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Abstract. Using the example of sulfur hexafluoride (SF6),
we investigate the use of Lagrangian particle dispersion mod-
els (LPDMs) for inverse modeling of greenhouse gas (GHG)
emissions and explore the limitations of this approach. We
put the main focus on the impacts of baseline methods and
the LPDM backward simulation period on the a posteriori
emissions determined by the inversion. We consider base-
line methods that are based on a statistical selection of ob-
servations at individual measurement sites and a global-
distribution-based (GDB) approach, where global mixing ra-
tio fields are coupled to the LPDM back-trajectories at their
termination points. We show that purely statistical baseline
methods can cause large systematic errors, which lead to
inversion results that are sensitive to the LPDM backward
simulation period and can generate unrealistic global total a
posteriori emissions. The GDB method produces a posteriori
emissions that are far less sensitive to the backward simula-
tion period and that show a better agreement with recognized
global total emissions. Our results show that longer backward
simulation periods, beyond the often used 5 to 10 d, reduce
the mean squared error and increase the correlation between
a priori modeled and observed mixing ratios. Also, the inver-
sion becomes less sensitive to biases in the a priori emissions
and the global mixing ratio fields for longer backward sim-
ulation periods. Further, longer periods might help to better
constrain emissions in regions poorly covered by the global
SF6 monitoring network. We find that the inclusion of exist-
ing flask measurements in the inversion helps to further close
these gaps and suggest that a few additional and well-placed
flask sampling sites would have great value for improving
global a posteriori emission fields.

1 Introduction

Over the last few decades, the sharp increase of anthro-
pogenic greenhouse gas (GHG) emissions has become a
global concern, as it affects the Earth’s climate with possible
dangerous consequences for human health, infrastructure,
and ecosystems (IPCC, 2018). In order to prevent danger-
ous human interference with the climate system, the United
Nations Framework Convention on Climate Change (UN-
FCCC) was established. As an important commitment to
the convention, Annex-I countries (industrialized nations that
are legally bound to reduce GHG emissions) are required to
report their national emissions for regulated GHGs. These
inventories are compiled by applying bottom-up methods,
where statistical economic production or consumption data
and source-specific emission factors are used to estimate
national emissions. However, bottom-up estimates are sus-
pected to suffer from significant uncertainties, and there is a
growing need for independent verification of these estimates
(e.g., Rypdal et al., 2005; Weiss et al., 2021). Independent
verification can be provided by top-down methods, such as
inverse modeling (e.g., Leip et al., 2017; Weiss and Prinn,
2011).

Inverse modeling requires the use of atmospheric trans-
port models, either Eulerian models or Lagrangian particle
dispersion models (LPDMs). LPDMs are usually run back-
ward in time. They release a large number of virtual particles
from a given observation location and time and trace them
backward for a limited simulation period. The model out-
put gives the sensitivity of the atmospheric mixing ratio to
emissions during the backtracking time. In the inversion al-
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gorithm, the sensitivities for a large number of observations
are used to optimize a priori emission estimates such that
(with the obtained a posteriori emissions) the simulated mix-
ing ratios better fit the atmospheric observations. Most stud-
ies only use continuous in situ observations for this purpose;
however flask measurements with low sampling frequency
can be included as well (e.g., Villani et al., 2010). For certain
species, satellite measurements could also be used.

Previous studies argue that inversion methods have insuf-
ficient accuracy (e.g., Rypdal et al., 2005) and problems with
reproducibility (Berchet et al., 2021). In order to enhance the
credibility of inverse modeling, a better knowledge of the as-
sociated uncertainties is required (Brunner et al., 2017). An
important source of uncertainty regarding LPDM-based in-
version methods is the fact that they are often run backward
in time only for a few days, e.g., 5 d (Keller et al., 2012;
Vollmer et al., 2009; Zhao et al., 2009), 7 d (Koyama et al.,
2011), 10 d (Schoenenberger et al., 2018; Simmonds et al.,
2018; Thompson et al., 2017), or 20 d (Fang et al., 2014;
Maione et al., 2014; Stohl et al., 2009). Koyama et al. (2011)
and Stohl et al. (2009) are global inversion studies, while the
other listed studies apply regional inversions. The choices of
the backward simulation period used made by different au-
thors seem arbitrary, and a systematic analysis of the impact
of the backward simulation period is lacking.

The inversions can only account for the emissions that
have occurred during the backward simulation period. By
contrast, the emission contributions prior to the limited
LPDM backward simulation period are not explicitly mod-
eled but must still be accounted for in order to compare
the model results with the observations. These contributions
must be collected in a so-called baseline that is added to the
modeled contributions. As errors in the baseline translate to
errors in the a posteriori emissions, the baseline needs to be
as accurate as possible. Many different methods have been
suggested to determine this baseline.

Investigating halocarbons or fluorinated gases (F-gases)
most studies use statistical methods to calculate the base-
line by selecting low mixing ratio observations at individ-
ual stations (e.g., Ganesan et al., 2014; Prinn et al., 2000;
Saito et al., 2010; Zeng et al., 2012). Such statistical meth-
ods have been operationally applied within observation net-
works, such as the Georgia Institute of Technology method
(O’Doherty et al., 2001) used within the AGAGE commu-
nity. The general idea is to statistically identify observations
which are assumed to be unaffected by emissions within the
LPDM simulation period. A widely used statistical method
is the robust estimation of baseline signal (REBS) method,
introduced by Ruckstuhl et al. (2012), which applies a robust
local linear regression model. Statistical methods, however,
always involve subjective data selection and treatment deci-
sions, which can lead to problems. For instance, they will by
definition wrongly classify measurements during longer last-
ing pollution episodes as baseline observations and therefore
overestimate the baseline – a problem that is likely to occur

frequently in polluted areas. It is also unclear to which degree
these methods distinguish between lightly polluted air and
measurement noise (Ryall et al., 2001). Furthermore, they
fail to identify correct baseline mixing ratios when they are
below the lowest observations (Rigby et al., 2011), especially
at polluted continental sites which virtually never receive air
masses unaffected by emissions within the backward sim-
ulation period. In addition to the statistical selection some
methods also use model information to improve the baseline.
A method applied by the UK Met Office and commonly used
within the AGAGE network (see, e.g., Manning et al., 2021)
identifies baseline measurements by analyzing the direction
and height of air entering the regional inversion domain. A
baseline method introduced by Stohl et al. (2009), further
termed “Stohl’s method”, uses model information to subtract
prior simulated mixing ratios from preselected observations,
in order to avoid an overestimation of the baseline. Never-
theless, this preselection is subjective, and prior simulated
mixing ratios depend on a priori emission estimates.

Apart from using observations at each individual station
to maintain a baseline, Rödenbeck et al. (2009) suggested a
general “nesting” scheme, where a regional transport model
– either a Eulerian or Lagrangian model – is embedded
into a global model providing information from outside the
spatiotemporal inversion domain. Such a global-distribution-
based (GDB) approach was used by many authors: Trusilova
et al. (2010) and Monteil and Scholze (2021) used Röden-
beck’s approach to estimate CO2 emissions. Similarly, Rigby
et al. (2011) and Ganshin et al. (2012) developed approaches
to nest a Lagrangian model into a Eulerian model and tested
it for SF6 and CO2, respectively. Estimating CO2 baseline
mole fractions for inverse modeling, Hu et al. (2019) applied
two GDB approaches and a statistical method, where a sub-
set of observations with minimal sensitivity was selected to
correct a GDB baseline. Lunt et al. (2016) and Thompson
and Stohl (2014) applied GDB approaches to model CH4.
While Thompson and Stohl (2014) coupled the LPDM back-
trajectories with the global model at the end of the trajecto-
ries (which are terminated after a defined time), Lunt et al.
(2016) used the exit location of the particles, leaving the in-
version domain for the coupling. The GDB method defines
the baseline exactly in the way it is needed for the inversion
and can account for meteorological variability (i.e., transport
of air from regions with lower or higher mixing ratios, re-
spectively), which may cause sudden changes in the baseline.
The accuracy of the GDB method, however, depends on how
well the global field of mixing ratios can be modeled.

The treatment of the baseline is critical when using
LPDMs as a basis for atmospheric inversions. Still, it is un-
clear what influence the choice of a certain baseline approach
has on inversion results. Previous studies indicated that dif-
ferent approaches lead to significant mismatches in simulated
emissions (Thompson and Stohl, 2014; Henne et al., 2016).
However, different methods were never compared systemati-
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Table 1. Sites of continuous surface measurements used in the inversion and in the reanalysis.

Site ID Station Organization Calibration scale Latitude Longitude Altitudea Frequency

CGO Cape Grim, Tasmania AGAGE SIO-2005 40.7◦ S 144.7◦ E 94 2 h
JFJ* Jungfraujoch, Switzerland AGAGE SIO-2005 46.5◦ N 8.0◦ E 3580 2 h
MHD Mace Head, Ireland AGAGE SIO-2005 53.3◦ N 9.9◦W 5 2 h
RPB Ragged Point, Barbados AGAGE SIO-2005 13.2◦ N 59.4◦W 45 2 h
SMO Cape Matatula, American Samoa AGAGE SIO-2005 14.2◦ S 170.6◦W 77 2 h
THD Trinidad Head, USA AGAGE SIO-2005 41.0◦ N 124.1◦W 107 2 h
ZEP Zeppelin, Ny-Ålesund, Norway AGAGE SIO-2005 78.9◦ N 11.9◦ E 474 2 h
GSN Gosan, South Korea KNU/AGAGE SIO-2005 33.3◦ N 126.2◦ E 89 2 h
RGL Ridge Hill, UK UNIVBRIS SIO-2005 52.0◦ N 2.5◦W 204 30 min
ZSF* Zugspitze-Schneefernerhaus, Germany UBAG WMO SF6 X2006 47.4◦ N 11.0◦ E 2671 1 h
BRW Barrow (now Utqiaġvik), Alaska, USA NOAA WMO SF6 X2014 71.3◦ N 156.6◦ E 11 1 h
MLO* Mauna Loa, USA NOAA WMO SF6 X2014 19.5◦ N 155.6◦W 3397 1 h
NWR* Niwot Ridge, USA NOAA WMO SF6 X2014 40.0◦ N 105.6◦W 3523 1 h
SPO South Pole, Antarctic NOAA WMO SF6 X2014 90.0◦ S 24.8◦W 2841 1 h
SUM Summit, Greenland NOAA WMO SF6 X2014 72.6◦ N 38.5◦W 3238 1 h
IZO* Izaña, Tenerife, Spain AEMET WMO SF6 X2014 28.3◦ N 16.5◦W 2373 1 h
COI Cape Ochiishi, Japan NIES NIES-2008 43.2◦ N 145.5◦ E 49 1 h
HAT Hateruma, Japan NIES NIES-2008 24.1◦ N 123.8◦ E 47 1 h

a The altitude specifies the sampling height in meters above sea level. Stations considered as mountain sites are marked with an asterisk.

cally and tested for different model setups such as the length
of the LPDM backward simulations.

