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Abstract. Understanding the coupling of nitrogen (N) and
carbon (C) cycles of land ecosystems requires understand-
ing microbial element use efficiencies of soil organic mat-
ter (SOM) decomposition. Whereas important controls of
those efficiencies by microbial community adaptations have
been shown at the scale of a soil pore, a simplified repre-
sentation of those controls is needed at the ecosystem scale.
However, without abstracting from the many details, models
are not identifiable; i.e. they cannot be fitted without ambigu-
ities to observations. There is a need to find, implement, and
validate abstract simplified formulations of theses processes.

Therefore, we developed the Soil Enzyme Allocation
Model (SEAM). The model explicitly represents commu-
nity adaptation strategies of resource allocation to extracel-
lular enzymes and enzyme limitations on SOM decomposi-
tion. They thus provide an abstraction from several micro-
bial functional groups to a single holistic microbial commu-
nity. Here we further simplify SEAM using a quasi-steady-
state assumption for extracellular enzyme pools to derive the
Soil Enzyme Steady Allocation Model (SESAM) and test
whether SESAM can provide the same decadal-term predic-
tions as SEAM.

SESAM reproduced the priming effect, the SOM banking
mechanism, and the damping of fluctuations in carbon use
efficiency with microbial competition as predicted by SEAM
and other more detailed models. This development is an im-
portant step towards a more parsimonious representation of
soil microbial effects in global land surface models.

1 Introduction

Soil organic matter (SOM) dynamics constitutes a strong
link of global nutrient cycles because the microbial decom-
poser community has a rather strict homeostatic regulation
of their stoichiometry (Sterner and Elser, 2002; Zechmeister-
Boltenstern et al., 2015). Hence, understanding and properly
modelling SOM dynamics is required to understand the link-
age of the global element cycles of nitrogen (N) and car-
bon (C) (Thornton et al., 2007; Janssens et al., 2010; Zaehle
and Dalmonech, 2011; Todd-Brown et al., 2012; Xu et al.,
2014). The discussion about microbial carbon use efficiency
(CUE), the ratio between microbial carbon uptake and micro-
bial growth, has received attention in the literature (Wieder
et al., 2013; Bradford et al., 2016; Hagerty et al., 2018; Liu
et al., 2018; Fatichi et al., 2019) as an important predictor for
building up SOM stocks. However, relevant processes hap-
pen at the pore scale, and processes strongly vary between
microsites and sites. On the other hand we are concerned
with dynamics at the pedon or ecosystem scale and strive
for general predictions that do not depend on the varying de-
tails. Hence, there is a discrepancy in detail and scale be-
tween process understanding and what is feasible to imple-
ment in global models.

CUE is an emergent value that depends on microbial traits,
such as maintenance requirements, and stoichiometric imbal-
ances of the substrates that microbes feed on (Sect. 2.1.1). At
the micro-pore scale, Kaiser et al. (2014) have shown that
competition between microbes allows for a dampening of
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CUE fluctuations despite changing stoichiometry of the de-
composed SOM. Specifically, by using a detailed individual-
based model they showed how the succession of different mi-
crobial populations with different substrate preferences sus-
tained high community CUE despite changing substrate sto-
ichiometry.

In a first abstraction step models represent different mi-
crobial groups or guilds instead of single microbes (Allison,
2014; Perveen et al., 2014; Huang et al., 2018). This matches
the scale of inputs and outputs to the SOM model, making
it potentially feasible to implement them as submodels in
global models. However, for each microbial group proper-
ties and parameters have to be determined. The increase in
number of model parameters inflates the risk of equifinality,
i.e. simulating the observed data for the wrong reasons, and
renders model–data-integration studies difficult. For example
Huang et al. (2018) used 11 microbe-related model parame-
ters for each group.

An alternative model abstraction represents a single mi-
crobial community with adapting properties by, for example,
optimizing microbial growth in the model. This concept was
applied in the Soil Enzyme Allocation Model (SEAM) (Wut-
zler et al., 2017), which was successful in reproducing the
simulated patterns of the group-based SYMPHONY model
(Perveen et al., 2014).

In a further model abstraction, the effect of changing CUE
can be modelled in conventional pool-based models without
explicit microbial community by a growth-adapted humifica-
tion coefficient and stoichiometry-dependent decomposition
rates as in the PRIM model (Guenet et al., 2016). However,
such a model cannot represent the changes in decomposi-
tion rate with apparent CUE depending on biomass proper-
ties (Tang and Riley, 2014).

Hence, there is a need for a model abstraction with fewer
details that is still able to represent effects of stoichiometry
such as priming effects due to N mining from SOM under
N limitation (Kuzyakov, 2010) and the banking mechanism
(Perveen et al., 2014; Wutzler et al., 2017), where excess
available N is stored by SOM build-up and made available
again by increased SOM decomposition during periods of
N limitation. To meet this need, we previously developed
SEAM (Wutzler et al., 2017) and, here, present the Soil En-
zyme Steady Allocation Model (SESAM), a further simplifi-
cation of SEAM.

SESAM is intended to capture the longer-term, i.e.
decadal, dynamics of SOM decomposition and abstracts
from short-term dynamics, i.e. shorter than seasonal, by ap-
plying the quasi-steady-state assumption (Wutzler and Re-
ichstein, 2013) to soil extracellular enzyme pools.

The aim of this paper is to present SESAM without pre-
knowledge of SEAM and show that it can reproduce the pre-
dictions of SEAM at a decadal timescale and is therefore able
to simulate the priming effect due to N mining and the bank-
ing mechanism.

Figure 1. SESAM structure: microbial biomass B produces en-
zymes that depolymerize substrate pools (L and R) that differ in
their elemental ratios. Microbial community enzyme allocation α
determines which part of the microbial community depolymer-
izes L versus R by producing respective enzymes EL and ER. Mi-
crobes take up dissolved organic matter (DOM) and use it for syn-
thesizing new biomass or new enzymes or for catabolic respiration.
A part of microbial turnover (tvr) adds to the residue pool, another
part is mineralized, and another part adds to DOM and is recycled
into microbial biomass. Stoichiometric imbalance between DOM
and B is resolved by mineralizing the excess element or immobiliz-
ing the required element (8B) from inorganic N (I ) (further detailed
in Fig. A1). Boxes correspond to pools, disks to fluxes. Solid lines
represent fluxes of both C and N, while dotted and dashed lines rep-
resent separate C or N fluxes, respectively.

2 Methods

2.1 SESAM

The dynamic Soil Enzyme Steady Allocation Model
(SESAM) allows exploration of the consequences of soil mi-
crobial stoichiometry for SOM cycling at the soil core to the
ecosystem scale at a decadal timescale. The modelled system
consists of C and N pools in SOM in a volume of soil. Such
a system can be a layer of a soil profile or a laboratory incu-
bation. It can be integrated into a larger model that explicitly
represents the entire soil column and vertical transport.

SESAM models several SOM pools containing C and N
by differential equations for their mass fluxes. Model drivers
are inputs of C and N by plant litter (both aboveground litter
and rhizodeposition), input of inorganic N from deposition
and fertilizers, and prescribed root uptake of inorganic N (Ta-
ble 1).

