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Abstract. The lightning assimilation (LTA) technique in the
Kain–Fritsch convective parameterization in the Weather Re-
search and Forecasting (WRF) model has been updated and
applied to continental and hemispheric simulations using
lightning flash data obtained from the National Lightning
Detection Network (NLDN) and the World Wide Lightning
Location Network (WWLLN), respectively. The LTA tech-
nique uses lightning data to trigger the Kain–Fritsch con-
vective parameterization via realistic temperature and mois-
ture perturbations. The impact of different values for cumu-
lus parameters associated with the Kain–Fritsch scheme on
simulations with and without LTA were evaluated for both
the continental and the hemispheric simulations. Compar-
isons to gauge-based rainfall products and near-surface mete-
orological observations indicated that the LTA improved the
model’s performance for most variables. The simulated pre-
cipitation with LTA, using WWLLN lightning flashes in the
hemispheric applications, was significantly improved over
the simulations without LTA when compared to precipita-
tion from satellite observations in the equatorial regions. The
simulations without LTA showed significant sensitivity to the
cumulus parameters (i.e., user-toggled switches) for monthly
precipitation that was as large as 40 % during convective sea-
sons for monthly mean daily precipitation. With LTA, the dif-
ferences in simulated precipitation due to the different cumu-
lus parameters were minimized. The horizontal grid spacing
of the modeling domain strongly influenced the LTA tech-
nique and the predicted total precipitation, especially in the

coarser scales used for the hemispheric simulation. The user-
definable cumulus parameters and domain resolution mani-
fested the complexity of convective process modeling both
with and without LTA. These results revealed sensitivities to
domain resolution, geographic heterogeneity, and the source
and quality of the lightning dataset.

1 Introduction

Thunderstorms are natural phenomena that have intrigued
human imagination for thousands of years. Although early
efforts in atmospheric science and modeling were focused
on understanding and forecasting thunderstorms, they re-
main difficult to accurately simulate in meteorological mod-
els. A variety of lightning parameterization schemes have
been developed in regional and global atmospheric models
(Price and Rind, 1992; Romps et al., 2014; Finney et al.,
2014; Lopez, 2016), based on various physical, dynamical,
and cloud properties, but these schemes marginally repro-
duce the spatial and temporal variability in lightning flashes
with varying success over different regions of the globe.
With the advancement of lightning detection technologies
both at ground level and via satellite in the past decades,
observed lightning flashes with coverage from regional to
global scales are available and can be used for lightning
assimilation (LTA). A robust LTA can improve convective
simulations in meteorological models for retrospective atmo-
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spheric simulations (e.g., Heath et al., 2016; Marchand and
Fuelberg, 2015) or help generate better initial fields for real-
time weather forecasting (e.g., Lagouvardos et al., 2013; Gi-
annaros et al., 2016; Fierro et al., 2012, 2015) by pinpointing
where deep convection occurred and altering the meteorol-
ogy in what is generally referred to as a hot start (Gan et
al., 2021). In addition, lightning also profoundly impacts the
chemical composition of the troposphere by generating and
releasing nitrogen oxides (LNOx) that can significantly al-
ter ground-level ozone (O3) concentrations in some regions
(Kang et al., 2020). Because meteorological models drive air
quality simulations, improving meteorological variables with
LTA will cascade to chemistry fields simulated by air quality
models (Allen et al., 2012; Kang et al., 2019a, b). It is espe-
cially critical when LNOx emissions are included in air qual-
ity models, since LTA is designed to align LNOx emissions
with the time and location at which atmospheric convection
occurred in the model, so the subsequent chemistry reactions
and transport will more accurately reflect the emissions from
lightning (Kang et al., 2019a, b).

Heath et al. (2016) implemented an LTA technique in the
Kain–Fritsch (KF) convective scheme (Kain, 2004) in the
Weather Research and Forecasting (WRF) model, which ex-
tended the works of Rogers et al. (2000), Mansell et al.
(2007), Lagouvardos et al. (2013), and Giannaros et al.
(2016). In general, the lightning assimilation approach is
straightforward, activating deep convection where lightning
is observed and only allowing shallow convection where
it is not. Specifically, the LTA technique uses temperature
and moisture perturbations to trigger KF deep convection
where lightning is observed, resulting in a parameterized
cloud with realistic characteristics based on the local envi-
ronment and our understanding of lightning-producing con-
vective clouds. It was tested using WRFv3.8 simulations for
several months in 2011 using lightning observations from
the National Lightning Detection Network (NLDN) over
the contiguous United States (CONUS). It was found that
the simulation of warm-season rainfall was substantially im-
proved, and other near-surface meteorological variables were
clearly improved in retrospective WRF applications. The
LTA technique has been implemented in subsequent WRF
releases (not publicly available yet) and applied in many
meteorology and air quality studies over the CONUS (e.g.,
U.S. EPA, 2019; Appel et al., 2021). Although using LTA
improved the predicted meteorological variables, some oc-
casional unwanted departures from base model predictions
without LTA occurred. Most commonly, LTA resulted in a
low bias in summertime rainfall in some regions (U.S. EPA,
2019).

For this reason, it is of interest to investigate two
parameters associated with the KF convective scheme
with different optional values, which are specified in the
WRF runtime name list input file and are often en-
countered by WRF users (https://www2.mmm.ucar.edu/
wrf/users/docs/user_guide_v4/contents.html, last access: 7

November 2022). One parameter is called kfeta_trigger (also
referred to as trigger, for simplicity, in this paper), which
controls the conditions to determine how the KF convective
scheme is triggered with three optional values, i.e, 1, the de-
fault value, 2, the moisture-advection-based trigger (only for
ARW – the advanced research WRF dynamical solver), and
3, the relative humidity (RH)-dependent additional pertur-
bation to option 1 (not tested). Another parameter is called
cudt (namely cumulus time interval, delta t), and its value
determines the minutes between cumulus physics calls (here
it is the KF scheme). The default value of 0 indicates that
the cumulus physics is called at every model step, and any
non-zero value specifies the interval (min) that the cumulus
physics is called (for example, cudt= 10 means that the cu-
mulus physics is called every 10 min). Even though there are
some discussions and recommendations regarding the choice
of these parameter values through online forums or the
WRF user mailing list (e.g., https://forum.mmm.ucar.edu/,
last access: 7 November 2022; https://wrfems.info/, last ac-
cess: 9 November 2022; https://www.epa.gov/sites/default/
files/2017-02/documents/wrf_with_ltga_userguide.pdf, last
access: 9 November 2022), there is no literature evaluating
how these parameter values impact model performance when
LTA is used.

