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Abstract. Ocean surface waves play an important role in
maintaining the marginal ice zone, a heterogenous region oc-
cupied by sea ice floes with variable horizontal sizes. The
location, width, and evolution of the marginal ice zone are
determined by the mutual interaction of ocean waves and
floes, as waves propagate into the ice, bend it, and frac-
ture it. In previous work, we developed a one-dimensional
“superparameterized” scheme to simulate the interaction be-
tween the stochastic ocean surface wave field and sea ice.
As this method is computationally expensive and not bit-
wise reproducible, here we use a pair of neural networks
to accelerate this parameterization, delivering an adaptable,
computationally inexpensive, reproducible approach for sim-
ulating stochastic wave–ice interactions. Implemented in the
sea ice model CICE, this accelerated code reproduces global
statistics resulting from the full wave fracture code without
increasing computational overheads. The combined model,
Wave-Induced Floe Fracture (WIFF v1.0), is publicly avail-
able and may be incorporated into climate models that seek
to represent the effect of waves fracturing sea ice.

1 Introduction

Sea ice is a composite of individual pieces called floes. Floes
are discrete solid pieces of sea ice with horizontal geomet-
ric length scales (sizes) ranging from meters to tens of kilo-
meters. Yet in climate model simulations, sea ice is treated
as a continuum field (Hibler, 1979; Golden et al., 2020). To
represent the effect of changes to sea ice floe geometry in

climate models, modeling centers have started to incorpo-
rate prognostic sub-grid-scale parameterizations of the sea
ice floe size distribution (FSD) as a core aspect of their model
physics (Horvat and Tziperman, 2015; Zhang et al., 2015;
Roach et al., 2018b; Boutin et al., 2018; Bateson et al., 2020;
Hunke et al., 2019). The FSD is a probability distribution
f (r), where f (r)dr is the percentage of a grid area com-
prised of floes with a size between r and r+dr . The integral
of f (r) over all positive r is equal to the sea ice concentra-
tion, c.

One major advantage of simulating a sub-grid-scale FSD
is it permits the representation of coupled interactions be-
tween sea ice floes and ocean surface waves. Ocean sur-
face waves propagate into, are attenuated by, and fracture
sea ice in regions known as the marginal ice zone (MIZ,
Wadhams et al., 1988; Langhorne et al., 1998; Squire et al.,
1995). Wave-affected sea-ice-covered regions are observed
to be several million square kilometers in size in both hemi-
spheres, impacting up to half of the sea ice cover depending
on the season and hemisphere (Horvat et al., 2020). When
waves propagate into and fracture sea ice, there is no direct
change to sea ice concentration or thickness. Instead, this
fracture process alters sea ice floe sizes, increasing the sensi-
tivity of the sea ice to external thermodynamic or dynamic
forcing (Steele, 1992; Feltham et al., 2006; Horvat et al.,
2016; Horvat and Tziperman, 2017) and altering the atten-
uation of ocean wave energy (Perrie and Hu, 1996; Meylan
et al., 2021). Thus, there is a hypothesized coupling between
sea ice loss and wave activity – waves propagate into the ice,
fracturing it, causing it to melt, and enhancing wave propa-
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gation (Kohout et al., 2011; Asplin et al., 2012, 2014). Floe
fracture by waves is the dominant process driving changes
in floe perimeter in summer months when the most lateral
melting occurs (Roach et al., 2019).

In a climate model, coupled wave–ice feedbacks are re-
lated to two sub-grid-scale distributions: the FSD, f (r), and
the ocean surface wave spectrum, S(λ), where λ is the wave-
length and

∫
S(λ)dλ= E (units m2) is the wave energy per

square meter, with E = 4
√
Hs for Hs the significant wave

height (Michel, 1968). Heuristic parameterizations have been
developed to relate bulk properties of the ocean surface wave
field to the FSD – generally assuming that fractured floes fol-
low a power-law distribution (Williams et al., 2013; Zhang
et al., 2015; Bateson et al., 2020). Yet there is conflicting ev-
idence about whether power-law FSDs are observed in nature
(Herman, 2013; Stern et al., 2018a, b; Horvat et al., 2019) and
whether power-law size distributions are generated by the
process of wave-induced floe fracture (Horvat et al., 2016;
Herman et al., 2021).