SESAM represents several SOM fractions by several pools
that differ by their stoichiometry, and it represents changes
in microbial community structure by changing preferences
in degrading specific SOM pools. The litter pool, L, is rich
in C; the residue pool, R, is richer in N (Fig. 1, Table 1).
While Appendix A provides all the detailed model equations,
the following paragraph summarizes the most important as-
sumptions. Table A1 explains the symbols used.

This paper presents model version 3, which in addition to
the enzyme steady-state assumption differs from published
SEAM (Wutzler et al., 2017) by explicitly tracking commu-
nity composition, α, as a state variable; by using a modi-
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Table 1. State variables and model drivers. Values refer to the reference state of the sensitivity analysis and were adopted from Wutzler et al.
(2017).

Symbol Definition Value Unit

L C in litter 109.64 gm−2

LN N in litter 3.62 gm−2

R C in residue substrate 3336.45 gm−2

RN N in residue substrate 323.39 gm−2

B Microbial biomass C 34.43 gm−2

IN Inorganic N 0.0133 gm−2

αL,αR Community enzyme allocation 0.5 (–)

iL(t) Litter C input 400.0 gm−2 yr−1

βNiL (t) C/N ratio of plant litter inputs 30 gg−1

iIN(t) Inorganic N input 0.7 gm−2 yr−1

kINP(t) Inorganic plant N uptake per IN 100∗ yr−1

uIN,max(t) Max inorganic plant N uptake iL/βNiL gm−2 yr−1

∗ Arbitrary high value so that plant uptake is constraint by uIN,max(t) (Eq. A7c).

fied formula for weighting optimal states near co-limitation;
and by using a modified calculation of the revenue, which
is used in the optimality assumption. The enzymes are as-
sumed to be in a steady state; i.e. production of enzymes
equals their turnover. This assumption allows computation
of the size of the enzyme pools based on other pools, sim-
plification of equations, and use of fewer parameters in the
overall model. The microbial community is assumed to self-
organize in ways to optimize growth of the entire community.
This involves adjusting the relative proportion of groups that
preferentially decompose litter and groups that preferentially
decompose microbial residues. The enzymes, which are pro-
duced in different shares, in turn affect the decomposition of
the respective pools.

Decomposition of the litter and residue pools is modelled
by reverse Michaelis–Menten kinetics (Schimel and Wein-
traub, 2003). C/N ratios, βN, of fluxes are equal to the
C/N ratios of the source pools. While the C/N ratios of
the substrate pools may change over time due to changing
C/N ratio of total influxes to these pools, the C/N ratios
of biomass and enzymes are assumed to be fixed. Total en-
zyme allocation is modelled as a fraction, aE, of the micro-
bial biomass, B, per time. SESAM assumes the DOM pool to
be in a quasi-steady state (Wutzler and Reichstein, 2013) and
does not explicitly simulate its changes because the dynamics
of the DOM pool is usually much faster than the dynamics of
the other pools. Therefore, microbial uptake equals the sum
of all influxes to the DOM pool, i.e. decomposition plus part
of the enzyme turnover. The microbial carbon balance can be
negative (i.e. uptake is smaller than maintenance and enzyme
synthesis), and then microbial biomass declines.

2.1.1 Soil microbial stoichiometry

SESAM assumes that stoichiometry is one of the overarching
controls of decadal-scale SOM changes. It assumes that mi-
crobial community and development of different SOM stocks
adapt to changes in drivers without the need to explicitly
model all the details of this adaptation.

There are three principle ways (Mooshammer et al.,
2014b) in which decomposers can adapt to stoichiometric
imbalance, i.e. differences in elemental composition between
the requirement of feeders and its food (Sterner and Elser,
2002). First, decomposer communities can change their nu-
trient use efficiencies (Sinsabaugh et al., 2013) by over-
flow respiration or mineralizing N. For example, if there is
more N in DOM uptake for biomass synthesis than con-
strained by other ways, such as available C, excess N will
be mineralized. Such regulation of nutrient use efficiencies
has large consequences for loss of nutrients from the ecosys-
tem (Mooshammer et al., 2014a), plant nutrition and soil–
plant feedback (Rastetter, 2011), and carbon sequestration in
SOM (Allison, 2014; Wieder et al., 2013). Second, microbes
can adapt their stoichiometric requirements. There are pos-
sible shifts in community composition between species with
lower C/N ratio, such as many bacteria, or species with high
C/N ratio, such as many fungi (Cleveland and Liptzin, 2007;
Xu et al., 2013). However, the range of adjustment is quite
constrained. Third, microbial community can alter the sto-
ichiometry of uptake by adapting their preferences of de-
grading SOM fractions that vary in elemental composition
(Moorhead et al., 2012; Li et al., 2021).

SEAM and SESAM assume that a combination of op-
tions 1 and 3 is used in a way to optimize growth, and op-
tion 2 is negligible. Modelled microbial community devel-
ops in a way so that different kinds of enzymes are produced
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in proportion to their revenue, i.e. the decomposition return
per unit of limiting element invested into enzyme produc-
tion. This microbial enzyme allocation strategy performed
better in simulation experiments (Wutzler et al., 2017) than
a fixed enzyme allocation or stoichiometrically optimized al-
location irrespective of the amount of substrate (Moorhead
et al., 2012).

While this adaptive single microbial community was a
necessary step in the direction to simplify models, SEAM
required two model parameters for the dynamics of the
enzyme pools. These parameters are hard to measure and
added complexity to model–data integration. The presented
SESAM uses only one enzyme-production-related parame-
ter, while the enzyme turnover parameter merges with the
half-saturation parameter of the SOM decomposition.

2.1.2 Quasi-steady-state approximation of enzyme
dynamics

SESAM abstracts from short-term dynamics of enzyme
pools in SEAM by assuming that soil extracellular enzyme
pools are in a quasi-steady state (Wutzler and Reichstein,
2013); i.e. pools are at levels where current enzyme produc-
tion equals enzyme turnover.

It assumes that compared to the intended decadal mod-
elling timescale, the amount of soil extracellular enzyme
mass and the composition of the microbial community ap-
proach a steady state given the annually smoothed inputs and
drivers of the modelled system and current SOM stocks. This
yields the enzyme states in Eq. (1).

E∗Z =
αZaEB

kN
, (1)

where Z ∈ {R,L} denote enzymes depolymerizing litter and
residue substrate. αZ is the proportion of biosynthesis in-
vested into the respective enzyme (Sect. 2.1.3); aE is the en-
zyme production per microbial biomass, B, per time; and kN
is the enzyme turnover rate.

This steady-state expression is used instead of the explic-
itly modelled enzyme pool in SEAM to simplify other equa-
tions. For example, decomposition of the residue pool now
depends on biomass rather than enzyme levels (Eq. 2).

decR = kRR
ER

km+ER
(2a)

dec∗R = kRR
αRaEB

kmkN+αRaEB
, (2b)

where km is the half-saturation constant of the origi-
nal enzyme-limited decomposition equation. In the steady-
state equations, half-saturation km and the enzyme turnover
rate kN always occur together as a product. Hence, they can
be replaced by a single parameter kmN.

We further explored two additional potential simplifying
model assumptions. First the microbial biomass can be as-
sumed to be in a quasi-steady state (SteadyB; Appendix F).