The applications and evaluations of the LTA technique
were limited to the CONUS, reflecting the areal coverage
of NLDN (Murphy et al., 2021). As the spatial applications
of atmospheric composition modeling are expanded from re-
gional to hemispheric and global scales and new lightning
datasets are available, there is a strong need to examine how
this LTA technique performs at these larger scales when
lightning flash data from a less accurate detection network
are used. Thus, lightning flashes from the World Wide Light-
ning Location Network (WWLLN, operated by the Univer-
sity of Washington; http://www.wwlln.com, last access: 7
November 2022) is a suitable candidate because it has global
coverage, albeit that its detection efficiency is lower than the
> 95 % of NLDN for cloud-to-ground (CG) flashes (Abarca
et al., 2010).

Our research has multiple objectives based on the afore-
mentioned open research needs. We aim to (1) assess the im-
pact of the parameter values associated with the KF convec-
tive scheme on WRF performance over the CONUS domain
without LTA (base case) and with LTA using lightning flashes
from NLDN, (2) examine the LTA in WRF using lightning
flashes from WWLLN and compare to the simulations with
NLDN lightning flashes, and (3) apply LTA to WRF simu-
lations over the Northern Hemisphere and evaluate the per-
formance in terms of precipitation and near-surface meteo-
rological variables. In Sect. 2, we describe the updates made
to the initial LTA technique (Heath et al., 2016). Section 3
provides the detailed data and methodologies of the model
simulations and their evaluation. Section 4 presents our anal-
ysis on the impact of parameters with KF convective schemes
with and without lightning assimilation over CONUS using
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lightning flashes from NLDN and WWLLN. In Sect. 5, we
analyze the use of lightning flashes from WWLLN for LTA
and evaluate WRF simulations with and without LTA over
the Northern Hemisphere. And we conclude with key find-
ings and recommendations in Sect. 6.

2 Updates on the LTA technique

The lightning assimilation used here is based on Heath et al.
(2016), and a full description of the method can be found in
that paper. Here, we provide only the essential details along
with recent modifications to the scheme.

First, the lightning data (WWLLN or NLDN) are binned to
the WRF domain in both time and space. The temporal bin-
ning is done every 30 min and includes lightning data from
−10 to +20 min of the current time. The spatial regridding
searches for a lightning strike within each grid box (using the
staggered grid edge coordinates) within each time bin. This
process creates a new lightning file with the same horizontal
dimensions as the WRF domain filled with zeros (no light-
ning) or ones (lightning) at each 30 min time step. During the
WRF simulation, if lightning is present, the scheme first goes
through its standard updraft calculations, except that it uses
the layer with the greatest moist static energy as its updraft
source layer (USL). If the resulting cloud does not meet the
criteria for deep convection, 0.1 gkg−1 of water vapor and
0.1 K are incrementally added to the USL until deep convec-
tion is forced. In the original Heath et al. (2016) scheme, only
moisture was added to the USL. We have included tempera-
ture perturbations to further promote activating deep convec-
tion in these grid points with lightning.

In the unmodified KF scheme, a cloud must exceed a min-
imum depth (as a function of cloud base temperature) to sat-
isfy the deep convection criteria. Specifically, a cloud base
temperature greater than 20 ◦C must have a cloud greater
than 4 km deep. For a cloud base temperature less than 0 ◦C,
the cloud depth only needs to be 2 km. For cloud bases be-
tween 0 and 20 ◦C, the minimum cloud depth is defined as
2000+ 100TLCL, where TLCL is the temperature at the lifted
condensation level (LCL; Kain, 2004). Heath et al. (2016)
modified this depth for lightning assimilation to be more con-
sistent with lightning-producing storms. Specifically, within
WRF, storms with a base temperature greater than or equal
to 20 ◦C must have a cloud depth of at least 6 km, with a
cloud top temperature less than −20 ◦C. Similarly, in the
original model in Heath et al. (2016), storms with a cloud
base temperature less than 20 ◦C must have a cloud depth of
at least 4 km and a cloud top temperature less than −20 ◦C.
These criteria were set to ensure that subgrid deep convec-
tive clouds were deep enough to have a mixed-phase layer to
support lightning (e.g., Mansell et al., 2007; Bruning et al.,
2014; Preston and Fuelberg, 2015). In this study, we slightly
modified the scheme to require that the cloud top is at least
one model level above the−20 ◦C level, ensuring that cloud-

top temperatures are less than −20 ◦C (e.g., Stolzenburg and
Marshall, 2009). The prior limit at −20 ◦C could inadver-
tently weaken simulated deep convective clouds, which may
contribute to the dry bias in earlier applications of lightning
assimilation approaches (U.S. EPA, 2019).

In Heath et al. (2016), if deep convection could not be
achieved after incrementally adding up to 1 gkg−1 to the
USL (which is now 1 gkg−1 and 1 K in our update), then no
further action was taken, and deep convection was not acti-
vated by KF. However, to increase the realism of the scheme
and increase the odds of deep convection the next time the
scheme is called, we have updated the approach as follows.
If a deep convective cloud cannot be activated, then the
tallest cloud created is passed into the KF shallow convection
scheme. In the KF scheme, shallow clouds are re-diagnosed
each time the scheme is called. For example, suppose a shal-
low cloud is generated at t = 0, and KF is called at 5 min
intervals. In that case, at the t = 5 min call, KF would deter-
mine if a shallow cloud is still present. Thus, the cloud can
evolve so that, at t = 5 min, it could have slightly different
characteristics than the one diagnosed at t = 0. This allows
shallow clouds to grow, decay, or persist at short timescales.

Therefore, if the LTA method cannot trigger deep convec-
tion, the shallow cloud that is generated within WRF can
precondition the atmosphere, thus increasing the likelihood
of deep convection the next time the KF scheme with LTA is
called. Therefore, these refinements to the LTA scheme in KF
more closely replicate how convective initiation is observed
in nature, where shallow cumulus and congestus clouds pre-
condition the environment prior to deep convection initiation.

Finally, at grid points without observed lightning, deep
convection is suppressed in WRF, and only the shallow por-
tion of KF is allowed to run (this is referred to as the “Shal-
lowOnly” method). Because convective clouds in nature can
form and precipitate without generating lightning, this sup-
pression technique serves as a realistic approach to reproduce
nature given the constraints of the KF parameterization.

3 Data and methodology

3.1 Lightning flash data

Lightning flash data from two ground-based lightning detec-
tion networks were used for the assimilation using the LTA
technique in this study. The NLDN provides cloud-to-ground
lightning observations with a detection efficiency of > 95 %
and a location accuracy of about 150 m (Murphy et al., 2021)
over the contiguous U.S. (CONUS). The WWLLN provides
global lightning data with lower detection efficiency and lo-
cation accuracy (Abarca et al., 2010; Rudlosky and Shea,
2013; Burgesser, 2017) compared to NLDN and the Light-
ning Imaging Sensor (LIS) observations (Mach et al., 2007).
Since WWLLN has global coverage, even with its relatively
lower detection efficiency and location accuracy compared
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to NLDN, it could be a good option for applications beyond
CONUS. Figure 1 shows how the average lightning flash rate
(flashes km−2 h−1) from WWLLN compares to NLDN dur-
ing July and September 2016 when hourly lightning flash
counts are gridded into the CONUS 12 km grid cells.