One challenge in relating S(λ) and f (r) is that the re-
sponse of sea ice is determined by the two-dimensional ocean
height field, a stochastic (i.e., one of many possible) rep-
resentation of the ocean wave spectrum. An approach de-
signed by Horvat and Tziperman (2015) was to generate a
high-resolution, one-dimensional ocean surface wave field in
every ice-covered grid cell and explicitly resolve the strain
experienced by the ice, the attenuation of wave energy, and
the resulting statistics of sea ice fracture. This method (here-
after called SP-WIFF) is broadly analogous to a “superpa-
rameterization” (SP) approach used in coupled climate mod-
els for parameterization of cloud effects (Randall et al., 2003;
Grabowski, 2004) or oceanic deep convection (Campin et al.,
2011). SP-WIFF is included as a component of the sea ice
model CICE (Roach et al., 2018b; Hunke et al., 2019) and
has been coupled to an ocean surface wave model (Roach
et al., 2019). Running SP-WIFF incurs high computational
costs – in the case of its incorporation in CICE, it increases
computation times by an order of magnitude (see Sect. 4).
As it is stochastic SP-WIFF is not bitwise reproducible: two
identically initialized and forced simulations using SP-WIFF
will not produce identical output up to the level of machine
precision, which is often a necessary feature for climate
model development.

To provide a computationally inexpensive, flexible, and
bitwise reproducible sub-grid-scale parameterization of
wave-induced ice fracture, we present an accelerated pa-
rameterization of wave-induced floe fracture using a pair of
neural networks for input classification and sea ice fracture
(NN-WIFF). The full code, WIFF1.0 (Wave-Induced Floe
Fracture), is publicly available and contains SP-WIFF and
NN-WIFF, along with code for retraining or adapting NN-
WIFF to prescribed error thresholds, variable input/output
variables, and model configurations. The model is trained
using 5.1 million input and output vectors taken from cou-
pled CICE–WAVEWATCH III simulations (see Sect. 3). Im-

plemented in free-running coupled simulations in a year not
corresponding to the training dataset, NN-WIFF produces
global sea ice variability that is not statistically significantly
different from those produced by SP-WIFF, while reducing
its computational overhead by more than 95 %.

2 SP-WIFF: a superparameterized wave fracture
scheme

The superparameterization of sea ice fracture by ocean waves
was derived in Horvat and Tziperman (2015) (Sect. 2.3); its
statistical properties were explored in Horvat and Tziper-
man (2017) (Sect. 3.4), and it was implemented with of-
fline wave–ice interactions in a sea ice model in Roach et al.
(2018b) (Sect. 2.4) and introduced into a fully coupled wave–
ice model in Roach et al. (2019). We summarize it here.

Consider a region corresponding to a climate model grid
cell in which ocean surface wave energetics are described by
a discrete unidirectional wave spectrum:

S(λi)dλi =

2π∫
0

S(λi,2)dλid2. (1)

Considering only those floes with horizontal size between r
and r + dr , a fraction of the domain f (r)

τ
�(r, t)dr dt (unit-

less) is broken by ocean surface waves over a period dt . The
parameter τ is a prescribed timescale over which the floe
fracture takes place. In the Roach et al. (2018a) implemen-
tation, τ is determined via an adapting time-stepping algo-
rithm to satisfy the CFL criteria for fast-propagating waves
and small-area FSD categories, respectively (see Horvat and
Tziperman, 2017, Appendix A, for further details). The frac-
tured area has its own floe size distribution – the fraction of
�(r, t)dr dt that now belongs to floes with size between s and

s+ ds is F(r,s)ds (unitless), with
∞∫
0
F(r,s)ds = 1. Generi-

cally, the time rate of change of area of floes of size r due to
fracture by ocean surface waves is

∂f (r, t)

∂t
=

1
τ

[
−f (r, t)�(r, t)

+

∞∫
r

�(s, t)f (s, t)F (s,r, t)ds

 . (2)

Note that for ease of interpretation, notation in Eq. (2) dif-
fers from the analogous equation set in Horvat and Tziper-
man (2015) (their Eqs. 19–22). Equation (2) is one tendency
term in the evolution of the FSD, which responds to multi-
ple external forcings (e.g., thermodynamic growth and melt-
ing; advection) as described in Horvat and Tziperman (2015).
External forcing terms are computed at each model time
step, but the FSD f (r, t) is prognostically evolved using the
above-referenced adaptive time-stepping scheme. Wave–ice
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coupling is performed at each sea ice model grid step, al-
lowing for feedbacks between the FSD and, for example,
floe-size-dependent wave attenuation schemes (Meylan et al.,
2021).

The first term in Eq. (2) is the loss of floe area at size cate-
gory r per unit time, and the second is the increase in floe area
in size category r due to the fracture of floes of larger sizes.
The limits of integration reflect the fact that any given floe
cannot fracture into a larger floe, and therefore F(s,r)= 0
for s < r . As Eq. (2) is a generic tendency equation for frac-
tured sea ice, SP-WIFF then refers to a parameterization of
both � and F , which in each ice thickness category are eval-
uated as follows.

S1. The discrete one-dimensional wave spectrum S(λ)dλ

is converted to a one-dimensional ice strain field η(x)
of (arbitrarily chosen) length 10 km (see Horvat and
Tziperman, 2015, their Eqs. 19–22).

