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Abstract. Numerical simulation models that are used to in-
vestigate the near-Earth space plasma environment require
sophisticated methods and algorithms as well as high compu-
tational power. Vlasiator 5.0 is a hybrid-Vlasov plasma sim-
ulation code that is able to perform 6D (3D in ordinary space
and 3D in velocity space) simulations using adaptive mesh
refinement (AMR). In this work, we describe a side effect of
using AMR in Vlasiator 5.0: the heterologous grid approach
creates discontinuities due to the different grid resolution lev-
els. These discontinuities cause spurious oscillations in the
electromagnetic fields that alter the global results. We present
and test a spatial filtering operator for alleviating this artifact
without significantly increasing the computational overhead.
We demonstrate the operator’s use case in large 6D AMR
simulations and evaluate its performance with different im-
plementations.

1 Introduction

Investigation of the near-Earth space plasma environment
benefits from numerical simulation efforts, which can model
plasma effects on global scales compared with physical ob-
servations that are inherently local in space and time (Hesse
et al., 2014). Vlasiator (Palmroth et al., 2018) is a hybrid-
Vlasov plasma simulation code that models collisionless
plasmas by solving the Vlasov–Maxwell system of equa-

tions for ion particle distribution functions on a 6D Cartesian
mesh, representing three spatial and three velocity dimen-
sions. The Vlasov equation (Eq. 1) is a form of the Boltz-
mann equation that neglects the collisional term to only ac-
count for electromagnetic interactions:
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Here, f (r,v, t) represents the phase space density of a
species of mass m and charge q, where r is position, v is
velocity, and t is time. E and B stand for the electric and
magnetic fields, respectively. Vlasiator couples the Vlasov
equation for ions with the electromagnetic fields through
Maxwell’s equations under the Darwin approximation which
eliminates the displacement current in the Ampère equation
to get rid of electromagnetic wave modes and enable longer
time steps. This leads to the Ampère and Faraday laws tak-
ing the following form, while maintaining a divergence-free
magnetic field:
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∇ ×B
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∇ ×E =−
∂

∂t
B, (3)

∇ ·B = 0. (4)

The system is closed using Ohm’s law in the form

E =−V i×B +
1
ρq

j ×B −
1
ρq
∇P e, (5)
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where j is the current density, µ0 is the permeability of free
space, V i is the ion bulk velocity, ρq is the charge density,
and P e is the electron pressure tensor.

In its implementation, Vlasiator stores a 3D velocity grid
in each spatial grid cell, which requires significant mem-
ory for large simulations. This leads to simulation results
that are free from sampling noise, unlike simulations that
employ stochastic particle representation methods such as
particle-in-cell (PIC) codes (Nishikawa et al., 2021). While
ion kinetics are resolved, Vlasiator models the electron pop-
ulation as a charge-neutralizing background fluid, as typi-
cal in hybrid-kinetic approaches, to keep computational cost
down. Vlasiator employs a sparse velocity space representa-
tion (von Alfthan et al., 2014), where the parts of the veloc-
ity distribution function below a specific threshold are nei-
ther stored nor propagated. The electromagnetic fields are
coupled to the Vlasov solver by taking velocity moments of
the distribution function (density, flow velocity, pressure) and
feeding them into Maxwell’s equations (Eqs. 2–5) which are
then solved through a constrained transport upwind method
described in Londrillo and del Zanna (2004).

Vlasiator’s core is made up of two separate solvers: the
field solver and the Vlasov solver. The Vlasov solver solves
the Vlasov equation in two steps using Strang splitting
(Palmroth et al., 2018), namely spatial translation and accel-
eration in velocity space, using a semi-Lagrangian scheme
based on the SLICE-3D method described in Zerroukat and
Allen (2012). Vlasiator has been employed in a range of stud-
ies regarding Earth’s foreshock formation (Turc et al., 2019;
Kempf et al., 2015), ionospheric precipitation (Grandin et al.,
2019), and magnetotail reconnection (Palmroth et al., 2017),
for example.