Second, the mass fluxes from microbial biomass to DOM
due to production and turnover of enzymes can be neglected
(NoEnzFlux; Appendix E). Both assumptions yielded mod-
els with the same number of parameters. The SteadyB vari-
ant had one fewer state variable; however, the representation
of biomass B by the solution of a third polynomial yielded
no further simplification of model equations compared to
SESAM. The NoEnzFlux variant still required the parame-
ters for enzyme production to compute revenues and did not
result in model simplification.

2.1.3 Community enzyme allocation α

Enzyme allocation α is defined as the proportion of total en-
zyme synthesis that is invested into production of a specific
enzyme. With SESAM it is computed to be proportional to
the revenue, i.e. return per investment. It is normalized to add
up to unity (Eq. 3).

αZ,Opt =
revZ∑
ζ revζ

, (3)

where revZ is the revenue from a given enzyme Z.
While the original SEAM computed both the return

and the investment for each element E ∈ (C,N) separately,
SESAM computes the revenue based on limitation-weighted
return divided by a limitation-weighted investment. The re-
turn is determined by the mineralization flux of element E
from enzyme action, the investment is calculated by the
amount of E required for enzyme production, and the weight
forE is determined by the difference in potential growth con-
strained by other elements and growth constrained byE (Ap-
pendix A4). Compared to the original SEAM formulation
this avoids the unreasonable high revenues when the concen-
tration of the limiting element in enzymes is low, e.g. for an
extension of SESAM which includes phosphorus limitation.

The return of an element E for enzyme Z in SESAM is
the flux toward the microbial biomass from decomposition
of targeted substrate, S, computed with current steady-state
enzyme levels, which are determined by current enzyme pro-
duction (Eq. 2). Alternatively to decomposition flux, the mi-
crobial uptake flux can define the return. This option is dis-
cussed in Appendix B, where it is argued that this only differs
from the simpler decomposition approach in rare cases.

When inserting the steady-state revenue into Eq. (3), one
notices that the revenue in turn depends on current α. Nev-
ertheless explicit formulas for optimal α can be obtained
for either assuming C limitation or assuming N limitation.
However, situations near co-limitations then pose a prob-
lem. At the same substrate levels, a community optimized
for C usage is N-limited, while a community optimized for
N usage then is C-limited. In SEAM this was prevented by
the inertia of explicitly modelled enzyme levels. In contrast,
SESAM does not use these explicit formulas to compute α
but rather computes the revenues based on current instead of
the optimum enzyme allocation. To this end it models α as
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an additional state variable that develops towards an optimal
value, αOpt, that can be computed by Eq. (3) given the cur-
rent value of α and corresponding decomposition fluxes and
revenues (Eq. A13). Since α represents a property of the mi-
crobial community, it changes at the timescale of growth and
microbial turnover (Eq. A12).

2.2 Increased C input simulations

In order to show the ability of SESAM to reproduce the prim-
ing effects due to N mining and the banking mechanism, we
repeated the CO2 fertilization experiment in Wutzler et al.
(2017). It studied the effect of increased continuous litter
C input on SOM cycling. Such increased C input is expected
with elevated atmospheric CO2 concentration. The simula-
tions started from a steady state corresponding to initial litter
C input of 400 gC m−2 yr−1, applied 20 % increased C in-
puts during years 10 to 60, and applied initial litter inputs
again during the next 50 years. The litter N inputs were kept
constant over time, implying an increase in the litter C/N ra-
tio of 20 % in annual average litter inputs. Maximum plant
uptake rate of inorganic N was set to litter input rate, plus
N deposition of 1/200 of litterfall N was compensated by a
small leaching rate.

We compared results of the following model variants:

– SEAM – baseline model with explicit representation of
extracellular enzymes,

– SESAM – enzyme levels assumed in a quasi-steady
state,

– SESAM-NoEnzFlux – additionally neglecting the mass
flux of N from microbial biomass to DOM via enzyme
production and turnover (Appendix E),

– SESAM-SteadyB – additionally microbial biomass as-
sumed in a quasi-steady state (Appendix F).

The derivatives of the model variants were implemented
in the R programming language (R Core Team, 2021) and
solved, i.e. simulated over time, using the function lsoda
from the package deSolve (Soetaert et al., 2010).

2.3 Substrate pulse simulations

In order to show the ability of SESAM to reproduce the
damping of fluctuations in CUE with adapting microbial
community, we simulated an incubation experiment. SESAM
models CUE as an emergent property instead of a model pa-
rameter. With the substrate pulse scenario we simulated an
experiment similar to the one in Kaiser et al. (2014), who
showed that competition among microbial groups controlled
the emergent CUE in a spatially explicit model.

In this experiment microbial community decomposes a
carbon-rich chunk of initial litter whose initial C/N ratio var-
ied by simulation scenario. Continuous L input rate was set

close to 0 to 40 gm−2 yr−1, and N leaching rate was set to
zero. CUE was computed as a synthesis of microbial biomass
carbon, i.e. excluding enzyme production and turnover, per
carbon taken up.

Simulations were compared between SESAM, which has
dynamic enzyme allocation, and a model version where we
fixed community enzyme allocation αZ = 0.5 to not dynam-
ically change over time.

We used the same R-based computational setup as in the
increased C input simulations.

2.4 Sensitivity analysis

In order to explore which parameters most influence the
steady-state and transient predictions of the increased C in-
put simulation (Sect. 2.2), we performed a global sensitivity
analysis using Sobol sensitivity indices (Saltelli et al., 2008)
with the soboltouati method in the sensitivity R package us-
ing two samples of N = 5000.

For each parameter we prescribed prior distributions of
possible parameter values (Table A1). Next, we computed
the cumulative probability of initial parameters and sampled
cumulative probabilities± 10 % around this value. Two sam-
ples of cumulative probabilities were used to generate design
matrices of the sensitivity method. Next we transformed the
cumulative probabilities of the design matrices back to pa-
rameter values and simulated model output. Hence, we per-
formed a global uncertainty analysis in a subspace of the en-
tire parameter space that covered 20 % of the parameter range
of each parameter. This procedure sampled larger intervals
for more uncertain parameters and avoided many unreason-
able parameter combinations that would occur with a global
sensitivity analysis across the entire prior space not account-
ing for parameter correlations.

We checked robustness of the setting by repeating the anal-
ysis by sampling± 20 % around the reference parameter val-
ues to cover 40 % of each parameter range.

While the increased C input simulations (Sect. 2.2) used a
high decomposition rate of the residue pool, kR, for demon-
strating stock changes after 50 years, the sensitivity analy-
sis and fluctuation analysis used a lower decomposition rate
farther away from the edge of the parameter’s prior distribu-
tion (Table A1) and simulated increased inputs from year 0
to 100. This helped to avoid severely truncated intervals of
sampled parameter space around the decomposition rate.

For each model run, we computed (a) the steady-state
SOM stocks and (b) the change in SOM stocks after
100 years of increased C input. The computed sensitivity in-
dices tell about the proportion of variance in these outputs
due to variation in input parameters by either the single ef-
fect of a given parameter (first-order index) or the combined
effect with interaction with other parameters (total sensitivity
index) (Saltelli et al., 2008; Sobol, 1990).

SESAM was recoded using the Julia programming lan-
guage (Bezanson et al., 2017) using the package Modeling-
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Figure 2. Seasonally fluctuating litter input rate was simulated by
assuming 50 % of litter input by aboveground litterfall in autumn
only. Physical decay of an aboveground litter pool with turnover
time of 2 months then contributed to inputs to the SOM model. At
year zero an increase in average annual litter input was prescribed.