S2. A collection of fracture lengths {L} is found by find-
ing the distance between successive strain extrema that
would fracture a floe. These are binned into a prob-
ability distribution A(r), where A(r)dr is the length-
weighted percentage of fracture lengths with length be-
tween r and r + dr . Note we have replaced r ·R(r) in
Horvat and Tziperman (2015) with A(r) here to sim-
plify notation.

S3. S1–S2 are repeated (increasing the size of {L}) un-
til convergence, defined as a mean absolute difference
between successively updated values of A(r) below
5× 10−4.

Each wave field and corresponding fracture length collec-
tion (steps S1 and S2) is performed independently, i.e., on
an unbroken floe of length 10 km. We next use the histogram
A(r)dr to compute � and F . First,

�(r, t)=

r∫
0

A(s, t)ds, (3)

and �(r, t)dr is equal to the length-weighted fraction of all
fracture lengths smaller than r , which assuming a random
horizontal distribution of floes is also equal to the fraction of
floes of size r that will be broken. The resulting distribution
of floe sizes is determined by the histogram itself:

F(r,s, t)ds ={
A(s, t)ds/

∫ r
0 A(l, t)dl = A(s, t)ds/�(r, t) if r ≥ s,

0 if r < s.
(4)

The denominator in Eq. (4) ensures normalization of
F(r,s, t) over s, and therefore F(r,s, t)ds is the probability
distribution of floe sizes from a broken floe of size r .

SP-WIFF therefore involves a stochastic component (S1)
and an expensive peak-finding and histogram generation

component (S2). Its execution time is uncertain because the
number of steps until convergence (S3) is not known in ad-
vance. Note that this convergence is related to the stochastic
histogram generation code, which converges to a steady-state
distribution of fractures, and is not related to feedbacks from
the waves to the ice. Previously, to circumvent these chal-
lenges, SP-WIFF was implemented in CICE using a fixed
phase in step S1 and only iterated once in step S3. We re-
fer to this single-iteration implementation as SP-WIFF1. De-
spite this simplification, CICE runtimes are increased by ap-
proximately a factor of 4 (see Sect. 4) over benchmark es-
timates without wave fracture. We seek to improve the per-
formance of SP-WIFF by replacing S1–S3 with a neural net-
work trained on SP-WIFF input and output data, which we
call NN-WIFF.

3 Accelerating the parameterization of coupled
ice–wave interactions

The NN-WIFF code replaces the full superparameteriza-
tion (SP-WIFF) with a parameterization that replicates its
statistics but has reduced computational overhead. It con-
sists of two full-connected feed-forward neural networks
trained using the Python Keras deep learning library, one
100 node× 100 node input classification scheme for deter-
mining whether NN-WIFF will run and a second with five
hidden layers of 100 nodes each, for generating fracture his-
tograms. We introduced a classifier layer as SP-WIFF fre-
quently returns unfractured sea ice in low-wave regimes, and
we wish to train and run the histogram-generating network
only when the sea ice will fracture. Recent observations of
universal threshold behavior for sea ice breakup (Voermans
et al., 2020) may provide the opportunity in future work to re-
place this classification layer with a simple physically based
threshold for when the sea ice fractures.

Network architectures were chosen using a meta-learning
approach of varying loss functions and numbers of nodes
and layers (we provide code for altering network size in the
WIFF1.0 release). Training is performed with the “adam”
optimization scheme using the resilient backpropagation
method. Rectified linear unit (RELU) activation functions are
used for each of the hidden neurons, and we use a softmax
activation for the final output layer in both cases as we seek
a binary value (for the classifier) and a histogram that sums
to 1 (for the fracture histogram network).

Because SP-WIFF can be run on any arbitrary input, we
may generate a training dataset of unlimited size. In this
study, we use data from a single year (2009) of a coupled
simulation of waves and sea ice (as in the simulation FSD-
WAVEv2 in Roach et al., 2019, but here we use a fully con-
verged wave fracture parameterization instead of a single
application of S1–S2, i.e., SP-WIFF instead of SP-WIFF1).
We take 6-hourly wave spectra, sea ice concentration, sea
ice thickness, and fracture histograms in both hemispheres,
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which results in a total of 180 million possible input vectors
(most without sea ice). While the coupled wave–ice simu-
lation includes the full distribution of sea ice floe sizes and
thicknesses, only mean floe size, mean floe thickness, and sea
ice concentration are passed to the wave module, as they are
required to compute wave attenuation, and therefore we use
these parameters to build NN-WIFF. We prune training data
by including only locations where the local sea ice thickness
is less than 10 m, sea ice concentration is greater than 0.01,
and the significant wave height Hs = 4

√
E is greater than

0.1 m. These thresholds are also checked before executing
SP-WIFF in the version of WIFF released here. This elimi-
nates spurious wave fracture calls in areas of anomalous sea
ice conditions or low wave energies. We find a total of 17.9
million sea ice points, 5.1 million of which meet the criterion
above.

