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Figure S1. Spatial distribution of original and interpolated time series as for mean and standard deviation. Panel a and c are the mean and
STD of time series of whole original PM2. 5 used in this work. Panel b and d are the same with a and ¢ but with imputation. There is no
significant change in colors between the distribution of original and imputed time series which implies the interpolation method is reliable.



Algorithm 1 KNN interpolation based on IDW

: Initialization: read input site E
: Calculate its’ distance D with surrounding sites and construct distance matrix
. if Dy < 0.8 radius then
Get all proper sites and count the amount F’
if F; > 4 then
Randomly select 4 sites
else if Fs < 2 then
Drop E
else
Select all proper sites
end if
: end if
: while exist missing values do
IDW
: end while
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Feature importance of NCP using GB
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Figure S2. Heatmap of all empirical features with random 15 monitoring stations in NCP and four predicting horizons. The circle, diamond,
square and triangle represent four predicting horizons 6, 12, 18 and 24 h respectively. The heatmap is based on ranking the SAGE analysis
of features training by GB. The warmer the color tone on the whole rows, the more important the corresponding feature.
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Figure S3. Heatmap of all empirical features with random 15 monitoring stations in NCP and four predicting horizons. The circle, diamond,
square and triangle represent four predicting horizons 6, 12, 18 and 24 h respectively. The heatmap is based on ranking the SAGE analysis
of features training by RF. The warmer the color tone on the whole rows, the more important the corresponding feature.

Table S1. Summary of prediction performance in the time period of April, 2020.

Predicting horizon

Region Metric 6 13
standardML. RFSML standardML. RFSML
RMSE 17.71 12.20 22.11 16.71
NCP MAE 14.06 9.30 17.86 13.19
R 0.71 0.83 0.50 0.69
RMSE 10.70 7.78 13.17 11.10
PRD MAE 8.51 5.74 10.38 8.39
R 0.83 0.90 0.70 0.77
RMSE 13.29 10.37 17.02 13.51
SCB MAE 10.13 7.63 13.11 10.20
R 0.72 0.81 0.53 0.66
RMSE 14.08 10.43 18.67 14.41
YRD MAE 11.27 8.09 14.76 11.48
R 0.75 0.87 0.51 0.74
RMSE 16.26 13.24 19.80 16.44
FWP MAE 12.69 10.14 15.65 12.97
R 0.66 0.73 0.47 0.60
RMSE 21.59 17.89 26.01 22.25
REST MAE 14.29 10.50 17.48 13.62
R 0.68 0.79 0.48 0.66
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Figure S4. Heatmap of all empirical features with random 15 monitoring stations in SCB and four predicting horizons. The circle, diamond,
square and triangle represent four predicting horizons 6, 12, 18 and 24 h respectively. The heatmap is based on ranking the SAGE analysis
of features training by MLP. The warmer the color tone on the whole rows, the more important the corresponding feature.
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Figure S5. Heatmap of all empirical features with random 15 monitoring stations in SCB and four predicting horizons. The circle, diamond,
square and triangle represent four predicting horizons 6, 12, 18 and 24 h respectively. The heatmap is based on ranking the SAGE analysis
of features training by GB. The warmer the color tone on the whole rows, the more important the corresponding feature.



Feature importance of SCB using RF
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Figure S6. Heatmap of all empirical features with random 15 monitoring stations in SCB and four predicting horizons. The circle, diamond,
square and triangle represent four predicting horizons 6, 12, 18 and 24 h respectively. The heatmap is based on ranking the SAGE analysis
of features training by RF. The warmer the color tone on the whole rows, the more important the corresponding feature.



Feature importance of YRD using MLP
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Figure S7. Heatmap of all empirical features with random 15 monitoring stations in YRD and four predicting horizons. The circle, diamond,
square and triangle represent four predicting horizons 6, 12, 18 and 24 h respectively. The heatmap is based on ranking the SAGE analysis
of features training by MLP. The warmer the color tone on the whole rows, the more important the corresponding feature.
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Figure S8. Heatmap of all empirical features with random 15 monitoring stations in YRD and four predicting horizons. The circle, diamond,
square and triangle represent four predicting horizons 6, 12, 18 and 24 h respectively. The heatmap is based on ranking the SAGE analysis
of features training by GB. The warmer the color tone on the whole rows, the more important the corresponding feature.



