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Abstract. Ensemble variational methods form the basis of
the state of the art for nonlinear, scalable data assimila-
tion, yet current designs may not be cost-effective for real-
time, short-range forecast systems. We propose a novel es-
timator in this formalism that is designed for applications
in which forecast error dynamics is weakly nonlinear, such
as synoptic-scale meteorology. Our method combines the
3D sequential filter analysis and retrospective reanalysis of
the classic ensemble Kalman smoother with an iterative en-
semble simulation of 4D smoothers. To rigorously derive
and contextualize our method, we review related ensem-
ble smoothers in a Bayesian maximum a posteriori narra-
tive. We then develop and intercompare these schemes in the
open-source Julia package DataAssimilationBenchmarks.jl,
with pseudo-code provided for their implementations. This
numerical framework, supporting our mathematical results,
produces extensive benchmarks demonstrating the signif-
icant performance advantages of our proposed technique.
Particularly, our single-iteration ensemble Kalman smoother
(SIEnKS) is shown to improve prediction/analysis accuracy
and to simultaneously reduce the leading-order computa-
tional cost of iterative smoothing in a variety of test cases
relevant for short-range forecasting. This long work presents
our novel SIEnKS and provides a theoretical and computa-
tional framework for the further development of ensemble
variational Kalman filters and smoothers.

1 Introduction

1.1 Context

Ensemble variational methods form the basis of the state of
the art for nonlinear, scalable data assimilation (DA; Asch
et al., 2016; Bannister, 2017). Estimators following an en-
semble Kalman filter (EnKF) analysis include the seminal
maximum likelihood filter and 4DEnVAR (Zupanski, 2005;
Liu et al., 2008), the ensemble randomized maximum like-
lihood method (EnRML; Gu and Oliver, 2007; Chen and
Oliver, 2012; Raanes et al., 2019b), the iterative ensem-
ble Kalman smoother (IEnKS; Sakov et al., 2012; Bocquet
and Sakov, 2013, 2014), and the ensemble Kalman inver-
sion (EKI; Iglesias et al., 2013; Schillings and Stuart, 2018;
Kovachki and Stuart, 2019). Unlike traditional 3D-Var and
4D-Var, which use the adjoint-based approximation for the
gradient of the Bayesian maximum a posteriori (MAP) cost
function, these EnKF-based approaches utilize an ensemble
of nonlinear forecast model simulations to approximate the
tangent linear model. The gradient can then be approximated
by, e.g., finite differences from the ensemble mean as in the
bundle variant of the IEnKS (Bocquet and Sakov, 2014). The
ensemble approximation can thus obviate constructing tan-
gent linear and adjoint code for nonlinear forecast and obser-
vation models, which comes at a major cost in development
time for operational DA systems.

These EnKF-based, ensemble variational methods com-
bine the high accuracy of the iterative solution to the
Bayesian MAP formulation of the nonlinear DA problem
(Sakov et al., 2012; Bocquet and Sakov, 2014), the rela-
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tive simplicity of model development and maintenance in
ensemble-based DA (Kalnay et al., 2007), the ensemble anal-
ysis of time-dependent errors (Corazza et al., 2003), and
a variational optimization of hyperparameters for, e.g., in-
flation (Bocquet et al., 2015), localization (Lorenc, 2003),
and surrogate models (Bocquet et al., 2020) to augment
the estimation scheme. However, while the above schemes
are promising for moderately nonlinear and non-Gaussian
DA, an obstacle to their use in real-time, short-range fore-
cast systems lies in the computational barrier of simulating
the nonlinear forecast model in the ensemble sampling pro-
cedure. In order to produce forecast, filter, and reanalyzed
smoother statistics, these estimators may require multiple
runs of the ensemble simulation over the data assimilation
window (DAW), consisting of lagged past and current times.

When nonlinearity in the DA cycle is not dominated by
the forecast error dynamics, as in synoptic-scale meteorol-
ogy, an iterative optimization over the forecast simulation
may not produce a cost-effective reduction in the forecast
error. Particularly, when the linear Gaussian approximation
for the forecast error dynamics is adequate, nonlinearity in
the DA cycle may instead be dominated by the nonlinearity
in the observation model, the nonlinearity in the hyperpa-
rameter optimization, or the nonlinearity in temporally in-
terpolating a reanalyzed, smoothed solution over the DAW.
In this setting, our formulation of iterative, ensemble varia-
tional smoothing has substantial advantages in balancing the
computational cost/prediction accuracy tradeoff.

1.2 Objectives and outline

This long paper achieves three connected objectives. First,
we review and update a variety of already published
smoother algorithms in a narrative of Bayesian MAP esti-
mation. Second, we use this framework to derive and con-
textualize our estimation technique. Third, we develop all
our algorithms and test cases in the open-source Julia pack-
age DataAssimilationBenchmarks.jl (Bezanson et al., 2017;
Grudzien et al., 2021). This numerical framework, support-
ing our mathematical results, produces extensive simula-
tion benchmarks, validating the performance advantages of
our proposed technique. These simulations likewise estab-
lish fundamental performance metrics for all estimators and
the Julia package DataAssimilationBenchmarks.jl.

Our proposed technique combines the 3D sequential filter
analysis and retrospective reanalysis of the classic ensemble
Kalman smoother (EnKS; Evensen and Van Leeuwen, 2000)
with an iterative ensemble simulation of 4D smoothers. Fol-
lowing a 3D filter analysis and retrospective reanalysis of
lagged states, we reinitialize each subsequent smoothing cy-
cle with a reanalyzed, lagged ensemble state. The resulting
scheme is a single-iteration ensemble Kalman smoother, de-
noted as such as it produces its forecast, filter, and reana-
lyzed smoother statistics with a single iteration of the ensem-
ble simulation over the DAW. By doing so, we seek to mini-

mize the leading-order cost of ensemble variational smooth-
ing in real-time, geophysical forecast models, i.e., the ensem-
ble simulation. However, the scheme can iteratively optimize
the sequential filter cost functions in the DAW without com-
puting additional iterations of the ensemble simulation.

We denote our framework single-iteration smoothing,
while the specific implementation presented here is denoted
as the single-iteration ensemble Kalman smoother (SIEnKS).
For linear Gaussian systems, with the perfect model hypothe-
sis, the SIEnKS is a consistent Bayesian estimator, albeit one
that uses redundant model simulations. When the forecast er-
ror dynamics is weakly nonlinear, yet other aspects of the DA
cycle are moderately to strongly nonlinear, we demonstrate
that the SIEnKS has a prediction and analysis accuracy that
is comparable to, and often better than, some traditional 4D
iterative smoothers. However, the SIEnKS has a numerical
cost that scales in iteratively optimizing the sequential fil-
ter cost functions for the DAW, i.e., the cost of the SIEnKS
scales in matrix inversions in the ensemble dimension rather
than in the cost of ensemble simulations, making our method-
ology suitable for operational short-range forecasting.

Over long DAWs, the performance of iterative smoothers
can degrade significantly due to the increasing nonlinearity
in temporally interpolating the posterior estimate over the
window of lagged states. Furthermore, with a standard, sin-
gle data assimilation (SDA) smoother, each observation is
only assimilated once, meaning that new observations are
only distantly connected to the initial conditions of the en-
semble simulation; this can introduce many local minima to
a smoother analysis, strongly affecting an optimization (Fil-
lion et al., 2018, and references therein). To handle the in-
creasing nonlinearity of the DA cycle in long DAWs, we de-
rive a novel form of the method of multiple data assimilation
(MDA), previously derived in a 4D stationary and sequen-
tial DAW analysis (Emerick and Reynolds, 2013; Bocquet
and Sakov, 2014, respectively). Our new MDA technique ex-
ploits the single-iteration formalism to partially assimilate
each observation within the DAW with a sequential 3D fil-
ter analysis and retrospective reanalysis. Particularly, the se-
quential filter analysis constrains the ensemble simulation to
the observations while temporally interpolating the posterior
estimate over the DAW – this constraint is shown to improve
the filter and forecast accuracy at the end of long DAWs and
the stability of the joint posterior estimate versus the 4D ap-
proach. This key result is at the core of how the SIEnKS is
able to outperform the predictive and analysis accuracy of
4D smoothing schemes while, at the same time, maintaining
a lower leading-order computational cost.

