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Abstract. This study develops an ensemble Kalman filter
(EnKF)-based regional ocean data assimilation system in
which the local ensemble transform Kalman filter (LETKF)
is implemented with version 1.0 of the Stony Brook Parallel
Ocean Model (sbPOM) to assimilate satellite and in situ ob-
servations at a daily frequency. A series of sensitivity exper-
iments are performed with various settings of the incremen-
tal analysis update (IAU) and covariance inflation methods,
for which the relaxation-to-prior perturbations and spread
(RTPP and RTPS, respectively) and multiplicative inflation
(MULT) are considered. We evaluate the geostrophic bal-
ance and the analysis accuracy compared with the control
experiment in which the IAU and covariance inflation are
not applied. The results show that the IAU improves the
geostrophic balance, degrades the accuracy, and reduces the
ensemble spread, and that the RTPP and RTPS have the op-
posite effect. The experiment using a combination of the IAU
and RTPP results in a significant improvement for both bal-
ance and analysis accuracy when the RTPP parameter is 0.8–
0.9. The combination of the IAU and RTPS improves the bal-
ance when the RTPS parameter is ≤ 0.8 and increases the
analysis accuracy for parameter values between 1.0 and 1.1,
but the balance and analysis accuracy are not improved sig-
nificantly at the same time. The experiments with MULT in-
flating the forecast ensemble spread by 5 % do not demon-
strate sufficient skill in maintaining the balance and repro-

ducing the surface flow field regardless of whether the IAU
is applied or not. The 11 d ensemble forecast experiments
show consistent results. Therefore, the combination of the
IAU and RTPP with a parameter value of 0.8–0.9 is found to
be the best setting for the EnKF-based ocean data assimila-
tion system.

1 Introduction

The ensemble Kalman filter (EnKF; Evensen, 1994, 2003)
estimates optimal analyses using model forecasts and obser-
vations with their error covariance. The EnKF is advanta-
geous in that it includes flow-dependent forecast errors from
an ensemble of model forecasts and is relatively easy to
implement with various models. Therefore, various EnKF-
based ocean data assimilation systems have been developed
thus far (see Table 1).

The number of available observations has increased dra-
matically with enhanced observations of temperature and
salinity in the ocean interior by Argo profiling floats as
well as measurements of sea surface temperature, salinity,
and height (SST, SSS, and SSH, respectively) by satellites.
The Himawari-8 geostationary satellite (Bessho et al., 2016;
Kurihara et al., 2016) has an infrared sensor that has been
observing SSTs in the Pacific region since July 2015, al-
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though there are missing values where cloud obscures the
sea surface. Its geostationary orbit and short observation
interval allow Himawari-8 to provide better daily cover-
age within the observation area than a polar-orbiting satel-
lite with a microwave sensor, such as the Global Change
Observation Mission-Water (GCOM-W; https://gportal.jaxa.
jp/gpr, last access: 11 November 2022), which can cap-
ture SSTs even in cloudy regions. Satellite SSS observa-
tions by the Soil Moisture and Ocean Salinity (SMOS) mis-
sion started in June 2010, and previous studies have demon-
strated the positive impacts of these observations, using their
ocean data assimilation systems, to better represent the ocean
interior structure, such as mixed and barrier layers, low-
salinity water caused by river discharge, and prediction of
the El Niño–Southern Oscillation (ENSO; Chakraborty et al.,
2014; Hackert et al., 2014; Toyoda et al., 2015). The Surface
Water and Ocean Topography (SWOT; https://swot.jpl.nasa.
gov/, last access: 11 November 2022) satellite that has a new
type of altimeter which can observe SSH anomalies (SSHAs)
in two dimensions over a 120 km wide swath is scheduled for
launch in 2022.

To take advantage of such enhanced observations, frequent
data assimilation is important. Here, dynamical imbalances
in the analysis field may cause an initial shock with high-
frequency gravity waves and may degrade the analysis ac-
curacy. He et al. (2020) described the relationship between
the assimilation interval and accuracy using an atmospheric
data assimilation system. As seen in Table 1, most of the re-
cent ocean data assimilation systems have an assimilation
interval longer than 5 d; in particular, 5 d and 7 d assimila-
tion intervals are employed in the existing ocean reanaly-
sis datasets of the Predictive Ocean Atmosphere Model for
Australia Ensemble Ocean Data Assimilation System (PEO-
DAS; Yin et al., 2011) and TOPAZ4 (Sakov et al., 2012),
respectively. PEODAS assimilates only in situ temperature
and salinity data, whereas TOPAZ4 uses all types of obser-
vations but with inflation of observation errors. Although the
ocean data assimilation systems constructed by Karspeck et
al. (2013) and Miyazawa et al. (2012) have short assimilation
intervals of 1 and 2 d, respectively, the former assimilates
only in situ temperature and salinity data, and the latter con-
ducts a data assimilation experiment for a short period of 20 d
because unrealistic fields are detected if the experiment is
performed over several months (Yasumasa Miyazawa, 2022,
personal communication). Although Brüning et al. (2021) re-
cently established regional data assimilation systems for the
North Sea and Baltic Sea at a frequent interval of 12 h, only
satellite SSTs are assimilated. Therefore, the existing sys-
tems might mitigate the effects of initial shocks by using the
longer assimilation interval, inflating observation errors, and
reducing the number of assimilated observations. This is also
the case for atmosphere–ocean coupled data assimilation sys-
tems (e.g., Brune et al., 2015; Chang et al., 2013; Counillon
et al., 2016; Tang et al., 2020). To provide accurate analyses
in an EnKF-based ocean data assimilation system in which

satellite and in situ observations are assimilated at a frequent
interval, it is necessary to investigate an optimal setting for
both dynamical balance and accuracy.

The incremental analysis update (IAU; Bloom et al., 1996;
see Sect. 2.1) has been proposed to reduce noise from high-
frequency gravity waves associated with initial shocks. Co-
variance relaxation methods such as relaxation-to-prior per-
turbations (RTPP; Zhang et al., 2004) and relaxation-to-prior
spread (RTPS; Whitaker and Hamill, 2012) (see Sect. 2.3),
in which the analysis ensemble perturbations are relaxed to-
wards the forecast ensemble perturbations, would also mit-
igate the initial shock (Houtekamer and Zhang, 2016; Ying
and Zhang, 2015). In EnKF-based ocean data assimilation
systems, the method used to apply the analysis update to the
model evolution and the technique used to inflate the ensem-
ble spread could make significant differences for the dynami-
cal balance and accuracy. However, the IAU and RTPP/RTPS
have not been widely used in EnKF-based ocean data assim-
ilation systems (Table 1). Therefore, this study aims to de-
velop an EnKF-based ocean data assimilation system with
a frequent assimilation interval of 1 d in order to take ad-
vantage of frequent satellite observations and to explore the
optimal settings by performing sensitivity experiments with
various settings of the IAU and covariance inflation methods.