Another problem of LPDM-based inversion studies is the
general lack of consistency between regional emission esti-
mates and the global emissions of a GHG. Given that the
LPDMs are only usually run backward in time for a few days,
the inversions only constrain the emissions in regions where
observation stations exist (Rigby et al., 2011). This can lead
to substantial deviations of the derived emissions from, often
well-known, global totals, a problem shared with regional in-
version studies based on Eulerian models.

In this study we (i) investigate the effect of the backward
simulation time period within the range of 0–50 d, (ii) an-
alyze the impact of the baseline definition on inversion re-
sults, (iii) examine their consistency with known global total
emissions, (iv) explore the influence of biases in the baseline
and a priori emissions on inversion results for different back-
ward simulation periods, and (v) compare the value of differ-
ent observation types (flask vs. continuous) for the inversion.
We compare three different baseline methods – the REBS
method, Stohl’s method, and the GDB method – and apply
inverse modeling to the species sulfur hexafluoride (SF6).
SF6 is the most potent GHG regulated under the Kyoto Pro-
tocol, with a high global warming potential of approximately
23 500 over a 100-year time horizon (Myhre et al., 2013)
and an estimated atmospheric lifetime of 3200 years (Rav-
ishankara et al., 1993). SF6 is a convenient choice for our
studies because it has no negative sources (as, e.g., CO2), a
very long lifetime in the atmosphere, and well-known global
emissions, and there are relatively many measurements avail-
able. However, we expect our findings to also hold for other

species and be informative for inverse modeling of GHGs
with LPDMs in general.

2 Methods

2.1 Measurement data

The inversion (Sect. 2.2) is performed using continuous at-
mospheric observations of SF6 dry-air mole fractions from
18 observation sites, distributed around the globe. Those
measurements were provided by the Advanced Global Atmo-
spheric Gases Experiment (AGAGE; Prinn et al., 2018) net-
work, the NOAA/ESRL halocarbons in situ program (Dut-
ton et al., 2017), and a number of independent organizations,
whose data were partly included in the World Data Centre for
Greenhouse Gases (WDCGG, 2018). Measurement sites are
listed in Table 1, together with acronyms and other station-
specific information.

At AGAGE stations, SF6 mixing ratios are measured us-
ing Medusa gas chromatography followed by mass spectrom-
etry (GC/MS; Miller et al., 2008). At the stations HAT and
COI, the SF6 measurement system is based on cryogenic pre-
concentration and capillary GC/MS (Yokouchi et al., 2006).
At all other stations, gas chromatography followed by elec-
tron capture detection (GC-ECD) is used to measure SF6
mole fractions. Observations were calibrated with four dif-
ferent SF6 scales: SIO-2005, WMO SF6 X2006, WMO SF6
X2014, and NIES-2008. We converted all observations to
the SIO-2005 calibration scale by dividing NIES-2008 cal-
ibrated data by the factor 1.013 (Takuya Saito, private com-
munication, 5 February 2021) and WMO SF6 X2014 cali-
brated data by 1.002 (Guillevic et al., 2018). To convert mole
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Figure 1. Map of sites with continuous surface measurements used for the inversion (red triangles) and flask measurements (surface: black
dots, aircraft: blue squares) that were additionally used for the reanalysis of SF6.

fractions from WMO SF6 X2006 to WMO SF6 X2014, we
used y = ax2

+ bx+ c, where y corresponds to SF6 mole
fractions on the X2014 scale and x to mole fractions on the
X2006 scale. The coefficients a, b, and c have the values of
2.6821× 10−3, 9.7748× 10−1, and 3.5831× 10−2 (NOAA
ESRL, 2014), respectively.

We averaged all observation data over 3-hourly inter-
vals. For stations at low altitudes, we selected afternoon
values (12:00 to 16:00 LT), to only consider time periods
with a well-mixed planetary boundary layer, when the small-
est model errors can be expected. At mountain stations,
we instead selected observations during nighttime (00:00 to
04:00 LT) to avoid larger errors due to daytime small-scale
upslope winds in the complex topography around these sites,
which are unresolved in the model. Additionally, we fol-
lowed a method by Stohl et al. (2009) to identify observations
that cannot be brought into agreement with modeled mix-
ing ratios by the inversion, which we removed completely
(in contrast to Stohl et al., 2009, who assigned larger uncer-
tainties to these observations). For this, we used the kurto-
sis of the a posteriori error frequency distribution and itera-
tively excluded observations causing the largest absolute er-
rors until the kurtosis of the remaining error values fell below
5 (close to a Gaussian distribution). This method removed
0.62 % (63 data points) of the whole dataset, affecting 0 % to
2.92 % of the observations at individual measurement sites.
In total, 10 142 observations were used in the inversion for
the year 2012.

In order to generate global SF6 mixing ratio fields required
by the GDB method, we performed a 2-year SF6 reanaly-
sis (for more details see Sect. 2.5), for which we used all
the available 2011 and 2012 continuous measurements from
the sites listed in Table 1. In addition, we included flask air

samples from 44 surface observation stations (NOAA, Dlu-
gokencky et al., 2020) and from 16 aircraft profiling stations
(Sweeney et al., 2015; NOAA Carbon Cycle Group ObsPack
Team, 2018). Surface flask measurements were available at
intervals ranging from a few days up to months. Sampling
flights were conducted irregularly with intervals between 2
and 5 weeks at individual sites. Aircraft measurements from
individual flights provide vertical SF6 mixing ratio profiles
up to 8.5 km above sea level, where air samples are usually
taken within less than an hour. With one exception, all air-
craft samples were collected over North America. Additional
information about the flask measurements from surface sites
and aircraft programs can be found in Tables A1 and A2
(Appendix). All flask measurements were calibrated with the
WMO SF6 X2014 calibration scale, and we converted them
to the SIO-2005 calibration scale. For the reanalysis, we used
175 557 in situ, 3423 surface flask, and 5581 aircraft mea-
surements amounting to 184 561 measurements in total in
2011 and 2012. Figure 1 provides an overview of all obser-
vation sites considered in the inversion and the reanalysis.

In one specific test case (see Sect. 3.2), we also used the
2012 surface flask measurements in addition to the continu-
ous measurements for the inversion.

2.2 Inversion method

In this study we use the Bayesian inversion framework
FLEXINVERT+, described in detail by Thompson and Stohl
(2014), which was further developed since then, to make the
code more modular and to include iterative solution methods.
However, our results should be valid for all inversion meth-
ods based on LPDM calculations, and we thus only include
a brief description of FLEXINVERT+. It is based on a linear
forward operator H that represents the atmospheric transport,
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so that the forward problem reads

y =Hx+ ε, (1)

where y is the vector of observed mixing ratios, x the emis-
sion state vector, and ε the sum of observation and model
error. Since H is ill-conditioned and has no unique inverse,
a priori emission estimates can be added, in order to solve
Eq. (1) for x. The inversion method applies Bayes’ theorem
to calculate a posteriori emissions, which on the one hand
minimize the difference between observed and modeled mix-
ing ratios and on the other hand stay close to the a priori
emissions and inside of predefined uncertainty bounds. As-
sumed uncertainties are Gaussian-distributed, resulting in a
minimization of the cost function (e.g., Tarantola, 2005)

J(x)=
1
2
(x− xp)

TB−1(x− xp)

+
1
2
(Hx− y)TR−1(Hx− y), (2)

where B is the a priori emission error covariance matrix, R
the observation error covariance matrix, and xp the vector of
the a priori emissions. This study uses the following analyti-
cal solution to minimize J(x):

x = xp+ (HTR−1H+B−1)−1HTR−1(y−Hxp). (3)

We use a spatial emission grid (Fig. A1) with 6219 grid
cells of varying size ranging from 1◦× 1◦ to 16◦× 16◦. We
define the grid by using model information to aggregate grid
cells with low emission contributions, as further described by
Thompson and Stohl (2014). For this, the emission sensitiv-
ity is taken from the LPDM 50 d backward simulation, and
the resulting inversion grid is used for all inversions. The out-
put emission fields are saved at a spatial resolution of 1◦×1◦.
x is assumed to not vary with time.

SF6 has no surface sinks, and its surface fluxes can there-
fore only be larger than or equal to zero. However, the in-
version algorithm can produce negative a posteriori fluxes.
To overcome this problem we follow Thompson et al. (2015)
and apply an inequality constraint on the a posteriori emis-
sions, using the truncated Gaussian approach by Thacker
(2007). This approach, which applies inequality constraints
as error-free observations, is described by the following
equation:

x̂ = x+APT(PAPT)−1(c−Px), (4)

where P is a matrix operator selecting the fluxes violating the
inequality constraint, and c a vector of the inequality con-
straint (zero in our case). x and A represent the a posteriori
emissions and error covariance matrix precalculated in the
inversion, respectively.