This work is organized as follows. Section 2 introduces
our notations. Section 3 reviews the mathematical formal-
ism for the ensemble transform Kalman filter (ETKF) based
on the LETKF formalism of Hunt et al. (2007), Sakov and
Oke (2008b), and Sakov and Bertino (2011). Subsequently,
we discuss the extension of the ETKF to fixed-lag smooth-
ing in terms of (i) the right-transform EnKS, (ii) the IEnKS,
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and (iii) the SIEnKS, with each being different approximate
solutions to the Bayesian MAP problem. Section 4 discusses
several applications that distinguish the performance of these
estimators. Section 5 provides an algorithmic cost analysis
for these estimators and demonstrates forecast, filter, and
smoother benchmarks for the EnKS, the IEnKS, and the
SIEnKS in a variety of DA configurations. Section 6 sum-
marizes these results and discusses future opportunities for
the single-iteration smoother framework. Appendix A con-
tains the pseudo-code for the algorithms presented in this
work, which are implemented in the open-source Julia pack-
age DataAssimilationBenchmarks.jl (Grudzien et al., 2021).
Note that, due to the challenges in formulating localiza-
tion/hybridization for the IEnKS (Bocquet, 2016), we ne-
glect a treatment of these techniques in this initial study of
the SIEnKS, though this will be treated in a future work.

2 Notations

Matrices are denoted with upper-case bold and vectors with
lower-case bold and italics. The standard Euclidean vector
norm is denoted ‖ v ‖:=

√
v>v. For a symmetric, positive

definite matrix A ∈ RN×N , we define the Mahalanobis vector
norm with respect to A (Sankhya, 2018) as follows:

‖ v‖A :=
√
v>A−1v. (1)

For a generic matrix A ∈ RN×M , with full-column rank M ,
we denote the pseudo-inverse as follows:

A†
:=

(
A>A

)−1
A>. (2)

When A has a full-column rank as above, we define the Ma-
halanobis vector “norm”, with respect to G= AA>, as fol-
lows:

‖ v‖G :=

√(
A†v

)> (A†v
)
. (3)

Note that when G does not have full-column rank, i.e., N >

M , this is not a true norm on RN as it is degenerate in the null
space of A†. Instead, this is a lift of a non-degenerate norm
in the column span of A to RN . For v in the column span of
A,

v = Aw, (4a)
‖ v‖G =‖ w ‖, (4b)

for a vector of weights w ∈ RM .
Let x denote a random vector of physics-based model

states. Assume that an initial, prior probability density func-
tion (density henceforth) on the model state p(x0) is given,
with a hidden Markov model of the following form:

xk =Mk (xk−1) , (5a)
yk =Hk (xk)+ εk, (5b)

which determines the distribution of future states, with the
dependence on the time tk denoted by the subscript k. For

simplicity, assume that 1t := tk − tk−1 is fixed for all k,
though this is not a required restriction in any of the follow-
ing arguments. The dimensions of the above system are de-
noted as follows: (i) Nx is the model state dimension xk ∈
RNx , (ii) Ny is the observation vector dimension yk ∈ RNy ,
and (iii)Ne is the ensemble size, where an ensemble matrix is
given as Ek ∈ RNx×Ne . State model and observation variables
are related via the (possibly) nonlinear observation operator
Hk : RNx 7−→ RNy . Observation noise εk is assumed to be
an unbiased white sequence such that, in the following:

E
{
εkε
>

l

}
= δk,lRk, (6)

where E is the expectation, Rk ∈ RNy×Ny is the observation
error covariance matrix at time tk , and δk,l denotes the Kro-
necker delta function on the indices k and l. The error co-
variance matrix Rk is assumed to be invertible without losing
generality.

The above configuration refers to a perfect model hypoth-
esis (Grudzien and Bocquet, 2021) in which the transition
probability for dx ⊂ RNx is written as follows:

P (xk ∈ dx|xk−1)= δMk(xk−1)(dx), (7)

with δv referring to the Dirac measure at v ∈ RNx . Similarly,
we say that the transition density is proportional, as follows:

p(xk|xk−1)∝ δ {xk −Mk (xk−1)} , (8)

where δ represents the Dirac distribution. The Dirac mea-
sure is singular with respect to Lebesgue measure, so this is
simply a convenient abuse of the notation that can be made
rigorous with the generalized function theory of distributions
(Taylor, 1996, see chap. 3 Sect. 4). The perfect model as-
sumption is utilized throughout this work to frame the stud-
ied assimilation schemes in a unified manner, although this
is a highly simplified framework for a realistic geophysical
DA problem. Extending the single-iteration formalism to the
case of model errors will be studied in a future work.

Define the multivariate Gaussian density as follows:

n(z|z,B) :=
1√

(2π)Nzdet(B)
exp

{
−

1
2
(z− z)>B−1 (z− z)

}
. (9)

In the case where (i) Mk :=Mk and Hk :=Hk are both lin-
ear transformations, (ii) the observation likelihood is

p(yk|xk) := n(yk|Hkxk,Rk), (10)

and (iii) the first prior is given as follows:

p(x0) := n(x0,B0). (11)

Then, the DA configuration is of a perfect linear Gaussian
model. This is a further restriction of the perfect model as-
sumption from which many classical filtering results are de-
rived, though it is only a heuristic for nonlinear and erroneous
geophysical DA.
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For a time series of model or observation states with l > k,
we define the notations as follows:

xl:k := {xl,xl−1, · · ·,xk} , (12a)
yl:k :=

{
yl,yl−1, · · ·,yk

}
. (12b)

To distinguish between the various conditional probabilities
under consideration, we make the following definitions. Let
l > k; then, the forecast density is denoted as follows:

p(xl |xl−1:1,yl−1:1). (13)

Next, the filter density is denoted as follows:

p(xl |yl:1). (14)

A smoother density for xk , given observations yl:1, is de-
noted as follows:

p(xk|yl:1). (15)

In the above, the filter and smoother densities are marginals
of the joint posterior density, denoted as follows:

p(xl:1|yl:1). (16)

The Markov hypothesis implies that the forecast density can,
furthermore, be written as follows:

p(xk|xk−1:1,yk−1:1)= p(xk|xk−1). (17)

For a fixed-lag smoother, define a shift in length S ≥ 1
analysis times and a lag of length L≥ S analysis times,
where time tL denotes the present time. We use an algorith-
mically stationary DAW throughout the work, referring to
the time indices {t1, · · ·, tL}. Smoother schemes estimate the
joint posterior density p(xL:1|yL:1) or one of its marginals
in a DA cycle. After each estimate is produced, the DAW
is subsequently shifted in time by S×1t , and all states are
reindexed by tk := tk+S to begin the next DA cycle. For a
lag of L and a shift of S, the observation vectors at times
{tL−S+1, · · ·, tL} correspond to the observations newly enter-
ing the DAW at time tL. When S = L, the DAWs are dis-
connected and adjacent in time, whereas, for S < L, there is
an overlap between the estimated states in sequential DAWs.
Figure 1 provides a schematic of how the DAW is shifted for
a lag ofL= 5 and shift of S = 2. Following the convention in
DA that there is no observation at time zero, in addition to the
DAW {t1, · · ·, tL}, states at time t0 are estimated or utilized to
connect estimates between adjacent/overlapping DAWs.