This paper is organized as follows: Sect. 2 describes the
data and methods of IAU, RTPP, and other schemes as well
as how to evaluate geostrophic balance and accuracy rela-
tive to observations; details of the EnKF-based ocean data
assimilation system and sensitivity experiment are described
in Sect. 3; Sect. 4 presents the results for geostrophic balance
and accuracy in the sensitivity experiments; Sect. 5 com-
pares the prescribed multiplicative inflation (MULT) param-
eter with the sensitivity experiment with RTPP and IAU; and
Sect. 6 provides a summary.

2 Data and methods

In this section, we provide details of the methods used to al-
leviate some of the problems associated with high-frequency
assimilation. Section 2.1 presents the IAU designed to cut off
noise from high-frequency gravity waves, and Sect. 2.2 de-
scribes perturbed boundary conditions. Covariance inflation
methods to prevent the underestimation of ensemble-based
forecast error covariance by various factors, such as the lim-
ited ensemble size and model imperfections, are introduced
in Sect. 2.3, and the methods used to evaluate geostrophic
balance and accuracy relative to observations are given in
Sect. 2.4.

2.1 IAU

In this study, we implement the IAU (Bloom et al., 1996)
based on existing ocean data assimilation systems (Bal-
maseda et al., 2015; Martin et al., 2015). The procedure for
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Table 1. Overview of the EnKF-based ocean data assimilation systems developed after 2010. The abbreviations used in the table are as
follows: PEODAS – Predictive Ocean Atmosphere Model for Australia (PAOMA) Ensemble Ocean Data Assimilation System, DEnKF
– deterministic EnKF (Sakov and Oke, 2008), LETKF – local ensemble transform Kalman filter (Hunt et al., 2007), EAKF – ensemble
adjustment Kalman filter (Anderson, 2001), LESKTF – local error subspace Kalman transform filter (Nerger et al., 2012), T – temperature,
S – salinity, SST – sea surface temperature, SSH – sea surface height, and MULT – multiplicative inflation. Adaptive MULT was proposed
by Miyoshi (2011). Dashes are used to indicate no application. “Inflated obs. error” in TOPAZ4 indicates that observation errors are inflated
when ensemble analyses are calculated.

Name PEODAS TOPAZ4 Miyazawa et al. Karspeck et al. Penny et al. Penny et al. Baduru et al. Brüning et al.
(Yin et al., 2011) (Sakov et al., 2012) (2012) (2013) (2013) (2015) (2019) (2021)

Domain Global North Atlantic South of Japan Global Quasi-global Global Indian North Sea
and Arctic (release) Ocean and Baltic Sea

Horizontal resolution 2◦× 0.5− 1.5◦ 12–16 km × 1/36◦× 1/36◦ 1◦× 1◦ 1◦× 0.58–1◦ 0.5◦× 1/12◦× 0.9–5 km ×
(longitude × latitude) 12–16 km 0.25–0.5◦ 1/12◦ 0.9–5 km

Vertical resolution 25 z-levels 28 hybrid layers 31 σ -layers 60 z-levels 20 z-levels 40 z-levels 40 σ -layers 25–36 layers

Perturbed boundary Atmosphere Atmosphere – – Atmosphere Atmosphere Atmosphere –
condition

EnKF Simplified EnKF DEnKF LETKF EAKF LETKF LETKF LETKF LESKTF

Ensemble size 11 100 20 48 40 28 80 12

Assimilation window 5 d 7 d 2 d 1 d 5 d 5 d 5 d 12 h

Assimilated data T , S SST, SSH, T , S, ice SST, SSH, T , S T , S T , S T , S SST, T , S SST

Covariance inflation Additive inflation – MULT – Adaptive – MULT –
MULT

IAU/Nudging – – – – – – – –

Period 1979–2006 1991–2019 08–28 Feb 2010 1998–2005 1997–2003 1991–1998 Aug 2016– 2021–present
Sep 2018

Other Inflated obs. error

one assimilation cycle is as follows: (i) conduct model inte-
gration up to the middle of an assimilation window; (ii) as-
similate observations within the window and save the anal-
ysis increments in temperature, salinity, and horizontal ve-
locity; and (iii) conduct model integration over the assimi-
lation window adding the increments equally distributed to
each time step. The IAU reduces noise from high-frequency
gravity waves associated with initial shocks, but the com-
putational cost of the model integration is 1.5 times that of
the standard method in which the analyses performed at the
beginning of the window are used for the model initial con-
ditions. Following Miyazawa et al. (2012), all analysis vari-
ables (SSH, temperature, salinity, and horizontal velocities)
are used for initial conditions in the standard method. Al-
though there are various IAU methods, the SSH increments
are not included in most of the existing ocean data assimila-
tion systems (Table 2 of Martin et al., 2015), mainly because
the SSH increments tend to cause initial shocks. Even with-
out the SSH increments, the SSH would be modified prop-
erly in response to the temperature and salinity increments.
Therefore, we adopt the analysis increments of temperature,
salinity, and horizontal velocity except for SSH.

2.2 Perturbed boundary conditions

Following previous studies (Kunii and Miyoshi, 2012; Penny
et al., 2013; Torn et al., 2006), atmospheric and lateral bound-
ary conditions are artificially perturbed for each ensemble
member. Atmospheric forcing of the ith ensemble member
at a time t , w(i) (t), is given by

w(i) (t)= w(t)+α
[

w(t + δti)−
1
n

∑n

i=1
w(t + δti)

]
, (1)

where w(t) is atmospheric forcing at a time t , α (= 0.2) is an
arbitrary constant, w(t + δti) is atmospheric forcing at the
same time as w(t) but in a different year, and n (= 100) is
the ensemble size. Here, the year in w(t + δti) is changed
every month. As is clear from Eq. (1), the ensemble mean of
the atmospheric forcing w(i) (t) is equivalent to w(t).