In contrast to many other studies (e.g., Henne et al., 2016;
Rigby et al., 2011; Stohl et al., 2009; Thompson and Stohl,
2014), we do not use the option to optimize the baseline

mixing ratios in the inversion, except for sensitivity tests. In
any case, it is desirable to obtain a baseline that is as accu-
rate as possible prior to any optimization, which is a purely
statistical correction that may falsely compensate for errors
elsewhere (e.g., in the emissions). Waiving this option fur-
ther gives us the opportunity to better analyze the differ-
ences between investigated baseline methods and to study
their impacts on the a posteriori emissions more systemat-
ically. For the baseline optimization of the sensitivity tests,
we use a temporal window of 28 d and a baseline uncertainty
of 0.1 ppt. Increasing the uncertainty up to 0.2 ppt did not
show any significant changes in the results. For general de-
tails on the baseline optimization, see Thompson and Stohl
(2014).

2.3 Atmospheric transport

H is the so-called source–receptor relationship (SRR) in the
context of atmospheric transport. The SRR is an emission
sensitivity that relates emission changes in a given grid cell
to changes in modeled mixing ratios at a given receptor; for
further details, see Seibert and Frank (2004). The SRR value
in a specific grid cell (units of 1 sm3 kg−1) measures the sim-
ulated mixing ratio change at a receptor that a unit strength
source (1 kgs−1 m−3) in that grid cell would create (Stohl et
al., 2009).

In this study, we use the LPDM FLEXPART 10.4 (Pisso
et al., 2019; Stohl et al., 1998, 2005) to calculate the SRR.
The model is run in backward mode as this is more efficient
than forward calculations when the number of emission grid
cells exceeds the number of observation sites. Available ob-
servations are averaged to 3-hourly means (see Sect. 2.1). For
each of these means, 50 000 virtual particles are released con-
tinuously over the averaging period and followed backward
in time. The SRR is calculated by determining the average
time the particles spend in each grid cell of the 1◦× 1◦ out-
put grid within the lowest 100 m above the ground, assuming
that all emissions occur at or near the ground. FLEXPART
is driven by the hourly reanalysis dataset ERA5 (Hersbach
et al., 2018) from the European Centre for Medium-Range
Weather Forecasts (ECMWF) at a resolution of 0.5◦× 0.5◦

and with 137 vertical levels. Since SF6 is an almost nonreac-
tive gas, removal processes are neglected in the calculation
of the SRR.

In this study, five different backward calculation periods
are investigated: 1, 5, 10, 20, and 50 d. At the end of these
periods, particles are terminated, and the back trajectories
end. Figure 2 shows the 2012 annual average emission sen-
sitivities for the backward calculation period of 5 d (Fig. 2a)
and 50 d (Fig. 2b), respectively. On the 5 d timescale large
land areas in the Southern Hemisphere (northern Australia,
South America, southern Africa) and also parts of the North-
ern Hemisphere (e.g., India, Iran) are sampled poorly or not
at all. In these areas, emissions can therefore not be deter-
mined well by the inversion. High sensitivity can only be
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found at land regions with many receptors, such as Europe.
On the 50 d timescale, the SRR has higher values compared
to the 5 d backward calculation. Large parts of the Northern
Hemisphere are sampled quite well, and the emission sensi-
tivities provide some information, even at areas that are far
away from the observation stations. However, emission sen-
sitivities are still low in the tropics, especially over Africa,
South America, and northern Australia. Figure 2c shows the
increase in the annual averaged SRR due to the use of flask
measurements in addition to continuous measurements in the
case of 50 d simulations. One can see substantial increases
in the vicinity of the measurement sites that quickly decline
with distance to the sites. Further SRR values increase in
large parts of the Southern Hemisphere; however, the in-
creases over southern continental areas are relatively low, as
most flask measurements are not well located for inversion
purposes.

2.4 The baseline definition

The transport model can only account for mixing ratio
changes caused by emissions within the chosen backward
calculation period. Consequently, a baseline representing the
influence of all the emission contributions prior to this time
period has to be defined.

2.4.1 The REBS method

The REBS method introduced by Ruckstuhl et al. (2012) is
a statistical method using a robust local regression model to
identify background observations from each individual ob-
servation station to estimate a baseline curve. In recent years
it has been used in various studies to determine a baseline
for atmospheric inversions of several GHG species (e.g., An
et al., 2012; Brunner et al., 2017; Henne et al., 2016; Schoe-
nenberger et al., 2018; Simmonds et al., 2016; Vollmer et
al., 2016). The REBS method defines observed mixing ra-
tios y(ti) at each time step ti as the sum of a baseline signal
g(ti), an enhancement due to polluted air masses m(ti), and
the observational error Ei :

y(ti)= g(ti)+m(ti)+Ei . (5)

The method assumes that most observations are baseline
observations and therefore not influenced during pollution
episodes (m(ti)= 0). It also assumes that the baseline curve
g is smooth – so that it can be linearly approximated around
any given time. The method then applies a local linear regres-
sion model that fits the observation data, giving more weight
to data points close to the considered time and iteratively ex-
cluding data points outside a certain range. An advantage of
the REBS method is that it is simple to implement. The code
is freely available, and besides some parameters that need to
be chosen, it only depends on the observation data. This sim-
plicity, however, also means that the method is unable to take
the length of the LPDM backward calculation into account.

Figure 2. Source–receptor relationship obtained from FLEXPART
backward simulations, averaged over the year 2012. The SRR is
shown for all considered continuous measurement stations and for
a simulation period of (a) 5 and (b) 50 d. Panel (c) shows the in-
crease in the annual averaged SRR due to the use of flask measure-
ments in addition to continuous measurements for the case of a 50 d
backward simulation period.

As we shall see, this leads to systematic biases in the inver-
sion results that depend on the length of the backward cal-
culation. The method also assumes a smoothly varying base-
line, which limits its ability to account for meteorological
variability. Another disadvantage is the dependence on cer-
tain parameter settings. The settings used in this study are
provided in Table A3. Finally, the method can only be used
at sites with frequent observations, not for flask measurement
sites or moving measurement platforms.
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2.4.2 Stohl’s method

The method introduced by Stohl et al. (2009) is primarily
based on the selection of observed mixing ratios at individual
observation stations but also uses the simulated SRR values
and a priori emissions to determine the baseline. In the last
few years, it has been used in several inversion studies (e.g.,
Brunner et al., 2017; Fang et al., 2014, 2015, 2019; Stohl et
al., 2010; Thompson and Stohl, 2014). We apply the method
and select the lowest 25 % of observations from individual
stations in a moving time window of 30 d to only consider ob-
servations which are weakly influenced by emissions within
the backward calculation period. Prior simulated mixing ra-
tio enhancements are subtracted from the selected observa-
tions to eliminate the emission contributions from within the
time interval of the LPDM simulation. In order to avoid an
overestimation of their contribution, only the lower half of
the prior simulated values and the corresponding observed
data points are selected. In every time window, resulting mix-
ing ratios are averaged and finally linearly interpolated to the
timestamp of the observations. By subtracting prior simu-
lated mixing ratios, the method takes the length of the LPDM
backward calculation into account and aims to avoid an over-
estimation of the baseline. However, simulated mixing ratios
are calculated using a priori emission estimates, making the
method dependent on a priori information. Further, the sub-
jective choice of the time window and the subjective selec-
tion of observations are problematic. As the REBS method,
Stohl’s method assumes a smooth baseline curve, and thus it
cannot account for sudden changes in the baseline due to me-
teorological variability. Also, the method can only be used at
sites with frequent observations.

2.4.3 The GDB method

The idea of the GDB approach (Thompson and Stohl, 2014)
is to determine the baseline directly from a 3D global
field of mixing ratios, e.g., from a reanalysis of the atmo-
spheric chemical composition. The end points of the back-
trajectories that are used by the LPDM to calculate the SRR
are utilized to determine the sensitivity at the receptor to mix-
ing ratios at the points in space and time where particles ter-
minate (see Fig. 3 for a simplified illustration). This sensitiv-
ity (termed “termination sensitivity” hereafter) in a particular
grid cell is calculated in the LPDM by dividing the number of
particles terminating in that cell by the total number released
at the receptor, while also including a transmission function
to account for loss processes (not relevant for SF6) during
the backward simulation period. The termination sensitivity
fields are saved in a 3D 1◦× 1◦ output grid with 16 vertical
layers with interface heights at 0.1, 0.5, 1, 2, 3, 4, 5, 7, 9, 12,
15, 20, 25, 30, 40, and 50 km above ground level. For global
inversions, baseline mixing ratios are then calculated by mul-
tiplying the termination sensitivity with the mixing ratios of
the 3D global field and integrating the product over all grid

Figure 3. Simplified illustration of the global-distribution-based
(GDB) method for baseline determination, where the backward sim-
ulation is represented by three back trajectories released at the time
and space of a particular observation. The spatiotemporal grid is
simplified to two dimensions with a vertical time and a horizon-
tal space axis. Grid cells that contribute to the modeled mixing ra-
tio through emissions are shaded blue; termination grid cells where
termination sensitivity is stored are marked with red rectangles; the
termination point is illustrated by a dashed red horizontal line.

cells. The GDB method can also be used for regional inver-
sions (not done in this study). In this case, the emission con-
tributions from outside the regional domain need to be added
to the baseline (Thompson and Stohl, 2014), but otherwise
the inversion procedure is identical as described here.

The GDB method is independent of subjective data selec-
tion and choice of parameter settings. In contrast to the REBS
method and Stohl’s method, it does not assume a smooth
baseline and has the potential to fully account for meteoro-
logical variability. As illustrated, it excludes emission con-
tributions from within the backward simulation period and
therefore provides a baseline that is fully consistent with
the length of the backward simulation. Furthermore, con-
trary to the other two methods, it can also be used at mea-
surement sites with infrequent observations or moving ob-
servation platforms. Its accuracy, however, is dependent on
the ability to minimize errors and especially biases of the
global 3D mixing ratio fields. We target this challenge using
the FLEXible PARTicle dispersion chemical transport model
(FLEXPART CTM; Henne et al., 2018) to perform a reanal-
ysis of SF6 as described in the next section.