Define the background mean and covariance as follows:

xik := E
{
xik

}
, (18a)

Bik := E
{[
xik − x

i
k

][
xik − x

i
k

]>}
, (18b)

where the label i refers to the density with respect to which
the expectation is taken. The ensemble matrix Eik ∈ R

Nx×Ne

is likewise given a label i, denoting the conditional den-
sity according to which the ensemble is approximately dis-
tributed. The ensemble Efore

k is assumed to have columns
sampled that are independent and identically distributed (iid),
according to the forecast density. The ensemble Efilt

k is as-
sumed to have columns iid, according to the filter density.
The ensemble Esmth

k|L is assumed to have columns iid accord-
ing to a smoother density for the state at time tk , given ob-
servations up to time tL. Multiple data assimilation schemes
will also utilize a balancing ensemble Ebal

k and an MDA en-
semble Emda

k , which will be defined in Sect. 4.3. Time in-
dices and labels may be suppressed when the meaning is still
clear in the context. Note that, in realistic geophysical DA,
the iid assumption rarely holds in practice, and even in the
perfect linear Gaussian model, the above identifications are
approximations due to the sampling error in estimating the
background mean and covariance.

The forecast model is given by Eik+1 =Mk+1

(
Ejk
)

, re-
ferring to the action of the map being applied column-
wise, and where the type of ensemble input and output
i,j ∈ {fore,filt,smth,bal,mda} (forecast/filter/smoother/bal-
ancing/MDA) is specified according to the estimation
scheme. Define the composition of the forecast model as
Eil =Ml ◦ · · · ◦Mk =Ml:k

(
Ejk−1

)
. Let 1 denote the vector

with all entries equal to one, such that the ensemble-based
empirical mean, the ensemble perturbation matrix, and the
ensemble-based empirical covariance are each defined by lin-
ear operations with conformal dimensions as follows:

x̂ik := Eik1/Ne, (19a)

Xik := Eik − x̂
i
k1
>

= Eik
(

INe − 11>/Ne

)
, (19b)

Pik := Xik
(

Xik
)>
/(Ne− 1) , (19c)

which is distinguished from the background mean xii and
background covariance Bik .

3 Deriving the SIEnKS

The ETKF analysis (Hunt et al., 2007) is utilized in the fol-
lowing for its popularity and efficiency and in order to em-
phasize the commonality and differences between other well-
known smoothing schemes. However, the single-iteration
framework is not restricted to any particular filter analysis,
and other types of filter analysis, such as the deterministic
EnKF (DEnKF) of Sakov and Oke (2008a), are compatible
with the formalism and may be considered in future studies.

3.1 The ETKF

The filter problem is expressed recursively in the Bayesian
MAP formalism with an algorithmically stationary DAW as
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Figure 1. Three cycles of a smoother with a shift S = 2 and a lag L= 5. The cycle number increases from top to bottom. Time indices
in the left-hand margin indicate the current time for the associated cycle of the algorithm. New observations entering the current DAW are
shaded black. The initial DAW ranges from {tL−6, · · ·, tL−2}. In the next cycle, this is shifted to {tL−4, · · ·, tL} and is shifted thereafter to
{tL−2, · · ·, tL+2}. States at the zero-time indices are tL−7 in the first cycle, tL−5 in the second cycle, and tL−3 in the third cycle. These are
estimated in addition to states in the DAW to connect the cycles in the sequential DAWs.

follows. Suppose that there is a known filter density p(x0|y0)

from a previous DA cycle. Using the Markov hypothesis and
the independence of observation errors, we write the filter
density up to proportionality, via Bayes’ law, as follows:

p(x1|y1:0)∝ p(y1|x1,y0)p(x1,y0) (20a)

∝ p(y1|x1)︸ ︷︷ ︸
(i)

∫
p(x1|x0)p(x0|y0)dx0︸ ︷︷ ︸

(ii)

, (20b)

which is the product of the (i) likelihood of the observation,
given the forecast, and (ii) the forecast prior. The forecast
prior (ii) is generated by the model propagation of the last
filter density p(x0|y0), with the transition density p(x1|x0),
marginalizing out x0. Given a first prior, the above recursion
inductively defines the forecast and filter densities, up to pro-
portionality, at all times.

In the perfect linear Gaussian model, the forecast prior and
filter densities,∫
p(x1|x0)p(x0|y0)dx0 and p(x1|y1), (21)

are Gaussian. The Kalman filter equations recursively com-
pute the mean xfore

1 /xfilt
1 and covariance Bfore

1 /Bfilt
1 of the ran-

dom model state x1, parameterizing its distribution (Jazwin-
ski, 1970). In this case, the filter problem can also be written
in terms of the Bayesian MAP cost function, as follows:

J (x1)=
1
2
‖ x1− x

fore
1 ‖

2
Bfore

1
+

1
2
‖ y1−H1x1‖

2
R1
. (22)

To render the above cost function into the right-transform
analysis, define the matrix factor as follows:

Bfore
1 :=6fore

1

(
6fore

1

)>
, (23)

where the choice of 6fore
1 can be arbitrary but is typically

given in terms of a singular value decomposition (SVD;

Sakov and Oke, 2008b). Instead of optimizing the cost func-
tion in Eq. (22) over the state vector x1, the optimization is
equivalently written in terms of weights w, where, in the fol-
lowing:

x1 := x
fore
1 +6fore

1 w. (24)

Thus, by rewriting Eq. (22) in terms of the weight vector w,
we obtain the following:

J (w)=
1
2
‖ w‖2+

1
2
‖ y1−H1x

fore
1 −H16

fore
1 w‖2R1

. (25)

Furthermore, for the sake of compactness, we define the
following notations:

y1 :=H1x
fore
1 , (26a)

δ1 := R−
1
2

1
(
y1− y1

)
, (26b)

01 := R−
1
2

1 H16
fore
1 . (26c)

The vector δ1 is the innovation vector, weighted inverse pro-
portionally to the observation uncertainty. The matrix 01, in
one dimension with H1 := 1, is equal to the standard devia-
tion of the model forecast relative to the standard deviation
of the observation error.

The cost function Eq. (25) is hence further reduced to the
following:

J (w)=
1
2
‖ w‖2+

1
2
‖ δ1−01w‖

2. (27)

This cost function is quadratic in w and can be globally min-
imized where ∇wJ = 0. Notice that, in the following:

∇wJ = w−0>1
(
δ1−01w

)
. (28)
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By setting the gradient equal to zero for w, we find the
following expression for the optimal weights:

0= w−0>1
(
δ1−01w

)
(29a)

⇔0>1 δ1 =
(

INx +0
>

1 01

)
w (29b)

⇔w =
(

INx +0
>

1 01

)−1
0>1 δ1. (29c)

From Eq. (28), notice that

∇wJ |w=0 =−0
>

1 δ1. (30)

Similarly, taking the gradient of Eq. (28), we find that the
Hessian, 4J := ∇2

wJ , is equal to the following:

4J =
(

INx +0
>

1 01

)
. (31)

Therefore, with w = 0 corresponding to xfore
1 as the initial-

ization of the algorithm, the MAP weights w are determined
by a single iteration of Newton’s descent method (Nocedal
and Wright, 2006). For iterate i, this has the general form of
the following:

wi+1
:= wi −4−1

J ∇J |w=wi . (32)