Toolkit.jl (Ma et al., 2021) and solved using the method Tsit5
(Tsitouras, 2011) implemented in the package DifferentialE-
quations.jl (Rackauckas and Nie, 2017). This allowed faster
simulation and the application of global sensitivity analysis.

2.5 Fluctuation nonlinearity experiment

In order to explore the possible bias in long-term predictions
due to the enzyme steady-state assumption combined with
the non-linearity of its effect on decomposition we simulated
strong seasonal fluctuations in litter inputs causing seasonal
fluctuations in elemental limitation and enzyme community
allocation.

SESAM incorporates nonlinear functions. Hence, average
decomposition computed with fluctuating enzyme levels will
give different results compared to decomposition computed
with first averaging enzyme levels. Hence, the difference be-
tween explicitly modelled enzyme levels and steady-state en-
zyme levels has the potential to introduce bias also in the av-
erage long-term predictions.

In order to investigate the effect of both the time-averaging
and enzyme steady-state assumption we performed an exper-
iment where we ran both SESAM and a version of SEAM
that explicitly tracks enzyme pools but otherwise uses the
same formulations, with the setting of the increased C input
simulation (Sect. 2.2) and seasonally varying litter input. We
imposed higher litter input in autumn and lower input during
the rest of the year (Fig. 2) and inspected possible bias in the
simulation results.

The fluctuating litter scenario displayed stiff properties;
hence we used the Vern7 method (Verner, 2010) to solve,
i.e. simulate the system across time.

3 Results

3.1 Increased C input simulations

The imbalance in stoichiometry with increased C input was
compensated by shifting enzyme production towards decom-
position of the N-rich residue pool. This led to an increase
in litter stocks and a decrease in residue stocks over time
(Fig. 3). After input stoichiometry returned to initial condi-
tions, the stocks slowly recovered towards the initial state.

Hence, the models simulated microbial N mining, i.e. the
behaviour where under increased C input and hence N lim-
itation, N is liberated from SOM. They also simulated the
banking mechanism, i.e. the build-up of N-rich SOM stocks
when N limitation was relieved.

At this timescale there were no apparent differences be-
tween the enzyme explicit SEAM and the quasi-steady-state
models SESAM and its SteadyB variant. The NoEnzFlux
variant lacked a refuelling of the DOM pool by the N-rich
enzyme turnover and hence simulated a residue pool with
higher C/N ratio and decomposition slightly shifted towards
the residue pool already in an initial steady state. However,
the variant predicted the same pattern across time.

3.2 Substrate pulse simulations

CUE varied dynamically in the substrate pulse simulations
(Fig. 4). During initial stages there was not enough N in
the substrate, leading to overflow respiration and low CUE.
The lowest CUE was found with the highest initial sub-
strate C/N ratios. The subsequent accumulation of microbial
residues provided a source of N, which helped increase CUE
again.

The differences in CUE across time and across initial litter
C/N ratios was damped with adaptable enzyme allocation
compared to fixed enzyme allocation.

3.3 Sensitivity analysis

SOM stocks and their transient changes in the increased C in-
put simulation were only sensitive to 5 out of 14 model pa-
rameters (Fig. 5). As expected, the total stocks in a steady
state were most sensitive to the potential decomposition
rate, kR, of the residue pool, which is the largest SOM
pool. In addition, they were sensitive to parameters of mi-
crobial turnover, τ and εtvr, and turnover of enzymes, kmN.
Transient changes in SOM stocks were also sensitive to
microbial turnover, but not to decomposition rate. Rather
they were sensitive to stoichiometric parameters, specifically
the C/N ratio of microbial biomass, βNB, and the intrinsic
CUE, ε.
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Figure 3. SOM stocks, here approximated by the sum of litter, L, and residue, R, develop in the same way as the “increased C input” simu-
lation with the different model version. All model variants could simulate the liberation of N from organic R stocks with the stoichiometric
imbalance with increased C inputs.

Figure 4. Variation in carbon use efficiency (CUE) over time with
the substrate pulse simulation is more dampened, i.e. is not chang-
ing as much with changing substrate stoichiometry, if microbial
community can adapt enzyme allocation compared to fixed allo-
cation. This was true both across time (x axis) and across initial
substrate C/N ratio (line colour and line type).

When repeating the sensitivity analysis on a subspace that
included 40 % rather than 20 % of each parameter range, the
results were influenced by extreme values due to unusual
parameter combinations. We observed similar total effects
of SOM stocks, but first-order effects were slightly smaller.
SOM stock changes now were additionally sensitive to de-
composition rate, kR, and the sensitivity to C/N ratio of mi-
crobial biomass, βNB, was less strong (Fig. C1 in the Ap-
pendix).

3.4 Fluctuation analysis

Simulation results differed only marginally between steady-
state enzymes (SESAM) and explicit representation of en-

Figure 5. Simulated stock change with increased C litter input
(1SOM) was most sensitive to C/N ratio of microbial biomass
(βNB), while initial steady-state stocks (SOM) were most sensitive
to turnover rate of the residue pool (kR). Both were sensitive to
parameters of microbial turnover. The first-order effects (triangles)
were very similar to total order effects (circles) for SOM but not for
1SOM. This means that effects on steady-state stocks were mostly
direct, while the effects on stock changes were mostly sensitive to
interactions of parameters.

zyme level (SEAM) in the fluctuating litter input simulations
(Fig. 6; sesam_annual overplotting seam_annual). This re-
sulted from steady-state enzymes being close to the explicit
enzyme levels (Appendix D). Hence, the enzyme steady-state
assumptions did not introduce bias in predictions.

Fluxes based on averaging litter inputs also roughly
matched the average of the fluxes based on fluctuating lit-
ter inputs at a steady state (Fig. 6 before increase in C input
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Figure 6. Small differences in transient N-leaching between simula-
tion scenarios of seasonally fluctuating litter input (wiggling curves)
and annually averaged litter inputs (smooth curves) were caused by
different timing of litter input between the scenarios after the pre-
scribed increase in average annual inputs at year zero. Abstraction
of enzyme steady states (sesam) did not cause additional differences
between the litter scenarios, as seen by overplotting.

at time t < 0). Hence, also averaging litter inputs did not in-
troduce bias at a steady state.

The largest simulated differences due to averaging litter
input were observed in transient changes in the fast pools,
e.g. the inorganic N pool and associated leaching (Fig. 6 after
increase in C input at time t > 0). This is expected because
immediate transient changes depend on the timing of litter
inputs within the year.

4 Discussion

4.1 Abstract from microbial details at the seasonal and
pedon scale

Soil organic matter (SOM) science has experienced a
paradigm shift from understanding persistence of SOM for-
merly on chemical SOM properties towards understanding
persistence as an interactive effect of environmental condi-
tions (Schmidt et al., 2011). SOM formation and turnover
are expected to be controlled by microbial processes, such
as depolymerization of SOM, respiration, mineralization/im-
mobilization, and microbial turnover. Hence, a more mecha-
nistic representation of microbial processes should improve
dynamic SOM models and their applicability across different
sites. Indeed, microbial models have shown to be able to bet-
ter represent global patterns of SOM stocks (Wieder et al.,
2013). However, differences in representing these microbial
processes lead to qualitatively different predictions. Further-

more, it is hard to get observations as required to constrain
their parameters (Marschmann et al., 2019).