As shown in Fig. 1, the lightning flash rates in NLDN
are much higher than those in WWLLN, especially during
July and over the land, and this is generally true (not shown)
that NLDN reported more lightning flashes than WWLLN
during warm months over land. The differences are much
smaller during cool months and over the coastal regions
where NLDN has coverage. Note that the absolute difference
in flash count may not necessarily translate proportionally
into convective activities in terms of LTA because the LTA
technique, as described in Heath et al. (2016), depends on
the detection of lightning occurrence (binary “yes” or “no”
situation), and not the actual flash count, in a specific time
interval at a grid cell.

3.2 Precipitation data

The daily precipitation from the Parameter-elevation
Regressions on Independent Slopes Model (PRISM)’s
high-resolution spatial climate data for the United States
(https://climatedataguide.ucar.edu/climate-data/prism-high-
resolution-spatial-climate-data-united-states-maxmin-temp-
dewpoint, last access: 7 November 2022) is used to eval-
uate WRF-simulated precipitation over the CONUS, and
the NOAA Climate Prediction Center (CPC)’s global
unified gauge-based analysis of daily precipitation (https:
//psl.noaa.gov/data/gridded/data.cpc.globalprecip.html, last
access: 7 November 2022) product is employed to assess
WRF’s hemispheric precipitation predictions. The daily total
PRISM precipitation data are available at 4 km horizontal
grid spacing over the CONUS, and the annual CPC precip-
itation (partitioned into daily totals) is available globally
at a 0.5◦ latitude and × 0.5◦ longitude grid (720× 360)
resolution. These datasets were regridded to the WRF
modeling domains for the 12 km CONUS and the 108 km
Northern Hemisphere to pair with model simulations in
time and space. To assess the simulated precipitation over
the oceans, especially in the tropical regions where no
gauge-based measurement is available, products from the
Global Precipitation Measurement (GPM; Huffman et al.,
2015; Asong et al., 2017), a joint mission co-led by NASA
and the Japan Aerospace Exploration Agency (JAXA) and
comprised of an international network of satellites that
provide the next-generation global observations of rain
and snow, are employed. The Integrated Multi-satellitE
Retrievals for GPM (IMERG) long-term precipitation
data products (https://arthurhouhttps.pps.eosdis.nasa.gov/
gpmdata/YYYY/MM/DD/imerg/, last access: 7 November
2022; registration is required for access) cover the entire
globe with a 0.1◦ latitude and × 0.1◦ longitude grid res-
olution. To compare with WRF-simulated hemispheric

precipitation, the daily mean precipitation data from the
IMERG V06 dataset (https://gpm.nasa.gov/data/directory,
last access: 7 November 2022) from 2016 is regridded
onto the hemispheric WRF domain. The research-quality
gridded IMERG V06 dataset Final Run product estimates
precipitation using quasi-Lagrangian time interpolation,
gauge data, and climatological adjustment.

3.3 Ground-based meteorological data

The impacts of user-definable parameter values associated
with KF and datasets for LTA were quantified for simu-
lated near-surface meteorological variables such as precip-
itation, 2 m temperature (T 2), water vapor mixing ratio,
wind speed, and wind direction. The simulated meteoro-
logical fields from WRF are compared against observations
from NOAA National Centers for Environmental Informa-
tion (NCEI) land-based stations, which are archived from
data collected globally (https://www.ncei.noaa.gov/products/
land-based-station, last access: 7 November 2022). The At-
mospheric Model Evaluation Tool (AMET; Appel et al.,
2011) is used to pair surface observations with model-
predicted values in both space (bilinear interpolation) and
time (h).

3.4 Model configurations and simulation details

The WRF model (Skamarock and Klemp, 2008) ver-
sion 4.1.1 (WRFv411; https://github.com/wrf-model/WRF/
releases/tag/v4.1, last access: 7 November 2022), with LTA
updates to Heath et al. (2016; as described in Sect. 2) is used
to perform simulations over the CONUS and the hemispheric
domains. The CONUS domain is configured with 36 vertical
levels and 12 km horizontal grid spacing with 472×312 grid
points. The hemispheric domain is configured with 45 verti-
cal levels and 108 km horizontal grid spacing, with 200×200
grid points, that covers the entire Northern Hemisphere and
the northern border of the Southern Hemisphere along the
Equator. The simulation period for CONUS simulations is
from April to July in 2016, with a 10 d spin-up period from
22 March; for the hemispheric domain, annual simulations
for 2016 are performed. Our analysis focuses on July, when
convective activities are often the most prevalent over the
CONUS; other months are examined in the hemispheric sim-
ulations which simulate the year-round convective activi-
ties in the tropics. The detailed configurations of cloud mi-
crophysics, land surface parameters, radiation schemes, and
four-dimensional data assimilation (FDDA) are the same as
described in Heath et al. (2016), and the sample WRF name
list input files for both the CONUS and hemispheric sim-
ulations are included in the Supplement (Tables S1 and S2).
Data assimilation in the form of FDDA more specifically fol-
lows Heath et al. (2016), with updates noted in Gilliam et
al. (2021), for the hemispheric domain where ∼ 28 km Na-
tional Centers for Environmental Prediction (NCEP) Global
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Figure 1. The mean hourly lightning flash rate from NLDN and WWLLN over the 12 km CONUS domain in July and September 2016.

Forecast System (GFS) analyses were used to nudge tropo-
spheric temperature, moisture, and wind above the planetary
boundary layer. For the CONUS domain, the same nudging
was applied, but 12 km North American Mesoscale (NAM)
model analyses were leveraged. These two analysis datasets
are a blend of a short-term forecast with a comprehensive set
of surface, upper-air, radar, aircraft, satellite, and other obser-
vations, like sea surface temperature, that represent the best
estimate of the state of the atmosphere at any given time.

The KF scheme includes two options to trigger convec-
tive activity. Trigger 1 is based on a mass-conservative cloud
model, which includes parameterized moist downdrafts, en-
trainment, and detrainment at the cloud edge (Kain and
Fritsch, 1990, 1993) and allows interaction between cloud
and environment, and it is the default option for most appli-
cations. Trigger 2 is an alternate option based on Ma and Tan
(2009) and is a moisture-advection-modulated trigger func-
tion to improve results in subtropical regions when large-
scale forcing is weak. In addition, the KF scheme is called
by default at every time step, but it can be configured to
only update convective parameters on a user-definable time
increment. In this study, sensitivities are conducted with the
version of the KF trigger (i.e., Trig1 and Trig2; abbreviated
as K1 and K2 in Table 1, respectively) and the frequency
at which KF is called (i.e., cudt). Two sensitivities on cudt
were performed, i.e., one where KF is called at each model

integration time step (i.e., “Cudt0”; abbreviated as C0 in Ta-
ble 1), and the other where KF is updated after every 10 min
of integration time (i.e., “Cudt10”; abbreviated as C10 in Ta-
ble 1). The time step is 1 min (Table S1) and 3 min (Table S2)
for the CONUS and hemispheric WRF simulations, respec-
tively. The sensitivities to KF trigger and update frequency
are combined in a matrix of simulations that also are con-
ducted with/without LTA, and they are listed in Table 1. All
eight simulations are performed for both the CONUS and
the hemispheric domains. For LTA cases, lightning flashes
from both NLDN and WWLLN are used over the CONUS
domain, and lightning flashes from WWLLN are used for
the hemispheric domain. For convenience of description, the
cases without LTA are collectively referred to as base cases,
and the cases with LTA are referred to as LTA cases. To fur-
ther distinguish the lightning networks, the LTA cases are
also referred to as LTA NLDN (or simply NLDN) and LTA
WWLLN (or simply WWLLN) cases, respectively.