The MAP weights define the maximum a posteriori model
state as follows:

xfilt
1 := x

fore
1 +6fore

1 w. (33)

Under the perfect linear Gaussian model assumption, J can
then be rewritten in terms of the filter MAP estimate as fol-
lows:

J (x1)=
1
2
‖ x1− x

filt
1 ‖

2
Bfilt

1
(34a)

⇔J (w)=
1
2
‖ xfore

1 −6fore
1 w− xfilt

1 ‖
2
Bfilt

1
. (34b)

Define the matrix decomposition Bfilt
1 =6

filt
1
(
6filt

1
)> and the

change in variables as follows:

�1 :=
(
6filt

1

)−1
6fore

1 , (35a)

%1 :=
(
6filt

1

)−1(
xfore

1 − xfilt
1

)
. (35b)

Then, Eq. (34b) can be rewritten as follows:

J (w)=
1
2
‖ %1−�1w‖

2. (36)

Computing the Hessian 4J =∇2
wJ from each of Eqs. (27)

and (36), we find, by their equivalence, the following:

(
INx +0

>

1 01

)
=�>1 �1 (37a)

⇔

(
INx +0

>

1 01

)
=

(
6fore

1

)>(
6filt

1

)−>(
6filt

1

)−1
6fore

1 (37b)

⇔Bfilt
1 =6

fore
1

(
INx +0

>

1 01

)−1(
6fore

1

)>
. (37c)

If we define the covariance transform as

T :=4−
1
2

J , (38)

then this derivation above describes the square root Kalman
filter recursion (Tippett et al., 2003) when written for the ex-
act mean and covariance, which is recursively computed in
the perfect linear Gaussian model. The covariance update is
then as follows:

Bfilt
1 =

(
6fore

1 T
)(
6fore

1 T
)>
. (39)

It is written entirely in terms of the matrix factor 6ik and the
covariance transform T, such that the background covariance
need not be explicitly computed in order to produce recur-
sive estimates. Likewise, the Kalman gain update to the mean
state is reduced to Eq. (33) in terms of the weights and the
matrix factor. This reduction is at the core of the efficiency
of the ETKF in which one typically makes a reduced-rank
approximation to the background covariances Bi1.

Using the ensemble-based empirical estimates for the
background, as in Eq. (19), a modification of the above argu-
ment must be used to solve the cost function J in the ensem-
ble span, without a direct inversion of Pfore

1 when this is of
a reduced rank. We replace the background covariance norm
square with one defined by the ensemble-based covariance,
as follows:

‖ v‖2Pi1
= (Ne− 1)

[(
Xi1
)†
v

]>[(
Xi1
)†
v

]
. (40)

We then define the ensemble-based estimates as follows:

x1 := x̂
fore
1 +Xfore

1 w, (41a)

ŷ1 :=H1x̂
fore
1 , (41b)

δ̂1 := R−
1
2

1
(
y1− ŷ1

)
, (41c)

S1 := R−
1
2

1 H1Xfore
1 , (41d)

where w is now a weight vector in RNe . The ensemble-based
cost function is then written as follows:

J̃ (w)=
1
2
‖ x̂fore

1 −Xfore
1 w− x̂fore

1 ‖
2
Pfore

1
+

1
2
‖ y1−H1x̂

fore
1 −H1Xfore

1 w‖2R1
(42a)

=
1
2
(Ne− 1) ‖ w‖2+

1
2
‖ δ̂1−S1w‖

2. (42b)

Define ŵ to be the minimizer of the cost function in Eq. (42).
Hunt et al. (2007) demonstrate that, up to a gauge transfor-
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mation, ŵ yields the minimizer of the state space cost func-
tion, Eq. (22), when the estimate is restricted to the ensemble
span. Let 4̃J̃ denote the Hessian of the ensemble-based cost
function in Eq. (42). This equation is quadratic in w and can
be solved similarly to Eq. (27) to render the following:

ŵ :=0− 4̃−1
J̃ ∇J̃ |w=0, (43a)

T :=4̃−
1
2

J̃ , (43b)

Pfilt
1 =

(
Xfore

1 T
)(

Xfore
1 T

)>
/(Ne− 1). (43c)

The ensemble transform Kalman filter (ETKF) equations are
then given by the following:

Efilt
1 = x̂

fore
1 1>+Xfore

1

(
ŵ1>+

√
Ne− 1TU

)
, (44)

where U ∈ RNe×Ne can be any mean-preserving, orthogonal
transformation, i.e., U1= 1. The simple choice of U := INe

is sufficient, but it has been demonstrated that choosing a
random, mean-preserving orthogonal transformation at each
analysis, as above, can improve the stability of the ETKF,
preventing the collapse of the variances to a few modes in the
empirical covariance estimate (Sakov and Oke, 2008b). We
remark that Eq. (44) can be written equivalently as a single
linear transformation as follows:

Efilt
1 =Efore

1 91, (45a)

91 :=11>/Ne+(
INe − 11>/Ne

)(
ŵ1>+

√
Ne− 1TU

)
. (45b)

The compact update notation in Eq. (45) is used to simplify
the analysis.

If the observation operator H1 is actually nonlinear, then
the ETKF typically uses the following approximation to the
quadratic cost function:

Y1 :=H1

(
Efore

1

)
, (46a)

ŷ1 := Y11/Ne, (46b)

S1 := R−
1
2

1 Y1− ŷ11>, (46c)

where term (46a) refers to the action of the observation oper-
ator being applied column-wise. Substituting the definitions
in Eq. (46) for the definitions in Eq. (41) gives the standard
nonlinear analysis in the ETKF. Note that this framework ex-
tends to a fully iterative analysis of nonlinear observation op-
erators, as discussed in Sect. 4.1. Multiplicative covariance
inflation is often used in the ETKF to handle the systematic
underestimation of the forecast and filter covariance due to
the sample error implied by a finite size ensemble and non-
linearity of the forecast model M1 (Raanes et al., 2019a).

The standard ETKF cycle is summarized in Algorithm A5.
This algorithm is broken into the subroutines, in Algo-
rithms A1–A4, which are reused throughout our analysis to

emphasize the commonality and the differences in the stud-
ied smoother schemes. The filter analysis described above
can be extended in several different ways when producing
a smoother analysis on a DAW, including lagged past states,
depending in part on whether it is formulated as a marginal or
a joint smoother (Cosme et al., 2012). The way in which this
analysis is extended, utilizing a retrospective reanalysis or a
4D cost function, differentiates the EnKS from the IEnKS
and highlights the ways in which the SIEnKS differs from
these other schemes.

3.2 The fixed-lag EnKS

The (right-transform) fixed-lag EnKS extends the ETKF over
the smoothing DAW by sequentially reanalyzing past states
with future observations. This analysis is performed retro-
spectively in the sense that the filter cycle of the ETKF is
left unchanged, while an additional smoother loop of the
DA cycle performs an update on the lagged state ensem-
bles stored in memory. Assume S = 1≤ L, then the EnKS
estimates the joint posterior density p

(
xL:1|yL:1

)
recur-

sively, given the joint posterior estimate over the last DAW
p
(
xL−1:0|yL−1:0

)
. We begin by considering the filter prob-

lem as in Eq. (20).
Given p(xL−1:0,yL−1:0), we write the filter density up to

proportionality as follows:

p(xL|yL:0)∝p(yL|xL,yL−1:0)p(xL,yL−1:0) (47a)
∝p(yL|xL)︸ ︷︷ ︸

(i)

×

∫
p(xL|xL−1)p(xL−1:0|yL−1:0)dxL−1:0︸ ︷︷ ︸

(ii)

, (47b)

with the product of (i) the likelihood of the observation yL,
given xL, and (ii) the forecast for xL, using the transition
kernel on the last joint posterior estimate and marginaliz-
ing out xL−1:0. Recalling that p(xL|yL:1)∝ p(xL|yL:0), this
provides a means to sample the filter marginal of the desired
joint posterior. The usual ETKF filter analysis is performed
to sample the filter distribution at time tL; yet, to complete
the smoothing cycle, the scheme must sample the joint pos-
terior density p(xL:1,yL:1).