2.5 Reanalysis of SF6 using FLEXPART CTM

In this study the LPDM FLEXPART 8-CTM-1.1 is used to
perform a reanalysis of SF6 for the year 2012. It was de-
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veloped by Henne et al. (2018) and is based on FLEXPART
8.0. Groot Zwaaftink et al. (2018) provide a detailed descrip-
tion of FLEXPART CTM and evaluate this model for the
example of CH4. FLEXPART CTM is run in a domain fill-
ing mode where 12 million particles are randomly distributed
over the globe, proportional to the air density. In addition to
an air tracer, particles also carry the chemical species SF6.
The initialization is based on a latitudinal SF6 profile based
on surface observations. We run the simulation from 2011
to 2012, using 2011 as a spin-up period. Particles are fol-
lowed forward in time, and whenever a particle resides below
the diagnosed boundary layer height, its mass is increased
due to surface SF6 emissions. The model is driven with the
ECMWF ERA5 dataset and with emission fields calculated
as described in Sect. 2.6. Mixing ratio fields are saved daily
on a 3◦× 2◦ output grid and coupled to the backward simu-
lations.

FLEXPART CTM uses a nudging routine to keep simu-
lated SF6 fields close to the observations of SF6. With this
simple data assimilation method, modeled fields of mix-
ing ratios are relaxed towards observations within so-called
nudging kernels around observation sites. For all surface ob-
servation stations in the Southern Hemisphere, we assign rel-
atively large uniform kernel sizes, since the model tends to
overestimate SF6 mixing ratios in the Southern Hemisphere,
and there are only few measurement stations to correct this
bias. For the surface observation sites in the Northern Hemi-
sphere, we assigned smaller kernel sizes to measurement sta-
tions with a large observation variability to conserve SF6
spatial variability, especially over the continents (see Groot
Zwaaftink et al., 2018). For the aircraft measurements we
predefine vertical levels at 0.05, 0.15, 0.3, 0.5, 0.75, 0.1, 1.5,
2, 2.5, 3, 3.5, 4, 5, 6, 7, 8, and 9 km a.g.l., co-locate the indi-
vidual measurements to the closest vertical level, and choose
kernel sizes that increase with altitude. Specific kernel set-
tings are detailed in Table A4.

2.6 A priori emissions

An a priori estimate of the spatial distribution of SF6 emis-
sions for the year 2012 is determined by collecting infor-
mation on the emissions from individual countries. We use
country emissions reported to the United Nations Frame-
work Convention on Climate Change (UNFCCC, 2021) and
for East Asian countries’ emissions estimated by Fang et al.
(2014). The sum of these individual country emissions is
subtracted from the total global SF6 emissions determined
by Simmonds et al. (2020), and the remaining emissions are
distributed to all other countries proportional to their elec-
tric power consumption (World Bank, 2021). Finally, total
country emissions are disaggregated according to the grid-
ded population density (CIESIN, 2018) within each coun-
try’s borders. Note at this point that the a priori emissions as
constructed agree with recognized global emissions, which
should be kept in mind when the global total is used as a

reference value in the discussion. The a priori emission un-
certainty is estimated to be 50 % in each grid cell, with a
minimal value of 1× 10−13 kgm−2 h−1. Spatial correlation
between uncertainties is considered using an exponential de-
cay model with a scale length of 250 km.

3 Results

3.1 Baselines and length of backward simulation

The three investigated baseline methods are discussed for the
example of two measurement sites, Gosan and Ragged Point,
and for five backward simulation time periods. The Gosan
observation station is located on the southwestern tip of Jeju
Island, South Korea, monitors the outflows from the Asian
continent, and is representative of stations which frequently
measure pollution events. The Ragged Point observation sta-
tion is situated on the eastern edge of Barbados, with direct
exposure to the Atlantic Ocean. Ragged Point is primarily
influenced by easterly winds providing “clean” background
air masses, uninfluenced by local emissions, and is there-
fore representative of background stations. Both Gosan and
Ragged Point periodically intercept air from the Southern
Hemisphere and therefore have a rather complex baseline.

Baseline mixing ratios are plotted together with respec-
tive observations and a priori mixing ratios for different
LPDM backward simulation periods ranging from 1 to 50 d
(Figs. 4–7). A priori mixing ratios are calculated as the sum
of the baseline and the contribution originating from a pri-
ori emissions during the period of the backward simulation
(termed “direct emissions contributions” hereafter). Ideally,
the choice of the backward simulation period should have no
systematic effect on the calculated a priori mixing ratios. By
increasing the backward simulation time, and therefore en-
larging the temporal domain, additional emission contribu-
tions are included in the optimization. Per definition, these
contributions are not part of the baseline and should ide-
ally be removed from it. As a result, the baseline should be-
come lower and smoother when the simulation period is in-
creased. We investigate the agreement between modeled and
observed mixing ratios for the three methods with time series
plots (Figs. 4–7), as well as statistical parameters (bias, mean
squared error (MSE), and coefficient of determination (r2)),
summarized in Table 2.

Figure 4 shows the smooth baselines calculated with the
REBS method and Stohl’s method at the measurement sta-
tion Gosan. In the case of 1 d backward simulations (Fig. 4a
and d), both methods show a poor agreement between mod-
eled and observed mixing ratios, as neither the smooth base-
lines nor the small direct emission contributions can repro-
duce the observed mixing ratios during pollution episodes.
This agreement becomes much better with longer backward
simulation periods (Fig. 4b and e). The REBS baseline stays
completely unchanged for different backward simulation pe-
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Figure 4. Baseline and a priori SF6 mixing ratios calculated with the REBS method (panels a–c) and Stohl’s method (panels d–f) at the
Gosan observation station, compared to SF6 observations. Model results are shown for backward simulations of 1 d (panels a and d), 10 d
(panels b and e), and 50 d (panels c and f).

Figure 5. Baseline and a priori SF6 mixing ratios determined by the REBS method and Stohl’s method at the Ragged Point observation
station for backward simulation times of 1 d (panel a), 10 d (b), and 50 d (c).

riods. Therefore, a priori mixing ratios grow with increasing
simulation periods (Fig. 4b and c), as more direct emissions
contribute to the calculated total mixing ratio. For Gosan, the
bias is negative for the 1 d simulation period but becomes in-
creasingly positive for longer simulation periods (Table 2).
This systematically increasing bias is inherent to all purely
observation-based baseline methods and cannot be corrected
without adding model information. In contrast, Stohl’s base-

line level decreases with longer backward simulation periods
as higher direct emission contributions are subtracted from
the preselected observations. Consequently, the bias of the
a priori mixing ratios changes less between 10 and 50 d of
backward simulation (Fig. 4e and f). This is confirmed by sta-
tistical parameters in Table 2 also showing only little change
between 10 and 50 d.
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Figure 6. Baseline and a priori SF6 mixing ratios calculated with the GDB method at the Gosan observation station for backward simulation
times of 0 (panel a), 1 (b), 5 (c), 10 (d), 20 (e), and 50 d (f).

Figure 7. Baseline and a priori SF6 mixing ratios calculated with the GDB method at the Ragged Point measurement station for backward
simulation periods of 0 (panel a), 1 (b), 5 (c), 10 (d), 20 (e), and 50 d (f). The inset in panel (d) shows the termination sensitivity averaged
over all heights for the time of the marked observation low point, illustrating the method’s ability to account for baseline changes due to
episodic transport from the Southern Hemisphere.
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Table 2. Bias, mean squared error (MSE), and coefficient of determination (r2) of a priori SF6 mixing ratios determined by the three
investigated baseline methods with respect to observed mixing ratios. Statistical parameters are shown for three different backward calculation
periods (1, 10, and 50 d) at the stations Gosan and Ragged Point. Also reported are the bias, MSE, and r2, calculated separately for all stations
listed in Table 1 and then averaged.

Gosan Ragged Point All stations

Parameter Method 1 d 10 d 50 d 1 d 10 d 50 d 1 d 10 d 50 d

REBS −0.225 0.190 0.267 0.006 0.007 0.054 −0.028 0.012 0.061
Bias [ppt] Stohl −0.384 −0.016 0.008 −0.067 −0.068 −0.065 −0.103 −0.064 −0.051

GDB −0.090 −0.002 −0.006 0.023 0.044 0.033 0.022 0.016 0.007

REBS 0.420 0.250 0.281 0.004 0.004 0.006 0.034 0.023 0.028
MSE [ppt2] Stohl 0.525 0.216 0.210 0.009 0.009 0.009 0.050 0.026 0.024

GDB 0.303 0.206 0.205 0.005 0.005 0.004 0.034 0.022 0.021

REBS 0.085 0.482 0.495 0.671 0.670 0.712 0.584 0.647 0.651
r2 Stohl 0.068 0.474 0.490 0.649 0.629 0.623 0.548 0.616 0.623

GDB 0.272 0.499 0.501 0.631 0.718 0.746 0.423 0.589 0.634

At Ragged Point (Fig. 5), the a priori mixing ratios deter-
mined by the REBS method fit the observation data very well
for short backward simulation periods, where baseline and
a priori mixing ratios overlap because of small direct emis-
sion contributions (Fig. 5a and b). This is expected, since
the method determines the baseline by fitting the observa-
tion data while iteratively excluding outliers. Since regional
pollution events captured at Ragged Point tend to be very
small, no significant measurement peaks need to be excluded.
Therefore, the REBS baseline fits well through the measure-
ment data, resulting in a good statistical model–observation
agreement (Table 2). However, the smooth baseline is unable
to reproduce the observed variability. In the case of a simu-
lation period of 50 d (Fig. 5c), more direct emission contri-
butions give higher a priori mixing ratios, overestimating the
measurements and causing a large bias. In contrast, due to its
25th percentile preselection of observations, Stohl’s method
shifts the baseline curve towards the lowest observations. In
the case of Ragged Point, these lowest observations come
from southern hemispheric air masses. Hence, Stohl’s base-
line is more representative of southern hemispheric condi-
tions, which do not necessarily dominate at that site. Con-
sequently, a priori mixing ratios underestimate the observa-
tions for low direct emission contributions (Fig. 5a and b).
The resulting bias is almost unaffected by the different back-
ward simulation periods (Table 2 and Fig. 5c), showing the
method’s ability to compensate for increasing direct emission
contributions. However, the rather ad hoc 25th percentile pre-
selection of data for the baseline is obviously not justified for
a background station with few pollution episodes and south-
ern hemispheric air interceptions, leading to a systematic un-
derestimation of modeled a priori mixing ratios, irrespective
of the length of the backward simulation.