Feature importance of YRD using RF
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Figure S9. Heatmap of all empirical features with random 15 monitoring stations in YRD and four predicting horizons. The circle, diamond,
square and triangle represent four predicting horizons 6, 12, 18 and 24 h respectively. The heatmap is based on ranking the SAGE analysis
of features training by RF. The warmer the color tone on the whole rows, the more important the corresponding feature.
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Figure S10. Heatmap of all empirical features with random 15 monitoring stations in PRD and four predicting horizons. The circle, diamond,
square and triangle represent four predicting horizons 6, 12, 18 and 24 h respectively. The heatmap is based on ranking the SAGE analysis
of features training by MLP. The warmer the color tone on the whole rows, the more important the corresponding feature.
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Figure S11. Heatmap of all empirical features with random 15 monitoring stations in PRD and four predicting horizons. The circle, diamond,
square and triangle represent four predicting horizons 6, 12, 18 and 24 h respectively. The heatmap is based on ranking the SAGE analysis
of features training by GB. The warmer the color tone on the whole rows, the more important the corresponding feature.
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Feature importance of PRD using RF
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Figure S12. Heatmap of all empirical features with random 15 monitoring stations in PRD and four predicting horizons. The circle, diamond,
square and triangle represent four predicting horizons 6, 12, 18 and 24 h respectively. The heatmap is based on ranking the SAGE analysis
of features training by RF. The warmer the color tone on the whole rows, the more important the corresponding feature.
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Figure S13. Heatmap of all empirical features with random 15 monitoring stations in FWP and four predicting horizons. The circle, diamond,
square and triangle represent four predicting horizons 6, 12, 18 and 24 h respectively. The heatmap is based on ranking the SAGE analysis
of features training by MLP. The warmer the color tone on the whole rows, the more important the corresponding feature.
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Feature importance of FWP using GB
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Figure S14. Heatmap of all empirical features with random 15 monitoring stations in PRD and four predicting horizons. The circle, diamond,
square and triangle represent four predicting horizons 6, 12, 18 and 24 h respectively. The heatmap is based on ranking the SAGE analysis
of features training by GB. The warmer the color tone on the whole rows, the more important the corresponding feature.
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Feature importance of FWP using
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Figure S15. Heatmap of all empirical features with random 15 monitoring stations in PRD and four predicting horizons. The circle, diamond,
square and triangle represent four predicting horizons 6, 12, 18 and 24 h respectively. The heatmap is based on ranking the SAGE analysis
of features training by RF. The warmer the color tone on the whole rows, the more important the corresponding feature.
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Figure S16. Heatmap of all empirical features with random 15 monitoring stations in the rest area of China and four predicting horizons.

The circle, diamond, square and triangle represent four predicting horizons 6, 12, 18 and 24 h respectively. The heatmap is based on ranking
the SAGE analysis of features training by MLP. The warmer the color tone on the whole rows, the more important the corresponding feature.
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Feature importance of REST using GB
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Figure S17. Heatmap of all empirical features with random 15 monitoring stations in the rest area of China and four predicting horizons.
The circle, diamond, square and triangle represent four predicting horizons 6, 12, 18 and 24 h respectively. The heatmap is based on ranking
the SAGE analysis of features training by GB. The warmer the color tone on the whole rows, the more important the corresponding feature.
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Feature importance of REST using RF
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Figure S18. Heatmap of all empirical features with random 15 monitoring stations in the rest area of China and four predicting horizons.
The circle, diamond, square and triangle represent four predicting horizons 6, 12, 18 and 24 h respectively. The heatmap is based on ranking
the SAGE analysis of features training by RF. The warmer the color tone on the whole rows, the more important the corresponding feature.
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Figure S19. Spatial distribution of RMSE and MAE in a predicting horizon of 6 hours. Panel a and c are results of standard machine learning

system while panel b and d are results of RFSML. The cooler the color tone, the lower the RMSE and MAE, thus the better predicting
performance.
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Figure S20. Spatial distribution of RMSE and MAE in a predicting horizon of 18 hours. Panel a and c are results of standard machine

learning system while panel b and d are results of RFSML. The cooler the color tone, the lower the RMSE and MAE, thus the better
predicting performance.

20



GB-RFSML

110°E 120°E
RF-RFSML

100°E

90°E

120°E

E 100°E  110°E
MLP-RFSML

90

GB-standardML

T10°E 120°E
RF-standardML

100°E

90°E

120°E

MLP-standardML

110°E

100°E

90°E

E  100°E  110°E  120°E

90°

100°E  110°E  120°E

90°E

GB-RFSML

100°E 110°E 120°E
RF-RFSML

90°E

100°E  110°E  120°E
MLP-RFSML

90°E

°E 100°E  110°E  120°E

90

GB-standardML

TI0°E 120°E
RF-standardML

100°E

90°E

120°E

MLP-standardML

110°E

100°E

90°E

E  100°E  110°E  120°E

90°

38

2%
MAE (ug/m®)

17

10

25 35 45 55
RMSE (ug/m3)

15

Spatial distribution of RMSE and MAE in a predicting horizon of 24 hours. Panel a and c are results of standard machine

Figure S21.

learning system while panel b and d are results of RFESML. The cooler the color tone, the lower the RMSE and MAE, thus the better

predicting performance.
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Figure S22. Time series of a prediction horizon of 6 hours in five mega-city cluster regions. The black dots and red pentacles represent
original and interpolated PM3 5 respectively. The solid lines with light sky blue and dark violet represent prediction of standard machine
learning system and RESML respectively. Panel a, b, ¢, d and e represent a random site in NCP, YRD, PRD, SCB and FWP respectively.
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Figure S23. Spatial distribution of RMSE in a predicting horizon of 6 and 18 hours. Panel a and c are results of standard machine learning
system while panel b and d are results of RESML. The cooler the color tone, the lower the RMSE, thus the better predicting performance.
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Figure S24. Spatial distribution of MAE in a predicting horizon of 6 and 18 hours. Panel a and c are results of standard machine learning
system while panel b and d are results of RESML. The cooler the color tone, the lower the MAE, thus the better predicting performance.
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