Lateral boundary conditions for each ensemble member
are obtained from a monthly mean global ocean reanalysis
dataset for different years. Namely, the ensemble mean of
the lateral boundary condition corresponds to a monthly cli-
matology. These perturbed atmospheric and lateral bound-
ary conditions play a role equivalent to additive inflation
(Houtekamer and Zhang, 2016).
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2.3 Covariance inflation methods

Three covariance inflation methods (MULT, RTPP, and
RTPS) are adopted in this study. MULT inflates forecast error
covariance P f by a factor of ρ (> 1):

P f
inf = ρP

f
orig, (2)

where the subscripts inf and orig denote inflated and origi-
nal (i.e., before inflation), respectively. Both RTPP and RTPS
restore the analysis ensemble perturbation towards the fore-
cast ensemble perturbations maintaining the analysis ensem-
ble mean, as represented by

Xa
inf = αRTPPXf

+ (1−αRTPP)Xa
orig and (3)

Xa(i)
inf =

αRTPSσ
f(i)
+ (1−αRTPS)σ

a(i)
orig

σ
a(i)
orig

Xa(i)
orig. (4)

Here, X[= (x(1)−x, . . .,x(i)−x, . . ., x(n)−x)] is the ensem-
ble perturbation matrix whose ith column consists of the per-
turbations of the ith ensemble member, where x(i) and x are
the state vector of the ith ensemble member and ensemble
mean; the superscripts a and f denote analysis and forecast;
and αRTPP and αRTPS are the relaxation parameters in the
RTPP and RTPS, respectively. σ (i) is the ensemble spread
of the ith variable of state vector x, as represented by

σ (i) =

√
(n− 1)−1X(i)

(
X(i)

)T
. (5)

In the RTPP and RTPS, the relaxation parameters are gener-
ally defined between 0 and 1, where αRTPP = 0 and αRTPS =

0 correspond to no inflation, and αRTPP = 1 and αRTPS = 1
correspond to the inflated analysis ensemble spread being
equivalent to the forecast ensemble spread. RTPP and RTPS
are thought to have side effects in maintaining the dynamic
balance (Houtekamer and Zhang, 2016; Ying and Zhang,
2015).

2.4 Validation

2.4.1 Nonlinear balance equation (NBE)

Surface horizontal velocity can be represented as the sum
of surface geostrophic and ageostrophic velocities under the
geostrophic approximation. Here, the ageostrophic velocity
is defined as being caused by the surface wind stress curl ex-
cept for the vertical geostrophic shear, according to the clas-
sical Ekman theory (Cronin and Tozuka, 2016). In this study,
the atmospheric field is not included in the model state vec-
tor; therefore, there are no differences between the forecast
and analysis ageostrophic velocities. Consequently, writing
the geostrophic balance equation in terms of analysis incre-
ments, we obtain

f k× δu=−g∇hδη, (6)

where f is the vertical component of the Coriolis parame-
ter, k is a unit vector in the vertical upward direction, δ is
the analysis increment, u is the horizontal velocity at the
sea surface, g (= 9.8 m s−2) is the gravitational acceleration,
∇h = (∂/∂x,∂/∂y) is the horizontal gradient operator, and η
is the SSH. By taking ∂/∂x of the x component of Eq. (6)
plus ∂/∂y of the y component, Eq. (6) can be reduced to
the nonlinear balance equation (NBE; Shibuya et al., 2015;
Zhang et al., 2001):

−f δζ +βδu+ g∇2
hδη = 0, (7)

where ζ(= ∂v/∂x−∂u/∂y) is the relative vorticity at the sea
surface, and β(= ∂f/∂y) is the planetary vorticity gradient.
If geostrophic balance is not satisfied in the analysis field,
there is an absolute residual of the NBE, 1 NBE:

1NBE≡
∣∣∣−f δζ +βδu+ g∇2

hδη

∣∣∣ , (8)

where | · | denotes taking the absolute value. A smaller
(larger) 1 NBE indicates more (less) geostrophic balance in
the analysis field. Few initial shocks would occur if the analy-
sis increments of SSH and surface horizontal velocity satisfy
the geostrophic balance.

2.4.2 Improvement ratio (IR)

To compare the geostrophic balance and accuracy among
sensitivity experiments using a statistical method, we calcu-
late improvement ratios (IRs) of area-averaged 1 NBE and
root-mean-square deviations (RMSDs) relative to observa-
tions as represented by

IRN =
(1NBE)CTL− (1NBE)EXP

(1NBE)CTL
× 100, and (9)

IRR =
(RMSD)CTL− (RMSD)EXP

(RMSD)CTL
× 100, (10)

respectively. The subscripts CTL and EXP indicate con-
trol and sensitivity experiments, respectively. Significant im-
provement and degradation of the dynamical balance and ac-
curacy are detected by applying the bootstrap method, where
the IRs of the area-averaged 1 NBE and RMSDs are resam-
pled for 10 000 cycles, and a 99 % confidence level is used to
detect the significance in all sensitivity assimilation experi-
ments.

2.4.3 Observations

To validate the accuracy of the sensitivity experiments, we
use observational gridded SSH and SSHA datasets from
Archiving Validation and Interpretation of Satellite Oceano-
graphic data (AVISO; Ducet et al., 2000) with a horizon-
tal resolution of 0.25◦, in situ surface horizontal velocity
from surface drifting buoys of the Global Drifter Program
(Elipot et al., 2016), in situ temperature and salinity in the
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depth range 1–525 m, and horizontal velocity in the 8–36 m
depth range at 32.3◦ N, 144.6◦ E, south of the Kuroshio
Extension (KE) from the Kuroshio Extension Observatory
(KEO) buoy (https://www.pmel.noaa.gov/ocs/, last access:
11 November 2022; see Fig. 5a). The mean dynamical ocean
topography (MDOT) of the AVISO is estimated from a geoid
model, satellite altimetry, and in situ drifter buoy data. The
AVISO dataset is not an independent observational dataset
because satellite SSHAs are used for the assimilation in this
study, whereas the surface drifter and KEO buoys are inde-
pendent. Although validation in the ocean interior might not
be sufficient, this is due to the limitation of available inde-
pendent observations.

3 EnKF-based ocean data assimilation system

3.1 Ocean model

The σ -coordinate regional ocean model used in this study
is based on version 1.0 of the Stony Brook Parallel Ocean
Model (sbPOM; Jordi and Wang, 2012) and constructed
for the northwestern Pacific region (15–50◦ N, 117–180◦ E)
with a horizontal resolution of 0.25◦ and 50 σ -layers (Ta-
ble 2). The bottom topography is derived from ETOPO1,
a 1 arcmin global relief model of Earth’s surface (Amante
and Eakins, 2009). We apply a Gaussian filter with e-folding
scales of 200 km to the topography to reduce the pres-
sure gradient errors in σ -coordinate models caused by steep
bottom slopes (Mellor et al., 1994) and fulfill the condi-
tion |Hi+1−Hi |/ |Hi+1+Hi |< 0.2, whereHi andHi+1 are
bottom topographies at adjacent grids. Monthly (seasonal)
temperature and salinity climatologies from the World Ocean
Atlas 2018 (WOA18; Locarnini et al., 2019; Zweng et al.,
2019) with a horizontal resolution of 1◦ and 57 (102) lay-
ers are used for an initial condition over depths shallower
(deeper) than 1500 m. Lateral boundary conditions for tem-
perature, salinity, and horizontal velocity are obtained from
version 3.7.2 of Simple Ocean Data Assimilation (SODA;
Carton et al., 2018) with a horizontal resolution of 0.5◦

and 50 layers. Here, to satisfy volume conservation, flow
relaxation (Guo et al., 2003) is applied to the horizontal
velocity at the lateral boundary. The Japanese 55-year Re-
analysis (JRA-55; Kobayashi et al., 2015) with horizontal
and temporal resolutions of 1.25◦ and 6 h, respectively, is
adopted for the atmospheric boundary conditions, includ-
ing air temperature and specific humidity at 2 m, wind ve-
locity at 10 m, shortwave radiation, total cloud fraction, sea
level pressure, and precipitation. We also use river discharge
from the Japan Aerospace Exploration Agency (JAXA)’s
land surface and river simulation system, Today’s Earth
Global (TE-Global; https://www.eorc.jaxa.jp/water/, last ac-
cess: 11 November 2022), with horizontal and temporal res-
olutions of 0.25◦ and 3 h, respectively. The atmospheric and

lateral boundary conditions are perturbed as described in
Sect. 2.2, except for the rainfall and river discharge.