3.5 Evaluation methodologies

The assessment of the impact of LTA on model performance
is focused on precipitation, since that is the most-affected
variable, though other near-surface variables are also eval-
uated. Due to the highly heterogeneous nature of thunder-
storms and lightning over space, in addition to examining
the overall statistics across the modeling domain, statistics
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Table 1. Model cases used in this study. The case names are comprised of elements from the other four columns, which describe the
simulation domain (blank is CONUS; H is hemispheric), the version of the Kain–Fritsch trigger that was applied (trigger 1 is K1; trigger 2 is
K2), the frequency that the convective properties was updated (every time step is C0; every 10 min is C10), and the lightning data that were
assimilated in the simulation (B is base/none, N is NLDN, and W is WWLLN).

Case name Domain Trigger cudt LTA network
(none or H) (K1 or K2) (C0 or C10) (B, N, W)

K1C0B CONUS 1 0 Base/none
K1C10B CONUS 1 10 Base/none
K2C0B CONUS 2 0 Base/none
K2C10B CONUS 2 10 Base/none
K1C0N CONUS 1 0 NLDN
K1C10N CONUS 1 10 NLDN
K2C0N CONUS 2 0 NLDN
K2C10N CONUS 2 10 NLDN
K1C0W CONUS 1 0 WWLLN
K1C10W CONUS 1 10 WWLLN
K2C0W CONUS 2 0 WWLLN
K2C10W CONUS 2 10 WWLLN
HK1C0B Hemisphere 1 0 Base/none
HK1C10B Hemisphere 1 10 Base/none
HK2C0B Hemisphere 2 0 Base/none
HK2C10B Hemisphere 2 10 Base/none
HK1C0W Hemisphere 1 0 WWLLN
HK1C10W Hemisphere 1 10 WWLLN
HK2C0W Hemisphere 2 0 WWLLN
HK2C10W Hemisphere 2 10 WWLLN

are analyzed to assess the impact of LTA over U.S. climate
regions (https://www.ncei.noaa.gov/monitoring-references/,
last access: 7 November 2022) in both domains and some of
the larger countries in the hemispheric simulations. Figure 2
shows these climate regions over the CONUS modeling do-
main and the selected countries (also referred to as regions)
in the hemispheric modeling domain.

The statistical metrics in this analysis include the widely
used correlation coefficient (r) to measure the linear associ-
ation of measured and simulated variables, mean bias (MB),
and normalized mean bias (NMB), to quantify the departure
of simulated values from measured values, and the root mean
square error (RMSE) and normalized mean error (NME),
to elucidate the errors associated with model simulations.
More emphasis is placed on certain metrics rather than oth-
ers, depending on the nature of the simulated quantity. For
instance, with precipitation, the correlation coefficient (if the
model can simulate rainfall at the right time and location)
and MB and NMB (if the model over- or underestimates rain-
fall amount) are more straightforward than the error metrics
(though they are still relevant), but MB and NMB are inap-
propriate to evaluate wind directions.

4 CONUS WRF simulations

As shown in Table 1, four base (without LTA) cases, four
LTA cases using lightning flash data from NLDN, and four
LTA cases using lightning flash data from WWLLN over the
CONUS domain were performed using the combinations of
two trigger options and two convective update (cudt) inter-
vals, respectively. For the LTA cases, when lightning flashes
were not present, the ShallowOnly option (Heath et al., 2016)
was used (Table S1).

4.1 Precipitation

Figure 3 displays the July 2016 mean statistics generated by
pairing the gridded WRF precipitation with the values from
PRISM in time and space for each of the U.S. climatological
regions. As shown in Fig. 3, the base simulations present the
more dramatic fluctuations among cumulus parameter sen-
sitivities than the LTA cases. With Trig1, when the cudt is
changed from 0 to 10, the correlation coefficient is substan-
tially reduced across all the regions (Fig. 3a), and increases
in biases (overestimate of precipitation; Fig. 3b and c) and
errors (Fig. 3d and e) are also worsened by less frequent
cumulus updates. With Trig2, the biases (MB and NMB)
changed from overestimation to underestimation, and the er-
rors (RMSE and NME) were smaller compared to Trig1.
Though the setting for cudt altered simulations with Trig2,
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Figure 2. Analysis regions (countries), (a) the climate regions in the CONUS, and (b) the countries over the Northern Hemisphere, with
U.S. for the United States, CA for Canada, MX for Mexico, CN for China, IN for India, and ROH for other countries/regions, except the five
specific countries in the hemispheric domain. The U.S. climate regions are northeast (NE), southeast (SE), Ohio Valley central (OVC), upper
midwest (UM), south, west north central (WNC), southwest (SW), northwest (NW), and west.

the difference was smaller than the cases with Trig1. In gen-
eral, the Trig1 cases tended to produce more precipitation
(overestimate compared to PRISM precipitation) than the
Trig2 cases (underestimate compared to PRISM precipita-
tion), and the Cudt10 cases generated more precipitation than
the Cudt0 cases. Among the four cases in the base model sim-
ulations, the K1C0 case (Trig1; Cudt0) is the most favorable
in terms of the correlation coefficients and precipitation bi-
ases, but the error statistics, especially NME, may not be the
most desirable.

Using LTA (Fig. 3), the correlation coefficients signif-
icantly increased over the domain and across the regions
(from the range of∼ 0.25 to∼ 0.40 to the range of∼ 0.30 to
∼ 0.48), relative to the base cases. Though the LTA WWLLN
cases had lower correlation compared to the LTA NLDN
cases due to the lower detection efficiency of lightning
flashes in WWLLN, the improvement was still rather con-
siderable compared to the base cases. The biases in the LTA
NLDN cases are most favorable with values that are negative
but closest to zero (small underestimate). The LTA WWLLN
cases produced larger negative biases than the base cases and
LTA NLDN cases, which is, again, related to detection effi-
ciency of the networks. All the LTA cases (both NLDN and
WWLLN) produced smaller errors than the base cases, and
the differences between the NLDN cases and WWLLN cases
were minimal. Comparing the LTA cases with the base cases,
one noticeable feature is that, with the different trigger and
cudt values, all the statistics fluctuated dramatically from one
case to another in the base cases, but fluctuation among the
LTA cases was minimized and negligible. This is expected,
as the moisture and temperature perturbations used to trigger
convection with LTA (Sect. 2) will take precedence over the
trigger options, and grouping the lightning data into 30 min
bins should mitigate the influence of the cudt option. These

features were deliberately incorporated into the LTA tech-
nique for precisely these reasons, but this paper documents
their systematic testing.