Consider that the marginal smoother density is propor-
tional to the following:

p(xL−1|yL:0)∝p(yL|xL−1,yL−1:0)×

p(xL−1,yL−1:0) (48a)
∝p(yL|xL−1)︸ ︷︷ ︸

(i)

p(xL−1|yL−1:0)︸ ︷︷ ︸
(ii)

, (48b)

where (i) is the likelihood of the observation yL, given the
past state xL−1, and (ii) is the marginal density for xL−1 from
the last joint posterior.
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Assume now the perfect linear Gaussian model; then, the
corresponding Bayesian MAP cost function is given as fol-
lows:

J (xL−1)=
1
2
‖ xL−1− x

smth
L−1|L−1‖

2
Bsmth
L−1|L−1

+

1
2
‖ yL−HLMLxL−1‖

2
RL , (49)

where xsmth
L−1|L−1 and Bsmth

L−1|L−1 are the mean and covariance
of the marginal smoother density p(xL−1|yL−1:0). Take the
following matrix decomposition:

Bsmth
L−1|L−1 =6

smth
L−1|L−1

(
6smth
L−1|L−1

)>
. (50)

Then, write xL−1 = x
smth
L−1|L−1+6

smth
L−1|L−1w, rendering the

cost function as follows:

J (w)=
1
2
‖ w‖2+

1
2
‖ yL−HLML(x

smth
L−1|L−1+6

smth
L−1|L−1w)‖

2
RL (51a)

=
1
2
‖ w‖2+

1
2
‖ yL−HLx

fore
L −HL6

fore
L w‖2RL (51b)

=
1
2
‖ w‖2+

1
2
‖ δL−0Lw‖

2. (51c)

Let w now denote the minimizer of Eq. (51). It is important
to recognize that

xL :=ML

(
xsmth
L−1|L−1+6

smth
L−1|L−1w

)
(52)

= xfore
L +6

fore
L w, (53)

such that the optimal weight vector for the smoothing prob-
lemw is also the optimal weight vector for the filter problem.

The ensemble-based approximation,

xL−1 = x̂
smth
L−1|L−1+Xsmth

L−1|L−1w, (54a)

J̃ (w)=
1
2
(Ne− 1) ‖ w‖2+

1
2
‖ δ̂L−SLw‖2, (54b)

to the exact smoother cost function in Eq. (51) yields the ret-
rospective analysis of the EnKS as follows:

ŵ :=0− 4̃−1
J̃ ∇J̃ |w=0, (55a)

T :=4̃−
1
2

J̃ , (55b)

Esmth
L−1|L =x̂

smth
L−1|L−11>+

Xsmth
L−1|L−1

(
ŵ1>+

√
Ne− 1TU

)
, (55c)

≡Esmth
L−1|L−19L. (55d)

The above equations generalize for arbitrary indices k|L,
completely describing the smoother loop between each fil-
ter cycle of the EnKS. After a new observation is assimi-
lated with the ETKF analysis step, a smoother loop makes a

backwards pass over the DAW, applying the transform and
the weights of the ETKF filter update to each past state en-
semble stored in memory. This generalizes to the case where
there is a shift in the DAW with S > 1, though the EnKS does
not process observations asynchronously by default, i.e., the
ETKF filter steps, and the subsequent retrospective reanal-
ysis, are performed in sequence over the observations and
ordered in time rather than making a global analysis over
yL:L−S+1. A standard form of the EnKS is summarized in
Algorithm A6, utilizing the subroutines in Algorithms A1–
A4.

A schematic of the EnKS cycle for a lag of L= 4 and a
shift of S = 1 is pictured in Fig. 2. Time moves forwards,
from left to right, on the horizontal axis, with a step size of
1t . At each analysis time, the ensemble forecast from the last
filter density is combined with the observation to produce
the ensemble update transform 9L. This transform is then
utilized to produce the posterior estimate for all lagged state
ensembles conditioned on the new observation. The informa-
tion in the posterior estimate thus flows in reverse time to the
lagged states stored in memory, but the information flow is
unidirectional in this scheme. It is understood then that reini-
tializing the improved posterior estimate for the lagged states
in the dynamical model does not improve the filter estimate
in the perfect linear Gaussian configuration. Indeed, define
the product of the ensemble transforms as follows:

9k:l :=9k· · ·9 l . (56)

Then, for arbitrary 1≤ k ≤ l ≤ L,

Ml:kEsmth
k−1|k−19k:l =Ml:kEsmth

k−1|l (57a)

= Efore
l|k−19k:l (57b)

= Esmth
l|l . (57c)

This demonstrates that conditioning on the information from
the observation is covariant with the dynamics. Raanes
(2016) demonstrates the equivalence of the EnKS and the
Rauch–Tung–Striebel (RTS) smoother, where this property
of perfect linear Gaussian models is well understood. In the
RTS formulation of the retrospective reanalysis, the condi-
tional estimate reduces to the map of the current filter esti-
mate under the reverse time model M−1

k (Jazwinski, 1970;
see example 7.8, chap. 7). Note, however, that both of the
EnKS and ensemble RTS smoothers produce their retrospec-
tive reanalyses via a recursive ensemble transform without
the need to make backwards model simulations.

The covariance of conditioning on observations and the
model dynamics does not hold, however, either in the case of
nonlinear dynamics or of model error. Reinitializing the DA
cycle in a perfect nonlinear model with the conditional en-
semble estimate Esmth

0|L can dramatically improve the accuracy
of the subsequent forecast and filter statistics. Particularly,
this exploits the mismatch in perfect nonlinear dynamics be-
tween ML:1

(
Esmth

0|L

)
6= Efilt

L . Chaotic dynamics generate ad-
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ditional information about the initial value problem in the
sense that initial conditions nearby to each other are distin-
guished by their subsequent evolution and divergence due to
dynamical instability. Reinitializing the model forecast with
the smoothed prior estimate brings new information into the
forecast for states in the next DAW. This improvement in
the accuracy of the ensemble statistics has been exploited
to a great extent by utilizing the 4D ensemble cost function
(Hunt et al., 2004). Particularly, the filter cost function can
be extended over multiple observations simultaneously and
in terms of lagged states directly. This alternative approach
to extending the filter analysis to the smoother analysis is
discussed in the following.

3.3 The Gauss–Newton fixed-lag IEnKS

The following is an up-to-date formulation of the Gauss–
Newton IEnKS of Bocquet and Sakov (2013, 2014) and its
derivations. Instead of considering the marginal smoother
problem, now consider the joint posterior density directly
and for a general shift S. The last posterior density is written
as p

(
xL−S:1−S |yL−S:1−S

)
. Using the independence of ob-

servation errors and the Markov assumption recursively,

p(xL:1|yL:1−S)∝∫ [
L∏

k=L−S+1
p(yk|xk)p(xk|xk−1)

]
×[

L−S∏
k=1

p(xk|xk−1)

]
p
(
x0|yL−S:1−S

)
dx0. (58)

Additionally, using the perfect model assumption,

p(xk|xk−1)= δ {xk −Mk (xk−1)} (59)

for every k. Therefore,

p(xL:1|yL:1−S)∝

∫
p(x0|yL−S:1−S)︸ ︷︷ ︸

(i)

×

[
L∏

k=L−S+1
p(yk|xk)

]
︸ ︷︷ ︸

(ii)

×

[
L∏
k=1

δ {xk −Mk (xk−1)}

]
︸ ︷︷ ︸

(iii)

dx0, (60)

where term (i) in Eq. (60) represents the marginal smoother
density for x0|L−S over the last DAW, term (ii) represents the
joint likelihood of the observations given the model state, and
term (iii) represents the free forecast of the smoother estimate
for x0|L−S . Noting that p(xL:1|yL:1)∝ p(xL:1|yL:1−S), this
provides a recursive form to sample the joint posterior den-
sity.

