
Geosci. Model Dev., 15, 8111–8134, 2022
https://doi.org/10.5194/gmd-15-8111-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.

M
odelevaluation

paperImpact of physical parameterizations on wind simulation with WRF
V3.9.1.1 under stable conditions at planetary boundary layer
gray-zone resolution: a case study over the coastal regions
of North China
Entao Yu1,2, Rui Bai1,3, Xia Chen4,5, and Lifang Shao4

1Nansen-Zhu International Research Centre, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China
2Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD),
Nanjing University of Information Science & Technology, Nanjing, China
3University of Chinese Academy of Science (UCAS), Beijing, China
4Hebei Climate Center, Shijiazhuang, China
5Hebei Key Laboratory for Meteorology and Eco-environment, Shijiazhuang, China

Correspondence: Entao Yu (yuet@mail.iap.ac.cn) and Xia Chen (chenxia1218@sina.com)

Received: 24 February 2022 – Discussion started: 5 May 2022
Revised: 5 October 2022 – Accepted: 13 October 2022 – Published: 11 November 2022

Abstract. Reliable simulation of wind fields under stable
weather conditions is vital for preventing air pollution. In
this study, we investigate how different physical parameter-
izations impact simulated near-surface wind at 10 m height
over the coastal regions of North China using the Weather
Research and Forecasting (WRF) model with a horizontal
grid spacing of 0.5 km. We performed 640 simulations us-
ing combinations of 10 planetary boundary layer (PBL), 16
microphysics (MP), and four shortwave–longwave radiation
(SW–LW) schemes. Model performance is evaluated using
measurements from 105 weather station observations. The
results show that the WRF model can reproduce the tempo-
ral variation of wind speed in a reasonable way. The sim-
ulated wind speed is most sensitive to the PBL schemes,
followed by SW–LW schemes and MP schemes. Among all
PBL schemes, the MYJ scheme shows the best temporal cor-
relation with the observed wind speed, while the Yonsei Uni-
versity (YSU) scheme has the lowest model bias. Dudhia–
RRTM and MYDM7 show the best model performances out
of all SW–LW and MP schemes, respectively, and the inter-
actions among schemes also have large influences on wind
simulation. Further investigation indicates that model sensi-
tivity is also impacted by ocean proximity and elevation. For
example, for coastal stations, MYNN shows the best correla-
tion with observations among all PBL schemes, while God-

dard shows the smallest bias of SW–LW schemes; these re-
sults are different from those of inland stations. In general,
according to the bias metrics, WRF simulates wind speed less
accurately for inland stations compared to coastal stations,
and the model performance tends to degrade with increas-
ing elevation. The WRF model shows worse performance in
simulating wind direction under stable conditions over the
study area, with lower correlation scores compared to wind
speed. Our results indicate the role parameterizations play in
wind simulation under stable weather conditions and provide
a valuable reference for further research in the study area and
nearby regions.

1 Introduction

Megacities that experience rapid urbanization and economic
development also commonly suffer from a simultaneous de-
cline in air quality (Ulpiani, 2021). For example, many haze
events have been reported in the Beijing, Tianjin, and Hebei
regions of North China over the past few decades. Haze-
related weather and associated high concentrations of fine
particulate matter have negative impacts on public health and
the environment (Wang and Mauzerall, 2006). These events
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can significantly disrupt economic growth, as demonstrated
by the severe haze events that occurred over North China in
January 2013 (Zhang et al., 2014, 2015; Cai et al., 2017). The
haze events are most frequent in boreal winter and are closely
related to local weather conditions with low wind speeds (Li
et al., 2015; Wang et al., 2021). Projections of future climate
change suggest that global temperatures and weather condi-
tions conducive to severe haze will increase, affecting North
China (Cai et al., 2017). However, numerical models often
show a large bias in wind prediction over China (X. Gao et
al., 2016; Zhao et al., 2016; Pan et al., 2021), and thus it is
crucial to improve wind prediction under stable weather con-
ditions in order to minimize associated economic losses and
environmental impacts.

In recent years, numerical models have been used exten-
sively to study and forecast the weather and climate over
China, as they have high spatial and temporal resolutions and
employ sophisticated physical parameterization schemes that
can reproduce atmospheric and land surface processes (Wang
et al., 2011; Zhou et al., 2019; Kong et al., 2022). How-
ever, studies mostly focus on temperature or precipitation,
and only a few have attempted to simulate winds over China
(Li et al., 2019; Xia et al., 2019; Pan et al., 2021). Meanwhile,
numerical models inherently involve many sources of uncer-
tainty, as they cannot resolve all processes in the real world;
instead, parameterizations are needed to represent the effect
of key physical processes, such as radiative transfer, turbulent
mixing, and moist convection that occur at the sub-grid scale.
Different physical parameterization schemes depict natural
phenomena to different degrees of accuracy, and choosing
appropriate combinations is important, as it can strongly in-
fluence model results (Yu et al., 2011; Gómez-Navarro et al.,
2015; Stegehuis et al., 2015; X. Gao et al., 2016; Yang et al.,
2017; Taraphdar et al., 2021).

The impact of the planetary boundary layer (PBL) scheme
on wind simulation has been studied for many years, as the
PBL scheme plays a critical role in modulating mass, en-
ergy, and moisture fluxes between the land and atmosphere,
which in turn influences the simulation of low-level temper-
atures, cloud formation, and wind fields (Jiménez and Dud-
hia, 2012; Gómez-Navarro et al., 2015; Gonçalves-Ageitos et
al., 2015; Falasca et al., 2021; Gholami et al., 2021). Many
studies indicate an overestimation of wind speed in WRF
simulations with different PBL schemes (Jiménez and Dud-
hia, 2012; Carvalho et al., 2014a, b; Pan et al., 2021; Gho-
lami et al., 2021; Dzebre and Adaramola, 2020). For ex-
ample, Gómez-Navarro et al. (2015) investigate the sensi-
tivity of the WRF model to the PBL scheme by simulating
wind storms over complex terrain at a horizontal grid spac-
ing of 2 km. In that study, the WRF model is configured
with the Mellor–Yamada–Janjic (MYJ) scheme and overes-
timates wind speed by up to 100 %; however, the bias is sig-
nificantly reduced when the non-local scheme developed at
Yonsei University (YSU) is used instead. The YSU scheme
also shows good model skill in simulating winds over the

Iberian Peninsula, Persian Gulf, Tyrrhenian coast, and west-
ern Argentina (Jiménez and Dudhia, 2012; Puliafito et al.,
2015; Falasca et al., 2021; Gholami et al., 2021). Other stud-
ies suggest that MYNN and ACM2 are more appropriate for
wind simulations (Carvalho et al., 2014b; Chang et al., 2015;
Prieto-Herráez et al., 2021; Rybchuk et al., 2021).