Microbial processes work on pore spatial scale and hourly
to daily temporal scales. In our work we pursue the hypoth-
esis that at the pedon scale and longer decadal-term scale,
stoichiometry provides one of the most important constraints
(Buchkowski et al., 2019) and that at this scale we can ab-
stract from many detailed processes while keeping the ef-
fects that are most important when averaged across pedons
and years.

The presented SESAM employs the simplifying assump-
tion of enzyme levels being close to steady-state (Sect. 2.1.2).
Further, both SEAM and SESAM abstract from detailed mi-
crobial strategies to cope with varying litter stoichiometry
such as internal reserves (Manzoni et al., 2021) or energetic
trade-offs (Dufour et al., 2021) and neglect smoothing dy-
namics that occurs when explicitly modelling DOM and en-
zyme pools. Hence, SESAM was expected to not precisely
reproduce seasonal dynamics with litter inputs due to non-
linear effects of enzymes on decomposition. It may predict
overflow respiration or excess N mineralization due to sto-
ichiometric imbalance in uptake of DOM due to short-term
fluctuations in model drivers.

4.2 Possible bias due to abstraction

Because of the just-explained problems of omitting buffer-
ing capabilities of soil microbes to sudden environmental
changes, we recommend driving SESAM with annually aver-
aged model drivers. However, averaging inputs together with
nonlinear functions can cause bias (Chakrawal et al., 2020;
Graham et al., 2019), and also the timing of litter inputs can
be important (Luu et al., 2022; Zhou et al., 2021). Specifi-
cally, the mostly concave functions of decomposition accord-
ing to Michaelis–Menten kinetics yield a higher decompo-
sition flux of the average stock (input argument to the de-
composition function) compared to the average of the fluxes
computed using the fluctuating stocks. Hence, we expected
slightly higher decomposition rates and lower stocks with
the average litter input scenario. The fluctuation analysis re-
vealed, fortunately, that due to inherent dynamics of com-
munity pools, there was no apparent bias due to the enzyme
steady-state assumption. Rather, there were only small tran-
sient deviations in averaged predictions by driving SESAM
with annually averaged litter inputs compared to supplying
seasonally fluctuating litter inputs (Fig. 6). This shows that
SESAM may be applicable also at shorter timescales under
some conditions, although the model has been primarily de-
signed to predict the effect of decadal-term changes consid-
ering annually averaged model inputs.
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4.3 Simulate patterns emerging from microbial
processes

Competition between microbial groups and adaptation of
the microbial community is one of the detailed processes
that have been shown to exert strong control on decadal-
term SOM dynamics (Kaiser et al., 2014). SESAM repre-
sents such competition by modelling adaptation of commu-
nity traits, specifically the allocation of enzyme production.
We performed simulation experiments to see whether the
model can predict similar patterns to more detailed mod-
els. The “substrate pulse simulations” (Fig. 4) reproduced
the pattern shown by Kaiser et al. (2014) of more dampened
CUE with microbial adaptation, i.e. smaller range of fluctu-
ating CUE on fluctuating substrate stoichiometry. Avoiding
the low CUE with litter pulses by shifting the community to
grow more on the N-rich substrates helps sequester more C
to the soil pools. The “increased C input simulations” (Fig. 3)
reproduced the pattern shown by Perveen et al. (2014) of
liberating N from SOM stocks during conditions of imbal-
anced higher C inputs. Making this N available for plants
helps them to avoid or delay progressive N limitation (Aver-
ill et al., 2015).

Whether increased C inputs lead to decrease in SOM due
to priming or to increase in SOM due to larger input of mi-
crobial turnover to SOM is still an open question in soil sci-
ence. As it probably depends on the combination of other
constraints such as nutrient availability (Hicks et al., 2021;
Vain et al., 2021; Feng and Zhu, 2021), we might gain new
insights using the SESAM concept in model–data-integration
studies.

Model–data-integration studies require observations at the
modelled timescale. SESAM predicts a change in proportion
of different SOM pools in response to shifting nutrient limi-
tations. While the relative changes in SOM pools are so small
that they are very hard to directly measure, changes can po-
tentially be detected by observing changing C/N ratio of the
total SOM (vandenEnden et al., 2021; Melillo, 2019).

4.4 Model complexity and identifiability

Optimal detail or complexity of models depends on the
purpose of the model and on the available data to con-
strain the models (Jakeman et al., 2006). Microbial processes
are strongly determined by the pore-scale environment (Pot
et al., 2021; Kaiser et al., 2014), and available data are mostly
from the laboratory and from hourly to seasonal timescales.
Larger-scale compilations are available for stoichiometry of
litter, microbial biomass, and enzyme activities (Xu et al.,
2013; Zechmeister-Boltenstern et al., 2015) but scarce for
microbial growth and turnover rates (Spohn et al., 2016) and
element use efficiencies (Manzoni et al., 2018) and very rare
for different groups of microbes. Hence, microbial parame-
ters need to be constrained by calibrating models to larger-
scale observations.

There are many attempts to directly implement microbial
processes into global models with introducing many free pa-
rameters (Campbell and Paustian, 2015). For example the
ORCHIMIC (Huang et al., 2018) explicitly models several
microbial functional types and active and dormant fractions.
It introduces nGroup · 11 microbial parameters. More param-
eters raise the problem of model identifiability in model in-
versions. The model may fit the observations for the wrong
reasons, and predictions then likely fail for conditions differ-
ent from that of the calibration.

SESAM aims at reducing model complexity. There are
in total 14 model parameters, and long-term SOM stock
changes were sensitive to only a few of them. This is
a more tractable number of parameters for model inver-
sions, although there will be more parameters for temper-
ature and moisture dependencies and transport when in-
tegrated into larger models. Because SESAM targets the
decadal-term scale, decadal-term drivers and observations
should also be used in SESAM model–data-integration stud-
ies. Currently, the free air enrichment experiments are run-
ning about 20 years. Thus, obtained observations are get-
ting long enough to calibrate and test models at a decadal
timescale.

4.5 Sensitivity of predictions to microbial properties

C/N ratio of microbial biomass, βBN, was the most sensitive
parameter for SOM changes (Fig. 5). Hence, the assumption
that it can be fixed because its range is rather constrained
has to be revisited. We think of future developments to let it
change together with other microbial properties of enzyme
allocation.

The turnover rate of microbial biomass, τ , was also among
the most sensitive parameters. One reason is that it con-
tributes an important source for inorganic N when microbes
are N-limited (Joly et al., 2020; Clarholm, 1985). With-
out predation of microbes and associated mineralization, N
would be largely locked in the organic loop. In SESAM mi-
crobial turnover it is currently modelled first-order to micro-
bial biomass and predation as a fixed factor of this turnover.
A part of the turnover feeds to the DOM pool, and a part adds
to the residue pool. Developments of SESAM focus on refin-
ing those processes in several ways. Predation rate is smaller
at low microbial biomass when predators have to move far-
ther between encountering microbes. Further, the stoichiom-
etry of the parts feeding to DOM and the residue pool will be
different because there is different cell material in lysed cells
and cell walls. Differences in stoichiometry of microbial de-
cay becoming DOM and decay becoming residue will have a
large impact on modelled SOM stocks (Yu et al., 2020).
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5 Conclusions

The application of the quasi-steady-state assumption for
extracellular enzyme pools simplified a model of micro-
bial adaptation to substrate stoichiometry. The simplified
SESAM could reproduce important effects of microbial stoi-
chiometry on SOM dynamics at a decadal timescale, specifi-
cally the priming effect, microbial N mining, the SOM bank-
ing mechanism, and dampened CUE. This development is an
important step towards more parsimonious representation of
soil microbial effects in global land surface models.