Under the perfect linear Gaussian model assumption, the
above derivation leads to the following exact 4D cost func-
tion:

J (x0) :=
1
2
‖ x0− x

smth
0|L−S‖

2
Bsmth

0|L−S
+

1
2

L∑
k=L−S+1

‖ yk −HkMk:1x0‖
2
Rk . (61)

The ensemble-based approximation, using notations as in
Eq. (41), yields the following:

x0 :=x̂
smth
0|L−S +Xsmth

0|L−Sw, (62a)

J̃ (w) :=
1
2
(Ne− 1) ‖ w‖2+

1
2

L∑
k=L−S+1

‖ δ̂k −Skw‖2. (62b)

Notice that Eq. (62b) is quadratic in w; therefore, for the per-
fect linear Gaussian model, one can perform a global analysis
over all new observations in the DAW at once.

The gradient and the Hessian of the ensemble-based 4D
cost function are given as follows:

∇J̃ := (Ne− 1)w−
L∑

k=L−S+1
S>k
(
δ̂k −Skw

)
, (63a)

4̃J̃ := (Ne− 1)INe +

L∑
k=L−S+1

S>k Sk, (63b)

so that, evaluating at w = 0, the minimizer ŵ is again given
by a single iteration of Newton’s descent

ŵ := 0− 4̃J̃∇J̃ |w=0. (64)

Define the covariance transform again as T := 4̃−
1
2

J̃ . We de-
note the right ensemble transform corresponding to the 4D
analysis 94D

L−S+1:L to distinguish from the product of the se-
quential filter transforms 9L−S+1:L. The global analyses are
defined as follows:

94D
L−S+1:L := 11>/Ne+(

INe − 11>/Ne

)(
ŵ1>+

√
Ne− 1TU

)
, (65a)

Esmth
0|L = Esmth

0|L−S9
4D
L−S+1:L, (65b)

where U is any mean-preserving orthogonal matrix.
In the perfect linear Gaussian model, this formulation of

the IEnKS is actually equivalent to the 4D-EnKF of Hunt
et al. (2004), Fertig et al. (2007), and Harlim and Hunt
(2007). The above scheme produces a global analysis of all
observations within the DAW, even asynchronously from the
standard filter cycle (Sakov et al., 2010). One generates a
free ensemble forecast with the initial conditions drawn iid as
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Figure 2. The EnKS with a lag= 4 and a shift= 1. The observations are assimilated sequentially via the filter cost function, and a ret-
rospective reanalysis is applied to all ensemble states within the lag window stored in memory. This figure is adapted from Asch et al.
(2016).

p(x0|yL−S:1−S), and all data available within the DAW are
used to estimate the update to the initial ensemble. The per-
fect model assumption means that the updated initial ensem-
ble Esmth

0|L can then be used to temporally interpolate the joint
posterior estimate over the entire DAW from the marginal
sample, i.e., for any 0< k ≤ L, a smoothing solution is de-
fined as follows:

Mk:1Esmth
0|L−S9

4D
L−S+1:L ≡ Esmth

k|L . (66)

When Mk and Hk are nonlinear, the IEnKS formulation is
extended with additional iterations of Newton’s descent, as in
Eq. (32), in order to iteratively optimize the update weights.
Specifically, the gradient is given by the following:

∇J̃ := (Ne− 1)w−
L∑

k=L−S+1
Ỹ>k R−1

k ϕ, (67a)

ϕ :=
[
yk −Hk ◦Mk:1

(
x̂smth

0|L−S +Xsmth
0|L−Sw

)]
, (67b)

where Ỹk represents a directional derivative of the observa-
tion and state models with respect to the ensemble perturba-
tions at the ensemble mean, as follows:

Ỹk := ∇|x̂smth
0|L−S

[Hk ◦Mk:1]Xsmth
0|L−S . (68)

This describes the sensitivities of the cost function, with re-
spect to the ensemble perturbations, mapped to the observa-
tion space. When the dynamics is weakly nonlinear, the en-
semble perturbations of the EnKS and IEnKS are known to
closely align with the span of the backward Lyapunov vectors
of the nonlinear model along the true state trajectory (Boc-
quet and Carrassi, 2017). Under these conditions, Eq. (68)

can be interpreted as a directional derivative with respect to
the forecast error growth along the dynamical instabilities of
the nonlinear model (see Carrassi et al., 2022, and references
therein).

In order to avoid an explicit computation of the tangent lin-
ear model and the adjoint as in 4D-Var, Sakov et al. (2012)
and Bocquet and Sakov (2012) proposed two formulations to
approximate the tangent linear propagation of the ensemble
perturbations. The bundle scheme makes an explicit approx-
imation of finite differences in the observation space where,
for an arbitrary ensemble, they define the approximate lin-
earization as follows:

Yk :=
1
ε
Hk ◦Mk:1

(
x01>+ εX0

)(
INe − 11>/Ne

)
, (69)

for a small constant ε. Alternatively, the transform version
provides a different approximation to the variational anal-
ysis, using the covariance transform T and its inverse as a
pre-/post-conditioning of the perturbations used in the sen-
sitivities approximation. The transform variant of the IEnKS
is in some cases more numerically efficient than the bundle
version, requiring fewer ensemble simulations, and it is ex-
plicitly related to the ETKF/EnKS/4D-EnKF formalism pre-
sented thus far. For these reasons, the transform approxima-
tion is used as a basis of comparison with the other schemes
in this work.

For the IEnKS transform variant, the ensemble-based ap-
proximations are redefined in each Newton iteration as fol-
lows:
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Yk :=Hk (Ek) , (70a)
ŷk := Yk1/Ne, (70b)

Sk := R−
1
2

k

(
Yk − ŷk1

>

)
T−1, (70c)

δ̂ := R−
1
2

k

(
yk − ŷk

)
, (70d)

where the first covariance transform is defined as T := INe ,
the gradient and Hessian are computed as in Eq. (63) from
the above, and where the covariance transform is redefined

in terms of the Hessian, T := 4̃−
1
2

J̃ , at the end of each iter-
ation. With these definitions, the first iteration of the IEnKS
transform variant corresponds to the solution of the nonlin-
ear 4D-EnKF, but subsequent iterates are initialized by pre-
conditioning the initial ensemble perturbations via the update
T and post-conditioning the sensitivities by the inverse trans-
form T−1.

An updated form of the Gauss–Newton IEnKS transform
variant is presented in Algorithm A7. Note that, while Al-
gorithm A7 does not explicitly reference the sub-routine in
Algorithm A1, many of the same steps are used in the IEnKS
when computing the sensitivities. It is important to notice
that, for S > 1, the IEnKS only requires a single computation
of the square root inverse of the Hessian of the 4D cost func-
tion, per iteration of the optimization, to process all obser-
vations in the DAW. On the other hand, the EnKS processes
these observations sequentially, requiring S total square root
inverse calculations of the Hessian, corresponding to each of
the sequential filter cost functions.