The model is driven by wind stresses as well as heat and
freshwater fluxes using bulk formulae in which bulk coef-
ficients are estimated from the Coupled Ocean–Atmosphere
Response Experiment (COARE), version 3.5, bulk algorithm
(Brodeau et al., 2017; Edson et al., 2013). The horizontal dif-
fusivity coefficient is calculated by a Smagorinsky type for-
mulation with a coefficient of 0.1 (Smagorinsky et al., 1965)
and is assumed to be one-fifth of the horizontal viscosity co-
efficient. The vertical diffusivity coefficient is estimated by
the Level 2.5 version of Nakanishi and Niino (2009). The
model is spun up from 1 January 2011 to 6 July 2015 us-
ing the initial condition with no motion. During the spin-up
period, simulated temperatures and salinity are nudged to-
wards the monthly and seasonal climatologies from WOA18
with a 90 d timescale to damp northward overshooting of the
Kuroshio. We have confirmed that the perturbed boundary
conditions substantially increase the ensemble spread even
with the nudging (not shown).

3.2 Data assimilation

We implement the three-dimensional local ensemble trans-
form Kalman filter (3D-LETKF; Hunt et al., 2007; Miyoshi
and Yamane, 2007) with 100 ensemble members to as-
similate the following observations on a 1 d assimila-
tion interval (Table 3): satellite SSTs from Himawari-
8 and GCOM-W, SSS from the SMOS (http://www.esa.
int/Applications/Observing_the_Earth/SMOS, last access:
11 November 2022) and Soil Moisture Active Passive
(SMAP) version 4.3 (Meissner et al., 2018), SSH consist-
ing of satellite SSH anomalies from the Copernicus Marine
Environment Monitoring Service (CMEMS; http://marine.
copernicus.eu/, last access: 11 November 2022) and MDOT
estimated from simulated SSH averaged in 2012–2014, and
in situ temperature and salinity from the Global Temper-
ature and Salinity Profile Programme (GTSPP; Sun et al.,
2010) and Advanced automatic QC (AQC) Argo Data ver-
sion 1.2a (https://www.jamstec.go.jp/argo_research/dataset/
aqc/index_dataset.html, last access: 11 November 2022). We
exclude satellite SSS within 100 km of the coasts, SSH for
bottom topography shallower than 200 m, in situ temperature
and salinity duplicated between the GTSPP and AQC Argo
datasets, and observations without the best quality flags or
whose differences from the forecasts are larger than the val-
ues in the gross error check in Table 3. Following Miyazawa
et al. (2012) and Penny et al. (2013), the localization scales
based on a Gaussian function are chosen to be 300 km and
100 m in the horizontal and vertical directions, respectively.
An observational error covariance matrix is assumed to be
diagonal using the observation errors in Table 3.
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Table 2. Overview of the regional ocean model in the ocean data assimilation system.

Ocean model sbPOM (Jordi and Wang, 2012)
Model domain Northwestern Pacific (15–50◦ N, 117–180◦ E)
Horizontal resolution 0.25◦× 0.25◦

Vertical layer 50 σ -layers
Initial conditions WOA18 (Locarnini et al., 2019; Zweng et al., 2019)
Atmospheric forcing JRA-55 (Kobayashi et al., 2015)
River discharge TE-Global (https://www.eorc.jaxa.jp/water/, last access: 11 November 2022)
Lateral boundary condition SODA, version 3.7.2 (Carton et al., 2018)
Spin-up period 01 Jan 2011–06 Jul 2015

Table 3. Overview of data assimilation in the ocean data assimilation system.

Assimilation method LETKF (Hunt et al., 2007; Miyoshi and Yamane, 2007)

Ensemble size 100

Assimilation cycle 1 d

Observations

SST Himawari-8 (Bessho et al., 2016; Kurihara et al., 2016)
GCOM-W (http://www.ghrsst.org, last access: 11 November 2022)

SSS SMOS (https://earth.esa.int, last access: 11 November 2022)
SMAP (https://www.jpl.nasa.gov, last access: 11 November 2022)

SSH
– SSHA DUACS multi-mission satellite data (https://marine.copernicus.eu/, last access: 11 November 2022)
– MDOT Climatology of model outputs in a spin-up period (2012–2014)

GTSPP (Sun et al., 2010)
Temperature and salinity AQC Argo data, version 1.2a

(https://www.jamstec.go.jp/argo_research/dataset/aqc/index_dataset.html, last access: 11 November 2022)

Horizontal localization scale 300 km

Vertical localization scale 100 m

Observation error

SST 1.5 ◦C
SSS 0.3
SSH 0.2 m
Temperature 1.5 ◦C
Salinity 0.3

Gross error check

SST ±5 ◦C
SSS ±1
SSH ±1 m
Temperature ±5 ◦C
Salinity ±2

Assimilation period 07 Jul 2015–31 Dec 2016

3.3 Sensitivity experiments

We conduct sensitivity experiments combining the IAU
and covariance inflation methods (no inflation (NO INFL),
RTPP, RTPS, and MULT) to investigate their impacts
on the geostrophic balance and accuracy. We set the re-

laxation parameters in the RTPP and RTPS experiments
to αRTPP = αRTPS = 0.9 without the IAU and to αRTPP =

αRTPS = 0.5, 0.6, . . ., 1.2 with the IAU, and we set the infla-
tion parameter to ρ = 1.052 (inflating the forecast ensemble
spread by 5 %) in the MULT experiments, regardless of the
application of the IAU. In this study, we do not explore all

Geosci. Model Dev., 15, 8395–8410, 2022 https://doi.org/10.5194/gmd-15-8395-2022

https://www.eorc.jaxa.jp/water/
http://www.ghrsst.org
https://earth.esa.int
https://www.jpl.nasa.gov
https://marine.copernicus.eu/
https://www.jamstec.go.jp/argo_research/dataset/aqc/index_dataset.html


S. Ohishi et al.: An ensemble Kalman filter system with sbPOM v1.0 8401

values of the relaxation and inflation parameters because of
the limitations of computational resources. Hereafter, we re-
fer to the RTPP experiments implemented with and without
the IAU as the RTPP+IAU and RTPP experiments, respec-
tively, and we refer to the RTPP+IAU experiment with a re-
laxation parameter of 0.5 as the RTPP05+IAU experiment.
Kotsuki et al. (2017) indicated that the RTPP and RTPS do
not consider the model error explicitly and that the optimal
relaxation parameter may be larger than 1.0. Therefore, we
perform experiments with a relaxation parameter value > 1.
To clarify the effects of the IAU and covariance inflation
methods, the NO INFL experiment is defined as a control
experiment in this study (see Eqs. 9 and 10).