Most scientific studies of Vlasiator have been limited to
5D (two spatial and three velocity dimensions) due to the
large computational requirements. In Vlasiator 5.0, adaptive
mesh refinement (AMR) has been applied to enable the simu-
lation of 6D configurations. With the use of AMR, the Vlasov
solver uses the highest spatial resolution available only in
regions of high scientific interest. Regions of less interest
are solved at a lower spatial resolution. As Vlasiator needs
to store a velocity distribution function for every simulation
cell, which is numerically described by a 3D grid, the mem-
ory requirements for 6D simulations are extreme. The AMR
functionality previously added in Vlasiator 5.0 manages to
alleviate the computational burden by reducing the effective
cell count in a 6D simulation. Thus, the use of AMR is nec-
essary for Vlasiator to venture into exploring the near-Earth
space plasma in 6D.

The use of AMR can lead to a big performance gain for
a simulation; however, it can also introduce spurious ar-
tifacts that can alter the simulation results. As an exam-
ple, WarpX (Vay et al., 2018), a particle-in-cell code, uses
mesh refinement to accelerate simulations, but it has to deal
with spurious self-forces experienced by particles and short-
wavelength electromagnetic waves reflecting at mesh refine-

ment boundaries. However, Vlasiator, being a Vlasov code,
does not suffer from the same artifacts that WarpX suffers
from, as it does not use a particle representation to describe
plasma, and its field solver operates on a uniform mesh.

In this work, we demonstrate the use of low-pass filtering
in Vlasiator to help eliminate artifacts caused in numerical
simulations using AMR. The structure of this publication is
such that we first provide an insight to Vlasiator’s grid topol-
ogy as well as the heterologous grid-coupling mechanism to
exchange the required variables between its two core solvers
(Sect. 2). Moreover, we describe the staircase effect, which
is an artifact caused by the grid-coupling process in AMR
runs. In Sect. 3, we give a brief summary of low-pass filtering
and propose our method for alleviating the staircase effect in
Vlasiator. In Sect. 4, we demonstrate simulation results and
evaluate the performance of two different implementations
of the filtering operator. Further discussion and conclusions
are presented in the final sections of this work.

2 Heterologous grid structure in Vlasiator

Vlasiator’s field solver uses the FsGrid library (Palmroth and
the Vlasiator team, 2020) to store field quantities and plasma
moments as well as to propagate the electromagnetic fields.
FsGrid is a message passing interface (MPI) aware library
that uses ghost cell communication to make data available to
neighboring processes in the simulation domain. The electro-
magnetic field update is not an expensive operation in Vlasi-
ator and thus requires no AMR, even in a spatially 3D high-
resolution setup. Hence, the spatial resolution for FsGrid is
kept uniform in the simulation domain. FsGrid uses a block
decomposition scheme to evenly distribute the simulation
cells over the MPI tasks, and this is kept constant for the rest
of the simulation when the number of MPI tasks remains the
same. On the other hand, velocity distribution function trans-
lation and acceleration are the most expensive operations in
Vlasiator. Quantities of the Vlasov solver are discretized us-
ing DCCRG (Honkonen et al., 2013; Honkonen, 2022), a
parallel grid library that supports cell-based AMR. Hence,
Vlasiator employs a heterologous AMR scheme, where the
field solver and Vlasov solver operate on separate grids and
with different spatial resolutions depending on the local DC-
CRG AMR level, with the field solver operating at the high-
est resolution allowed by DCCRG.

Currently, for Vlasiator’s 6D simulations, the refinement
levels are manually chosen. Regions of interest closer to the
Earth (like the bow shock and the magnetotail reconnec-
tion site) operate at the maximum spatial resolution, whereas
lower spatial resolution is used for regions of less interest
(such as the inflow and outflow boundaries). In Fig. 1, a typ-
ical configuration of the AMR Vlasov grid is illustrated. Fig-
ure 1a shows three slices of the simulation domain at X = 0,
Y = 0, and Z = 0, and Fig. 1b shows only the Z = 0 plane in
which four levels of refinements are depicted from the coars-
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est (white) to the finest (black). Dynamically adjusting the
AMR levels based on physical criteria during runtime is un-
der development and will be the subject of a future study.

