites of a) Farstanäs, and b) Spasskaya Pad, during the period 2002/09-2004/07.

Parameters for standard runs	Description	Value and unit
Parameters for ha	ardiness model	
H_{min}	Minimum hardiness level ^a	−2 °C
H _{max}	Maximum hardiness level ^c	−30 °C
S _{aut}	Start of autumn (start of	Julian day 210
	hardening) ^a	
S _{spr}	Start of spring (start of	Julian day 1
	dehardening) for Southern	
	Sweden ^a	
H_t^*	Target hardiness level ^a	F (daily mean temperature)
r_{h}^{*}	Rate of hardening ^a	0–1 °C/day
r_{dh}^*	Rate of dehardening ^a	0–5 °C/day
W_d	Winter dormancy ^a	From days 260 to 365
Parameters for ca	alculation of the growth reducing f	factor
b	Slope parameter ^b	0.2 °C ^{−1}
LT50	"Lethal temperature" ^c	20 °C

Table S1: Parameters for the frost hardiness and frost damage model (Rammig et al. 2010).

55 ^a Values from Jönsson et al. (2004).

^b Values from Kellomäki et al. (1995).

^c Values from Bigras and Colombo (2000).