We integrate the LETKF-based ocean data assimilation
system from 7 July 2015 at the start date of the Himawari-
8 observations to 31 December 2016, applying the SSS
nudging with 90 d timescale to damp a surface freshening
drift, as in the model spin-up described in Sect. 3.1. Fur-
thermore, we conduct 11 d ensemble forecast experiments
initialized on the first day of each month in 2016 by the
forecasts from the NO INFL, NO INFL+IAU, RTPP09,
RTPP09+IAU, RTPS09, and RTPS09+IAU experiments,
with the SSS nudging applied with a 90 d timescale. We es-
timate 1 NBE from the ensemble analysis increments on
days 1 and 16 of each month, the RMSDs from the daily
averaged ensemble mean analyses and forecasts, and the en-
semble spread from the daily mean ensemble analyses. As
described in Sect. 2.4.2, the statistical analyses are applied
to IRs of area-averaged 1 NBE and analysis RMSDs in all
analysis experiments. The results of the RTPP11+IAU and
RTPP12+IAU experiments are not shown because numeri-
cal instability developed.

4 Results

4.1 Geostrophic balance

We first compare the geostrophic balance for the various sen-
sitivity experiments using spatiotemporally averaged1NBE
over the whole system domain for 2016 (Fig. 1). The NO
INFL+IAU experiment has the best geostrophic balance
with significant improvement relative to the NO INFL ex-
periment; thus, the IAU plays a role in enhancing the bal-
ance, probably because the IAU reduces noise of the high-
frequency gravity waves associated with initial shocks. This
result is consistent with Yan et al. (2014), who demonstrated
that the IAU reduces the spurious oscillation of vertical ve-
locity in twin experiments using a relatively idealized EnKF-
based ocean data assimilation system. In contrast, as the
RTPP09 and RTPS09 experiments show significantly larger
1NBE than the NO INFL experiment, RTPP and RTPS con-
tribute to breaking the balance. The MULT+IAU and MULT
experiments give such a large 1 NBE (2.11× 10−10 and

Figure 1. Spatiotemporally averaged 1 NBE over the whole
domain for 2016 in the NO INFL (black star), RTPP (red),
RTPS (blue), NO INFL+IAU (gray), RTPP+IAU (orange), and
RTPS+IAU (cyan) experiments as a function of the relaxation pa-
rameters. Open circles and triangles indicate significant improve-
ment and degradation relative to the NO INFL experiment at a
99 % confidence level, respectively, and closed circles and trian-
gles denote improvement and degradation relative to the NO INFL
experiment with no significant differences. The RTPS12+IAU,
MULT+IAU, and MULT experiments show significant degrada-
tion with an averaged 1 NBE of 2.94× 10−10, 2.11× 10−10, and
5.22×10−10 s−2, respectively (not shown). The RTPP+IAU exper-
iments for the relaxation parameters of αRTPP ≥ 1.1 are not shown
because numerical instability developed.

5.22×10−10 s−2, respectively) that the MULT breaks the bal-
ance considerably even if the IAU is applied.

The RTPP+IAU and RTPS+IAU experiments pro-
vide significant improvement when the relaxation param-
eters are αRTPP ≤ 0.9 and αRTPS ≤ 0.8, respectively. The
RTPP11+IAU experiment becomes numerically unstable in
December 2015, and the RTPS11+IAU experiment also sig-
nificantly degrades the balance; thus, relaxation parameters
larger than 1.0 do not appear to be appropriate for the EnKF-
based ocean data assimilation system. The combinations of
the IAU and RTPP/RTPS, in which the relaxation parameters
are set to αRTPP ≤ 0.9 and αRTPS ≤ 0.8, appear to maintain
geostrophic balance, likely because the IAU counteracts the
RTPP/RTPS by improving the balance.

To investigate spatial characteristics of the geostrophic
balance, 1 NBE is temporally averaged over the
whole year 2016 (Fig. 2). Here, the RTPP09+IAU and
RTPS11+IAU experiments are shown from the RTPP+IAU
and RTPS+IAU experiments because they have the best
accuracy, as seen in Sect. 4.2. The NO INFL, RTPP09, and
RTPS09 experiments produce less-balanced fields in the
midlatitude region, especially around the KE (Fig. 2a, c,
e). In the RTPS11+IAU experiment, the balance is also
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Figure 2. 1 NBE (colors) and SSH (white contours) averaged
over 2016 in the (a) NO INFL, (b) NO INFL+IAU, (c) RTPP09,
(d) RTPP09+IAU, (e) RTPS09, and (f) RTPS11+IAU experiments.
Thin (thick) contour intervals are 0.2 m (1.0 m).

lost in higher-latitude regions (Fig. 2f). In the MULT and
MULT+IAU experiments, there are almost no balanced
regions with 1 NBE smaller than 1.5× 10−10 s−2 (not
shown). The NO INFL+IAU and RTPP09+IAU experi-
ments show substantial improvement around the KE region,
although a relatively large 1 NBE remains along the KE in
the RTPP09+IAU experiment (Fig. 2b, d). Thus, in general,
although the balance in the analysis field is not maintained
around the KE region, this imbalance is substantially reduced
in the NO INFL+IAU and RTPP09+IAU experiments.

4.2 Accuracy

4.2.1 Surface flow field

We evaluate the accuracy of the surface flow field in the sen-
sitivity experiments, calculating the analysis RMSDs relative
to the AVISO observational SSH and SSHA gridded datasets
as well as surface zonal and meridional velocity from the
drifter buoys. We also estimate the ensemble spread in ob-
servational space. As described in Sect. 2.4.3, the AVISO
dataset is not independent, as it uses satellite SSHAs assim-
ilated in our system, whereas the drifter buoys are indepen-
dent. The different results from the SSH and SSHA RMSDs
are caused by the different MDOT between the AVISO

dataset and the system, as described in Sects. 2.4.3 and 3.2,
respectively. The analysis RMSDs and ensemble spreads are
averaged over the whole domain for 2016 in the SSH and
SSHA fields (Fig. 3) and the surface zonal and meridional
velocity fields (Fig. 4). Compared with the NO INFL experi-
ment, the NO INFL+IAU experiment has significantly larger
RMSDs and smaller ensemble spreads in most of the vari-
ables, whereas the RTPP09 and RTPS09 experiments show
significantly smaller RMSDs and larger spreads (Figs. 3, 4).
This indicates that the IAU has a significant effect on reduc-
ing the accuracy in the surface flow field because the rela-
tively small ensemble spread leads to small analysis incre-
ments and because the IAU does not use the SSH analy-
sis increments. However, the small analysis increments re-
sult in a better dynamical balance, as shown in Sect. 4.1.
The result is consistent with Yan et al. (2014), who demon-
strated that the IAU degrades the accuracy of SSH, temper-
ature, and horizontal velocities using twin experiments. In
contrast, the RTPP and RTPS lead to significant improve-
ment by inflating the ensemble spread. The large analysis in-
crements caused by the large ensemble spread might reduce
the dynamical balance. The MULT and MULT+IAU exper-
iments yield poor accuracy and very large ensemble spreads
in the flow fields; for example, the averaged SSH RMSDs of
0.22 and 0.24 m and the averaged SSH and SSHA ensemble
spreads of 0.41 and 0.74 m, respectively. Thus, the MULT
does not have sufficient skill in reproducing the flow field.