The performance of wind simulation is also influenced by
the choice of cloud microphysics (MP) parameterizations.
Cloud microphysical processes, such as moisture evaporation
and condensation, can change thermodynamic and dynamic
interactions in the atmosphere (Rajeevan et al., 2010; Cheng
et al., 2013; Santos-Alamillos et al., 2013; Li et al., 2020) and
then affect the vertical distribution of heat and wind fields
close to the surface.

Another factor influencing wind simulation is the choice
of radiation parameterizations, which include shortwave ra-
diation and longwave radiation (SW–LW) schemes. Differ-
ences in surface radiation intensities can generate thermal
contrasts in regions with complex topography, which in turn
affect local and low-level wind distribution patterns (Santos-
Alamillos et al., 2013).

The combinations of physical parameterizations are also
vital to wind simulation, as the processes of atmosphere–
land interactions, radiation transport, and moist convection
interact and may amplify the uncertainties in wind predic-
tion. The impact of parameterization scheme combinations
on WRF performance has been investigated in previous stud-
ies (Santos-Alamillos et al., 2013; Fernández-González et al.,
2018), and Fernández-González et al. (2018) report that there
is no single combination of schemes that performs best dur-
ing all weather conditions. Most of the aforementioned stud-
ies considered a small number of parameterization schemes.
To our knowledge, the sensitivity of parameterizations to
wind simulation has not been explored in a systematic way
in China. In this study, we systematically evaluate the perfor-
mance of a large number of parameterization combinations,
including PBL, MP, and SW–LW schemes. The investiga-
tion is conducted using the WRF model at a grid spacing of
0.5 km, which belongs to the PBL “gray zone” resolution that
is too fine to utilize mesoscale turbulence parameterizations
and too coarse for large-eddy-simulation (LES) schemes to
resolve turbulent eddies (Shin and Hong, 2015; Honnert et
al., 2016). Our main objective is to identify a set of configu-
rations of the WRF model that can best reproduce wind fields
under stable weather conditions over North China, which ex-
perienced many haze events during the past few years. This
study addresses the following research themes: (1) quantify
the sensitivity of wind simulation to different parameteri-
zations under stable weather conditions and (2) refine opti-
mized configurations with the best performance in reproduc-
ing winds under stable weather conditions over North China.
These results would provide a valuable evaluation of WRF
performance using a large number of simulations with dif-
ferent physical parameterizations and be helpful in the wind
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and air quality forecasts in the study area and other coastal
regions of China under stable weather conditions.

2 Data and methods

2.1 The stable weather event in 2019

The study area is located in the central section of the “Bo-
hai Economic Rim”, which is bordered to the southeast by
the Bohai Sea and to the northwest by the Yan Mountains
(Fig. 1a). This region traditionally hosts heavy industry and
manufacturing businesses and is a significant region of eco-
nomic growth and development in North China (Song et al.,
2020; Zhao et al., 2020). Air quality in this area has declined
over the past decades, and the frequency of winter haze
events has increased due to increased pollutant emissions and
favorable stable weather conditions with lower wind speed
(M. Gao et al., 2016; Cai et al., 2017). For instance, during
the heavy fog and haze event over eastern China in January
2013, an anomalous southerly wind in the lower troposphere
caused by the weak East Asian winter monsoon weakened
the synoptic forcing and extent of vertical mixing in the at-
mosphere, thus increasing the stability of air in the bound-
ary layer and the local concentration of hazes (Zhang et al.,
2014).

During 11–15 January 2019, a severe haze event occurred
in the study area, the peak PM2.5 and PM10 concentrations
exceeded 279 and 357 µgm−3 in Tangshan city, and 282 and
358 µgm−3 in Qinhuangdao city, respectively, the locations
of the two cities can be found in Fig. 1. Figure 2 depicts the
distribution of geopotential height at 500 hPa, surface winds
at 10 m and total cloud fraction from the ERA5 dataset (Hers-
bach et al., 2020) during the study period. A weak high-
pressure system persisted from 11 to 14 January 2019 over
the study area, with the geopotential height at 500 hPa of
about 5400 gpm, at the surface level (10 m), weak southwest
winds occurred at the south side of the study area on 11,
12 and 14 January 2019. The surface wind speeds over the
study area were weaker than 5 ms−1 during the first 4 d of
the study period , and then the geopotential height decreased
and strong northwesterly winds occurred over the study area
on 15 January 2019. Although there were slight differences
between ERA5 and satellite products (e.g., CLARA, Karls-
son et al., 2021), both datasets indicated higher cloud fraction
on 11 and 14 January 2019, while for the rest of the time, the
cloud fraction was low. This stable weather event is used to
investigate the impact of physical parameterizations of the
WRF model.

2.2 Model configurations

The WRF model (version 3.9.1.1) with the advanced research
WRF (ARW) core is used in this study, which is a non-
hydrostatic atmospheric model with terrain-following verti-
cal coordinates (Skamarock et al., 2008). The simulations

Table 1. List of default parameterization schemes for the simulation
of outer domains (D01 and D02).