Thus, in total, the full training dataset comprises N = 5.1
million input vectors of 25 spectral amplitudes, 1 ice thick-
ness, and 1 ice concentration. We assume these include the
potential phase space of inputs to the SP-WIFF code, as well
as the potential range of wave energies and sea ice states.
These input vectors are identified with a set of output vectors
from the “true” SP-WIFF output – in this case 5.1 million
12-category floe probability distributions Aidri , 2.6 million
of which are nonzero (i.e., SP-WIFF leads to floe fracture).
We choose to use the 12-category FSD presented in Roach
et al. (2019); however, this can readily be altered for differ-
ent uses. In the WIFF1.0 release, we include code for the
following (see “Code and data availability” statement).

– Defining a custom training dataset using prescribed in-
put spectra and thicknesses.

– Defining a custom output histogram size (i.e., different
FSD categories).

– Designing and training the input classification scheme.

– Designing and training the histogram generation
scheme.

We also provide data that were used to train networks and
produce the results shown here (see “Code and data avail-
ability”). We used coupled model output of SP-WIFF for
the 12-category floe probability distributions in our training
dataset. These can also be generated offline, and we provide
offline code (SP_WIFF_Standalone.m) for generating output
histograms for any arbitrary input that is bit-for-bit the same
as the code in SP-WIFF.

3.1 Input classification

The histogram Aidri is a collection of numbers that sums
to 1 and is the target of our parameterization acceleration.
This motivates the use of a softmax activation layer (as the
output sums to 1). Yet when SP-WIFF is executed, sea ice
does not always fracture, and a true output histogram could

be a vector of zeros. We therefore require a classification
layer that determines when a histogram will be produced by
NN-WIFF, and when it will not, to reduce the potential for
false positives. We found the bulk of potential false positives
could be eliminated by introducing the wave energy cutoff
ofHs = 4

√
E = 0.1 m above, and therefore the classification

network is implemented after that cutoff is applied.
The training data for the classifier are the 5.1 million in-

put vectors with corresponding binary values (fracture/no
fracture). This is randomly partitioned 70/30 into training
(3.6 million) and validation (1.5 million) datasets, with an
even proportion in each set (51 %) leading to fracture. The
input classifier then takes an input vector and returns a single
value, 0< χ < 1, which executes the NN-WIFF scheme if
χ < χcrit. The classification threshold χcrit is determined by
optimizing the error properties of the classifier when evalu-
ated against the validation dataset. We optimize the total error
rate, ε, where

ε =
false positives + false negatives

total input vectors
. (5)

We found that ε is minimized for χcrit = 0.54 at ε = 12.5 %.
This error rate corresponds to a false positive rate of 10.6 %
and a false negative rate of 14.0 %.

Figure 1 shows error characteristics of the classifier eval-
uated on the validation dataset. In Fig. 1a–c, we show the
relationship between the false positive rate (blue) and false
negative rate (green) as a function of (Fig. 1a) sea ice con-
centration, (Fig. 1a) sea ice thickness, and (Fig. 1c) log10E.
We also plot the run rate (dashed black line), or the fraction of
times NN-WIFF is executed, as well as the overall accuracy
(black line), equal to 1-ε. Of interest for future model and
scientific development is the peak in SP-WIFF calls for wave
energies between 0.01 and 0.1 m2 (significant wave heights
around 70 cm).

Generally, the input classifier has high accuracy across the
range of ice concentrations and thicknesses, with a flat distri-
bution of false positives and false negatives. Lower accuracy
occurs at the highest range of wave energies, at which both
false positives and false negatives are higher than 20 %. We
plot two-dimensional maps of the overall accuracy in Fig. 1d
(log10E vs. ice concentration), Fig. 1e (ice thickness vs. ice
concentration), and Fig. 1f (log10E vs. ice thickness). Some
regions of phase space have classifier accuracies as low as
42 %. The classifier accuracy is high in the regions with the
highest run rates – high sea ice concentrations, thicknesses,
and wave energies between 0.01 and 0.1 m2. As we explore
below, these regions represent the largest portion of poten-
tial input states, and the 12.5 % error in classification does
not contribute to a statistically significant difference in cli-
mate model output. Still, improvements in the input classifi-
cation may be achievable if desired, for example for higher
wave energies, and we include code to retrain the classifier
in WIFF1.0.
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Figure 1. Performance of input classification for NN-WIFF. (a) Percentage of times the classifier runs (run rate, dashed black), calls the
histogram network incorrectly (false positive rate, blue), or fails to call the histogram network (false negative rate, green) and overall accuracy
(black) for the input classifier as a function of sea ice concentration. (b, c) Same as (a) for (b) sea ice thickness and (c) log10 wave energy.
(d–f) Heat map of average classifier accuracy as a function of (d) ice concentration and log10 wave energy, (e) ice concentration and ice
thickness, and (f) ice thickness and log10 wave energy. Regions of phase space with fewer than 75 input vectors (less than 0.005 % of input
data) are uncolored or empty.