In both RTPP+IAU and RTPS+IAU experiments, the en-
semble spreads are increased in all of the variables for the
larger relaxation parameters (Figs. 3c, 4c, d). It appears that
the larger relaxation parameters maintain the large ensem-
ble spread induced by the perturbed boundary conditions.
In the RTPP+IAU experiments, the accuracy of SSH and
SSHA is the highest for αRTPP = 0.8, although there is no
significant improvement relative to the NO INFL experiment
(Fig. 3a, b). The accuracy in both zonal and meridional ve-
locity improves with larger relaxation parameter, and signif-
icantly improves for αRTPP = 0.8–1.0 (Fig. 4a, b). Conse-
quently, αRTPP = 0.8–0.9 in the RTPP+IAU experiment may
be appropriate to represent the flow field more accurately.

In the RTPS+IAU experiment, the accuracy of the SSH,
SSHA, and horizontal velocity tends to improve as the re-
laxation parameter increases, and then significant degrada-
tion suddenly occurs for αRTPS = 1.2 (Figs. 3a, b; 4a, b).
For αRTPS = 1.1, the RTPS+IAU experiment has the best
accuracy for the SSH and SSHA but significant improve-
ment only in the SSHA (Fig. 3a, b). For αRTPS = 1.0, the
accuracy in both zonal and meridional velocity is signifi-
cantly higher (Fig. 4a, b). Therefore, αRTPS = 1.0–1.1 seems
to be the best among the RTPS+IAU experiments. We note
that the accuracy of the SSH and SSHA in the RTPP+IAU
and RTPS+IAU experiments does not surpass the RTPP09
and RTPS09 experiments, probably because the IAU method
does not use the SSH analyses. Furthermore, the comparison
between the RTPP+IAU and RTPS+IAU experiments sug-
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Figure 3. As in Fig. 1 but for the analysis RMSDs of (a) SSH and
(b) SSHA relative to the AVISO dataset. Panel (c) shows the spa-
tiotemporally averaged ensemble spreads of SSH and SSHA over
the whole domain for 2016 in observational space (circles). The
RMSDs of SSH and SSHA in the RTPS12+IAU experiment are
0.164 and 0.137 m, respectively (not shown).

gests that the combination of the IAU and RTPP has higher
skill in reproducing the flow field.

To examine the spatial features of the analysis accuracy
and ensemble spread, the analysis RMSDs and ensemble
spreads in the SSHA are also averaged over 2016 (Figs. 5 and
6, respectively). In most experiments, large RMSDs and en-
semble spreads are distributed around the KE region, where
there are abundant fronts and eddies. Compared with the
NO INFL experiment, the ensemble spreads become smaller
in the midlatitude region in the NO INFL+IAU experiment;
thus, the accuracy around the KE region is degraded. The
RTPP09, RTPS09, RTPP09+IAU, and RTPS11+IAU exper-
iments show larger ensemble spreads, leading to improve-
ment of the accuracy around the KE region. However, the
larger ensemble spread is also seen in the subtropical region
in the RTPS11+IAU experiment. This does not seem reason-
able because a free ensemble experiment does not demon-
strate such spread even if the perturbed atmospheric and lat-
eral boundary conditions are applied (not shown).

To investigate the forecast accuracy, we calculate the spa-
tiotemporally averaged forecast RMSDs of the 11 d ensem-
ble forecast experiments for each month in 2016 (i.e., a to-
tal of 12 cases) relative to the AVISO and drifter buoys, and
the 12 cases are averaged to obtain the forecast RMSDs over
2016 (Fig. 7). As shown in Figs. 3, 4, and 7, the results of

Figure 4. As in Fig. 1 but for the analysis RMSDs of the surface
(a) zonal and (b) meridional velocity relative to the drifter buoys as
well as the ensemble spreads of the surface (c) zonal and (d) merid-
ional velocity. The RMSDs of surface zonal and meridional velocity
in the RTPS12+IAU experiment are 0.293 and 0.277 m s−1, respec-
tively (not shown). The RMSD in panel (b) and ensemble spreads
in panels (c) and (d) in the RTPP09 experiment are slightly offset
for visualization.

the forecast RMSDs generally agree with those of the analy-
sis RMSDs, except for the RTPP09+IAU and RTPS09+IAU
experiments showing smaller forecast SSHA RMSDs than
the NO INFL experiment. Overall, the combination of the
IAU and RTPP09 seems to be the most suitable for not only
constructing analysis products but also conducting ensemble
forecasts.

4.2.2 The KEO buoy

We also calculate the analysis and forecast RMSDs relative
to independent observations of temperature, salinity, and hor-
izontal velocity from the KEO buoy located south of the KE
(Fig. 5a). Here, only the temperature and salinity results are
shown because there is basically no improvement in the hor-
izontal velocity. There is almost no difference between the
NO INFL+IAU and NO INFL experiments in the tempera-
ture analysis accuracy, whereas the salinity analysis accuracy
is significantly degraded around 0–200 m depth in the NO
INFL+IAU experiment (Fig. 8). Therefore, the IAU may re-
duce the analysis accuracy, although this is not as obvious as
for the flow field shown in Sect. 4.2.1. The RTPP and RTPS
experiments give significantly better analysis accuracy than
the NO INFL experiment for both temperature and salinity;
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Figure 5. As in Fig. 3 but for the analysis RMSDs relative to
the SSHA from the AVISO dataset (color). The black star in
panel (a) indicates the KEO buoy location (32.3◦ N, 144.6◦ E).

Figure 6. As in Fig. 3 but for the SSHA ensemble spreads.

Figure 7. Spatiotemporally averaged RMSDs of the 11 d ensem-
ble forecast in the NO INFL (black), RTPP09 (red), RTPS09 (blue),
NO INFL+IAU (gray), RTPP09+IAU (orange), and RTPS09+IAU
(cyan) experiments relative to (a) SSH and (b) SSHA from the
AVISO dataset and surface (c) zonal and (d) meridional velocities
from the drifter buoys. The RMSDs in the RTPS09 in panels (b),
(c), and (d) are slightly offset for visualization.

thus, the RTPP and RTPS play a role in enhancing the anal-
ysis accuracy. These results are qualitatively the same as the
forecast accuracy (Fig. 9).