Appendix A: SESAM equations

For an overview of symbol definitions see Tables 1, A1,
and A2.

A1 Carbon dynamics

dB
dt
= synB− tvrB (A1a)

dL
dt
=−decL+ iL(t) (A1b)

dR
dt
=−decR+ εtvrtvrB+ (1− κE)synEnz, (A1c)

where εtvr is the fraction of microbial turnover C that is
respired by predators, iL is the litter C input to the system,
and κE is the fraction of enzyme turnover that is transferred
to the DOM instead of the R pool. Details of the specific
fluxes are given below.

Total enzyme production synEnz, maintenance respira-
tion rM, and microbial turnover tvrB are modelled as a first-
order kinetics of biomass:

synEnz = aEB (A2a)
rM =mB (A2b)

tvrB = τB . (A2c)

With assuming enzyme production and turnover to be in
a quasi-steady state and reverse Michaelis–Menten kinetics
for substrate decomposition (Schimel and Weintraub, 2003;
Tang and Riley, 2019), substrate depolymerization is

decS,Pot = kSS (A3a)

decS = decS,Pot
αSsynEnz

kmN+αSsynEnz
, (A3b)

where decS,Pot is the decomposition flux when enzymes are
saturated, S ∈ {L,R} is one of the substrate pools, kS is the
maximum decomposition rate of S, αS is the proportion of to-
tal investment into enzymes that is allocated to S (Sect. A4),
and kmN is a lumped parameter of enzyme half-saturation
constant and enzyme turnover.

We assume a quasi-steady state of the DOM pool, and
hence, microbial uptake equals the sum of all influxes to the
DOM pool (decomposition+ part of the enzyme turnover).

uC = decL+ decR+ κEsynEnz (A4)

With C limitation, CsynBC, the carbon available for synthe-
sis of new biomass, equals the C uptake minus the expenses
for enzyme synthesis (Eq. A2a) and maintenance respiration
(Eq. A2b). If this balance is positive, then a part is used for
growth respiration.

CsynBCt = uC− synEnz/ε− rM (A5a)

CsynBC =

{
εCsynBCt, if CsynBCt > 0

CsynBCt, otherwise .
(A5b)

A part of synB (Eq. A10), the C balance for biomass syn-
thesis is used for catabolic growth respiration rG to support
biomass synthesis, and the remaining fraction ε, the anabolic
carbon use efficiency, is used for synthesis of biomass and
enzymes. ε is assumed to be equal for all substrates for sim-
plicity. SESAM assumes that requirements for maintenance
and enzyme synthesis must be met first. Therefore, the mi-
crobial C balance can become negative, resulting in starva-
tion of and decline in microbial biomass.

rG =

{
1−ε
ε

synB, if synB > 0

0, otherwise,
(A6a)

where synB is the C balance for biomass synthesis and is
given below by Eq. (A10).

A2 Nitrogen dynamics

Nitrogen fluxes are computed by dividing the respective
C fluxes (Eq. A1) by the C/N ratio, βN, of their source.

We assumed fixed C/N ratios βNB and βNEnz of the micro-
bial biomass and enzymes. However, substrate N pools are
modelled explicitly because their C/N ratio of the substrate
pools may change over time.

dLN

dt
=−decL/βNL+ iL(t)/βNi (A7a)

dRN

dt
=−decR/βNR+ εtvrtvrB/βNB+

(1− κE)synEnz/βNE (A7b)
uPlant,N =min(uPlant,N,max(t),kPlantN(t)I ) (A7c)

dIN

dt
=+iIN(t)− uPlant,N− lNIN+8N (A7d)

8N =8Nu+8NB+ rtvr/βNB (A7e)
8Nu = (1− νN)uN,OM. (A7f)

The inorganic N pool IN balances external inputs (iIN ),
leaching (lNIN), plant uptake (uPlant,N), and the exchange flux
with soil microbial biomass (8N) (Fig. A1).
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Table A1. Model parameters and distributions used in the sensitivity analysis.

Symbol Definition Value Unit Prior distribution q025 Mode q975

βNB C/N ratio of microbial biomass 11 g g−1 LogNormal(2.08,0.35) 4.0 8.0 16.0
βNEnz C/N ratio of extracellular enzymes 3.1 g g−1 LogNormal(1.1,0.079) 2.6 3.0 3.5
kR Maximum decomposition rate of R 0.0025 yr−1 LogNormal(−4.61,1.2) 0.001 0.01 0.1
kL Maximum decomposition rate of L 1.0 yr−1 LogNormal(−0.41,0.77) 0.15 0.67 3.0
κE Fraction enzyme tvr entering DOM instead of R 0.8 (–) LogNormal(−0.36,0.13) 0.54 0.7 0.9
aE Enzyme production per microbial biomass 0.365 yr−1 LogNormal(−1.01,0.82) 0.073 0.36 1.8
kmN Product of enzyme half-saturation constant and

enzyme turnover
3.0 gm−2 LogNormal(1.1,2.2) 0.037 3.0 240.0

τ Microbial biomass turnover rate 6.1 yr−1 LogNormal(1.81,1.3) 0.51 6.1 73.0
m Specific rate of maintenance respiration 1.8 yr−1 LogNormal(0.6,0.71) 0.46 1.8 7.3
ε Anabolic microbial C substrate efficiency 0.5 (–) LogitNormal(0.0,0.43) 0.3 0.5 0.7
εtvr Microbial turnover that is not mineralized 0.45 (–) LogitNormal(−0.85,1.6) 0.02 0.3 0.9
νN Aggregated microbial organic N use efficiency 0.9 (–) LogNormal(−0.11,0.049) 0.82 0.9 0.99
iBN Maximum microbial uptake rate of inorganic N 0.4 yr−1 LogNormal(−0.92,1.2) 0.04 0.4 4.0
lN Inorganic N leaching rate 0.96 yr−1 LogNormal(−0.04,0.82) 0.19 0.96 4.8

Table A2. Further symbols of quantities derived within the system.

Symbol Definition Unit

synB C for microbial biomass synthesis gm−2 yr−1

synEnz C synthesis of enzymes gm−2 yr−1

tvrB Microbial biomass turnover C gm−2 yr−1

decS C in depolymerization of resource S ∈ {L,R} gm−2 yr−1

uC,uN Microbial uptake of C and N gm−2 yr−1

8uE , 8EB, 8tvrE , 8E Mineralization of element E ∈ {N} with microbial DOM uptake, stoichiometric
imbalance, turnover, and total 8=8u+8B+8tvr (Fig. A1)

gm−2 yr−1

Figure A1. Several component fluxes sum to total mineralization
flux in SESAM: 8=8u+8B+8tvr. A negative mineralization
flux, 8B, corresponds to N immobilization of inorganic pool, I , by
microbial biomass, B. In addition there is mineralization during mi-
crobial turnover,8tvr, and mineralization during uptake,8u. Fluxes
across the system boundary are inputs of inorganic N (iI), inputs of
organic N with litter, plant uptake of inorganic N, and leaching.