Parameterizations D01 D02

Microphysics SBU SBU
Planetary boundary layer Shin–Hong Shin–Hong
Shortwave radiation CAM CAM
Longwave radiation CAM CAM
Culumus Modified Tiedtke None

(Tiedtke, 1989)
Land surface Noah-MP Noah-MP

contain three one-way nested domains with grid spacings
of 8, 2, and 0.5 km for D01, D02, and D03, respectively
(Fig. 1b). The computational domains are based on Lambert
conformal conic projection centered at 38.5◦ N and 120◦ E,
with 360×480, 381×381, and 341×421 grid points for D01,
D02, and D03, respectively. The evaluations are based on the
innermost domain, which covers the coastal and surrounding
regions of North China (Fig. 1a). The simulation domain has
65 vertical levels, and the eta values for the first 10 levels
are 0.996, 0.988, 0.978, 0.966, 0.956, 0.946, 0.933, 0.923,
0.912, and 0.901: this ensures that sufficient model levels ex-
ist within the PBL at any time.

The ERA5 reanalysis dataset, which has a horizontal res-
olution of 0.25◦ and 38 vertical levels, is used to provide
the initial and boundary conditions for WRF simulations.
The WRF model is initialized at 00:00 UTC (08:00 in lo-
cal time) on 9 January 2019, with the first 40 h treated as
the spin-up period. Firstly, the default physical parameteri-
zation schemes (Table 1) are applied in the WRF simulation
for the outer two domains (D01 and D02), and then the out-
put of D02 is used to drive inner-domain simulations with
different combinations of PBL, MP, and SW–LW schemes
(see Sect. 2.3). This approach helps to isolate the impacts
of parameterization within the inner domain from changes
in boundary forcing (Yang et al., 2017). All simulations ap-
ply the Noah land surface model with multi-parameterization
options (Noah-MP, Yang et al., 2011; Niu et al., 2011) as the
land surface parameterization scheme. The lateral boundary
conditions and sea surface temperature are updated every 3 h
using the ERA5 reanalysis data, and the frequency of wind
retrieved from WRF output is hourly, which matches the fre-
quency of observations in the study area.

2.3 Experimental design

The WRF model contains different parameterization
schemes that represent different physical processes. Further,
every scheme in the model has many parameters, such that a
model can range from being simple and efficient to be sophis-
ticated and computationally costly. In this study, a systematic
evaluation of parameterizations is achieved by considering
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Figure 1. Map showing the (a) study area and (b) WRF nested domains (D01–D03). Solid yellow and blue circles in panel (a) represent
coastal (16 stations in total) and inland stations (89 stations in total), the sizes of the circles represent the station elevations, and the white
circle represents the sounding station.

Figure 2. The daily averaged geopotential height (contour lines, units: gpm) at 500 hPa, total cloud fraction (shading), and surface winds at
10 m (vectors, units: ms−1) from ERA5 during 11–15 January 2019; the box indicates the D03 domain in Fig. 1.
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10 PBL, 16 MP, and 4 LW-SW schemes, which produce 640
(i.e., 10× 16× 4) combinations in total.

The parameterization schemes investigated in this study
are listed in Table 2. As the horizontal grid spacing of 0.5 km
is within the PBL gray zone resolution, both PBL and LES
assumptions are imperfect: we test both the PBL and LES
schemes in this study. For the LES configuration, the 1.5-
order turbulence kinetic energy closure model is used to pa-
rameterize motion at the sub-grid scale (Deardorff, 1985).
For the YSU scheme, topographic correction for surface
winds is included to represent extra drag from sub-grid to-
pography and enhanced flow at hilltops (Jiménez and Dud-
hia, 2012). The option for top-down mixing driven by ra-
diative cooling is also turned on during the integration. For
the rest of the PBL schemes, the default configurations are
chosen. The atmospheric surface layer (SL) is the lowest
part of the atmospheric boundary layer, of which the pa-
rameterizations are used to quantify surface heat and mois-
ture fluxes in the land surface model and surface stress in
the PBL schemes. In the current generation of WRF, the SL
schemes are tied to the PBL schemes. In this study, the ETA,
QNSE, MYNN, Pleim-Xiu, and TEMF SL schemes are cho-
sen for the PBL schemes of MYJ, QNSE, MYNN, ACM2,
and TEMF, respectively. The revised MM5 scheme (Jimenez
et al., 2012) is used for the remaining PBL schemes.

Sixteen MP schemes are applied in this study (Table 2),
Lin, WSM3, WSM5, ETA, WSM6, Goddard, SBU, and
NSSL1 schemes are the single-moment bulk microphysical
scheme, which predicts only the mixing ratios of hydrom-
eteors (i.e., cloud ice, snow, graupel, rain, and cloud wa-
ter) by assuming particle size distributions. The other eight
schemes (Thompson, MYDM7, Morrison, CMA, WDM6,
NSSL2, ThompsonAA and P3) use a double-moment ap-
proach, predicting not only mixing ratios of hydrometeors,
but also number concentrations. Among them, two types of
hydrometeors are included in WSM3 (cloud water and rain),
three types of hydrometeors are included in ETA (cloud wa-
ter, rain, and snow) and P3 (cloud water, rain, and ice),
four types of hydrometeors are included in WSM5 and SBU
(cloud water, rain, ice, and snow), five types of hydromete-
ors are included in Lin, WSM6, Goddard, Thompson, Morri-
son, CAM, WDM6 and ThompsonAA (cloud water, rain, ice,
snow, and graupel), six types of hydrometeors are included in
MYDM7, NSSL1, and NSSL2 (cloud water, rain, ice, snow,
graupel, and hail).

Four SW–LW combinations are applied in this study (Ta-
ble 2), Dudhia is a simple and efficient shortwave radia-
tion scheme for clouds and clear-sky absorption and scat-
tering; RRTM provides efficient look-up tables for long-
wave radiation; CAM SW–LW schemes are derived from
the CAM3 model used in CCSM3 and allow modeling of
aerosols and trace gases. RRTMG is a scheme that utilizes
Monte Carlo independent column approximation (MCICA)
method of random cloud overlap.