When the relaxation parameter αRTPP is 0.7–1.0 in the
RTPP+IAU experiment, the temperature analysis accuracy
is significantly enhanced around 200–500 m depth, although
there is slight degradation around 50–150 m depth (Fig. 10a).
For the parameter values in that range, the salinity analysis
accuracy is also significantly improved at almost all depths
(Fig. 10c). As the temperature analysis accuracy is the best
at αRTPP = 0.8–0.9 and the salinity analysis accuracy im-
proves as the relaxation parameter increases, the appropri-
ate relaxation parameter would be αRTPP = 0.8–0.9 in the
RTPP+IAU experiment.

In the RTPS+IAU experiments, the temperature analy-
sis accuracy below 200 m depth is significantly improved
for αRTPS = 0.8–1.1, whereas that above 200 m depth is
significantly degraded for αRTPS = 0.5–0.8 and αRTPS = 1.2
(Fig. 10b). The salinity analysis accuracy improves over
almost the whole depth when the relaxation parameter is
αRTPS = 1.0–1.2, whereas there is significant degradation
around 0–200 m depth when the relaxation parameter is
αRTPS = 0.5–0.9 (Fig. 10d). Therefore, a suitable relaxation
parameter is αRTPS = 1.0–1.1 in the RTPS+IAU experiment.
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Figure 8. Analysis RMSDs of (a) temperature and (b) salinity
relative to the KEO buoy averaged over 2016 in the NO INFL
(black star), RTPP09 (red), RTPS09 (blue), NO INFL+IAU (gray),
RTPP09+IAU (orange), and RTPS11+IAU (cyan) experiments.
Open circles and triangles denote significant improvement and
degradation relative to the NO INFL experiment at a 99 % confi-
dence level, respectively. Closed circles and triangles indicate im-
provement and degradation with no significant differences, respec-
tively.

Figure 9. As in Fig. 8 but for the forecast RMSDs of the 11 d
ensemble forecast experiments. We note that the results of the
RTPS09+IAU experiment are shown here, whereas the analysis
RMSDs of the RTPS11+IAU experiment are shown in Fig. 8; thus,
the relaxation parameters are different in the RTPS+IAU experi-
ments.

The RTPP09+IAU and RTPS11+IAU experiments have
higher analysis accuracy (Fig. 8), and the RTPP09 and
RTPP09+IAU experiments show higher forecast accuracy
(Fig. 9) than the other experiments. Therefore, the combi-
nation of the IAU and RTPP09 is the most appropriate for
the analysis and ensemble forecasts.

Figure 10. Temperature analysis RMSDs (black contours) and IRs
(color shading and white contours) between the KEO buoy and
the (a) RTPP+IAU and (b) RTPS+IAU experiments averaged over
2016. Panels (c) and (d) are the same as panels (a) and (b) but for
salinity. Open circles and triangles indicate significant improvement
and degradation relative to the NO INFL experiment at a 99 % con-
fidence level, respectively. Thin (thick) black contour intervals are
0.2 (1.0) ◦C in panels (a) and (b), whereas they are 0.1 (0.2) in pan-
els (c) and (d); thin (thick) white contour intervals are 10 % (100 %).

5 Comparison of the prescribed MULT parameter
with the RTPP09+IAU experiment

To investigate how much the inflation in the RTPP09+IAU
experiment corresponds to the MULT parameter, we es-
timate the MULT parameter ρest corresponding to the
RTPP09+IAU experiment using the following equation:

αRTPPXf
+ (1−αRTPP)Xa

orig =
√
ρestXf . (11)

By multiplying (Xf)T
[
Xf(Xf)T

]−1 from the right-hand side
of Eq. (11),

ρestI=
{
αRTPPI + (1−αRTPP)Xa

orig(X
f)T
[
Xf(Xf)T

]−1
}2

, (12)

where I denotes the identity matrix. In scalar format, the esti-
mated parameter ρ(i)est at the ith variable might be represented
as

ρ
(i)
est =

αRTPP+
1−αRTPP

n− 1

X
a(i)
orig(X

f(i))T

(σ f (i))2


2

. (13)
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Table 4. Schematic summarizing the evaluation of the geostrophic balance and analysis accuracy of the AVISO SSH and SSHA, the surface
zonal and meridional velocity from the drifter buoys, and the temperature and salinity at the KEO buoy in the sensitivity experiments. Open
circles and crosses indicate improvement and degradation relative to the NO INFL experiment, respectively, and asterisks denote significant
improvement and degradation. In rows two to four, symbols and asterisks are used only if both variables have the same results; otherwise,
dashes are used to indicate no significant difference from the NO INFL experiment. Parentheses in the RTPP+IAU and RTPS+IAU experi-
ments denote the best relaxation parameter in the second row and the range of the relaxation parameter with significant improvement in the
other rows.

IAU RTPP09 RTPS09 RTPP+IAU RTPS+IAU

Geostrophic balance ◦
∗

×
∗

×
∗

◦
∗

◦
∗

(Sig. at αRTPP ≤ 0.9) (Sig. at αRTPS ≤ 0.8)

SSH and SSHA ×
∗

◦
∗

◦
∗ – –

from the AVISO (Best at αRTPP = 0.8) (Best at αRTPS = 1.1)

Surface velocity ×
∗

◦ ◦
∗

◦
∗

◦
∗

from the drifter buoys (Sig. at αRTPP = 0.8–1.0) (Sig. at αRTPS = 1.0)

T and S × ◦
∗

◦
∗

◦
∗

◦
∗

at the KEO buoy (Sig. at αRTPP = 0.7–1.0) (Sig. at αRTPS = 1.0–1.1)

Using the outputs from the RTPP09+IAU experiment, we
calculate the estimated MULT parameter for the SST, SSS,
and SSH fields (Fig. 11). The estimated MULT parameter
is large around the midlatitude region, especially around the
KE region. The estimated MULT parameters averaged over
the whole domain and analysis period are 1.08 (1.11) for the
SST and SSS (SSH) fields, and these values correspond well
to the prescribed MULT parameter ρ = 1.052

≈ 1.10.
As shown in Fig. 11, the MULT parameter might have spa-

tial dependency; therefore, adaptive MULT (Miyoshi, 2011)
may be useful. However, Ohishi et al. (2022) demonstrated
that adaptive observation error inflation (AOEI; Minamide
and Zhang, 2017; Zhang et al., 2016), with opposite effects
to the adaptive MULT, significantly improves the dynami-
cal balance and accuracy of the temperature, salinity, and
surface horizontal velocities. This is because the AOEI sup-
presses the erroneous temperature and salinity analysis in-
crements associated with the representation errors around
the KE region, which result in strong vertical salinity dif-
fusion through weakening density stratification and there-
fore degrade the low-salinity structure in the intermediate
layer. This implies that the adaptive MULT would increase
the analysis increments and degrade the dynamical balance
and accuracy. Therefore, it is difficult to find an appropriate
MULT parameter.