In addition to the mineralization–immobilization imbal-
ance flux, 8NB (Eq. A11c), microbes exchange N with the
inorganic pools by apparent mineralization due to soil het-
erogeneity, 8Nu (Manzoni et al., 2008), and mineralization
of a part of microbial turnover, rtvr/βNB (Eq. A16, Sect. A5).

Potential N uptake by microbes, uN,Pot (Eq. A8), is the
sum of effective organic N uptake and potential inorganic
uptake. The parallel scheme (PAR) (Manzoni et al., 2008)
is used to model effective organic uptake. It accounts for an
apparent mineralization at the soil core scale caused by sub-
scale soil spots with high N concentration in DOM. With
PAR, a part of the total organic N uptake, (1− νN)uN,OM, is
mineralized. Uptake from DOM, uN,OM, equals the influxes
to DOM multiplied by the apparent N use efficiency νN.

uN,Pot = νNuN,OM+ uimmN,Pot (A8a)
uN,OM = decL/βNL+ decR/βNR+ κEsynEnz/βNEnz (A8b)
uimmN,Pot = iBNIN, (A8c)

where C/N ratios βNL and βNR are calculated using current
C and N substrate pools: βNL = L/LN. Note that uN is the
potential microbial N uptake using the potential immobiliza-
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tion flux. The actual net inorganic flux, 8NB, is computed
taking other limitations into account (Eq. A11c).

The N constraint on biomass synthesis is potential micro-
bial N uptake minus enzyme synthesis. Converted to C units
this reads CsynB ≤ βNBNsynBN.

NsynBN = uN,Pot− synEnz/βNEnz (A9a)

Equation (A9) assumes that the N taken up is only used
for enzyme production and biomass synthesis. A potential
contribution of N to maintenance processes is neglected.

A3 Imbalance fluxes of microbes limited by C or N

There is a constraint on the synthesis of new biomass by each
chemical element. In SESAM synthesis follows the mini-
mum of these constraints (Eq. A10).

synB =min(CsynBC,βNBNsynBN) (A10)

The elements in excess then are lost by imbalance fluxes
(Eq. A11) so that the mass balance is closed. Excess N is
mineralized (MImb), and excess C is respired by overflow res-
piration (rO).

rO = uC− (synB+ rG+ synEnz/ε+ rM) (A11a)
MImbN = uN− (synB/βNB + synEnz/βNEnz) (A11b)
8EB =MImbE− uimmE,Pot (A11c)

The actual mineralization–immobilization flux 8EB for
element E is the difference between excess mineralization
of E and the potential immobilization flux. With substrate
N limitation, 8NB will be negative (N immobilization),
whereas if microbes are limited by C availability, 8NB will
be positive (N mineralization). If the required immobilization
is larger than potential immobilization (−8NB > uimmN,Pot)
then stoichiometry must be balanced by overflow respiration.

A4 Community composition

Microbes in SESAM allocate a proportion αZ of their total
enzyme investments to the synthesis of enzyme Z. This en-
zyme allocation coefficient, αZ , reflects the community com-
position, i.e. the mix of species growing on different portions
of the organic matter.

SESAM models composition, αZ , as a vector of state vari-
ables that develop over time towards the optimal composi-
tion, αZOpt. The timescale of this change is assumed to be
equal to the timescale of microbial turnover, τ , and biomass
synthesis, synB (Eq. A12).

dαZ
dt
= (αZOpt−αZ)(τ + |synB|/B) (A12)

Community can change fast either if it is growing fast or
if it is decaying fast. Hence, both terms are considered in
Eq. (A12).

SESAM3 adopts the revenue strategy where investment
in enzyme synthesis is proportional to its revenue (Wut-
zler et al., 2017). It differs from SEAM by considering the
weights also in the computation of the investment.

αZOpt =
revZ∑
ζ revζ

≈
rev∗Z∑
ζ rev∗ζ

(A13a)

rev∗Z =
limitation-weighted return

limitation-weighted investment
(A13b)

investment∗Z = αZaEB(wC+wN/βNEnz) (A13c)

return∗Z =
∑
E

return∗ZEwE

= (wC+wN/βNZ)decZB , (A13d)

where αZ is the current community enzyme allocation,
revZ is the revenue from given enzyme depolymerizing sub-
strates Z ∈ {L,R} of organic matter and rev∗Z its version
computed with enzymes assumed in a steady state, and
decZB is the decomposition due to biomass-produced en-
zymes (Eq. A3). The elemental limitation weights,wE, occur
in both the return and the investment; therefore they do not
need to be normalized to one.

rev∗Z =
kZZ

kmN+αZaEB

wC+wN/βNZ

wC+wN/βNEnz

(A14)

The unnormalized weight of an element limitation, wE,
decreases exponentially with the excess of biosynthesis flux
constrained by the given element only over the actual biosyn-
thesis flux constrained by all elements. This excess in poten-
tial biosynthesis flux is normalized by microbial turnover in
order to derive a unitless quantity. Compared to the SEAM
version 2 formulation of weights (Wutzler et al., 2017), this
formulation works better for starving microbial community
with negative biomass synthesis and can be extended to more
than two limiting elements.

wE = exp
(
−δ
CsynBE− synB

tvrB

)
, (A15)

where δ, arbitrarily set to 40, controls the steepness of
the transition between states limited by different elements.
CsynBE denotes the available biosynthesis flux in microbial
biomass carbon equivalents given the limitation of elementE
(Eqs. A5 and A9), e.g. for nitrogen, CsynBN = βNBNsynBN.

Compared with SEAM, already a small C limitation
causes an increased preference for the C-rich labile pool, i.e.
lower αR. This is because the elemental N limitation is di-
vided by C/N ratio in Eq. (A13).

A5 Fate of microbial turnover

During microbial turnover, a part (1− εtvr) of microbial
biomass is mineralized, e.g. by grazing.

rtvr = (1− εtvr)tvrB (A16)
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A respective proportion of N (rtvr/βNB ) is also mineralized
and transferred to the inorganic N pools.

The remainder of the microbial turnover goes to the
residue pool. The current SESAM version ignores the part
that enters the DOM pool and is taken up again by living mi-
crobial biomass. This corresponds to an effective uptake rate,
assuming that the effects of this DOM flux on pools cancel
in their parameterizations. This shortcut leads to a joint small
underestimation of microbial turnover, uptake, and CUE. In-
vestigating the effect of this simplifying assumption on iso-
topic tracers is an outlook.

Appendix B: Alternative return of microbial uptake

Instead of taking the entire decomposition flux as return, one
could account for the mineralization–immobilization path-
way and the fact that during this path, part of the decom-
position flux is routed away from microbial biomass.

returnZE = decSZνTE (B1a)
νTE = νE + (1− νE)pimmo,E , (B1b)

where νTE is the total nutrient efficiency that includes the
uptake by the mineralization–immobilization pathway, and
pimmo,E is the ratio of microbial uptake from the pool of the
inorganic form of the element E to the sum of all losses from
this pool.