2.4 Observational data and evaluation metrics

Observations from weather stations across the study region
are used to evaluate the performance of the model. These sta-
tions are operated by the China Meteorology Administration
(CMA) and report wind speed and direction at an altitude
of 10 m. In this study, we use 2 min averaged wind speed
at hourly frequency. All data are screened before analysis in
order to remove stations with data showing spurious jumps
(e.g., wind speed jumps to 0 ms−1 due to the frozen sensor).
After this filtering, 105 out of 132 weather stations (Fig. 1a)
remained, including 89 inland stations and 16 coastal sta-
tions. The results of WRF are directly compared with obser-
vations at each weather station, which is achieved by using
the model result that is geographically closest to the weather
station under consideration. Although some errors are intro-
duced when performing these comparisons, they are system-
atic and shared by all simulations and therefore have minor
effects on the evaluation of model performances.

Several metrics are employed for evaluating the perfor-
mance of each model configuration, including the Pearson
correlation coefficient (CORR), BIAS, root mean square er-
ror (RMSE), and Taylor skill score (T ). CORR is a mea-
sure of the strength and direction of the linear relationship
between simulation and observation, BIAS is a measure of
the mean difference between simulation and observation, and
RMSE is the square root of the average of the set of squared
differences between simulation and observation, and thus
each of these scores gives a partial view of the model per-
formance.

They are defined as follows:

CORR=
∑N
i=1(Mi −M)(Oi −O)√∑N

i=1(Mi −M)2 ·
∑N
i=1(Oi −O)

2
,

BIAS=
1
N

N∑
i=1

(Mi −Oi)

RMSE=

√
1
N

∑N

i=1
(Mi −Oi)

2,

T =
2(1+CORR)(

SD+ 1
SD

)2 .

Here,M is the value of the model output,O is the value of the
observation, N is the number of observations, and SD is the
ratio of simulated-to-observed standard deviation. A higher
Taylor skill score indicates a more accurate simulation (Gan
et al., 2019), while higher CORR, lower BIAS, and RMSE
scores indicate better model simulations.

The difference in wind direction was calculated as follows.

1=

M −O, when |M −O| ≤ 180◦

(M −O)

(
1−

360
|M −O|

)
, when |M −O|> 180◦
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Table 2. List of microphysics (MP), planetary boundary layer (PBL), and shortwave–longwave radiation (SW–LW) schemes investigated in
the 640 simulations; schemes that share rows are not specifically assigned to each other (except for SW–LW).

MP PBL SW LW

1 Purdue Lin
(Lin; Chen and Sun, 2002)

LES
(Mirocha et al., 2010)

Dudhia
(Dudhia, 1989)

RRTM
(Mlawer et al., 1997)

2 WRF single-moment three-class
(WSM3; Hong et al., 2004)

Yonsei University
(YSU; Hong et al., 2006)

CAM
(Collins et al., 2004)

CAM
(Collins et al., 2004)

3 WRF single-moment five-class
(WSM5; Hong et al., 2004)

Mellor–Yamada–Janjic
(MYJ; Janjić, 1994; Mesinger, 1993)

RRTMG
(Iacono et al., 2008)

RRTMG
(Iacono et al., 2008)

4 ETA Ferrier
(ETA, Rogers et al., 2001)

Quasi-normal-scale elimination
(QNSE; Sukoriansky et al., 2005)

Goddard
(Matsui et al., 2020)

Goddard
(Matsui et al., 2020)

5 WRF single-moment six-class
(WSM6; Hong and Lim, 2006)

Mellor–Yamada Nakanishi Niino 2.5 level
TKE (MYNN; Nakanishi and Niino, 2009)

6 Goddard
(Tao et al., 1989)

Asymmetric convection model 2
(ACM2; Pleim, 2007)

7 Thompson
(Thompson et al., 2008)

Bougeault–Lacarrere
(BouLac; Bougeault and Lacarrere, 1989)

8 Milbrandt–Yau double-moment seven-
class
(MYDM7; Milbrandt and Yau, 2005)

University of Washington
(UW; Bretherton and Park, 2009)

9 Morrison double moment
(Morrison; Morrison et al., 2009)

TEMF
(Angevine et al., 2010)

10 CAM double-moment five-class
(CAM; Eaton, 2011)

Shin–Hong scale-aware
(Shin–Hong, Shin and Hong, 2015)

11 Stony-Brook University
(SBU; Lin and Colle, 2011)

12 WRF double-moment six-class
(WDM6; Lim and Hong, 2010)

13 NSSL double moment
(NSSL2; Mansell et al., 2010)

14 NSSL single-moment seven-class
(NSSL1, Mansell et al., 2010)

15 Aerosol-aware Thompson
(ThompsonAA; Thompson and
Eidhammer, 2014)

16 P3
(Morrison and Milbrandt, 2015)

The correlation between simulated and measured angles is
determined by a circular correlation coefficient, and the mean
of the angular is calculated using the vector notation ap-
proach. The circular correlation coefficient is calculated as
follows.

CORR=
∑N
i=1 sin(αi −α)sin(βi −β)√∑N
i=1sin2 (αi −α)sin2(βi −β)

Here, α and β are simulated and observed wind direction
angles, respectively.

3 Results

3.1 Impacts of physical parameterizations

3.1.1 PBL

Figure 3a shows the time series of observed wind speed in
local time. Model wind speeds are shown for different PBL

schemes averaged over all other parameterization types. The
WRF model generally reproduces the temporal variation of
observed wind speed in the study area with exaggeration; in
particular, the shift from low to high wind speed on 14 Jan-
uary 2019 is reproduced by all schemes except for QNSE,
with which the wind speed change is considerably larger
than with all other schemes during the simulation period.
Almost all the PBL schemes overestimate wind speed by
1 ms−1; however, for the QNSE scheme, the largest over-
estimation exceeds 10 ms−1 during the daytime on 11 and
15 January 2019. The difference between simulation and ob-
servation is lower during 11–13 January 2019 using the LES
scheme, while YSU is more similar to the measurements dur-
ing 14–15 January 2019. In addition, the spread within the
PBL schemes is larger on 15 January 2019, partly due to the
high wind speed (> 4 ms−1) or the general error growth in
the model.