Figure 11. Estimated MULT parameters (Eq. 11) averaged over
2016 for (a) SST, (b) SSS, and (c) SSH fields using the outputs from
the RTPP09+IAU experiment. Right bottom values indicate spa-
tiotemporally averaged estimated MULT parameters. Thin (Thick)
counter intervals are 0.02 (0.1).
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6 Summary

In this study, we have developed an EnKF-based ocean data
assimilation system with an assimilation interval of 1 d to
take advantage of frequent satellite observations; moreover,
we have conducted sensitivity experiments to explore the
best combination of the IAU and covariance inflation meth-
ods by evaluating the geostrophic balance and analysis ac-
curacy. Table 4 summarizes the overall evaluation in this
study. The IAU and RTPP/RTPS have opposite effects to
each other; namely, the IAU improves the balance but de-
grades the accuracy, reducing the ensemble spread, whereas
the RTPP and RTPS degrade the balance and improve the
accuracy by inflating the ensemble spread. Large RTPP and
RTPS parameters maintain large ensemble spread inflated by
the perturbed boundary conditions, and the resulting large
analysis increments degrade the balance but improve the ac-
curacy. The RTPP+IAU experiment provides significantly
better balance for relaxation parameters of αRTPP ≤ 0.9 as
well as better accuracy when the relaxation parameter is
αRTPP = 0.8–1.0. Therefore, this study demonstrates that the
appropriate parameter is αRTPP = 0.8–0.9 when the IAU and
RTPP are combined. In contrast, the RTPS+IAU experi-
ment does not significantly improve the balance and accu-
racy at the same time, as the balance is significantly better
for a relaxation parameter of αRTPS ≤ 0.8, whereas the accu-
racy is significantly higher when the relaxation parameter is
αRTPS = 1.0–1.1. Therefore, this study demonstrates that the
combination of the IAU and RTPP with a relaxation param-
eter of αRTPP = 0.8–0.9 is the most suitable for the EnKF-
based ocean data assimilation system. The 11 d ensemble
forecast experiments show consistent results of forecast ac-
curacy with the analysis accuracy.

In the combination of the IAU and RTPP, the large re-
laxation parameter of αRTPP = 0.8–0.9 maintains the ensem-
ble spread induced by perturbed boundary conditions and
leads to the improvement of the analysis accuracy but the
degradation of the dynamical balance; concurrently, the IAU
improves the degradation of the dynamical balance by the
RTPP. As a result, this would lead to further improvement
of the forecast and analysis accuracy by reducing the ini-
tial shocks in frequent data assimilation. Compared with the
RTPS (RTPS+IAU) experiments, the RTPP (RTPP+IAU)
experiments show better balance and result in smaller initial
shocks. As a result, the combination of the IAU and RTPP
leads to better accuracy than that of the IAU and RTPS.

The MULT with a 5 % inflation of the forecast ensemble
spread does not have sufficient skill in maintaining the bal-
ance and accurately reproducing the flow field, regardless of
whether or not the IAU is applied. Although it is difficult to
find an appropriate MULT parameter, as described in Sect. 5,
it might be possible that MULT produces analyses with good
balance and accuracy by tuning the inflation parameter. How-
ever, as the computational cost of tuning the parameters in
all covariance inflation methods is high, this study focuses

on the combination of the RTPP/RTPS and IAU with good
balance and accuracy. This system still contains other tuning
parameters in the perturbed atmospheric forcing, ensemble
size, localization scale, and observation errors. We note that
the suitable RTPP parameter in the RTPP+IAU experiment
would be different depending on those parameter settings.
Further experiments are required to determine the best set-
tings for a given computational resource, and we will address
this issue in future studies.

The results of this study would also be useful for construct-
ing EnKF-based data assimilation systems in other fields in
which gravity waves have substantial impacts. Furthermore,
this study may help improve the accuracy of existing EnKF-
based data assimilation systems. Table 1 shows that there are
no eddy-resolving EnKF-based ocean reanalysis datasets in
the Pacific region. We are now planning to construct such
analysis datasets and real-time ensemble prediction systems.

Code and data availability. The source codes for sbPOM and
LETKF are available from https://doi.org/10.5281/zenodo.6482744
(Ohishi, 2022) and https://github.com/takemasa-miyoshi/letkf (last
access: 13 April 2021, Miyoshi and Yamane, 2007), respectively.
The COARE, version 3.5, source code is available from https:
//github.com/brodeau/aerobulk (last access: 13 April 2021, Brodeau
et al., 2017; Edson et al., 2013).
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phod/gdp/hourly_data.php (last access: 13 April 2021, Elipot et
al., 2016); the KEO buoy data are available from https://www.
pmel.noaa.gov/ocs/ (last access: 13 April 2021); the ETOPO1
dataset is available from from https://www.ngdc.noaa.gov/mgg/
global/ (last access: 13 April 2021, Amante and Eakins, 2009);
the WOA18 dataset is available from https://www.ncei.noaa.gov/
access/world-ocean-atlas-2018/ (last access: 13 April 2021; Lo-
carnini et al., 2019; Zweng et al., 2019); the Himawari-8 satel-
lite SST data are available from https://www.eorc.jaxa.jp/ptree/
index.html (last access: 13 April 2021; Bessho et al., 2016; Kuri-
hara et al., 2016); the GCOM-W SST data are available from
https://gportal.jaxa.jp/gpr/?lang=en (last access: 13 April 2021);
the satellite SSS data from SMOS are available from http:
//www.esa.int/Applications/Observing_the_Earth/SMOS (last ac-
cess: 13 April 2021); SMAP version 4.3 can be accessed at https:
//podaac.jpl.nasa.gov/ (last access: 13 April 2021, Meissner et al.,
2018); the satellite SSHA data and AVISO datasets (Ducet et
al., 2000) are available from CMEMS (https://marine.copernicus.
eu/, last access: 13 April 2021); in situ temperature and salin-
ity data are available from GTSPP (https://www.ncei.noaa.gov/
products/global-temperature-and-salinity-profile-programme, last
access: 13 April 2021, Sun et al., 2010); and AQC Argo, version
1.2a, can be accessed at https://www.jamstec.go.jp/argo_research/
dataset/aqc/index_dataset.html (last access: 13 April 2021). The
global JRA-55 atmosphere and SODA 3.7.2 ocean reanalysis
datasets are from http://search.diasjp.net/en/dataset/JRA55 (last ac-
cess: 13 April 2021, Kobayashi et al., 2015) and https://www.soda.
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umd.edu/soda3_readme.htm (last access: 13 April 2021, Carton et
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