Examination of the statistics across the climatological re-
gions over the CONUS domain indicates that the Ohio Val-
ley (OVC) stands out among all the regions with the lowest
correlation coefficients and largest RMSE values in all the
base cases. However, with LTA, the correlation coefficients
in OVC were brought to the median range among other re-
gions, though the RMSE values were still the largest in that
region; these features in OVC are more understandable, as
manifested in Fig. 12 and examined in detail in Sect. 5. Other
statistics in OVC with LTA were comparable with other re-
gions, except for relatively larger negative MB values asso-
ciated with the LTA WWLLN cases. Another obvious char-
acteristic with regards to correlation coefficients and errors
(RMSE and NME) was that there was more spread among
the regions in the LTA cases than in the base cases (except
in OVC), which resulted from the geographically heteroge-
neous nature of convective precipitation and the associated
observed lightning intensity across the regions.

To alleviate the underestimation of precipitation in the
LTA WWLLN cases, additional simulations (K1C10Ws0
and K2C10Ws0, where K1C10W and K2C10W are the same
as in Table 1, while s0 means zero suppression when light-
ning flash is not present) were performed by switching the
suppression option, as described in Heath et al. (2016), from
ShallowOnly to “NoSuppress.” This modification still trig-
gers deep convection where lightning is observed; however,
at grid points without lightning, the KF scheme is config-
ured to run normally (i.e., the same as in the base cases). As
shown in Fig. S1 in the Supplement, the correlation coeffi-
cients in the WWLLN+s0 cases were comparable with other
LTA cases, and the values in the K2C10Ws0 case were simi-
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Figure 3. Monthly mean statistics for precipitation from base and LTA simulations comparing to the values from PRISM for the modeling
domain and the climatological regions over the CONUS, respectively, during July 2016. (a) Correlation coefficient, (b) MB, (c) NMB, (d)
RMSE, and (e) NME. In each plot, there are three sets of simulations (base, LTA with NLDN, and LTA with WWLLN), and each set has
four cases from the combinations of cumulus parameters.

lar to the NLDN cases and improved upon the K1C10W case.
The MB in the WWLLN+s0 cases were mostly positive
(overestimate), which is expected because the KF scheme has
more freedom to activate deep convection. The K2C10Ws0
case produced the most desirable results (domain mean MB
is nearly zero) among all the cases. However, the biases as-
sociated with LTA simulations using the NoSuppress option
are affected by both the lightning detection efficiency and the
domain resolutions, which is more evident in the LTA simu-
lations over the hemispheric domain in Sect. 5.

4.2 Other near-surface meteorological variables

Besides precipitation, T 2, water vapor mixing ratio, wind
speed, and wind direction are also analyzed. As shown in
Fig. 4, T 2 in the base cases has correlation coefficients over
the CONUS domain and all the regions ranging from ∼ 0.95
to 0.98. With LTA, the correlations for T 2 were further im-
proved for all the regions, with WWLLN cases performing
slightly worse than the NLDN cases. The impact of cumu-
lus parameters on correlations was minimal for the base and
LTA cases. However, the cumulus parameters seem to impact
the biases (MB and NMB; Fig. 4b and c) and errors (RMSE
and NME; Fig. 4d and e) in the base cases across all the re-
gions, and like precipitation, all the LTA cases minimized the
impact of different cumulus parameter values. All the LTA
cases reduced the errors (RMSE and NME) associated with
T 2 across all the regions, with NLDN slightly better than
WWLLN. In summary, the T 2 statistics were improved by

using LTA, and the WWLLN cases were comparable to the
NLDN cases with a slight degradation for all the regions.

The 2 m water vapor mixing ratios metrics (Fig. 5) of the
cases, in general, resemble those of T 2, in that the LTA cases
have slightly increased the correlation coefficients from the
already well-simulated base cases. More spread occurs for
biases (MB and NMB; Fig. 5b and c) and within the base
cases for errors (RMSE and NME; Fig. 5d and e). Regional
spread in these statistics is attributed to the diverse air mass
types that drive large differences in the moisture content and
convective activity. Even though the values were low for both
errors and biases (< 0.5 %), using either LTA technique is an
improvement over the base cases.

The cumulus parameters and LTA showed less of an im-
pact on the correlations for 10 m wind speed, but the im-
pacts on biases and errors were noticeable (Fig. 6). All the
model cases underestimate wind speed (∼ 5 %–12 %, de-
pending on regions and model cases), and the cumulus pa-
rameters caused relatively large differences in the metrics of
the base cases with both trigger and cudt options contributing
the most. Overall, using Trig2 with Cudt10 is most favorable
in terms of biases (less underestimate) and errors (smaller
errors) among the base cases. In all the LTA cases, the un-
derestimation was reduced when compared to the base cases,
and errors were reduced with negligible differences among
the cases with different cumulus parameters and assimilating
lightning data from the different networks. Similar behavior
was observed for wind direction where only the correlation
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Figure 4. Same as Fig. 3 but for 2 m temperature (T 2) in that the simulated T 2 values are paired with observations from NCEI’s land-based
stations in time and space (hourly mean values).

Figure 5. Same as Fig. 4 but for 2 m water vapor mixing ratio.

coefficient, MB, and RMSE are displayed in Fig. S2 in the
Supplement because normalized metrics do not apply.

5 Northern hemispheric WRF simulations

As shown in Table 1, the model cases performed over the
Northern Hemisphere are similar to those performed over
the CONUS, but with LTA cases using lightning data from

WWLLN that was gridded on the domain with 108 km hori-
zontal grid spacing.