The statistics of CORR, BIAS, and RMSE are illustrated
in Fig. 3b–d. MYJ shows the best CORR score of 0.96;

Geosci. Model Dev., 15, 8111–8134, 2022 https://doi.org/10.5194/gmd-15-8111-2022
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Figure 3. (a) Time series of observed and simulated wind speeds (ms−1) and the corresponding statistics of (b) CORR, (c), BIAS, and (d)
RMSE for the PBL schemes. In panel (a), the frequency of wind speed is hourly, and the tick marks on the x axis indicate 12:00 LT of that
day, for each PBL scheme, and the average is calculated over the 105 stations and then over all the simulations with that scheme. The dots in
panels (b)–(d) represent the range across the stations, for each station, and the metrics are calculated by averaging all the simulations with
the specific PBL scheme.

MYNN, ACM2, and UW are the next best according to this
verification score. YSU is the best scheme in terms of BIAS
and RMSE, with the values of 0.45 and 0.61 ms−1 followed
by MYNN (0.55 and 0.70 ms−1). The ranges of statistic
scores across the 105 stations are also illustrated in Fig. 3,
for the schemes except for QNSE, and the range of CORR is
0.18–0.88, the range of BIAS is −2.10–2.91 ms−1, and the
range of RMSE is 0.79–3.85 ms−1. Further comparison indi-
cates that the CORR scores for individual stations are lower
than the ensemble means, and the BIAS and RMSE are larger
than the ensemble means. For the QNSE scheme, the maxi-
mum BIAS and RMSE scores for individual stations exceed
10 and 16 ms−1, indicating that it has problems in reproduc-
ing wind speed under stable conditions over the study area.

Figure 4 shows the wind roses during 11–15 January
2019 from observations and simulations with different PBL
schemes as well as the statistic scores. Observations indi-
cate that, during the study period, wind is mostly from a
southwesterly-to-northwesterly direction (225–330◦), while
simulations with different PBL schemes produce primarily
southwesterly wind (200–270◦), indicating an anticlockwise
bias of wind direction over the study area under stable con-
ditions. Further comparison indicates that all PBL schemes
strongly overestimate the speed of northerly wind compared

to the observations, which may be the main cause of posi-
tive bias in wind speed (Fig. 3). The CORR scores of wind
direction (0.42–0.59) are notably lower than those of wind
speed, indicating the degraded performance of WRF in wind
direction simulation. LES shows the best CORR score of
0.59, while TEMF shows the best BIAS and RMSE scores
of −11.33 and 56.19◦. Considering the large model bias in
wind speed, simulations with the QNSE scheme (64 in to-
tal) are omitted from further investigation in order that these
anomalous data do not affect our overall analysis.

3.1.2 MP

Figure 5 shows the time series of wind speed from the obser-
vations and simulations with different MP schemes. The sim-
ulations are similar, especially during 14–15 January 2019.
The spread among simulations with different MP schemes is
smaller than that with different PBL schemes, indicating that
wind speed is less sensitive to the MP schemes. The CORR
scores are very similar for all the MP schemes at a precision
of 0.01, while MYDM7 is the best scheme according to the
BIAS and RMSE scores, followed by P3 and ETA. The range
of statistical scores across the stations is similar within dif-
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Figure 4. The wind rose charts for the PBL schemes during 11–15 January 2019 averaged over the stations and the corresponding scores
of CORR, BIAS, and RMSE; for each wind rose chart, the circles represent the relative frequency (%), and the colors represent wind speed
(ms−1).
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Figure 5. Same as Fig. 3 but for the MP schemes.

ferent MP schemes, which provides a further indication of
the low sensitivity of wind speed to MP schemes.

The sensitivity of wind direction to the MP schemes is
also low, as the wind roses from simulations with different
MP schemes are very similar (Fig. 6). WDM6, NSSL2 and
ThompsonAA show the best CORR score of 0.52, followed
by Thompson and CAM5. Meanwhile, WSM3 is the best
scheme according to the BIAS score, and ThompsonAA is
the best scheme according to the RMSE score.

3.1.3 Radiation

Figure 7 shows the time series of observed and simulated
wind speed, the ensemble spread among different SW–LW
schemes is larger than that with different MP schemes, but
smaller than that with different PBL schemes, which indi-
cates that simulated wind speed is more sensitive to the SW–
LW schemes than the MP schemes and less sensitive to the
PBL schemes. RRTMG and CAM show a larger overestima-
tion than Dudhia–RRTM and Goddard at daytime peaks. The
CORR scores are very similar for the SW–LW schemes at a
precision of 0.01, and Dudhia–RRTM is the best scheme ac-
cording to BIAS and RMSE scores, followed by Goddard.

Figure 8 shows the wind roses during 11–15 January 2019
from simulations with different SW–LW schemes and the

corresponding statistic scores. In simulations, wind is mostly
from the southwest direction during the study period, which
is different from the observation. According to the CORR
score, Dudhia–RRTM is the best scheme with the highest
value (0.55); meanwhile, the RRTMG scheme shows the best
BIAS of−15.69◦, and Dudhia–RRTM shows the best RMSE
of 61.13◦. As wind direction is more variable but less im-
portant under stable conditions with weak wind speed, the
subsequent investigations mainly focus on wind speed.

3.1.4 Interactions among parameterization schemes

Interactions among physical parameterizations also play an
important role in wind simulation. Since it is not possible
to show all possible combinations of PBL, MP, and SW–LW
schemes in this study, the results of interactions between PBL
and SW–LW schemes are selected as examples, which are
illustrated in Fig. 9. The MP schemes used in the simula-
tions are MYDM7 and P3, given that they show better per-
formance in earlier investigations (see Sect. 3.1.2), and thus
for each MP scheme, a total of 36 simulations (excluding
QNSE) is illustrated. For wind speed simulations, the com-
bination of MYJ and Dudhia–RRTM shows the best CORR,
while the combination of YSU and Dudhia–RRTM ranks
best according to BIAS and RMSE scores. For wind direction
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Figure 6. Same as Fig. 4, but for the MP schemes.

simulations, the combination of LES and Dudhia–RRTM
shows the best CORR. According to BIAS and RMSE scores,
the combination of TEMF and Dudhia–RRTM ranks best in
MYDM7 case, and the combination of TEMP and RRTMG
ranks best in P3 case.