2.1 Grid coupling

DCCRG operates on a base refinement level, and each suc-
cessive refinement level has twice the resolution of the pre-
vious one. At the highest refinement region there is a one-
to-one match between the field solver and DCCRG’s cells.
However, the electromagnetic fields and plasma propagation
are inherently dependent upon each other; thus, a coupling
process takes place during every simulation time step. The
coupling scheme is illustrated in Fig. 2. The Vlasov solver
at the end of every time step feeds moments into the field
solver grid. In regions where the one-to-one match is not
fulfilled, one set of moments is communicated to all Fs-
Grid cells which occupy the same volume as the underly-
ing DCCRG cell. The field solver then propagates the fields
and communicates those back to the Vlasov solver before
the next time step begins. In mismatching regions, the field
solver grid is fed uniform input in all the cells that are chil-
dren of a lower-resolution DCCRG cell, and the parent DC-
CRG cell is later fed an averaged value of all the higher-
resolution corresponding FsGrid cells. The association be-
tween the two grids is calculated during the initialization and
after every load-balancing operation where the Cartesian spa-
tial decomposition scheme over different MPI tasks changes
for the DCCRG grid. When no AMR is used, the two solvers
operate on the same spatial resolution; thus, there is a one-
to-one grid match, making the coupling scheme trivial.

2.2 Staircase effect

In 6D AMR simulations, the one-to-one grid matching is re-
stricted to only the highest refinement regions where both
solvers operate at the highest spatial resolution. In less-
refined regions, the Vlasov solver cells span multiple field
solver cells and the grids mismatch. If the trivial coupling
scheme described in the previous subsection is maintained,
the field solver is subject to discontinuous plasma moment
input at the Vlasov grid cell interfaces, which can be seen in
Fig. 3a and b, as an effect that we dub the “staircase effect”.
The discontinuities caused by the staircase effect lead to the
development of unphysical oscillations in the field quantities
on the field solver grid. The oscillations can be observed in
the profiles demonstrated in Fig. 3d and f. Those oscillations
can act as a source of spurious wave excitation and propagate
artifacts in the whole simulation domain, as visible in Fig. 3c
and e, where artifacts have propagated downstream from the
bow shock of the global magnetospheric simulation, causing
significant distortion of the physics in the nightside magne-
tosheath and lobes.

3 Method

3.1 Low-pass filtering

Low-pass filtering is a well-known tool from digital signal
processing theory that effectively attenuates unwanted high-
frequency parts of the spectrum. The boxcar filter is the sim-
plest finite impulse response low-pass filter, and it smooths
out a signal by substituting a value with the average of itself
and its two closest neighbors. Boxcar filters are usually cas-
caded with other boxcars in an attempt to reduce the high
side lobes in their frequency response (Roscoe and Blair,
2016). Techniques like low-pass filtering are not limited to
the time domain; they can be applied to other dimensions like
ordinary space and find wide application in fields like image
processing (Cook, 1986) and numerical modeling (Vay and
Godfrey, 2014).

3.2 Spatial filtering

In this work, we present two implementations of the spatial
filtering operator used in Vlasiator to smooth out the discon-
tinuities in AMR simulations that are illustrated in Fig. 3a
and b. First, in Vlasiator 5.1, the filtering operator is realized
by a 3D 27-point (3 points per spatial dimension) boxcar ker-
nel with equally assigned weights. The kernel operates in po-
sition space (r) and is passed over the field solver grid cells
immediately after the coupling process finishes transferring
Vlasov moments to the field solver grid. The filtering opera-
tor is only applied when there is a grid mismatch between the
two solvers, so it is not used in the highest refinement level
where the two solvers operate at the same spatial resolution.
The number of times that the operator is applied is not con-
stant but linearly depends on the refinement ratio between the
two grids. Each filtering operator pass attenuates the high-
frequency signals on the field solver grid and smooths out the
discontinuities shown in Fig. 3a and b. Larger refinement ra-
tios between the two grids give rise to spatially larger discon-
tinuities, requiring more filtering passes in order to smooth
the discontinuity. In practice, treating the finest to coarsest
levels with 0, 2, 4, and 8 passes of the boxcar kernel, for ex-
ample, has proved to alleviate the discontinuities illustrated
in Fig. 3a and b.