5.1 Precipitation

Before comparing the simulated precipitation with available
observations, the examination begins with how the WRF-
simulated precipitation with and without LTA compares spa-
tially over the Northern Hemisphere. Figure 7 displays the
mean daily precipitation during July 2016 from two LTA
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Figure 6. Same as Fig. 4 but for 10 m wind speed.

cases and two base cases (Trig1 and Trig2) and the corre-
sponding differences between LTA and base (LTA – base)
cases with the same trigger values, and Fig. S3 in the Sup-
plement presents the mean daily precipitation differences be-
tween HK1C0W and HK1C0B cases throughout 2016. Com-
pared to the base cases, the LTA cases produced signifi-
cantly less rainfall along the equatorial regions but gener-
ally more rainfall away from the Equator, especially over the
midlatitude land regions. Because no gauge-based observa-
tional data are available over the ocean, the IMERG precip-
itation for July 2016 is presented in Fig. 7g, with the differ-
ence plots from the base case (HK1C0B) and the LTA case
(HK1C0W) being displayed in Fig. 7h and i, respectively.
Over the equatorial regions, the precipitation simulated by
the LTA cases (Fig. 7b and e) more closely resembled the
IMERG precipitation than the base cases. The difference
plots clearly indicate that the base cases significantly overes-
timated, and the LTA cases slightly underestimated, the pre-
cipitation over large areas in the equatorial regions. Similar
results persisted throughout the year, as shown in Figs. S4
(the difference in mean daily precipitation by month between
the base case, HK1C0B, and the IMERG product) and S5
(the difference in mean daily precipitation by month between
the LTA case, HK1COW, and the IMERG product). Next,
the WRF-simulated precipitation is compared with the CPC
gauge-based analysis values over land. Figure 8 displays the
CPC rainfall and simulated mean daily precipitation during
July 2016, along with the estimates from the LTA and base
cases with different cumulus parameters. Since the gauge-
based observational values are only available over land, the
simulated values in Fig. 8 are only displayed over land. As
shown in Fig. 8, all the model cases simulated the overall

spatial pattern of higher values in the tropical regions and
lower values in high-latitude regions. However, subtle differ-
ences existed from case to case in different regions. For ex-
ample, the HK1C10B case (Fig. 8d) and the HK2C10B case
(Fig. 8f) produced the highest and the lowest precipitation
over Africa and South America (along the Mexico coast to
the South American continent) within the modeling domain.

All the LTA cases uniformly produced larger correlation
coefficients than the base cases (Fig. 9) when and where con-
vective activities were prevalent. In the U.S., convective ac-
tivities occur during warm months (from May to September),
while in Mexico and India, convection is active throughout
the year. In Canada, convective activities are less frequent be-
cause of the cooler temperatures and low moisture at the high
latitude. When and where convection was active, the cumu-
lus parameters produced significant differences in modeled
convective activity, as correlation coefficients are higher in
the base cases with Trig1. Similar to the simulations over
the CONUS domain, the cumulus parameters had a minor
impact on the correlation coefficients for the LTA cases re-
gardless of the regions. This indicates that, even with the less
dense WWLLN lightning observations, using LTA improves
the timing and location of deep convection.

RMSE were comparable for all the model cases across
the selected regions (Fig. 10), with the LTA cases pointing
to lower values than the base cases at all the regions ex-
cept for the U.S., where the LTA and base cases alternated
to have slightly lower RMSE values over each other dur-
ing the year. Alternatively, the MB values varied significantly
among the model cases and across the regions, as shown in
Fig. 11. One common feature is that the differences among
the LTA cases were small, but two distinctly separate groups
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Figure 7. The mean daily rainfall during July 2016, simulated by base model cases (panel (a) HK1C0B and panel (d) HK2C0B), LTA cases
(panel (b) HK1C0W and panel (e) HK2C0W), and the satellite GPM-produced rainfall (g) and the differences between the LTA and base
cases (panel (c) HK1C0W–HK1C0B and panel (f) HK2C0W–HK2C0B) and between the simulated cases and satellite IMERG products
(panel (h) HK1C0B–IMERG and panel (i) HK1C0W–IMERG), are shown. Note that the left legend applies to the rain maps (a, b, d, e, g),
and the right legend applies to the difference plots (c, f, h, i).

Figure 8. CPC rainfall (a) and simulated (b–f) mean daily precipitation during July 2016 over the hemispheric domain. The LTA configuration
is represented by one case (panel (b) HK2C10W), since all the LTA cases with different cumulus parameters produced similar results. All
base cases are shown here (c–f) because the cumulus parameters do impact the simulated precipitation when not using LTA.
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Figure 9. The monthly correlation coefficient between CPC and simulated precipitation in selected countries, i.e., (a) the United States, (b)
Canada, (c) Mexico, (d) China, and (e) India. Note that all the base cases are plotted in cool colors and LTA cases in warm colors.

among the base cases were noted in all the regions; the cases
with Trig1 had always significantly greater precipitation val-
ues than the cases with Trig2. In China and Mexico, all the
simulations overestimated the precipitation through the year,
except for a small underestimation during the cool months
(October–December). In India, the overestimates and under-
estimates were equally split among the model cases, with
dramatic changes from month to month in the same model
case. The behavior of MB values among the model cases and
through the year was more stable for the U.S. (to a lesser
extent in Canada) than in other regions for which the base
cases with Trig1 have the best performance (MB values near
zero), the base cases with Trig2 significantly underestimated
precipitation over land during convective season, and all the
LTA cases overestimated precipitation over land during the
warm months. Here we offer two plausible explanations for
the drastically different behaviors of the MB values associ-
ated with precipitation in different regions.

First, from the modeling point of view, the WRF model
is widely studied and applied in North America, especially
in the U.S. As a result, more accurate observation-based
datasets are available to nudge WRF through FDDA (Liu et
al., 2008), and all the work has led to the best performance
over the U.S. for the recommended default set of the convec-
tive trigger and update frequency for the cumulus scheme.
Second, from the observational point of view, the CPC rain-
fall dataset is built upon field gauge measurements that may
vary in accuracy and consistency from country to country.
As shown in Fig. S6 in the Supplement, the NMB values
were generally in the range of −50 % to 50 % in the U.S.
and Canada (comparable to the NMB values for the 12 km
CONUS simulations against PRISM precipitation, as shown
in Fig. 3c), but in other countries, especially during cool

months, the values were up to hundreds or even thousands of
percent, suggesting few possible observations available in the
denominator in NMB calculations. For instance, the highest
NMB value in China coincided with the spring festival that
is often a long holiday for China, suggesting possible gaps in
data collection.

We next focus on the high MB values associated with the
LTA cases in the U.S. Consistent in the analysis in Fig. 3b,
the LTA WWLLN cases over the 12 km CONUS domain al-
ways had larger negative MB (underestimates) than the LTA
NLDN cases due to the lower detection efficiency of light-
ning flashes in WWLLN than in NLDN. However, in the
108 km hemispheric simulations, the same WWLLN datasets
produced large positive MB (overestimates) for precipitation.
To understand this phenomenon, we need to first examine
how the LTA method works. Because it uses a yes/no light-
ning indicator to trigger convection, the 108 km grid spacing
might be too coarse for such a simplistic approach to work.
For example, one lightning strike within a 108 km grid cell
will trigger deep convection, which, because of the large spa-
tial coverage of the grid cell, can contribute to the high bias in
precipitation because convective rainfall is realistically more
localized. Although the KF scheme sets a fixed radius for
thunderstorms (e.g., Eq. 6 in Kain, 2004), applying the result-
ing rain over the entire 108km× 108 km grid box could par-
tially explain the excess rainfall. This may also be explained
by the fact that the convective timescale formulation in KF
scheme was originally developed at grid lengths of 20–25 km
(Sims et al., 2017). A potential developmental pathway for
the LTA method at these scales is to test different thresholds
of the 30 min flash density to ensure sufficient lightning is
present to trigger deep convection. Overall, compared to the
CPC rainfall, the LTA technique significantly improved the
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Figure 10. Same as Fig. 9 but for RMSE.