Overall, for BIAS and RMSE scores of wind speed, within
each PBL scheme, the same SW–LW group ranks best, and
within each SW–LW group, the same PBL scheme ranks
best. For example, no matter which SW–LW group, YSU
is always the best, which indicate the good performance of
YSU. However, it is worth noting that YSU shows pretty
low BIAS (< 0.4 ms−1) and RMSE (< 0.6 ms−1) scores
only when combined with the Dudhia–RRTM or Goddard

schemes, when it is combined with RRTMG schemes, the
BIAS and RMSE scores increase a lot. For the wind direc-
tion simulation, the pattern is different from that of wind
speed. For example, for BIAS and RMSE scores, the best
PBL scheme depends on the choice of SW–LW schemes,
which indicates the influence of scheme interaction on model
performance in wind direction simulations.

3.1.5 WRF configurations with the best individual
performance

To determine the WRF configuration with the best individ-
ual performance, Taylor skill scores are calculated for wind
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Figure 7. Same as Fig. 3, but for the radiation schemes.

speed within all simulations, the scores range from 0.2 to
1.0, with the best 10 WRF configurations having similar
scores of about 1.0. The time series and statistics are illus-
trated in Fig. 10. The best 10 configurations have in com-
mon that they use the same PBL and SW–LW schemes,
namely YSU and Dudhia–RRTM. This indicates a large im-
pact of PBL and SW–LW on wind speed simulation com-
pared with MP schemes and highlights the best performance
of YSU and Dudhia–RRTM. Since Taylor skill score consid-
ers both correlation and standard deviation, the best scheme
(i.e., WDM6) is not the scheme that has the best CORR
(i.e., Goddard), BIAS (i.e., MYDM7 and ETA), or RMSE
(i.e., Goddard, NSSL1, MYDM7 and ETA). In fact, there
is no scheme that has all the best scores of CORR, BIAS
and RMSE. Thus, model ensemble is needed to improve
the performance. Figure 10 also illustrates the ensemble
of different number of simulations, as well as a super en-
semble of all 576 simulations (excluding QNSE). The re-
sult indicates that ensemble mean of four simulations with
WDM6, Goddard, NSSL1 and MYDM7 MP schemes shows
the best BIAS and RMSE scores. For the time series of
wind speed (Fig. 10a), the spread of ENS(4) is significantly
lower than that of ENS(576), and ENS(4) shows lower bias

compared to ENS(576). According to the statistic scores,
ENS(4) reduces model bias by approximately half compared
to ENS(576), at the same time, the best individual schemes
(NSSL1, MYDM7, P3 and ETA) can also reduce the bias
by ∼ 50 %. It is worth to mention that the best CORR score
of ENS(576) is also result of single model simulation with
Goddard MP scheme. At the same time, the best BIAS score
(0.33 ms−1) is result of the single model simulation with
MYDM7 or ETA, and the best RMSE score (0.52 ms−1) is
result of either the single model simulation with Goddard,
NSSL1, MYDM7, or the ensemble using the three, four, or
five best simulations.

3.2 Performance dependency on ocean proximity and
elevation

Land surface conditions can affect the partitioning of sensi-
ble and latent heat fluxes, which impacts local low-level cir-
culation patterns and wind distribution (Yu et al., 2013; Bar-
lage et al., 2016). The weather stations in the study region
were classified into different groups according to the ocean
proximity and elevation.
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Figure 8. Same as Fig. 4, but for the radiation schemes.

3.2.1 Ocean proximity

Figure 11 compares the results of wind speed for coastal sta-
tions (closer than 5 km from the shoreline, 16 stations in to-
tal) and inland stations (over 5 km from the shoreline, 89
stations in total), the locations of these stations are shown
in Fig. 1a. For both coastal and inland stations, the ensem-
ble spread is the largest among the PBL schemes, followed

by SW–LW and MP schemes, which is consistent with the
results of the previous analysis in this study. WRF repro-
duces the time series of wind speed reasonably, with a larger
overestimation for inland stations. The ensemble spread is
larger for coastal stations compared with inland stations. As
such, in addition to physical parameterizations, model per-
formance is also influenced by ocean proximity.
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Figure 9. Statistic scores (CORR, BIAS and RMSE) for wind speed and direction for different combinations of PBL and SW–LW schemes,
the MP schemes used in panels (a) and (b) are MYDM7 and P3, respectively. Dudhia represents Dudhia–RRTM SW–LW schemes in all the
subplots.

The statistical scores are also illustrated in Fig. 11, the
CORR scores are consistently lower for coastal stations com-
pared to inland stations, and the BIAS scores are generally
worse for the inland stations. Thus, the model performance
tends to degrade for the inland stations according to the BIAS
scores.

Our comparison indicates that the parameterization
schemes with the best performance for inland stations are
generally consistent with those of previous investigations for
all the stations in this study, as most of the stations are inland
stations (89 out of 105 stations). However, for coastal sta-
tions, the results are different. For instance, MYNN shows
the best CORR score among the PBL schemes, while LES

(YSU) shows the best BIAS (RMSE) score. For the SW–LW
schemes, Goddard shows the best CORR, BIAS, and RMSE,
while Dudhia–RRTM ranks worst according to the CORR
score.

3.2.2 Elevation

Figure 12 shows the comparison for stations with different el-
evation (e.g.,< 50 m, 51 stations in total;> 50 and< 250 m,
36 stations in total; > 250 m, 19 stations in total). Obser-
vation shows that peak wind speed decreases with increas-
ing elevation during the study period; for example, the peak
observed wind speed of high-elevation stations (> 250 m)
is 1.5 ms−1, slower than that of low-elevation stations (<
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Figure 10. (a) Time series of wind speed (ms−1) from observation and different ensembles, and (b) CORR, (c) BIAS and (d) RMSE scores
for the best 10 simulations along with different ensembles. The shadings in (a) represent the spread for ENS(4) and ENS(576). As the best
10 simulations use the same PBL (YSU) and SW–LW (Dudhia–RRTM) schemes, only the MP schemes are labeled in the figure.