At the end of each pass of the filtering scheme, a ghost cell
communication update is required for the respective FsGrid
structure prior to continuing on to the next pass. This mani-
fests as a performance penalty, as the ghost communication
is a global process involving all MPI tasks in the simulation.
From the associative properties of the convolution operation,
where B is a boxcar kernel, g is a function, and ~ is the con-
volution operator, we define the triangle kernel T , where

g~ T = g~ (B ~B)= (g~B)~B. (6)

Two boxcar passes are the equivalent of a single triangular
kernel pass; therefore, in Vlasiator 5.2.1, we update our fil-
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Figure 1. (a) Perspective 3D view of the AMR Vlasov grid. Here, the Earth is located at the axes’ origin. (b) Equatorial distribution of the
AMR refinement levels on the Vlasov grid in a 3D AMR simulation. Refinement level n corresponds to 2n times the base resolution. Darker
regions closer to the Earth (n= 3) are solved with the highest spatial resolution used in the simulation.

Figure 2. Schematic of the grid-coupling procedure. Moments eval-
uated on the Vlasov grid are copied over to the FsGrid. (a, b) When
there is a grid mismatch, one DCCRG cell copies over its values to
many FsGrid cells. Then the fields are propagated and finally fed
back to the Vlasov grid. (c, d) In areas where the grids mismatch,
multiple FsGrid cells are averaged to get the value for the corre-
sponding DCCRG cell.

tering operator to a 3D 125-point triangle kernel. We choose
the 3D triangle kernel as the convolution of a boxcar ker-
nel with itself to match the frequency characteristics of the
boxcar operator in half the number of passes, as shown in
Fig. 4. The triangle kernel is used in the same fashion as the
boxcar kernel; however, as half the number of passes per re-
finement level are required to achieve the same amount of
smoothing this time, the triangular kernel operator performs
half the amount of ghost cell communications. A graphical
representation of the filtering kernels is given in Fig. 5. In
Algorithm 1, we demonstrate the two implementations of the

Algorithm 1 Filtering operator pseudo-code

1: if method==”boxcar” then
2: kernelWidth← 1
3: kernelWeights← [1,1,1]
4: sum← sum(kernelWeights)

5: else if method==”triangle” then
6: kernelWidth← 2
7: kernelWeights← [1,2,3,2,1]
8: sum← sum(kernelWeights)

9: end if
10: swapGrid←momentsGrid

11: for pass = 0,1, . . .maxPasses do
12: for i = 0,1, . . .momentsGrid.GridSize do
13: refLevel←momentsGrid.getRefLevel(i)

14: if pass>=momentsGrid.numPasses(refLevel) then
15: continue
16: end if
17: swapGrid[i] ← 0.0
18: for j =−kernelWidth. . .kernelWidth do
19: ii← i+ j

20: swapGrid[i]+ =momentsGrid[ii] ∗

kernelWeights[kernelWidth+ j ]/sum

21: end for
22: end for
23: momentsGrid← swapGrid

24: momentsGrid.updateGhostCells()

25: end for

spatial filtering algorithm with a 1D pseudo-code example.
The modified coupling scheme is demonstrated in Fig. 6,
where it is now supplemented with the filtering mechanism,
in contrast to Fig. 2.
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Figure 3. Visualization of a 6D Vlasiator simulation with heterologous grids. (a) Equatorial color map of mass density (on the AMR Vlasov
grid). (b) Mass density along the profile shown as a dashed line in panel (a). In panels (a) and (b),mp stands for proton mass. (c) Electric field
magnitude color map (on the uniform FsGrid). (d) Electric field magnitude along the profile shown as a dashed line in panel (c). (e) Magnetic
field magnitude color map (on the uniform FsGrid). (f) Magnetic field magnitude along the profile shown as a dashed line in panel (e). The
colored regions in panels (b), (d), and (f) correspond to the resolution ratio between the field solver grid and the Vlasov grid. Unphysical
oscillations in the field quantities, triggered by discontinuities in the moments, can be observed in the green and red regions.