This leads to updated equations of return, revenue, and
community composition (Eq. B2).

return∗S = decSB(wC+wNνTN/βNS) (B2)

Notice that νTN depends via its dependence on pimmo,E
on many aspects of the current state. This makes reasoning
about the system more difficult.

When one element is clearly limiting, then the returns in
both the numerator and the denominator in the computation
of αZ (Eq. A13a) are dominated by only a single term. In
this case the νTN can be factored out and cancels. Hence, the
computed αZ equals the version computed by adopting the
decomposition flux as the return.

We argue that the case of clear co-limitation is quite rare.
Depending on fluctuations in litter input and soil heterogene-
ity, the microbial community at a given time and a given spot
is usually limited by one of the elements. Therefore, SESAM
currently adopts the simpler version of the return (Eq. A13).

Appendix C: Robustness of sensitivity parameters

Results of repeated sensitivity analysis on a larger parameter
subspace (Fig. C1) were very similar to the original sensitiv-
ity analysis (Fig. 5).

Figure C1. Modification of Fig. 5 for sensitivity analysis repeated
on a larger subspace encompassing 40 % of parameter ranges.

Appendix D: Supplementary figures of the fluctuation
analysis

The following figures help to understand the result of
Sect. 3.4 that enzyme steady-state assumptions did not in-
troduce bias in predictions despite the non-linearity of de-
composition with enzyme levels.

The aboveground litter inputs in autumn caused time-
lagged responses and smoothed responses in the modelled
soil properties (Fig. D1). This smoothing behaviour is similar
to a daily temperature signal travelling down from top soil to
deeper soil layers where the signal is delayed and smoothed.

Due to this smoothing and lagging behaviour, the simu-
lated steady-state enzyme levels closely tracked the explicit
enzyme levels (Fig. D2).

Appendix E: No mass flux by enzymes

SESAM does not explicitly represent enzyme pools. How-
ever, the mass fluxes across the enzyme pool from biomass
to DOM and to the residue pool are represented.

A model variant “NoEnzFlux” has been implemented,
where the enzyme pools are still part of the revenue computa-
tion, but mass fluxes across the enzyme pools are neglected.
This has been accomplished by using synEnz = 0 instead of
Eq. (A2a) and using aEB directly in computation of decom-
position (Eq. A3) and subsequently in computation of rev-
enue (Eq. A13).

Appendix F: Steady state of microbial biomass

Here we derive equations for microbial biomass in a quasi-
steady state.

By setting dB = 0, synB = tvrB.
Carbon available for biomass synthesis, synB, is the mini-

mum for each element at limitation, by either C or N. Hence,
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Figure D1. Model responses to a spike of aboveground litterfall in
autumn, iLagr, are damped. There is a cascade of delays in litter
input from litter layer and roots to soil, iL; change in litter substrate
pool, L; increased share of microbial community depolymerizing
this pool, αL; and an increase in enzyme concentration, EL. All
fluxes were normalized by dividing by their maximum, except αL,
whose range additionally was scaled to 0.5 because it varied only
marginally across seasons.

Figure D2. Enzyme levels, here shown for residue degrading en-
zyme, ER, differ only marginally across simulations of explicit en-
zymes (seam) and steady-state enzymes (sesam).

we compute the steady-state biomass for all limitations and
then take the minimum Bs =min(BsC,BsN).

F1 Carbon limitation

With enzymes in a quasi-steady state, the uptake from en-
zyme turnover equals enzyme production, aEB. While en-

zyme investments are subtracted from uptake for computing
biomass synthesis, a part κE occurs in uptake.

εCsynBC = τB (F1a)
uC− synE/ε− rM = τ/εB (F1b)

dL(1−α)aEB

kmN+ (1−α)aEB
+

dRαaEB

kmN+αaEB
+ κEaEB

−
aEB

ε
−mB = τ/εB (F1c)

dL(1−α)aE(kmN+αaEB)+ dRαaE(kmN

+ (1−α)aEB)=
[
τ/ε+m+ (1/ε− κE)aE

]
c1 , (F1d)

with abbreviations

dL = decL,Pot = kLL (F2a)
dR = decR,Pot = kRR (F2b)
c1 = (kmN+ (1−α)aEB)(kmN+αaEB) (F2c)
τεm = τ/ε+m+ (1/ε− κE)aE . (F2d)

This results in a square equation. If there is no real positive
solution, biomass cannot be sustained, otherwise the maxi-
mum of the two roots gives the required steady-state biomass,
BsC .

0= aB2
+ bB + c (F3a)

a =−τεmα(1−α)a2
E (F3b)

b = a2
Eα(1−α)(dL+ dR)− τεmkmNaE (F3c)

c = kmNaE [(1−α)dL+αdR]− τεmk2
mN (F3d)

F2 Nitrogen limitation

For N limitation, the potential immobilization flux does not
cancel, and a complex cubed polynomial equation results.

εCsynBN = τB (F4a)
NsynBN = τB/βB (F4b)

νN (decL/βL+ decR/βR+ κEtvrE/βE)

+ uimm,Pot− synE/βE = τB/βB (F4c)
dLN(1−α)aEB

kmN+ (1−α)aEB
+

dRNαaEB

kmN+αaEB
+
κEaEB

βE

+
uimm,Pot

νN
−
aEB

νNβE
=

τ

νNβB
B (F4d)

dLN(1−α)aEB(kmN+αaEB)+ dRNαaEB

× (kmN+ (1−α)aEB)+ uνNc1 = τNBc1 , (F4e)

with abbreviations

τN =
τ

νNβB
+

(
1
νN
− κE

)
aE

βE
(F5a)

uνN = uimm,Pot/νN (F5b)
dLN = decL,Pot/βL (F5c)
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dRN = decR,Pot/βR (F5d)
c1 = (kmN+ (1−α)aEB)(kmN+αaEB) . (F5e)

This results in a cubic equation. Its second root is real and
gives the steady-state biomass, BsN.

0= aB3
+ bB2

+ cB + d (F6a)

a =−τNα(1−α)a2
E (F6b)

b = a2
Eα(1−α)(dLN+ dRN+ uνN)− τNkmNaE (F6c)

c = aEkmN ((α− 1)dLN+αdRN+ uνN)− τNk
2
mN (F6d)

d = k2
mNuνN (F6e)

While steady-state biomass can be computed and passed
to other equations that involve biomass, these other equations
are not simplified.

Code and data availability. SESAM (v3.0) is available coded in R
at https://github.com/bgctw/sesam (last access: 1 November 2022)
(https://doi.org/10.5281/zenodo.6758806; Wutzler, 2022a) and
coded in Julia at https://github.com/bgctw/Sesam.jl (last access:
1 November 2022) (https://doi.org/10.5281/zenodo.7188881; Wut-
zler, 2022b). R source code is released using the GPL-2 licence
because it uses other GPL libraries. Julia code is released using the
more permissive MIT license.

The model version comparison code of this
study is part of the R repository in the file devel-
op/19GMD_paper/CompareModels.Rmd. The sensitivity
analysis code of this study is part of the Julia repository at
inst/22paper_upscaling/sensitivity_Face.jl and the fluctuation
analysis at inst/22paper_upscaling/fluctuation_analysis.jl.
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