3.2 Neural network for generating fracture histograms

The fracture histogram network takes a length-27 input vec-
tor and outputs a vector Âi dri , which sums to 1 and approxi-
mates the histogramAi dri . As a result, sea ice floes will frac-
ture if this input wave and the sea ice statistics pass the input
classification. To assess its performance, we use a custom
loss function that minimizes the “representative size error”,
which is the absolute difference in the predicted histogram
in each floe size category, weighted by the floe size in that
category,

RSE=
∑
i

∣∣∣Âi −Ai∣∣∣ri dri, (6)

and has units of meters. We choose this error statistic over
more standard metrics (root mean square error, for exam-
ple) because mean floe size is an observable quantity (Horvat
et al., 2020) and a positive moment of r , and it is therefore
less sensitive to errors at small floe sizes or changes in floe
size discretization. In the WIFF1.0 release we also provide
code for training the neural network using other standard er-
ror metrics. Available training data are randomly partitioned
into a training dataset of 70 % of the input vectors and a val-
idation dataset of the remaining 30 % (∼ 800 000 input vec-
tors). Training is performed until the validation loss fails to
improve over 20 subsequent steps. Indexing training data by

j , the overall network performance is the average error for
the training data,

P =
1
N

N∑
1

RSEj ≈ 30m, (7)

where N is the total number of inputs used to train the net-
work.

In Fig. 2 we display aggregated fit characteristics for
the histogram neural net. Figure 2a–d display number his-
tograms (red, left axis) of sea ice concentration (C), ice thick-
ness (H ), and log10E from the validation dataset, as well as
of the “true” representative radius R, where

R =
∑
i

riAidri, (8)

from validation dataset input. To evaluate the standardized
neural net error, we also compute the standardized size error
(SSE) as

SSE=
RSE

R
, (9)

which weights errors by the expected mean floe size. Across
the entire validation dataset, median SSE is 3.9 %.

There is little dependency of SSE on sea ice concentration
(Fig. 2a) or sea ice thickness (Fig. 2b). Median SSE errors are
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Figure 2. Performance of NN-WIFF on validation data. Histogram (a, left axis) of sea ice concentration, C, in the validation dataset. Median
(a, right axis) standardized size error (SSE, Eq. 9) as a function of C (solid line). Dashed lines are the interquartile distance of SSE. (b–
d) Same as (a), but for (b) sea ice thickness, (c) log10 wave energy, and (d) representative radius (R, Eq. 8) of the “true” output histogram.
(e) Mean histogram output Aidri for (black) the validation dataset and (red) parameterization output F̂idri . Dashed lines are the standard
deviation of error between Aidri and Âidri in each floe size category. Crosses indicate floe size bin centers.

Figure 3. Examination of training errors in NN-WIFF. (a) 2-D map of median SSE as a function of (x axis) sea ice concentration and (y
axis) log10E from the validation dataset. (b–f) Same as (a) but for (b) H and log10E, (c) R and log10E, (d) C and H , (e) H and log10E,
and (f) R and C. Regions are not colored for less than 0.005 % (∼ 40 points).

Geosci. Model Dev., 15, 803–814, 2022 https://doi.org/10.5194/gmd-15-803-2022



C. Horvat and L. A. Roach: Machine learning wave fracture 809

below 5 % across all ice concentrations and thicknesses con-
sidered here, with the peak of the interquartile range below
10 %. While median errors for both wave energy and R also
lie below 10 % for all input wave energies and true output
floe sizes, there are higher SSE values for low wave energies
and high R values. Large values of R can occur for a small
number of potential floe fractures, which typically occurs for
low wave energies that do not repeatedly fracture the sea ice.
In general, the neural network (red line, Fig. 2e) reproduces
the mean fracture histogram Ai (black line, Fig. 2e) accu-
rately at each floe size category. Median error between Aidri
and Âidri is less than 6.2 % in all categories, and across all
12 categories it averages 3.3 %.

To understand what regions of the phase space give rise
to error, in Fig. 3a–c we plot two-dimensional heat maps
of SSE, evaluated on the validation dataset, for each of the
six combinations of ice thickness, concentration, R, and log
wave energy. Colors are shown only for those coordinates
with at least 0.005 % of the data (40 points), and the white
point of the color map is set for an error of 10 %. Blue values
are those with SSE< 10 %.