4 Results

To demonstrate the effect of the spatial filtering employed in
Vlasiator 5.1 to alleviate the AMR discontinuities, we cre-
ate a simple configuration with a density step in the middle
of a 3D simulation box. The step, shown in Fig. 7, poses a
discontinuity in the otherwise smooth mass density. Similar
steps are created during AMR simulations in regions where
there is no one-to-one match between the Vlasov and field
solver grid cells. We apply the boxcar filtering operator an

increasing number of times to evaluate its performance, and
the results are illustrated in Fig. 7. When the filtering oper-
ator is cascaded with itself, its effect becomes more signifi-
cant in damping high-frequency signals, as shown in Fig. 4.
In Fig. 7, we only show the effect of the boxcar operator be-
cause the results are identical to using the triangular kernel
operator, as shown by the frequency response of the two ker-
nels depicted in Fig. 4.

Furthermore, we demonstrate the results of the boxcar fil-
tering operator in a large magnetospheric production-scale
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Figure 4. Solid lines show the frequency response of the boxcar
filter operator for different numbers of passes as used in Vlasiator.
Dashed lines show the frequency response of the triangular filter
operator for different numbers of passes as used in Vlasiator.

Figure 5. Graphical representation of the boxcar and the triangle
kernels. The 2D slices are taken from the middle of the kernel’s
third dimension. For better clarity, the boxcar kernel is padded with
zeros and the kernel weights, shown in red font, are not normalized.

run using four AMR levels. Simulation quantities on the het-
erogeneous grid structure are illustrated in Fig. 8. In Fig. 8a,
a color map of the mass density on the AMR Vlasov grid
is depicted. The discontinuities at the AMR level interfaces
are visible. In Fig. 8b, a color map of the mass density on
the uniform field solver grid is illustrated after the coupling
process has taken place. During the coupling process, the fil-
tering operator is used, and the AMR levels are treated, from
finest to coarsest, with 0, 2, 4, and 8 passes, respectively. Fig-
ure 8c and e show the respective electric field and magnetic
field magnitudes simulated with filtered moments on FsGrid.
The profiles demonstrated in Fig. 8d and f are sampled along
the dashed paths in Fig. 8c and e, respectively.

The simulation used to evaluate the filtering operator mod-
els a 3D space around Earth in the Geocentric Solar Mag-
netic (GSM) coordinate system with no dipole tilt. The mod-

Figure 6. Schematic of Vlasiator’s grid-coupling scheme supple-
mented with the extra filtering step to alleviate the staircase effect
in 6D AMR runs.

Figure 7. Smoothing of a step in mass density along a line in the
simulation domain intersecting a discontinuity. The unfiltered nor-
malized mass density line profile is shown in blue, and the other
colors correspond to an increasing number of boxcar passes.

eled space extends from −560000 to 240000km in the X
dimension, from −368000 to 368000km in both the Y and
Z dimensions, and is represented by a 100× 92× 92 Carte-
sian mesh with 1r = 8000km at the lowest refinement level
and with1r = 1000km at the highest refinement level. Each
spatial cell contains a velocity space with a 3D grid with
1v = 40kms−1. The solar wind is modeled with proton den-
sity n= 7cm−3, temperature T = 0.5×106 K and solar wind
speed Vx =−1000kms−1. The interplanetary magnetic field
points mostly southward with B = [−0.5,0,−20]nT.
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Figure 8. Vlasiator magnetospheric simulation results. (a) Mass density color map (on the AMR Vlasov grid) of a 6D AMR simulation. (b)
Mass density color map (on the uniform FsGrid) of a 6D AMR simulation with the filtering operator in use. In panels (a) and (b), mp stands
for proton mass. There are four refinement levels, and they are treated with 0, 2, 4, and 8 filtering passes from finest to coarsest, respectively.
The insets in panels (a) and (b) illustrate the mass density on the uniform field solver grid. The AMR Vlasov mesh is denoted by the black
lines. The insets are taken from the regions highlighted by black squares in panels (a) and (b). The step discontinuities visible in the inset
in panel (a) are spatially co-located with the DCCRG grid cells. (c) Electric field magnitude color map (on the uniform FsGrid) with the
filtering operator in use. (d) Electric field profile sampled along the dashed line in panel (c). (e) Magnetic field magnitude color map (on the
uniform FsGrid) with the filtering operator in use. (f) Magnetic field profile sampled along the dashed line in panel (e).