The GDB method is illustrated for all backward simulation
periods tested, including a case without any backward sim-

ulation (0 d). In this extreme case, the baseline is obtained
directly from the value of the global mixing ratio field simu-
lated with FLEXPART CTM in the spatiotemporal grid cell
of the respective observation. At Gosan, FLEXPART CTM
reproduces observed mixing ratios well, even capturing a few
pollution events (Fig. 6a). This good agreement is however
expected, since these observations were used for the nudging
in the FLEXPART CTM model. In the 1 d backward simu-
lation case (Fig. 6b), the method computes a highly variable
baseline, partly representing the observed variability. This re-
sults in a much better agreement between a priori and ob-
served mixing ratios than using the REBS method or Stohl’s
method (Table 2). The GDB baseline becomes smoother and
lower with increasing backward simulation time. The loss of
variability arises from the fact that the GDB method calcu-
lates the baseline from a weighted average of grid cell mixing
ratios at the trajectory termination points. The longer par-
ticles are followed backward in time, the more widely dis-
persed over large geographical regions termination points be-
come, thus resulting in a smoother baseline. The lowering of
the GDB baseline is compensated for by the increase of the
direct emission contributions (see Sect. 2.4.3 and Fig. 3), en-
suring a seamless transition between forward (FLEXPART
CTM) and backward simulations. As a result, a priori mix-
ing ratios in Fig. 6 show no large systematic changes with an
increasing simulation period between 5 and 50 d.

Figure 6 also demonstrates the advantage of the La-
grangian backward simulation. As FLEXPART CTM is lim-
ited in resolution and particle number, it can only reproduce a
few pollution events at Gosan, and it underestimates the high-
est and overestimates the lowest measured SF6 mixing ra-
tios, as demonstrated in the 0 d case (Fig. 6a). The backward
simulation is initiated at the exact location of the measure-
ment point and provides much higher resolution (Fig. 6b–f).
If the backward calculation period is long enough that back
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trajectories reach important emission regions, mixing ratio
spikes similar to the observed ones can be simulated. At the
same time, the lowered baseline for intrusions of southern air
masses during the Asian summer monsoon also allows the
lowest observed values to be captured. Table 2 shows exclu-
sively improving correlation between modeled and observed
values with increasing backward simulation periods.

Figure 7 illustrates the GDB method at the Ragged Point
station. FLEXPART CTM (Fig. 7a) reproduces the measured
mixing ratios well. However, it generates more variability
than observed at this station. This is partly due to the limited
number of particles in the domain-filling simulation, which
introduces noise into the model results. This is averaged
out by the GDB method with increasing backward simula-
tion time, as the baseline becomes a weighted average over
many grid cells. Nevertheless, the baseline maintains vari-
ability for all tested simulation periods, fitting the observed
signal well (Fig. 7b–e). It is noteworthy that at Ragged Point
a substantial part of the observed SF6 variability seems to
be caused by transport from different latitudes/regions with-
out direct emission contributions, exemplified by the quite
variable baseline even for the 50 d backward simulation. In
contrast, the direct emissions accumulated over the 50 d of
the backward simulation are producing an almost constant
enhancement over the baseline. This is very different from
a station like Gosan that is strongly influenced by pollution
episodes.

Notice also that for backward simulation times of 10 d and
longer, the GDB method is able to reproduce short episodes
of very low observed mixing ratios at Ragged Point that are
caused by episodic transport from the Southern Hemisphere
(see also inset in Fig. 7d). Neither the REBS method nor
Stohl’s method could correctly reproduce these negative SF6
excursions.

Additional figures illustrating the three baseline methods
at all investigated measurement sites can be found in the Sup-
plement. Despite all the advantages of the GDB method, it
does not work well if the modeled global mixing ratio fields
are biased. At Mace Head and Zeppelin (see Figs. S17 and
S33 in the Supplement), FLEXPART CTM overestimates the
measurements, and thus the GDB method gives a baseline
that partly exceeds the observations. Possible error sources
include deficiencies in the emission assumptions driving the
model that are impossible to be compensated for through
nudging with the few available observations. It is also un-
clear whether the FLEXPART CTM nudging routine was
able to properly correct mixing ratios at higher altitudes, as
aircraft measurements were available only over North Amer-
ica (with one exception). On the other hand, statistical base-
line methods might work better at observation stations, where
the baseline termination is less complex. At Mace Head
(Fig. S18 in the Supplement) for instance, both the REBS
method and Stohl’s method lead to a very high correlation
between modeled and observed mixing ratios for the case
of a 50 d backward simulation (r2

= 0.87). Nevertheless, for

the REBS method, the discussed growing negative bias with
longer simulation periods can be observed.

Statistical parameters (bias, MSE, and r2) were separately
calculated for every observation station, and respective av-
erages over all stations are shown in Table 2. One should
keep in mind that the REBS method and Stohl’s method are
directly based on the observations themselves, and thus the
dependency between observed and modeled a priori mixing
ratios is likely higher than in the case of the GDB method,
where observations are rather used to improve the mixing ra-
tio fields. Therefore, it is remarkable that overall the GDB
method obtains smaller bias and MSE values than the other
two methods. The REBS method shows the highest r2 values.
The main reason for this good correlation is that the method
captures the trend in the time series very well, which rep-
resents a considerable fraction of the total variability in the
data. The GDB baseline may contain a fair fraction of noise,
in contrast to the smooth baselines of the other two meth-
ods. This will lead to lower correlation. However, it is note-
worthy that for the GDB method, the r2 value improves sys-
tematically with growing backward simulation time and for
50 d even exceeds the value derived by Stohl’s method. By
extending the backward calculation period from 10 to 50 d,
the GDB r2 value increases by 0.045, meaning that an ex-
tra 4.5 % of the observed variability can be explained by the
model. Notice also the improvement in bias and MSE, which
can be observed for the GDB method and Stohl’s method,
when extending the simulation period from 10 to 50 d. The
REBS method does not show these improvements due to its
systematical increase of bias with backward simulation time.

3.2 Inversion results

Figure 8 illustrates (a) the global distribution of the SF6 a pri-
ori emissions 2012 as well as (b–d) the emission increments
(i.e., a posteriori minus a priori emissions) for the three in-
vestigated baseline methods using SRRs from 20 d backward
calculations. A priori emissions are allocated to regions pro-
portional to electricity use and population density. This im-
plies large a priori emissions in South and East Asia, includ-
ing China, which is estimated to be the biggest contributor to
global SF6 emissions. In general, much higher a priori emis-
sions are allocated to the Northern Hemisphere than to the
Southern Hemisphere. We should also note that the emission
optimization of the inversion focuses on regions with large a
priori emissions, where also assumed uncertainties are bigger
(see Sect. 2.6), assigning more freedom to the algorithm.

The inversion increments in Fig. 8b–d show three very
contrasting pictures, illustrating the huge impact of the
choice of the baseline method on the inversion results. Using
different baseline approaches completely changes the results
of the inversions. When using the REBS method (Fig. 8b),
the inversion produces negative emission increments in al-
most all areas of the globe. As the real emissions are un-
known, this is not necessarily an unrealistic result. However,
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Figure 8. A priori SF6 emissions (a) and SF6 emission increments given by the inversion when using the REBS method (b), Stohl’s method
(c), and the GDB method (d) based on 20 d LPDM backward simulations.

when considering these mostly negative increments together
with the discussed positive bias for REBS baselines in Ta-
ble 2 (especially for longer backward simulation periods),
there is reason to assume that the REBS method overesti-
mates baselines and consequently underestimates the a pos-
teriori emissions overall. In contrast, the inversion algorithm
produces positive increments almost everywhere around the
globe when applying Stohl’s method (Fig. 8c). Again, con-
sidering this together with the discussed negative biases in
Table 2, this might indicate an underestimation of the base-
lines and an overestimation of the a posteriori emissions
overall. In the case of the GDB method (Fig. 8d), negative
and positive increments are more balanced. Overall, the pat-
terns are more similar to the ones of the REBS method, ex-
cept in East Asia, where they rather resemble the patterns
of Stohl’s method. Large positive increments can be seen
in East Asian regions and parts of Europe, whereas the in-
version tends to produce slightly negative increments in the
Southern Hemisphere.

National emissions

As the verification of emission reports to UNFCCC takes
place on a national scale, the impact of baseline methods
on national emissions is of great interest (Fig. 9). In coun-

tries with very low emission sensitivity (e.g., Brazil), inver-
sion increments are very small in all three cases, and there-
fore the baseline choice has little impact. However, consider-
ing countries with higher emission sensitivities (e.g., China),
the a posteriori emissions are very sensitive to the baseline
definition. In almost all cases, the REBS method leads to
smaller national emissions and Stohl’s method to larger na-
tional emissions than the GDB method. Due to the large
emissions in China, the differences in a posteriori emissions
become especially apparent there, with almost a factor of
3 emission difference, corresponding to almost 30 % of the
2012 global SF6 emissions.