Figure 2 suggests that the input vectors with the largest
error are those with low input wave energy and high result-
ing R. In general, we find similar results when examining
these two-dimensional maps. In general, we find low error
(SSE<= 5 %) across the range of input sea ice thickness
and concentration (Fig. 3a). However, expanding the error
map in R as a function of thickness (Fig. 3b), concentration
(Fig. 3f), and wave energy (Fig. 3c) reveals that the largest
part of training error comes from regions with low input sea
ice concentration, small thickness, and low wave energy. This
combination of inputs gives rise to high output R values,
which have the highest SSE values. Although locations with
low sea ice concentration are not used as WIFF input, we do
not presently exclude locations with low sea ice thickness –
that these regions produce pathological output suggests they
might be isolated or excluded from future versions of NN-
WIFF.

4 Sea ice model results

We next examine the relationship between versions of the
WIFF code when implemented in a free-running sea ice
model. Here we use output from the global sea ice model
CICE6.1.4 (Hunke et al., 2019) in stand-alone mode forced
by the JRA55 atmospheric reanalysis (JRA-55 and Japan
Meteorological Agency, 2013) at a nominal 1◦ spatial res-
olution. We include time-varying ocean surface wave spectra
as sea ice model forcing, taken from output of the CICE–
WAVEWATCH III coupled integration described in Roach
et al. (2019). The model is run over the year 2005 to pro-
vide different boundary conditions and initialization from the
2009 data used as input to the network training.

We examine results from three separate methods for ob-
taining the output histogram Aidri :

1. (SP-WIFF) using the full SP-WIFF model but the con-
verged solution described in Sect. 2,

2. (SP-WIFF1) the SP-WIFF model but using a single iter-
ation of steps S1–S2 with fixed phase, and

3. (NN-WIFF) the trained neural network described above.

The histogram output Aidri from CICE is a daily aver-
age over 24 h time steps. When wave fracture does not occur,
Aidri values are set to zero. Thus, though Aidri is normal-
ized to 1 if wave fracture occurs, if a grid cell does not always
fracture during one of the averaging time steps, the CICE his-
tory output will not be normalized to 1. We choose to include
such points in this analysis, renormalizing histogram outputs
to sum to 1.

Over the course of this year, we find that in the NN-WIFF
simulations, there are 686 000 grid point days during which
NN-WIFF is executed, for a total of 12.3 million NN-WIFF
calls overall. This compares to 746 000 and 14.1 million for
SP-WIFF and SP-WIFF-1. The discrepancy between func-
tion calls is due to the use of the input classifier, which intro-
duces false negatives as discussed in Sect. 3.1.

In Fig. 4a and b we repeat Fig. 2e but now examining (a)
Arctic and (b) Antarctic averages of Aidri values for each
of the three methods. To estimate differences in fracturing,
Fig. 4 shows data only from locations and times at which
WIFF leads to sea ice fracture in all three of the simulations
and at which the daily average wave energy exceeds 0.1 m2.
Dashed lines show the interquartile range of SP-WIFF val-
ues. Median values are similar between all three implemen-
tations.

We plot histograms of the errors between SP-WIFF and
SP-WIFF1 (red) as well as NN-WIFF (blue) in both hemi-
spheres as Fig. 4c–d from the same sample used to produce
Fig. 4a and b. Dashed lines represent SSE and solid lines
are the sum of absolute error (SAE) in each category. In
both metrics and in both hemispheres, NN-WIFF performs
as accurately as or more accurately than SP-WIFF1 when
executed and with significantly reduced computational cost.
In the Arctic, median SSE is 8.9 % (NN-WIFF) vs. 10.5 %
(SP-WIFF1), and median SAE is 5.8 % (NN-WIFF) vs. 5.9 %
(SP-WIFF1). In the Antarctic, median SSEs are 8.1 % (NN-
WIFF) vs. 13.4 % (SP-WIFF1), and median SAEs are 5.52 %
(NN-WIFF) vs. 9.02 % (SP-WIFF1).

In Fig. 5 (top row) we show monthly average differences
in sea ice concentration between SP-WIFF and NN-WIFF in
March and September in each hemisphere. There is little dif-
ference between the two, with a maximum global area differ-
ence of 47 000 km2 in January (0.3 % of total sea ice area).
We repeat this analysis on sea ice volume per unit area in
Fig. 5 (middle row). We again find little difference through-
out the year, with a global maximum volume difference of
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Figure 4. WIFF error characteristics in a climate model. (a) Mean Arctic histogram output Aidri in a free-running climate simulation using
(black) SP-WIFF, (blue) NN-WIFF, and (red dashed) SP-WIFF1. Points are included in the histogram if all three cause wave fracture. The
interquartile range of SP-WIFF outputs is given as dashed black lines. (b) Same as (a) for the Antarctic. (c) Histogram of errors between
SP-WIFF and (blue) NN-WIFF or (red) SP-WIFF-1 in the Arctic. Solid lines are the sum of absolute error (SAE). Dashed lines are the
standardized size error (SSE). (d) Same as (c) for the Antarctic.