4.1 Performance overhead

Care has to be taken to keep the performance overhead of
the filtering operator small. The boxcar operator is applied
at every simulation time step and makes use of a duplicate
FsGrid structure of the Vlasov moments because the filtering
cannot happen in place. The boxcar operator uses OpenMP
threading to parallelize the filtering over the local domain
of each MPI task. In Table 1, we report the extra memory

needed for the filtering operator and the time spent filtering
the Vlasov moments during the grid-coupling process for the
production 6D AMR run shown in Fig. 8.

From Table 1, we see that the boxcar filtering operator
used in Vlasiator 5.1 amounts to 6 % of the total simulation
time for a production run like the one in Fig. 8. To evalu-
ate the performance improvement of the five-stencil trian-
gle kernel implementation, used in Vlasiator 5.2.1, we set
up smaller tests and compare the two methods. The triangle
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Table 1. Profiling statistics for the boxcar filtering operator.

Memory used for the simulation [GB] 11 000
Memory used for the boxcar filtering [GB] 15.68 (0.14%)
Time spent on simulation [s] 50 410
Time spent on boxcar filtering [s] 2818 (6%)

Table 2. Comparison of the two filtering kernels’ performance.

Memory used for the simulation [GB] 250
Memory used for the boxcar operator [GB] 0.035 (0.014%)
Memory used for the triangle operator [GB] 0.035 (0.014%)
Time spent on simulation [s] 1260
Time spent by the boxcar operator [s] 147 (11.8%)
Time spent by the triangle operator [s] 87 (7.0%)

kernel operates in the same way but only needs half the num-
bers of passes to achieve proper smoothing, so we treat the
finest to coarsest levels with 0, 1, 2, and 4 passes. We report
the results in Table 2.

While both approaches require the same amount of mem-
ory, the time spent by the triangular operator amounts to 59%
of that spent by the boxcar operator.

Both the boxcar and the triangular filtering operators are
3D spatial convolutions that can be expressed as three 1D
convolutions (Birchfield, 2017). This is known as kernel sep-
arability and can improve the performance of the two op-
erators significantly. Formally, the use of a separable ker-
nel instead of a 3D one, would reduce the complexity from
O(Nx×Ny×Nz×d3) (whereNx,Ny, andNz are the dimen-
sions of the simulation mesh, and d is the dimension size of
the 3D kernel) to O(3×Nx ×Ny ×Nz× d). We modify our
implementations of the 3D boxcar and triangle operators to
take advantage of the kernel separability property and test
their performance using the same configuration used to pro-
duce the results in Table 2. We demonstrate the performance
statistics of all four methods in Fig. 9.

While the separable operators should theoretically lead to
a significant performance gain, the 1D operators are slower
than their 3D counterparts in practice. This is due to the fact
that an interim ghost-update communication needs to take
place after every pass done by the operators, and, as the 1D
implementations require more mesh traversals per pass, they
end up spending more time on updating their ghost cell val-
ues. Additionally, we note that kernel separability does not
hold if the stencil is altered – for example, when part of the
kernel covers the highest refinement level.

4.2 Moment conservation

The filtering operator, as described above, is not conservative
at the interface of adjacent refinements levels. However, this
is not a cumulative effect because moments on FsGrid, used
to propagate the electromagnetic fields, are provided to the

Figure 9. Profiling statistics for the different implementations of
the filtering operators in Vlasiator. The results are derived from a
custom simulation setup designed to test filtering performance.

field solver by the Vlasov solver at each time step and are not
copied back from the FsGrid. Furthermore, the moment con-
servation is also violated due to numerical precision round-
off errors during the filtering passes. The amount by which
the moments are not conserved depends on the number of
filtering passes and on the number of cells in a given sim-
ulation. We measure the relative difference in mass density
caused by the filtering operator in the simulations presented
in this work and find it to always remain below 10−5, which
we deem acceptable given the non-cumulative nature of the
filtering operation.