Global emissions

The 2012 SF6 global emissions are shown in Fig. 10. The
bars represent inversion results using different backward cal-
culation periods between 1 and 50 d (light to dark shading).
The horizontal dashed line illustrates a reference value cal-
culated by Simmonds et al. (2020) with the AGAGE 12-box
model. Notice that this is the same value used to calculate
the a priori emissions, so the line also represents the global
a priori emissions, which should be kept in mind for the in-
terpretation of the results. Since the uncertainty of the global
emissions is relatively small, global emissions derived by the
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Figure 9. National SF6 emissions for selected countries, based on 20 d LPDM backward calculations with different choices of the baseline
method. Uncertainties represent a 1σ range.

Figure 10. SF6 global emissions derived by the inversions. Results are shown for the three applied baseline methods and for the five applied
backward simulation periods between 1 and 50 d. The horizontal dashed line represents the reference value of the AGAGE 12-box model
with shaded error bands. Uncertainties represent a 1σ range.

inversion should roughly match the value of the box model,
regardless of which backward simulation period was used.

For the REBS method, calculated global emissions (red)
decrease dramatically with growing backward simulation
time, showing values between 3.15 and 9.80 Ggyr−1. This is
a consequence of the method’s incapability to remove emis-
sion contributions from the baseline when the backward sim-
ulation period expands, leading to a systematical overesti-
mation of the baseline and underestimation of the emissions.
The resulting bias increases with growing simulation period,
and as a result global emissions estimates deviate strongly
from the box model.

In the case of Stohl’s method (blue), derived global emis-
sions do not show such a systematic decrease with longer
backward simulation periods as observed for the REBS
method. This is because Stohl’s method not only selects low
mixing ratio observations, but also uses model information
to maintain the baseline. For longer backward simulation
periods, higher simulated mixing ratios are subtracted from
the preselected observations to compensate for more direct
emission contributions. Nevertheless, global emissions sig-
nificantly exceed the reference value of the box model for all
applied simulation periods, implying a systematic overesti-
mation of emissions through too low baselines. The overes-
timation of the global emissions increases with longer back-

ward simulation times larger than 5 d. This suggests that the
method overcompensates for additional direct emission con-
tributions when the simulation period expands, subtracting
values that are systematically too high from the preselected
observations.

We further investigate whether the encountered biases
can be reduced by optimizing the baseline in the inversion.
Therefore, we repeated the inversion with exactly the same
setup, except optimizing the REBS baseline and Stohl’s base-
line as part of the inversion. Results are shown in Fig. A2. In
the case of the REBS method, the baseline optimization only
has little effect on the global total a posteriori emissions for
backward simulation periods between 1 and 10 d and only
becomes noticeable after 20 d. The greatest improvements
can be observed for the 50 d simulation, where the bias is al-
most halved. Still, for longer simulation periods the increas-
ing improvements through the baseline optimization cannot
compensate for the growing underestimation of the emis-
sions and substantial biases remain. Optimizing Stohl’s base-
line shows great improvements, especially for longer simu-
lation periods. These improvements increase systematically
with growing backward simulation period, and results get
very close to the box model outcome for the 20 and 50 d sim-
ulation case.
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Figure 11. SRR for individual countries and different backward cal-
culation periods between 1 to 50 d, considering all continuous mea-
surement stations in Table 1. The values shown are averages over
the grid cells of (a) France, USA, and China and (b) India, South
Africa, and Brazil for the year 2012.

Considering the inversion results based on the GDB
method, global emissions are in good agreement with the
box model result for all tested backward simulation periods,
as the global a posteriori emissions stay close to the global
a priori value. Furthermore, these global emissions stay al-
most unchanged for different backward simulation periods,
demonstrating the method’s ability to adjust the baseline ac-
cording to the sampled emissions of different simulation pe-
riods.

The advantage of longer backward simulation periods

As an argument for a relatively short backward simulation
period, Stohl et al. (2009) stated that “the value for the in-
version of every additional simulation day decreases rapidly
with time backward”. Certainly, this is true for countries and
regions that are well covered by the global monitoring net-
work. For instance, for France the SRR increases rapidly in
the first few backward simulation days but flattens to a linear
increase for longer backward simulation periods (Fig. 11a).
A similar behavior can be observed for many countries in the

Figure 12. SF6 emission increments calculated with the inversion
by using the GDB method and a backward simulation period of
(a) 1, (b) 10, and (c) 50 d.

Northern Hemisphere, although the curve’s slope for the first
few days varies. For countries poorly covered by the monitor-
ing network, however, the SRR is close to zero for the first 5
to 15 backward days, and only longer backward simulations
might provide information for the inversion (see Fig. 11b).
For these countries, the SRR increase with time only flattens
to a linear increase for very long transport times, even beyond
the 50 d used in this study.

Figure 12 further illustrates the impact of different back-
ward simulation periods on the inversion, by showing emis-
sion increments for the GDB method and for backward sim-
ulation periods of 1, 10, and 50 d. In the case of 1 d back-
ward calculations (Fig. 12a), the inversion only significantly
optimizes a priori emissions in East Asia and parts of Eu-
rope. As the backward simulation period is extended to 10 d
(Fig. 12b), the inversion optimizes emissions in larger parts
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of the Northern Hemisphere, but in the Southern Hemi-
sphere emission increments are still small. In the case of 50 d
(Fig. 12c), the inversion optimizes emissions even far away
from observation stations (e.g., South America or South
Africa). In India, where SRR values are also small, and a
priori emissions (and thus emission uncertainties) are high
(see also Fig. 11b), the emission increments even switch from
positive to negative by extending the period from 10 to 50 d.
Also, the calculated relative uncertainty reduction increases
by extending the backward simulation period (see Fig. A3a–
c).

The use of flask samples

An advantage of the GDB method is the possibility to in-
clude flask measurements from fixed sites or moving plat-
forms in the inversion. By contrast, the REBS method and
Stohl’s method require short measurement intervals at fixed
sites for the statistical baseline calculation. Here, the base-
line could be taken from nearby or same latitude continuous
sites or represented through baselines at the domain border
in case of regional inversions (Manning et al., 2021). Fig-
ure 13a shows the relative change in a posteriori emissions
and Fig. 13b the additional relative error reduction when us-
ing flask measurements additionally to the continuous mea-
surements for the 50 d backward simulation. One can see
substantial differences in the USA, eastern Europe, South
Africa, East Asia, and the Near East, where also an additional
error reduction occurs. While this additional error reduction
can be relatively large (up to 73 %) for grid cells in the vicin-
ity of the measurement sites, it quickly decreases down to a
few percent with larger distance to the measurements. Con-
sequently, flask measurements only show a small influence
on the total global emission estimate (< 1 %) but can have
a large impact on calculated national emissions of specific
countries (Fig. A4). For countries in the Near East, the addi-
tional use of flask measurements changes national emission
estimates by 40 % to 100 %. South African and American
emissions are modified by around 10 %.

Reliable global emissions can only be obtained with long
backward simulation periods

In previous sections, we have used global mixing ratio fields
from the GDB method, where great care has been taken to
avoid biases that would affect the baseline, and we have used
global a priori emissions that correspond to the rather well-
known global SF6 emissions. These are optimal conditions
for the inversion that are rarely fulfilled for other species
than SF6. For many species, global emissions are less well
known, and with fewer observations than for SF6 the global
distribution (and, thus, the baseline) is also more uncertain.
However, a skillful inversion should tolerate such biases and
still produce reliable results. While we lack information for
verifying that regional emissions are reliable, for SF6 we can

Figure 13. (a) Relative change in a posteriori emissions and (b) the
additional error reduction when using flask measurements in addi-
tion to continuous measurements for the 50 d simulation. The loca-
tions of the flask measurements are marked with black dots.

at least test whether global emissions can be determined by
our inversion in the presence of biases.

Figure 14 shows global a posteriori emissions when biases
in (1) the a priori emissions and (2) global mixing ratio fields
were added. This is shown for different backward simulation
periods between 1 and 50 d and for the 50 d case with the
inclusion of flask measurements. Note that for all these sen-
sitivity cases shown in Fig. 14, we use the same absolute a
priori emission uncertainties as for the original a priori emis-
sions without any artificial bias.

Comparing the inversion results for doubled (Fig. 14a) and
halved (Fig. 14b) a priori emissions clearly shows that the
corresponding biases in the global a posteriori emissions are
reduced substantially with increasing backward simulation
period and converge towards the rather well-known global
SF6 emission from the box model. It seems an extension of
the backward simulation period beyond 50 d would be re-
quired in order to further reduce the remaining bias. The in-
clusion of flask measurements leads to slight additional im-
provements.
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Figure 14. Global SF6 emissions using the GDB method shown for different sensitivity cases, using backward simulation periods between
1 and 50 d and a 50 d backward simulation case in which flask measurements were also included in the inversion in addition to continuous
measurements. The sensitivity cases include (a) doubled and (b) halved a priori emissions; biased global mixing ratio fields with a uniform
bias of (c)−0.003 and (d)+0.003 ppt in every grid cell; and combinations of the two test types; (e) doubled a priori emissions plus−0.003 ppt
global field bias; (f) halved a priori emissions plus +0.003 ppt global field bias. The dashed pink lines represent the expected relationship
between the baseline bias and a resulting emission bias if a global box model was used and the bias attributed solely to emissions in different
periods corresponding to the backward simulation times.