The IEnKS is computationally constrained by the fact that
each iteration of the descent requires L total ensemble simu-
lations in the dynamical state model Mk . One can minimize
this expense by using a single iteration of the IEnKS equa-
tions, which is denoted the linearized IEnKS (Lin-IEnKS)
by Bocquet and Sakov (2014). When the overall DA cycle
is nonlinear, but only weakly nonlinear, this single iteration
of the IEnKS algorithm can produce a dramatic improve-
ment in the forecast accuracy versus the forecast/filter cycle
of the EnKS. However, the overall nonlinearity of the DA
cycle may be strongly influenced by factors other than the
model forecast Mk itself. As a simple example, consider the
case in which Hk is nonlinear yet Mk ≡Mk for all k. In this
setting, it may be more numerically efficient to iterate upon
the 3D filter cost function rather than the full 4D cost func-
tion which requires simulations of the state model. Combin-
ing (i) the filter step and retrospective reanalysis of the EnKS
and (ii) the single iteration of the ensemble simulation over
the DAW as in Lin-IEnKS, we obtain an estimation scheme
that sequentially solves the nonlinear filter cost functions in
the current DAW, while making an improved forecast in the
next by transmitting the retrospective analyses through the
dynamics via the updated initial ensemble.

3.4 The fixed-lag SIEnKS

3.4.1 Algorithm

Recall that, from Eq. (57), conditioning the ensemble with
the right transform 9k is covariant with the dynamics. In
a perfect linear Gaussian model, we can therefore estimate
the joint posterior over the DAW via model propagation of
the marginal for xsmth

0|L , as in the IEnKS but by using the
EnKS retrospective reanalysis to generate the initial condi-
tion. For arbitrary 1≤ S ≤ L, define each of the right trans-
forms {9k}Lk=L−S+1 as in the sequential filter analysis of the
ETKF with Eq. (45). Rather than storing the ensemble ma-
trix in memory for each time tk in the DAW, we instead store
Esmth

0|L−S and Esmth
L−S|L−S to begin a DA cycle. Observations

within the DAW are sequentially assimilated via the 3D filter
cycle initialized with Esmth

L−S|L−S and a marginal, retrospec-
tive, smoother analysis is performed sequentially on Esmth

0|L−S
with these filter transforms. The joint posterior estimate is
then interpolated over the DAW for any 1≤ k ≤ L via the
model dynamics as follows:

Esmth
0|L = Esmth

0|L−S9L−S+1:L, (71a)

Esmth
k|L :=Mk:1

(
Esmth

0|L

)
. (71b)

Notice that, for S = 1, the product of the 3D filter ensemble
transforms reduces to the 4D transform, i.e.,

9L−S+1:L ≡9
4D
L−S+1:L ≡9L, (72)

so that, in the perfect linear Gaussian model with S = 1, the
SIEnKS and the Lin-IEnKS coincide. The SIEnKS and the
Lin-IEnKS have different treatments of nonlinearity in the
DA cycle, but even in the perfect linear Gaussian model, a
shift S > 1 distinguishes the 4D approach of the Lin-IEnKS
and the hybrid 3D/4D approach of the SIEnKS. For com-
parison, a schematic of the SIEnKS cycle is pictured in
Fig. 3, while a schematic of the (Lin-)IEnKS cycle is shown
in Fig. 4, and each is configured for a lag of L= 4 and a
shift of S = 2. This comparison demonstrates how the se-
quential 3D filter analysis and retrospective smoother reanal-
ysis for each observation differ from the global 4D analy-
sis of all observations at once in the (Lin-)IEnKS. A generic
form of the SIEnKS is summarized in Algorithm A8, uti-
lizing the sub-routines in Algorithms A1–A4. Note that the
version presented in Algorithm A8 is used to emphasize the
commonality with the EnKS. However, an equivalent imple-
mentation initializes each cycle with Esmth

0|L−S alone, similar
to the IEnKS. Such a design is utilized when we derive the
SIEnKS MDA scheme in Algorithm A12 from the IEnKS
MDA scheme in Algorithm A13.

3.4.2 Comparison with other schemes

Other well-known DA schemes combining a retrospective
reanalysis and reinitialization of the ensemble forecast in-
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Figure 3. The SIEnKS with a lag= 4 and a shift= 2. An initial condition from the last smoothing cycle initializes a forecast simulation
over the current DAW of the L= 4 states. New observations entering the DAW are assimilated sequentially via the 3D filter cost function.
After each filter analysis, a retrospective reanalysis is applied to the initial ensemble. At the end of the DAW, after sequentially processing
all observations, the reanalyzed initial condition is evolved, via the model S analysis times, forward to begin the next cycle.

Figure 4. The (Lin-)IEnKS with a lag= 4 and a shift= 2. An initial condition from the last smoothing cycle initializes a forecast simulation
over the current DAW of the L= 4 states. Unlike the SIEnKS, all new observations entering the DAW are assimilated globally at once via
the 4D cost function. The innovations of the free forecast over all of the observation times are used to produce a retrospective reanalysis
of the initial ensemble. Finally, the reanalyzed initial condition is evolved, via the model, S analysis times forward to begin the next cycle.
Unlike the SIEnKS and the EnKS, the filter analysis of the (Lin-)IEnKS is performed by dynamically interpolating the smoothing estimate
over new observation times with a free forecast in the subsequent cycle. The Lin-IEnKS is differentiated from the IEnKS by using only a
single free ensemble forecast to produce the 4D optimization of the initial ensemble in each cycle.

clude the running-in-place (RIP) smoother of Kalnay and
Yang (2010) and the one-step-ahead (OSA) smoother of Des-
bouvries et al. (2011) and Ait-El-Fquih and Hoteit (2022).
The RIP smoother iterates over both the ensemble simula-
tion and filter cost function, in order to apply a retrospective
reanalysis to the first prior with a lag and shift of L= S = 1.
The RIP smoother is designed to spin up the LETKF from

a cold start of a forecast model and DA cycle (Yang et al.,
2013). However, the RIP optimizes a different style cost
function than the S/Lin-/IEnKS family of smoothers. The
stopping criterion for RIP is formulated in terms of the mean
square distance between the ensemble forecast and the ob-
servation, potentially leading to an overfitting of the observa-
tion. The OSA smoother is also proposed as an optimization
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of the DA cycle and integrates an EnKF framework, includ-
ing for a two-stage, iterative optimization of dynamical fore-
cast model parameters within the DA cycle (Gharamti et al.,
2015; Ait-El-Fquih et al., 2016; Raboudi et al., 2018). The
OSA smoother uses a single iteration and a lag and shift of
L= S = 1, making a filter analysis of the incoming obser-
vation and a retrospective reanalysis of the prior. However,
the OSA smoother differs from the SIEnKS in using an ad-
ditional filter analysis while interpolating the joint posterior
estimate over the DAW, accounting for model error in the
simulation of M1

(
Esmth

0|1

)
. Without model error, the second

filter analysis in the OSA smoother simulation is eliminated
from the estimation scheme. Therefore, with an ETKF-style
filter analysis, a perfect linear Gaussian model and a lag of
L= S = 1, the SIEnKS, and RIP and OSA smoothers all co-
incide.

The rationale for the SIEnKS is to focus computational re-
sources on optimizing the sequence of 3D filter cost func-
tions for the DAW when the forecast error dynamics is
weakly nonlinear, rather than computing the iterative ensem-
ble simulations needed to optimize a 4D cost function. The
SIEnKS generalizes some of the ideas used in these other DA
schemes, particularly for perfect models with weakly nonlin-
ear forecast error dynamics, including for (i) arbitrary lags
and shifts 1≤ S ≤ L, (ii) an iterative optimization of hyper-
parameters for the filter cost function, (iii) multiple data as-
similation, and (iv) asynchronous observations in the DA cy-
cle. In order to illustrate the novelty of the SIEnKS, and to
motivate its computational cost/prediction accuracy tradeoff
advantages, we discuss each of these topics in the following.