50 m). However, the peak simulated wind speed is gener-
ally similar for stations with different elevations, which bring
larger model errors for the high-elevation stations. Further
investigations are needed to reveal the underlying mecha-
nisms for lower wind speeds of high-elevation stations and
the mismatch between observations and model simulations.
As shown by the statistical scores, for all PBL, MP, and SW–
LW schemes, CORR generally decreases with increasing el-
evation, while BIAS and RMSE scores increase with eleva-
tion, and thus the evaluation metrics tend to degrade with
increasing elevation under stable conditions over the study
area. For different parameterization types, the scheme with
the best performance is generally similar, with different ele-
vations; e.g., for PBL schemes, MYJ is always the best at all
elevation categories according to CORR, and YSU always
ranks best according to the BIAS and RMSE scores.

3.3 Comparison of simulations with different model
performances and the effects of other model
options

In order to evaluate atmospheric properties that are crucial
for air quality under stable conditions and to investigate what
drives the differences in wind speed, we compare the sim-
ulated wind field from the simulation with the best Taylor
skill score (i.e., using the YSU, Dudhia–RRTM, and WDM6
schemes) and the station observations; meanwhile, the same

simulation but with the QNSE PBL scheme (i.e., using the
QNSE, Dudhia–RRTM, and WDM6 schemes) is used for
comparison between the simulations with good and poor
performances. In addition, the impacts of the land surface
model, surface layer scheme, and different options in the
YSU scheme are also investigated in this section.

3.3.1 Spatial distribution of the wind field

Figure 13 compares the spatial distribution of observed and
simulated wind fields during the study period, and we choose
14:00 LT as an example. The simulation with the best Taylor
skill score is referred to as YSU, and the simulation using
the QNSE PBL scheme is referred to as QNSE. YSU gener-
ally reproduces the wind field in the study area, especially in
terms of wind speed. For example, the observed wind speed
is lower on 13 January 2019, with values lower than 2 ms−1

for many stations, while on 15 January 2019, the observed
wind speed is higher than 4 ms−1 for most stations. In the
simulation using YSU, wind speed is about 2 ms−1 on 13
January 2019 and is higher than 4 ms−1 on 15 January 2019
over the study area, which is similar to the observation. By
contrast, simulation with QNSE fails to reproduce the distri-
bution of wind speed and shows strong overestimation, espe-
cially over the mountain areas of the study area; for exam-
ple, the peak wind speed in simulation with QNSE exceeds
20 ms−1 on 15 January 2019, which is more than 5 times
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Figure 11. Comparison of simulated wind speeds between the coastal and inland stations shown in Fig. 1a as well as the corresponding
statistical scores.

greater than the observation. This overestimation is consis-
tent with the large positive bias in previous investigations of
Fig. 3. For the wind direction simulation, YSU shows de-
graded performance compared to wind speed and generally
fails to reproduce the wind direction distribution for most of
the stations, which is also the case for QNSE.

3.3.2 Vertical profile of wind speed

Figure 14 shows the observed and simulated vertical profiles
of wind speed at 08:00 and 20:00 LT during the study pe-

riod, and the location of the sounding station is illustrated in
Fig. 1. YSU reproduces the vertical structure of wind speed
reasonably; for example, within the low levels below 2.5 km,
the simulated wind speed from the YSU scheme is similar
to the observation, with model bias lower than 2.5 ms−1 in
most cases. Meanwhile, QNSE shows a worse performance
in reproducing the vertical structure of wind speed, with a
large model bias compared to YSU. QNSE overestimates the
wind speed by almost 20 ms−1 at 20:00 LT, 11 January 2019,
and by 30 ms−1 at 20:00 LT, 12 January 2019. It is interest-
ing to note that, at 08:00 LT, the simulations using QNSE
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Figure 12. Comparison of simulated wind speeds (ms−1) for stations < 50 m (51 stations in total), > 50, and < 250 (36 stations in total),
and > 250 m (19 stations in total) and the corresponding statistic scores.

show smaller differences than that using YSU, and thus the
largest differences between YSU and QNSE generally occur
at a specific time during the study period, which is also re-
vealed in Fig. 3a.

3.3.3 Impact of land surface models

Figure 15 shows the evaluation of different land surface mod-
els (LSMs); only five simulations were conducted using the
model configurations with the best Taylor skill score (i.e.,
YSU in Sect. 3.3.1), and except for the LSM schemes, the

LSMs (i.e., SLAB, NOAH, RUC, and NOAHMP) investi-
gated are listed in Table 3. The simulations reproduce the
time series of wind speed well, with a larger spread during
14–15 January 2019. NOAHMP and CLM4 show the best
CORR score of 0.93, and NOAH is slightly worse according
to this score. Meanwhile, NOAHMP ranks best according to
the BIAS and RMSE scores, followed by the RUC scheme.
Thus, NOAHMP shows the best performance among differ-
ent LSMs in wind speed simulations in this study. However,
the large difference among LSMs indicates that we should
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Figure 13. Spatial distribution of simulated (black vector) and observed (red vector) winds at 14:00 LT during the study period from simula-
tions with the YSU and QNSE schemes; the shading indicates the elevation, and the height of the wind is 10 m.

take land surface parameterizations into consideration in fu-
ture studies.

3.3.4 Impact of surface layer schemes

In the WRF model, the surface layer (SL) schemes are some-
how binding with PBL schemes, and it is not possible to
run all PBL schemes with the same SL scheme. However,
it is meaningful to conduct simulations using a specific PBL
scheme that can work with multiple SL schemes to investi-
gate the effect of SL schemes on wind simulation. Figure 16
compares the simulation results of different SL (MM5, Jan-
jic, GFS, MYNN, and PX, Table 4) schemes using UW as
the PBL scheme, and the other model configurations are the
same as the simulation with the best Taylor skill score. Sim-
ulations with different SL schemes generally reproduce the
time series of wind speed well, with CORR scores of about
0.93 for most schemes. However, all simulations overesti-
mate the wind speed, especially for the Janjic scheme. At the
same time, according to the BIAS and RMSE scores, MYNN
shows the best performance, followed by the GFS and PX
schemes. Thus, the SL schemes also have a major influence
on the wind simulation.