Figure 11. Same as Fig. 9 but for MB.

temporal and spatial correlation of convective precipitation,
but the precipitation amount was overestimated over the U.S.
and other regions for the 108 km modeling domain.

To further examine the impact of modeling domain res-
olutions on convective precipitation, Fig. 12 displays the
spatial precipitation from PRISM, CPC (regridded onto the
12 km CONUS domain), and simulated precipitation from
one base case and two LTA cases with NLDN and WWLLN
data, respectively, over the 12 km CONUS domain and one
LTA case over the 108 km hemispheric domain that has
been regridded to the 12 km CONUS domain. As shown in
Fig. 12a and b, the two observation-based precipitation prod-
ucts, PRISM and CPC, compared well to each other, not-
ing that the PRISM product displays more subtle granular-

ity than the CPC product due to the large difference in spa-
tial resolutions (4 km for PRISM versus 0.5◦ for CPC). The
overall spatial pattern of mean daily precipitation was cap-
tured by both the 12 km LTA simulations (Fig. 12d and e),
and the 108 km LTA simulation (Fig. 12f). The heaviest
rainfall was centered in the OVC area in the observation-
based and simulated precipitation maps, but the shape and
spread of the rain band were different. The rain band in
the 12 km base case (Fig. 12c) was more spread and scat-
tered, with a southwest-to-northeast orientation, while the
observation-based products and the LTA cases indicated a
relatively smaller area, with a west–east direction. Thus, the
LTA cases (12 km CONUS simulations) compared better to
the observation-based products spatially than the base case.
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The K2C10W case (with WWLLN) tended to produce less
precipitation than the K2C10N case (with NLDN) and both
observation-based products. These spatial discrepancies for
precipitation in OVC between PRISM and the model cases
were reflected by the unique statistical behavior, as displayed
in Fig. 3 and discussed in Sect. 4.1. As a likely artifact
of excessively activated convection within the 108 km grid
cells with a spatial scale much larger than most thunderstorm
scales, the HK2C10W case indicated areas of heavy precip-
itation that were also shown in the observation-based prod-
ucts and the 12 km LTA cases (both K2C10W and K2C10N)
at approximately the same locations but with much less spa-
tial extent. To resonate with the large discrepancies in the
MB values shown in Fig. 11a among the base cases, the pre-
cipitation from HK2C10B and HK2C10B cases is similarly
displayed in Fig. 12g and h. The case with Trig1 was clearly
more comparable to the CONUS cases than the Trig2 case,
in that the precipitation from Trig2 was severely underesti-
mated across the entire U.S. These hemispheric simulations
amplified the impact of the trigger options on precipitation
during warm months among the base cases, resulting in dif-
ferences in daily total precipitation of up to 40 % in the U.S.
(Fig. S6a). These results underscore the need to carefully set
cumulus parameters for the KF scheme in WRF simulations.

The mismatch of the spatial scales between domain reso-
lution and thunderstorms in the 108 km simulations is a lim-
itation of the current LTA scheme that could be improved
in future development. In addition to using lightning den-
sity to trigger convection, another option is to implement the
LTA scheme in the Multiscale Kain–Fritsch (MSKF) scheme
(Glotfelty et al., 2019; Zheng et al., 2016), a “scale-aware”
variant of KF that refines the convective tendencies based on
the grid spacing used in the simulation.

5.2 Impact on other meteorological variables

The impact of the cumulus parameters and LTA scheme on
near-surface meteorological variables of the 108 km hemi-
spheric simulations are evaluated like the 12 km CONUS
simulations. However, due to the lack of observation data be-
yond North America, the analysis is mainly focused on the
U.S. regions, but all the available data within the hemispheric
domain is collectively referred to as “ALL”, regardless of
where the data originated. Affected by the coarser domain
resolution, all the statistical measures for T 2 (Fig. 13) from
the hemispheric simulations indicated degradations in model
performance relative to the 12 km CONUS domain (Fig. 4).
As in the CONUS simulations, the LTA cases increased cor-
relation coefficients and decreased errors (RMSE and NME)
compared to the base cases. Like the CONUS simulations,
the cumulus parameters minimally affected the LTA cases,
while significant deviations were produced among the base
cases. Unlike the CONUS simulations where both trigger
and cudt contributed to T 2 differences, the large differ-
ences among the base cases for the hemispheric simula-

tions were attributed to the trigger options. Though all the
cases tended to underestimate T 2 (contrary to the CONUS
simulations where T 2 was generally overestimated), among
the base cases, greater underestimates were associated with
Trig1 than Trig2. The LTA cases uniformly underestimated
T 2, consistent with the Trig1 base cases. The performance
of hemispheric simulations for 2 m water vapor mixing ratio
(Fig. 14) resembles T 2 in comparison to the CONUS sim-
ulations (Fig. 5), which produced smaller correlation coeffi-
cients and larger errors and biases (mainly overestimates for
both CONUS and hemispheric simulations). Without excep-
tion, the LTA cases consistently performed better in terms of
correlation coefficients and errors than the base cases. How-
ever, different from other meteorological variables, the MB
and NMB associated with water vapor mixing ratio are af-
fected by both cumulus parameters (trigger and cudt) for all
the model cases (both base cases and LTA cases). The LTA
cases with Trig1 performed better than the cases with Trig2,
and with the same trigger value, cudt= 0 is preferable to
cudt= 10; however, for the base cases, it was the opposite,
though with smaller differences. At the 108 km grid spacing,
the 10 m wind speed (Fig. S7 in the Supplement) and wind
direction (not shown) statistics were comparable among the
cumulus parameters and the application of LTA.

6 Discussion and recommendations

This study corroborated that the simple observation-based
LTA scheme implemented in Heath et al. (2016) improved
WRF-simulated precipitation and other near-surface mete-
orological variables, as evidenced by the simulations over
multiple spatial scales and over a longer test period. Test-
ing on a 12 km CONUS domain using lightning flashes from
WWLLN instead of NLDN slightly reduced the correlation
coefficients and locally increased errors due to the lower de-
tection efficiency of WWLLN. The update of the LTA tech-
nique reduced the underestimate of precipitation that was
often reported in the application of WRF simulations con-
ducted over the CONUS domain (U.S. EPA, 2019). Changing
lightning flash data from NLDN to WWLLN resulted in ad-
ditional underestimate of precipitation due to fewer lightning
flashes in WWLLN than the NLDN dataset. However, when
the WWLLN data were used in the hemispheric simulations,
the model performance for precipitation over the equatorial
regions was significantly improved from significant overesti-
mation in the base cases to slight underestimation in the LTA
cases, and the precipitation over land was generally overesti-
mated during the convective season for almost all the selected
regions, especially over North America.