5 Discussion

The first 6D simulations with Vlasiator 5.0 would not have
been possible without the use of AMR. However, the het-
erologous grid structure and the grid-coupling mechanism in
Vlasiator create artifacts in simulations using AMR that alter
the global physics. In this work, we report on a new develop-
ment employing spatial filtering in the hybrid-Vlasov code
Vlasiator (versions 5.1 and 5.2.1) in order to alleviate the
staircase effect created due to the heterologous AMR scheme
used in 6D simulations. Based on the results of this study,
the use of a linearly increasing number of passes per refine-
ment level minimizes the aliasing effect at the Vlasov–field
solver grid interfaces. Treating the finest to coarsest levels
with 0, 2, 4, and 8 passes of the boxcar filter, for example,
has proved to alleviate the staircase effect satisfactorily, as
can be seen in Fig. 8a and b. As a result, the electric and
magnetic field magnitude profiles in Fig. 8d and f show none
of the oscillatory behavior caused by the staircase effect, in
contrast to those demonstrated in Fig. 3d and f. As the filter-
ing operator is applied at every simulation time step, it has
to be well optimized so that it does not increase the com-
putational overhead significantly. From Table 1, we see that
the filtering in a production simulation amounts to 6% of the
computational time, which we deem significant. To improve
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the filtering performance, we develop a 3D five-point stencil
triangle kernel in Vlasiator 5.2.1, which is equivalent with
respect to alleviating the staircase effect but only needs half
the number of passes per refinement level. We test the tri-
angle kernel on a smaller simulation and report on its perfor-
mance in Table 2. The triangle kernel provides a 41% perfor-
mance improvement over the boxcar approach; thus, we esti-
mate that, in a similar simulation to the one shown in Fig. 8 it
would amount to 3.5% of the total simulation time, which we
deem acceptable. The improved performance is a combina-
tion of both halving the ghost cell updates needed for the tri-
angular kernel operator and reducing the operations needed
because the wider kernel operator requires half the number
of passes compared with the boxcar operator. Furthermore,
we evaluate the performance gain acquired by exploiting the
filter separability property of the two filtering operators and
conclude that the separable kernels in fact perform worse in
the context of Vlasiator than their 3D counterparts, as they
are hindered by the higher number of ghost cell updates that
they require. Another approach to improve the performance
of the filtering methods would be to use an even wider ker-
nel to completely eliminate the ghost cell updates; however,
that would require increasing the number of ghost cells used
by FsGrid. We choose to limit the number of ghost cells to
four per dimension (two ghost cells per side) to avoid the
extra memory penalty; thus, we limit ourselves to using five-
point stencils. A larger ghost domain would also make exist-
ing ghost communication more expensive. Furthermore, the
memory footprint is the same for both methods and insignifi-
cant compared with the memory needed to store the velocity
distribution function for each spatial cell, as shown in Ta-
ble 1. The filtering operator presented in this work has been
used to aid in 6D simulations performed with Vlasiator with
respect to efficiently alleviating the artifacts introduced by
the staircase effect.

Code and data availability. The Vlasiator simulation code
is distributed under the GPL-2 open-source license at
https://github.com/fmihpc/vlasiator (last access: June 2022).
In Vlasiator 5.0 (https://doi.org/10.5281/ZENODO.3640594,
von Alfthan et al., 2020), spatial AMR was introduced to
enable the 6D simulations. The spatial filtering method
as discussed in this work was introduced in Vlasiator 5.1
(https://doi.org/10.5281/ZENODO.4719554, Pfau-Kempf et al.,
2021). The more efficient triangle filtering operator was introduced
in Vlasiator 5.2.1 (https://doi.org/10.5281/ZENODO.6782211,
Pfau-Kempf et al., 2022). The Analysator software
(https://doi.org/10.5281/zenodo.4462515, Battarbee et al., 2021)
was used to produce the presented figures. Data presented in this
paper can be accessed by following the data policy on the Vlasiator
website.
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