3.3.5 Impact of options in the YSU scheme

The impact of different options in YSU on wind-speed sim-
ulation is illustrated in Fig. 17, the simulation with the best
Taylor skill score is referred to as YSU, and three extra sim-

ulations with top-down mixing option turning off (No_mix),
topographic correction with option turning off (No_topo),
and both options turning off (No_topo_mix) were conducted
for comparison. The simulated wind speed increases when
we turn off the individual or both options, which enlarges
the overestimation of wind speed under stable conditions in
our study (Fig. 15a). Turning off the two options in YSU de-
grades the model performance with worse evaluation met-
rics. For example, the BIAS score increases from 0.36 to
0.67 ms−1 in No_topo, to 0.43 ms−1 in No_mix, and to
0.69 ms−1 in the No_topo_mix simulation. At the same time,
RMSE scores show similar degradation when turning off the
options in YSU.

4 Summary and discussion

In this study, we investigate wind simulations under stable
conditions when a haze event affected North China. Surface
meteorological observations are used to evaluate the WRF
model’s ability to reproduce the evolution of winds during
the event. The grid spacing of 0.5 km used in this study be-
longs to the PBL gray zone resolution, which has rarely been
used in previous simulation studies in China, and thus the
results of this study provide a valuable reference for other
simulations over North China. A number of WRF sensitivity
experiments (640 in total) are conducted, altering the PBL,
MP, and SW–LW schemes to determine the sensitivity of
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Figure 14. Wind speed profile from observations and simulations with the YSU and QNSE schemes at 08:00 and 20:00 LT during the study
period.

Table 3. List of land surface models investigated in this study.

No. Scheme name References

1 Five-layer thermal diffusion scheme (SLAB) Dudhia (1996)
2 NOAH Chen and Dudhia (2001)
3 Rapid Update Cycle scheme (RUC) Smirnova et al. (2000)
4 Noah-MP (NOAHMP) Yang et al. (2011); Niu et al. (2011)
5 Community Land Model Version 4 (CLM4) Lawrence et al. (2011)

wind speed and direction simulations to model physical pa-
rameterizations. Further investigations considering the ocean
proximity, elevation, and other model options are conducted
to provide deeper insight into the factors that influence model
sensitivities.

In general, the WRF model reproduces the temporal vari-
ation of wind speed over the study area well, and the spread
in wind speed is largest within the PBL schemes tested, fol-
lowed by SW–LW, and then the MP schemes. The wind di-
rection is notably worse reproduced by WRF compared to
wind speed. This result is consistent with the findings of
previous simulations performed in other locations (Dzebre

and Adaramola, 2020; Gómez-Navarro et al., 2015; Santos-
Alamillos et al., 2013).

Among all PBL schemes, MYJ shows the best CORR
score of 0.96, and MYNN, ACM2, and UW are slightly
worse according to this score. YSU is the best scheme ac-
cording to the BIAS and RMSE scores (0.45 and 0.61 ms−1),
followed by MYNN (0.55 and 0.70 ms−1). For the SW–LW
and MP schemes, the CORR scores are similar, and Dudhia–
RRTM and MYDM7 show the best model performances
out of all the SW–LW and MP schemes according to the
BIAS and RMSE scores. The simulation using the YSU PBL,
WDM6 MP and Dudhia–RRTM SW–LW schemes shows the
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Figure 15. Same as Fig. 3 but for simulations with different land surface schemes. The PBL, MP, and SW–LW schemes used are the same as
the simulation with the best Taylor skill score (WDM6 in Fig. 10).

Figure 16. Same as Fig. 3 but for simulations with different surface layer schemes.
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Table 4. List of surface schemes investigated in this study.

No. Scheme name References

1 Revised MM5 Monin–Obukhov (MM5) Jiménez et al. (2012)
2 Monin–Obukhov Janjic (Janjic) Janjić (1994)
3 NCEP Global Forecast System (GFS) Hong et al. (2004)
4 MYNN surface layer (MYNN) Nakanishi and Niino (2009)
5 Pleim–Xiu surface layer (PX) Pleim (2006)

Figure 17. Same as Fig. 3 but for simulations with different YSU options.

best performance, with the highest Taylor skill score. Interac-
tions among the physical parameterization schemes also play
an important role in wind simulations, as the best verification
scores can be achieved by a certain combination of schemes.
The ensemble mean of all the simulations shows the high-
est CORR core in wind speed, while the 10 best simulations
show much better performance than the ensemble in terms of
BIAS and RMSE.

The schemes with the best performances for inland sta-
tions are consistent with the results of all the stations, as
the majority of stations are inland stations; however, for
coastal stations, MYNN is the best scheme among all PBL
schemes according to CORR, while LES (YSU) shows the
best BIAS (RMSE) score. For SW–LW schemes, Goddard
schemes show the best scores of CORR, BIAS, and RMSE,
while Dudhia–RRTM schemes rank worst according to the
CORR score. The schemes with the best performance are
similar to different elevations for different parameterization

types; however, model performance tends to degrade with in-
creasing elevation.

As in our study, the model ensemble does not always pro-
vide the best performance and model post-processing, and
the bias correction techniques are especially needed to be
taken into consideration, which can significantly reduce the
systematic errors in model simulation. In addition, the PBL
schemes play a dominant role in wind simulation, and further
tuning of the parameters within the PBL schemes, such as the
turbulent kinetic energy (TKE) dissipation rate, TKE diffu-
sion factor, and turbulent length-scale coefficients, is needed.
In addition to the PBL and SW–LW schemes, the LSM and
SL schemes also have a non-negligible influence on the wind
simulation, which should be taken into consideration in fu-
ture studies. Finally, it is worth pointing out that the pre-
sented findings in this study could be unique to the meteoro-
logical setup of the event, the location, the input dataset, the
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domain setup, and other unchanged parameterization types
or model settings.
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