33 km3 in January (0.12 % of total sea ice volume). We also
examine the log ratio of SP-WIFF to NN-WIFF mean floe
size (representative radius) in the bottom row in Fig. 5. Some
areas have larger floe sizes in SP-WIFF compared to NN-
WIFF – those with a discrepancy in mean floe sizes that is
a multiple of 2 or more, i.e., |log10(RNN/RSP)|> log10(2)≈
0.3, have a maximum global area of 1100 km2 in April, or
4.8 % of total sea ice area. These regions are visible as lo-
cations lying at the boundary between the MIZ and sea ice
pack, i.e., locations where NN-WIFF does not trigger wave
fracture but SP-WIFF does. We evaluate these differences
between model integrations using the CICE quality-control
check (Roberts et al., 2018). Although there is not bit-for-bit
reproducibility, we find that the different implementations of
WIFF are not “climate changing” according to the two-stage
paired thickness test. This demonstrates that differences in
WIFF implementation do not have an emergent effect on sea
ice model state, in spite of the impact of wave–ice interac-
tions on sea ice state (Roach et al., 2018b).

NN-WIFF substantially accelerates the parameterization
of wave-induced floe fracture. Integrating these simulations
on the Cheyenne supercomputer with daily I/O on a 384×
320 displaced pole grid using 1 node and 24 cores, the stan-
dard SP-WIFF executes 1 year in approximately 24 h. The
single-iteration version SP-WIFF-1 takes 3 h 30 min. The
NN-WIFF model takes 1 h 10 min. For comparison, a stan-

dard CICE integration with the FSD but no waves takes
56 min, and a CICE integration with no FSD and no waves
takes 45 min. (Note that these runtimes do not include in-
tegration of a wave model, as this was run offline and pro-
vided as a forcing to the sea ice model.) Thus, while exe-
cution times will vary with computer architecture and user-
specified compiler settings, NN-WIFF significantly reduces
the overhead associated with simulating wave–ice fracture.

5 Conclusions

Here we have presented WIFF1.0, which is code for per-
forming wave-induced floe fracture in sea ice models that
are coupled to an ocean surface wave model. While the full
“superparameterized” version of WIFF (SP-WIFF) is capa-
ble of simulating wave-affected marginal ice zones with ac-
tive wave–ice interactions, it results in high computational
expense, which renders it difficult to use in long climate inte-
grations. Instead, we trained a pair of neural networks (NN-
WIFF) to accelerate this parameterization using a large set of
true climate model input/output pairs, which results in a me-
dian “standardized size error” of 3.9 % when evaluated on a
set of 800 000 input states and 8.4 % in free-running climate
model simulations.
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Figure 5. Implementation of WIFF in a climate model. Difference (top row) in monthly sea ice concentration, SIC, between SP-WIFF and
NN-WIFF in March and September in each hemisphere. The middle row is the same as the top row for sea ice volume, V . The bottom row
is the same for the log10 ratio of the representative radii.

Because of the use of a classification layer, NN-WIFF does
introduce false positives and negatives – with a classifier ac-
curacy of 87.5 %. With an energy threshold for determining
whether NN-WIFF is to be called, the classifier network is
only called on a reduced subset of sea ice points. The energy
threshold eliminates potential calls to NN-WIFF for approx-
imately 72 % of total sea ice points; thus, the likelihood that
NN-WIFF is inappropriately called at any given sea ice point
is 0.125× 0.28= 3.5 %, and the “overall” accuracy of calls
to NN-WIFF is 96.5 %. When compared to a single-iteration
version of SP-WIFF that was previously employed for com-
putational reasons, NN-WIFF produces equal or better er-
ror characteristics and is significantly less expensive. Global
patterns of sea ice area and volume are statistically indistin-
guishable between NN-WIFF throughout a year of climate
model simulations, with minor differences in representative
floe sizes at the boundary between the MIZ and pack ice.

The network has been trained on present-day (2009) sea
ice conditions from a single model and may therefore have
less success for different climates in which the phase space of
wave spectra and ice thicknesses changes. This may present
challenges as model projections indicate that the future state
of sea ice and wave climate will differ substantially from
the present (for example Casas-Prat and Wang, 2020; Roach
et al., 2020; SIMIP Community, 2020), and the typical in-
put sea ice and wave states to NN-WIFF may depart from
the phase space examined here. In our training of NN-WIFF,
we used a broad range of input model vectors, which sam-
ple both geographic and temporal variability in sea ice and

wave conditions. While the input dataset spanned only a sin-
gle year (2009), our assumption is that the future trajectory of
ice and wave states lies contained within the geographic and
temporal envelope of current model conditions. For example,
while thinning Arctic sea ice may lead to larger percentages
of the Arctic being affected by waves (Aksenov et al., 2017),
interactions between high wave states and thin sea ice are
presently simulated along the periphery of the Arctic Ocean
and in the Southern Ocean and are therefore contained within
the phase space of the training data examined here.