The application of LTA in the hemispheric simulations
with a 108 km domain exposed a shortcoming of this sim-
ple LTA scheme. When the model grid cell is substantially
larger than most thunderstorm scales (Murphy and Konrad,
2005), over-triggering of convection within the entire grid
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Figure 12. Mean daily precipitation over the CONUS during July 2016 from (a) PRISM, (b) CPC, (c) K2C10B, (d) K2C10N, (e) K2C10W,
and (f) HK2C10W, (g) HK1C10B, and (h) HK2C10B. Note that all the observational-based products and the 108 km hemispheric simulations
are regridded onto the 12 km CONUS domain.

Figure 13. Monthly mean statistics for 2 m temperature from hemispheric base and LTA simulations comparing to surface observations
during July 2016. (a) Correlation coefficient, (b) MB, (c) NMB, (d) RMSE, and (e) NME.
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Figure 14. Same as Fig. 13 but for 2 m water vapor mixing ratio.

cell leads to overestimated precipitation. With the current
LTA implementation and the high lightning detection effi-
ciency network, such as NLDN, the 12 km grid spacing is
suitable for LTA because thunderstorms often have a radial
distance of 1–10 km. When lightning data from low detection
efficiency networks (such as WWLLN) are used over finer-
resolution domains (≤ 12 km), the NoSuppress option with
LTA could balance increasing precipitation while maintain-
ing reasonable levels of uncertainty in the other variables for
a more holistic model evaluation. The effect of domain reso-
lution on precipitation simulation with LTA portends further
development and improvement in the LTA technique. Two
potential developmental directions are to use criteria values
of lightning flash density dependent on grid resolution to trig-
ger deep convection and/or to implement the LTA scheme in
the MSKF scheme in WRF to adapt to different simulation
scales. Preliminary experimentation on the 108 km scale (not
shown) suggests that MSKF could improve these compar-
isons with observations (compared to the KF scheme pre-
sented here), including better cloud and precipitation fields
(Hogrefe et al., 2021).

The experiment of cumulus parameters (trigger and cudt)
associated with the KF scheme was performed for both the
CONUS and hemispheric WRF simulations. Results revealed
several key behaviors in both the base case simulations and
LTA case simulations. First, the base case simulations were
sensitive to both trigger and cudt options over the CONUS
domain, but only trigger options produced significant varia-
tions for the hemispheric simulations. Second, the impact of
the cumulus parameters on LTA cases was insignificant for
both modeling domains. Separately, the original LTA tech-
nique, as described in Heath et al. (2016), showed influence
from the cumulus parameters on the LTA cases (Fig. S8 in
the Supplement), but after implementing the updated cloud-
top height (one model level above−20 ◦C) and the additional
preconditioning shallow convection (see Sect. 2), the fluc-

tuations among the LTA cases were significantly reduced.
Third, the most pronounced impact of cumulus parameters
was on the amount of precipitation in the base cases. The
Trig1 option generated up to a 10 % overestimate of monthly
mean daily precipitation over the CONUS, with cudt= 0,
and an additional 10 %–15 % overestimate, with cudt= 10,
during July 2016. With Trig2, the simulated precipitation
became underestimated by about 10 %–15 %, with the cudt
contributing to ∼ 5 % difference; Cudt10 had fewer underes-
timates than Cudt0. However, over the hemispheric domain,
only the trigger option dramatically affected simulated pre-
cipitation; during the summer months (June, July, and Au-
gust), the Trig2 cases underestimated the mean daily pre-
cipitation by up to 40 %, compared to the Trig1 cases that
matched the observation-based precipitation products within
10 %. In summary, without LTA, the recommended default
values (trigger= 1 and cudt= 0) by WRF documentation re-
main the best option for both the CONUS and hemispheric
simulations to achieve the best model performance, espe-
cially for North America, and with LTA, all the options per-
formed equally well.

As one of the most prominent meteorological models,
WRF has been widely used in a variety of applications from
regional to global scales and from weather and climate stud-
ies to air pollution transport in air quality forecast and regu-
latory compliances. It is important to improve the convective
processes (e.g., convective transport of air pollutants match-
ing the times and locations of lightning NOx production)
to have more accurate precipitation and other meteorolog-
ical fields with more resources being available, including
observational datasets, computing capability, and advanced
scheme development. Observation-based data assimilation
has been historically proven to be one of the most effective
methods to improve model’s performance in time and space.
This research is emerging to consider and use the lightning
observations that have become available in various formats
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and scales in the past few decades to improve convection
simulations through LTA. Additional networks of lightning
observations and more detailed properties associated with
the process of lightning discharge are becoming available
(such as the strokes per flash, the strength of lightning en-
ergy level, and the separation of cloud-to-ground and inter-
or intracloud strikes being more accurately quantified, es-
pecially with the available satellite lightning products from
Geostationary Lightning Mapper (GLM) detection systems
borne on the GOES-16 and GOES-17 satellites (Goodman
et al., 2013). Accordingly, lightning assimilation techniques
will continue to evolve and build upon the research presented
here.

Code and data availability. The WRF model is available for down-
load through the WRF GitHub (https://github.com/wrf-model/
WRF/tree/v4.1.1, last access: 10 November 2022) (University Cor-
poration for Atmospheric Research, 2022a). The LTA code is not
publicly available yet, but interested users can contact the corre-
sponding author to acquire the source code. The raw lightning flash
observation data can be purchased through Vaisala Inc. (https://
www.vaisala.com/en/products/systems/lightning-detection, last ac-
cess: 7 November 2022) (Vaisala Inc., 2022), and the WWLLN
raw data are also available for purchase at http://wwlln.net (last
access: 7 November 2022) (University of Washington, 2022). The
immediate data, except the lightning flash data behind the figures,
are available from https://doi.org/10.5281/zenodo.6493145 (Kang
et al., 2022). PRISM precipitation data for the United States are
retrieved from https://climatedataguide.ucar.edu/climate-data/ (last
access: 7 November 2022) (University Corporation for Atmo-
spheric Research, 2022b), and the CPC Global Unified Precipitation
data provided by the NOAA/OAR/ESRL PSL, Boulder, Colorado,
USA, from https://psl.noaa.gov/data/gridded/data.cpc.globalprecip.
html (last access: 7 November 2022) (National Oceanic and Atmo-
spheric Administration, 2022). The IMERG data were provided by
the NASA/Goddard Space Flight Center’s Precipitation Measure-
ment Missions (PMM) Science Team and Precipitation Processing
System (PPS), which develop and compute the IMERG as a con-
tribution to GPM, and are archived at the NASA Goddard Earth
Sciences Data and Information Services Center (GES DISC).

Supplement. The supplement related to this article is available on-
line at: https://doi.org/10.5194/gmd-15-8561-2022-supplement.
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