Another sensitivity test was performed with artificially bi-
ased global mixing ratio fields by subtracting (Fig. 14c) or
adding (Fig. 14d) 0.003 ppt from/to the FLEXPART CTM
model output in every grid cell of the 3D mixing ratio fields.
0.003 ppt is equivalent to roughly 1 % of the 2012 global
mixing ratio increase and thus corresponds to about 3 d of
global SF6 emissions. To still fit the model to the observa-
tions, the inversion will try to compensate for such a bias
in the baseline with a bias of the opposite sign in the emis-
sions. As always, the inversion can only attribute this addi-
tional bias to emissions within the simulation period. There-
fore, shorter backward simulation periods require a greater
modification of emissions than longer periods, in order to
compensate for the baseline bias. To fully compensate for the
baseline bias equivalent to 3 d of emissions, global a poste-
riori emissions would need to deviate strongly from the ref-
erence value for the 1 d case but converge towards it with
increasing backward simulation time. This is shown by the
dashed pink line, which indicates the expected relationship
between this baseline bias and a resulting emission bias if a
global box model was used and the bias attributed solely to
emissions in different periods corresponding to the backward
simulation times. In fact, with a positive baseline bias, neg-
ative emissions would be required for backward simulation
times of less than 3 d, as the baseline exceeds the observa-
tions. The inversion results do not show this extreme behav-
ior, since for short backward simulation times high SRR val-
ues are only found in small regions, and the emission changes

there are bound by the prescribed a priori uncertainties. No-
tice that in our case of a known added bias, this is rather a
shortcoming, as this shows that the inversion is not able to
compensate for the baseline bias for short backward simula-
tion times. Only for the longest times do the emissions con-
verge towards the expected global emissions (dashed pink
lines), and only for such long backward simulation times do
baseline biases equivalent to 3 d of emissions become negli-
gible. We also investigated the inversion behavior for larger
baseline biases, subtracting/adding (Fig. A5a and b) 0.05 ppt
from/to the global fields, corresponding to roughly 50 d of the
2012 global SF6 emissions. Here again, the results for short
simulation times seem unpredictable; i.e., they do not fol-
low the described expected behavior, indicated by the dashed
pink lines. Only for the 50 d simulation periods do results
converge to the expected global emissions, consistent with
the respective baseline bias.

Finally, we also combined doubled a priori emissions
with a −0.003 ppt bias in the global mixing ratio fields
(Fig. 14e) and halved a priori emissions with a +0.003 ppt
bias (Fig. 14f). For both cases, the inversion becomes less
sensitive to biases in the a priori emissions and the global
fields with longer backward simulation periods.

Final remark

In this study, we show many advantages of using relatively
long backward simulation periods for the inversion. Nev-

https://doi.org/10.5194/gmd-15-8295-2022 Geosci. Model Dev., 15, 8295–8323, 2022



8312 M. Vojta et al.: Evaluation of Lagrangian models for GHG inversions

ertheless, the improvement of regional emission patterns is
still limited by the observation network. A lack of observa-
tions in one region cannot simply be compensated for by ex-
tending the simulations for stations in other regions to very
long periods. For backward simulation times of 20–50 d, the
emission sensitivity is distributed over large areas but usu-
ally still concentrated within broad latitude bands. The ad-
ditional information to be gained from such long simulation
times, on top of the information provided by the shorter sim-
ulation times, can probably best be compared with the in-
versions done with a multi-box model such as the AGAGE
12-box model (e.g., Rigby et al., 2013), which is capable
of determining the emissions in broad latitude bands. Con-
sequently, if the emissions in certain regions with a dense
observation network are already well constrained by shorter
simulation periods, the residual emission will be attributed
correctly as an emission total to all other regions of the same
latitude band with a poor station coverage. The effective res-
olution of the obtained emissions in such data-poor regions
may be very coarse, but the result might still be informative.
Furthermore, the emission sensitivity for the 20–50 d back-
ward period is still not uniformly distributed over a latitude
band and thus provides some limited regional information.
Perhaps supported with a limited number of strategically lo-
cated flask measurements, inversions with long backward
simulation times could provide coarse but robust information
on emissions in poorly sampled regions. Independently, the
growing correlation between modeled and observed mixing
ratios with increasing backward simulation length (Table 2;
averaged over all stations) also shows that longer backward
simulations hold additional information, even though the in-
formation gain decreases with every day added to the simu-
lation length and probably becomes marginal for very long
backward simulation times. However, we propose to make
use of this additional information and apply longer periods
whenever possible to make the best use of the existing obser-
vation network.

4 Conclusions

We have examined the use of LPDMs for inverse modeling of
GHG emissions by varying the backward simulation period
in the range of 1 to 50 d, testing several methods for estimat-
ing a baseline, investigating the influence of biases in the a
priori emissions and the baseline, and exploring the value of
flask measurements for the inversion. We found the follow-
ing:

– A baseline method that is purely based on the obser-
vations at the observation site itself, such as the REBS
method, may lead to unreliable inversion results that
are highly sensitive to the length of the LPDM back-
ward simulation and can lead to unrealistic a posteriori
global total emissions. For instance, for the year 2012,

inversions with the REBS method produce a posteri-
ori global total SF6 emissions ranging between 9.8 and
3.2 Ggyr−1 for backward simulation periods between
1 and 50 d, compared to a well-known reference value
of around 8.0 Ggyr−1. Optimizing the baseline shows
little effect for simulation periods between 1 and 20 d
but could halve the bias in the 50 d simulation case.
Although the improvements of the baseline optimiza-
tion increase with growing backward simulation period,
the simultaneously growing bias cannot be compensated
for.

– A baseline method that is based on the observations at
the site itself but corrects for emissions occurring during
the LPDM backward simulation period leads to smaller
sensitivity to the backward calculation time but may still
lead to substantially biased emissions irrespective of the
backward simulation period. For instance, inversions
with Stohl’s method overestimate the well-known 2012
SF6 global total emissions by 2.2–3.6 Ggyr−1 (28 %–
45 %). Optimizing the baseline, however, shows great
improvements, especially for longer simulation periods.

– A global-distribution-based (GDB) approach, where the
LPDM backward simulation is nested into a global mix-
ing ratio field, leads to a posteriori emissions that are
less sensitive to LPDM backward calculation lengths
and stay close to the global total emission value. In con-
trast to station-specific baselines, the GDB method al-
lows for the inclusion of low-frequency measurements
(e.g., flask samples) or data from mobile platforms into
the inversion.

– Statistical comparisons of a priori modeled versus ob-
served mixing ratios suggest that longer LPDM back-
ward simulations outperform shorter simulations. In
particular, extending the trajectory length from 5–10 to
50 d can reduce the mean squared error and increase the
correlation.

– Inverse modeling is highly sensitive to biases in the a
priori emissions as well as biases in the baseline. We
could show that this sensitivity can decrease with the
length of the backward simulation period, and we find
that longer backward simulation periods can help to cor-
rect biased global emission fields. In the presented case,
it is not possible to correct strongly biased global a pri-
ori emissions with backward simulation periods of 1–
10 d, while they are captured quite accurately with 50 d
backward simulations.

– The additional use of flask measurements has the po-
tential to improve the observational constraint on SF6
emissions, especially close to the measurement sites.
However, existing flask sampling sites are often not well
located for inversion purposes. Similar to Weiss et al.
(2021), we suggest that placing a few additional flask
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sampling sites downwind of potential emission regions
in currently undersampled parts of the world (in par-
ticular, tropical South America, tropical Africa, India,
Australia, and the Maritime Continent) would have dis-
proportionately large value in improving regional and
global a posteriori emission fields.

Following these results, we advise against the use of base-
line methods that are purely based on the observations of
individual sites. At least great care needs to be taken that
problems such as those demonstrated in this paper do not
occur. In order to reduce biases, the optimization of the base-
line as part of the inversion might be necessary but would
likely not be sufficient to avoid biases completely. We rec-
ommend also employing longer LPDM backward simulation
periods, beyond 5–10 d, as this can lead to improvements in
overall model performance, can produce more robust global
emission estimates, and might help to constrain emissions, at
least at a very coarse resolution, in regions poorly covered by
the monitoring network. When consistency between regional
and global emission estimates is important, even longer back-
ward simulation periods than 50 d may be useful. Finally,
we suggest taking additional flask measurements at conti-
nental sites in the tropics and the Southern Hemisphere as
they would greatly enhance inversion-derived global emis-
sion fields.
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Appendix A

Table A1. Surface flask measurement sites.