Still, it is possible that future inputs are not sampled as
a part of the present-day conditions we examine here. Ex-
isting versions of NN-WIFF can be adaptively retrained us-
ing other updated climate model output to broaden the phase
space of the training dataset, and we provide code for di-
rectly producing fracture histograms for any arbitrary wave
and sea ice input vectors in WIFF1.0. NN-WIFF model in-
put variables and thresholds may also be adjusted to increase
the accuracy of the method, for example the inclusion of a
simpler breaking threshold as described by Voermans et al.
(2020). We intend in future versions of WIFF to implement
a hybrid functionality that permits input vectors that lie out-
side the training phase space to be flagged and directly call
SP-WIFF to permit better handling of outlier inputs. We note
that the phase space of potential sea ice concentration, thick-
ness, and wave spectral states simulated by the CICE simu-
lations considered here may not reflect the real phase space
of these variables nor that simulated by other climate model
configurations. While we assume that CICE–WAVEWATCH
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III simulations largely mirror this particular set of potential
input states, implementation of NN-WIFF in other modeling
systems may require retraining to reflect a broader or nar-
rower set of input conditions.

The model of Horvat and Tziperman (2015) was devel-
oped under assumptions about how sea ice breaks, namely
that it is free-floating and responds instantaneously to curva-
ture in the ocean surface height field. Recent developments
in observing wave-induced breakup may point to the use of
a single threshold for sea ice floe fracture (Voermans et al.,
2020) that could replace the classifier trainer here and im-
prove the representation of floe fracture in SP-WIFF. The
aim of developing WIFF1.0 is simply replacing SP-WIFF
with an approximating neural-network-based code. Future
versions of WIFF could be developed in light of new ob-
servations (e.g., Voermans et al., 2019) and incorporate more
detailed feedbacks between the FSD and wave models. The
requirement of passing the full wave spectrum between wave
and ice models may be too cumbersome for some current-
generation coupling schemes, and it may be possible that
fewer model parameters are needed to develop accurate frac-
ture histograms (e.g., the abovementioned threshold). We
provide code in the WIFF1.0 repository for running SP-
WIFF in a stand-alone fashion, collating training data from a
climate model, and (re)training the network, as well as pro-
ducing the plots used in this paper.

Because of the ease of obtaining training data from climate
model output, this parameterization acceleration approach
has found a use in many other aspects of climate model sim-
ulations (Rasp et al., 2018) for similarly expensive parame-
terizations, especially those that are not the solution to prim-
itive equations (Pal et al., 2019; Brenowitz et al., 2020). It
may have applications in sea ice modeling as well. For ex-
ample, sea ice rheological parameterizations generally rely
on complex implicit solvers run to a specified tolerance but
may, much like SP-WIFF, be able to be decomposed into a
series of neural net “black boxes”. This methodology could
also be used to accelerate the computation of wave–wave in-
teraction and “source” terms in the WAVEWATCH III code.

Our primary goal in developing NN-WIFF is to provide
a method for accelerating the existing SP-WIFF parameter-
ization, which will permit the implementation of wave–ice
fracture parameterizations in climate-scale sea ice models.
In general, NN-WIFF allows for a cost-effective implemen-
tation of wave–ice fracture in sea ice models with no signifi-
cant increase in runtime. Because a neural network is a sim-
ple set of elementary functions, it can be employed straight-
forwardly in any climate model with the aim of simulating
the fracture of sea ice by ocean surface waves.

Code and data availability. WIFF1.0 code as well as code for de-
veloping training data, building and training NN-WIFF, and im-
plementing into Icepack and CICE6 is released and archived
at https://doi.org/10.5281/zenodo.5793692 (Horvat, 2021). On-

going development of WIFF takes place at https://github.com/
chhorvat/WIFF-Model (last access: 25 January 2022). Model out-
put (from the three 2005-forced WIFF configurations) and training
data (from the 2009 SP-WIFF simulation) are available on Zen-
odo at https://doi.org/10.5281/zenodo.5106703 (Roach, 2021) and
https://doi.org/10.5281/zenodo.5108636 (Horvat and Roach, 2021),
respectively. Code for CICE6 and Icepack, including the imple-
mentation of WIFF1.0, is actively developed at https://github.com/
lettie-roach/CICE/tree/mlwave (last access: 25 January 2022) and
https://github.com/lettie-roach/Icepack/tree/mlwave (last access: 25
January 2022).
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