Site ID Station Latitude Longitude Altitudea

ALT Alert, Canada 82.5◦ N 62.5◦W 190
ASC Ascension Island, UK 8.0◦ S 14.4◦W 90
ASK Assekrem, Algeria 23.3◦ N 5.6◦ E 2715
AZR Serreta (Terceira), Portugal 38.8◦ N 27.4◦W 24
BAL Baltic Sea, Poland 55.4◦ N 17.2◦ E 28
BHD Baring Head, New Zealand 41.4◦ S 174.9◦ E 90
BKT Bukit Kototabang, Indonesia 0.2◦ S 100.3◦ E 875
BMW Tudor Hill (Bermuda), UK 32.3◦ N 64.9◦W 60
BSC Constanta (Black Sea), Romania 44.2◦ N 28.7◦ E 5
CBA Cold Bay (AK), USA 55.2◦ N 162.7◦W 57
CHR Christmas Island, Kiribati 1.7◦ N 157.2◦W 5
CPT Cape Point, South Africa 34.4◦ S 18.5◦ E 260
CRZ Crozet, France 46.4◦ S 51.8◦ E 202
DRP Drake Passage, USA 59.0◦ S 63.7◦W 10
DSI Dongsha Island, Taiwan 20.7◦ N 116.7◦ E 8
EIC Easter Island, Chile 27.2◦ S 109.4◦W 69
GMI Guam (Mariana Island), USA 13.4◦ N 144.7◦ E 5
HBA Halley, UK 75.6◦ S 26.2◦W 35
HFM Harvard Forest (MA), USA 42.5◦ N 72.2◦W 1000
HPB Hohenpeissenberg, Germany 47.8◦ N 11.0◦ E 941
HSU Humboldt State University, USA 41.0◦ N 124.7◦W 8
HUN Hegyhatsal, Hungary 47.0◦ N 16.6◦ E 344
ICE Storhofdi, Iceland 63.4◦ N 20.3◦W 127
KEY Key Biscane (FL), USA 25.7◦ N 80.2◦W 6
KUM Cape Kumukahi (HI), USA 19.5◦ N 154.8◦W 8
LEF Park Falls (WI), USA 45.9◦ N 90.3◦W 868
LLN Lulin, Taiwan, Province of China 23.5◦ N 120.9◦ E 2867
LMP Lampedusa, Italy 35.5◦ N 12.6◦ E 50
MEX Mex High Altitude Global Climate Observation Center, Mexico 19.0◦ N 97.3◦W 4469
MID Sand Island, USA 28.2◦ N 177.4◦W 16
MKN Mt. Kenya, Kenya 0.1◦ S 37.3◦ E 3649
NAT Natal, Brazil 5.5◦ S 35.3◦W 20
NMB Gobabeb, Namibia 23.6◦ S 15.0◦ E 461
OXK Ochsenkopf, Germany 50.0◦ N 11.8◦ E 1172
PAL Pallas, Finland 68.0◦ N 24.1◦ E 570
PSA Palmer Station, USA 64.9◦ S 64.0◦W 15
PTA Point Arena (CA), USA 39.0◦ N 123.7◦W 22
SGP Southern Great Plains E13 (OK), USA 36.6◦ N 97.5◦W 374
SHM Shemya Island, USA 52.7◦ N 174.1◦ E 28
TIK Tiksi, Russian Federation 71.6◦ N 128.9◦ E 29
USH Ushuaia, Argentina 54.8◦ S 68.3◦W 32
UTA Wendover (UT), USA 39.9◦ N 113.7◦W 1332
UUM Ulaan Uul, Mongolia 44.5◦ N 111.1◦ E 1012
WIS Sede Boker, Israel 30.9◦ N 34.8◦ E 482

a The altitude specifies the sampling height in meters above sea level.
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Table A2. Aircraft flask measurement programs.

Site ID Aircraft programs Latitude Longitude Altitudea

BNE Beaver Crossing, Nebraska, USA 40.8◦ N 97.2◦W 616–7855
CAR Briggsdale, Colorado, USA 40.7◦ N 104.3◦W 1795–8469
CMA Cape May, New Jersey, USA 38.9◦ N 74.3◦W 280–8010
DND Dahlen, North Dakota, USA 47.5◦ N 99.1◦W 587–8023
ESP Estevan Point, British Columbia, Canada 49.4◦ N 126.4◦W 246–5740
ETL East Trout Lake, Saskatchewan, Canada 54.3◦ N 104.9◦W 811–7823
HIL Homer, Illinois, USA 40.0◦ N 87.9◦W 555–8051
LEF Park Falls, Wisconsin, USA 46.0◦ N 90.2◦W 583–4018
NHA Worcester, Massachusetts, USA 42.9◦ N 70.5◦W 245–8069
PFA Poker Flat, Alaska, USA 64.8◦ N 148.2◦W 222–7444
RTA Rarotonga, Cook Islands 21.2◦ S 159.8◦W 15–6483
SCA Charleston, South Carolina, USA 32.9◦ N 79.5◦W 218–8070
SGP Southern Great Plains, Oklahoma, USA 36.6◦ N 97.5◦W 437–5716
TGC Sinton, Texas, USA 27.7◦ N 96.7◦W 250–8074
THD Trinidad Head, California, USA 41.1◦ N 124.2◦W 231–8034
WBI West Branch, Iowa, USA 41.7◦ N 91.3◦W 591–8204

a The altitude specifies the range of sampling heights in meters above sea level.

Table A3. Setting parameters of the REBS method. For more information, see Ruckstuhl et al. (2012).

Setting parameters Description

b = 2.5 tuning factor which governs the weight of outliers in the baseline
span= 1

6 the ratio of observation points used to compute one baseline value (the goal is a temporal window
of 2 months), which regulates the amount of baseline smoothing

maxit= c(10,10) maximum number of iterations
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Table A4. Nudging kernel settings for surface and aircraft measurement sites. The kernels are set to have an equal spatial length (in m) in
the x and the y direction. For surface measurement sites in the Northern Hemisphere, an upper limit for hy was set to 25◦; σobs defines the
standard deviation of measurements over the simulation period at each nudging location; σmax describes the maximum value of σobs from
all surface observation stations. For aircraft measurement sites, the kernel size depends on the height level above ground H . For additional
information on the parameters, see Groot Zwaaftink et al. (2018).

Surface measurement sites

Hemisphere Spatial kernel Kernel height Temporal kernel Kernel relaxation
width hy [◦] hz [m] length ht [s] time τ [s]

Northern Hemisphere hy =
σmax
σobs

· 2 hz = 300 ht = 86400 ·
σmax
σobs

τ = 3600

Southern Hemisphere hy = 25 hz= 500 ht = 86400 ·
σmax
σobs

τ = 3600

Aircraft measurement sites

Height H Spatial kernel Kernel height Temporal kernel Kernel relaxation
[km above ground] width hy [◦] hz [m] length ht [s] time τ [s]

H 6 0.5 hy = 10 hz = 100 ht = 86400 ·
hy

1◦
τ = 3600

0.5<H 6 1 hy = 20 hz = 250 ht = 86400 ·
hy

1◦
τ = 3600

1<H 6 2 hy = 30 hz = 500 ht = 86400 ·
hy

1◦
τ = 3600

2<H 6 3 hy = 40 hz = 500 ht = 86400 ·
hy

1◦
τ = 3600

3<H 6 4 hy = 50 hz = 500 ht = 86400 ·
hy

1◦
τ = 3600

4<H 6 5 hy = 60 hz = 500 ht = 86400 ·
hy

1◦
τ = 3600

5<H 6 6 hy = 70 hz = 1000 ht = 86400 ·
hy

1◦
τ = 3600

6<H 6 7 hy = 80 hz = 1000 ht = 86400 ·
hy

1◦
τ = 3600

7<H 6 8 hy = 90 hz = 1000 ht = 86400 ·
hy

1◦
τ = 3600

8<H 6 9 hy = 100 hz = 1000 ht = 86400 ·
hy

1◦
τ = 3600
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Figure A1. Variable-resolution grid on which emissions are optimized by the inversion.

Figure A2. Calculated SF6 global emissions when baseline concentrations are optimized as part of the inversion. Grey bars represent the
improvements obtained by the baseline optimization. Results are shown for the REBS method and Stohl’s method and for all five applied
simulation periods between 1 and 50 d. The horizontal dashed line represents the reference value of the AGAGE 12-box model with shaded
error bands.
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Figure A3. Relative uncertainty reductions (1−upost/upri) calculated with the inversion by using the GDB method and a backward simulation
period for (a) 1, (b) 10, and (c) 50 d and (d) for the 50 d case in which flask measurements were also included.

Figure A4. Relative change in national a posteriori emissions of selected countries, when flask measurements are used in addition to contin-
uous measurements in the case of 50 d simulations.
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Figure A5. Global SF6 emissions using the GDB method shown
for two sensitivity tests, where a uniform bias of (a) −0.05 and
(b) +0.05 ppt is added to every grid cell of the global mixing ratio
fields. Results are shown for backward simulation periods between
1 and 50 d, and for a 50 d backward simulation case, where addi-
tionally to continuous measurements also flask measurements were
included in the inversion. The dashed pink lines represent the ex-
pected relationship between the baseline bias and a resulting emis-
sion bias if a global box model was used and the bias attributed
solely to emissions in different periods. For these two sensitivity
tests, a priori uncertainties were set to 500 %.

Code and data availability. The source codes of FLEX-
PART 10.4 and FLEXINVERT+ used (with small mod-
ifications to the original version freely available at
https://flexinvert.nilu.no/downloads/flexinvertplus.tar.gz;
Thompson, 2022; downloaded in July 2020; described
in detail by Thompson and Stohl, 2014) are provided at
https://doi.org/10.25365/phaidra.339 (Vojta, 2022), together with
input, setting, and output data. The source code of FLEXPART
8-CTM-1.1 together with a user’s guide can be freely downloaded
at https://doi.org/10.5281/zenodo.1249190 (Henne et al., 2018).
The source code of FLEXPART 10.4 is also freely available on
the FLEXPART website at https://www.flexpart.eu/downloads/66
(FLEXPART developer team, 2022) (described in detail by
Pisso et al., 2019). Atmospheric measurements of SF6 mixing
ratios used in this study are freely available from the following
sources: AGAGE data – https://agage2.eas.gatech.edu/data_
archive/agage/gc-ms-medusa/complete/ (all stations, year 2011
and 2012; Advanced Global Atmospheric Gases Experiment,
2022), NOAA ESRL data – https://gml.noaa.gov/dv/data/index.
php?parameter_name=Sulfur%2BHexafluoride&type=Insitu&
frequency=Hourly%2BAverages (all stations, hourly data; NOAA
ESRL, 2022), NOAA Carbon Cycle Group ObsPack data –
https://doi.org/10.25925/20180817 (NOAA Carbon Cycle Group

ObsPack Team, 2018), World Data Centre for Greenhouse Gases –
https://gaw.kishou.go.jp/search/file/0077-6020-1004-01-01-9999
(World Meteorological Organization, 2022a) (https:
//gaw.kishou.go.jp/search/file/0071-6031-1004-01-01-9999,
World Meteorological Organization, 2022b; https://gaw.kishou.
go.jp/search/file/0003-1002-1004-01-01-9999, World Me-
teorological Organization, 2022c; https://gaw.kishou.go.jp/
search/file/0053-2008-1004-01-01-9999, World Meteorolog-
ical Organization, 2022d; https://gaw.kishou.go.jp/search/file/
0002-4020-1004-01-02-3005, World Meteorological Organiza-
tion, 2022e; year 2011 and 2012). All the listed websites were last
accessed on 27 April 2022.
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