4 Applications of single-iteration smoothing

4.1 Nonlinear observation operators

Just as the IEnKS extends the linear 4D cost function, the
filter cost function in Eq. (42) can be extended with Newton
iterates in the presence of a nonlinear observation operator.
The maximum likelihood ensemble filter (MLEF) of Zupan-
ski (2005) and Zupanski et al. (2008) is an estimator designed
to process nonlinear observation operators and can be derived
in the common ETKF formalism. Particularly, the algorithm
can be granted bundle and transform variants like the IEnKS
(Asch et al., 2016; see Sect. 6.7.2.1), which are designed to
approximate the directional derivative of the nonlinear obser-
vation operator with respect to the forecast ensemble pertur-
bations at the forecast mean,

Ỹk := ∇|x̂fore
k

[Hk]Xfore
k , (73)

which is used in the nonlinear filter cost function gradient as
follows:

∇J̃ :=(Ne− 1)w−

Ỹ>k R−1
k

[
yk −Hk

(
x̂fore
k +Xfore

k w
)]
. (74)

When the forecast error dynamics is weakly nonlinear, the
MLEF-style nonlinear filter cost function optimization pro-
vides a direct extension to the SIEnKS. The transform, as
defined in the sub-routine in Algorithm A9, is interchange-
able with the usual ensemble transform in Algorithm A1. In
this way, the EnKS and the SIEnKS can each process non-
linear observation operators with an iterative optimization in
the filter cost function alone and, subsequently, apply their
retrospective analyses as usual. We refer to the EnKS anal-
ysis with MLEF transform as the maximum likelihood en-
semble smoother (MLES), though we refer to the SIEnKS as
usual, whether it uses a single iteration or multiple iterations
of the solution to the filter cost function. Note that only the
transform step needs to be interchanged in Algorithms A6
and A8, so we do not provide additional pseudo-code.

Consider that, for the MLES and the SIEnKS, the num-
ber of Hessian square root inverse calculations expands in
the number of iterations used in Algorithm A9 to compute
the transform for each of the S observations in the DAW. For
each iteration of the IEnKS, this again requires only a single
square root inverse calculation of the 4D cost function Hes-
sian. However, even if the forecast error dynamics is weakly
nonlinear, optimizing versus the nonlinear observation oper-
ator requires L ensemble simulations for each iteration used
to optimize the cost function.

4.2 Adaptive inflation and the finite size formalism

Due to the bias of Kalman-like estimators in nonlinear dy-
namics, covariance inflation, as in Algorithm A4, is widely
used to regularize these schemes. In particular, this can ame-
liorate the systematic underestimation of the prediction/pos-
terior uncertainty due to sample error and bias. Empirically
tuning the multiplicative inflation coefficient λ≥ 1 can be
effective in stationary dynamics. However, empirically tun-
ing this parameter can be costly, potentially requiring many
model simulations, and the tuned value may not be optimal
across timescales in which the dynamical system becomes
non-stationary. A variety of techniques is used in practice
for adaptive covariance estimation, inflation, or augmenta-
tion, accounting for these deficiencies of the Kalman-like es-
timators (Tandeo et al., 2020, and references therein).

One alternative to empirically tuning λ is to derive an
adaptive multiplicative covariance inflation factor via a hier-
archical Bayesian model by including a prior on the back-
ground mean and covariance p

(
xfore

1 ,Bfore
1
)
, as in the fi-

nite size formalism of Bocquet (2011), Bocquet and Sakov
(2012), and Bocquet et al. (2015). This formalism seeks to
marginalize out over the first 2 moments of the background,
yielding a Gaussian mixture model for the forecast prior as
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follows:

p
(
x1|Efore

1

)
=

∫
p
(
x1|Efore

1 ,xfore
1 ,Bfore

1

)
×

p
(
xfore

1 ,Bfore
1 |E

fore
1

)
dxfore

1 dBfore
1 . (75)

Using Jeffreys’ hyperprior for xfore
1 and Bfore

1 , the ensemble-
based filter MAP cost function can be derived as proportional
to the following:

J̃ (w) :=
1
2
‖ y−H

(
x̂fore

1 +Xfore
1 w

)
‖

2
R1
+

Ne

2
log

(
εNe +‖w‖

2
)
, (76)

where εNe := 1+ 1
Ne

. Notice that Eq. (76) is non-quadratic in
w, regardless of whether H1 is linear or nonlinear, such that
one can iteratively optimize the solution to the nonlinear filter
cost function with a Gauss–Newton approximation of the de-
scent. When accounting for the nonlinearity in the ensemble
evolution and the sample error due to small ensemble sizes
in perfect models, optimizing the extended cost function in
Eq. (76) can be an effective means to regularize the EnKF.
In the presence of significant model error, one may need to
extend the finite size formalism to the variant developed by
Raanes et al. (2019a).

Algorithm A10 presents an updated version of the finite
size ensemble Kalman filter (EnKF-N) transform calcula-
tion of Bocquet et al. (2015), explicitly based on the IEnKS
transform approximation of the gradient of the observation
operator. The hyperprior for the background mean and co-
variance is similarly introduced to the IEnKS and optimized
over an extended 4D cost function. Note that, in the case
when Hk ≡Hk is linear, a dual, scalar optimization can be
performed for the filter cost function with less numerical ex-
pense. However, there is no similar reduction to the extended
4D cost function, and in order to emphasize the structural
difference between the 4D approach and the sequential ap-
proach, we focus on the transform variant analogous to the
IEnKS optimization.

Extending the adaptive covariance inflation in the finite
size formalism to either the EnKS or the SIEnKS is simple,
requiring that the ensemble transform calculation is inter-
changed with Algorithm A10 and that the tuned multiplica-
tive inflation step is eliminated. The finite size iterative en-
semble Kalman smoother (IEnKS-N) transform variant, in-
cluding adaptive inflation as above, is described in Algo-
rithm A11. Notice that iteratively optimizing the inflation hy-
perparameter comes at the additional expense of square root
inverse Hessian calculations for the EnKS and the SIEnKS,
while the IEnKS also requires L additional ensemble simu-
lations for each iteration.

4.3 Multiple data assimilation

When the lagL > 1 is long, temporally interpolating the pos-
terior estimate in the DAW via the nonlinear model solution,

as in Eq. (71), becomes increasingly nonlinear. In chaotic
dynamics, the small simulation errors introduced this way
eventually degrade the posterior estimate, and this interpo-
lation becomes unstable when L is taken to be sufficiently
large. Furthermore, for the 4D cost function, observations
only distantly connected with the initial condition at the be-
ginning of the DAW render the cost function with more local
minima that may strongly affect the performance of the op-
timization. Multiple data assimilation is a commonly used
technique, based on statistical tempering (Neal, 1996), de-
signed to relax the nonlinearity of performing the MAP es-
timate by artificially inflating the variances of the observa-
tion errors with weights and assimilating these observations
multiple times. Multiple data assimilation is made consistent
with the Bayesian posterior in perfect linear Gaussian mod-
els by appropriately choosing weights so that, over all times
that an observation vector is assimilated, all of its associated
weights sum to one (Emerick and Reynolds, 2013). Given
Gaussian likelihood functions, this implies that the sum of
the precision matrices over the multiple assimilation steps
equals R−1, as with the usual Kalman filter update.

Multiple data assimilation is integrated into the EnRML
for static DAWs in reservoir modeling (Evensen, 2018, and
references therein). With the fixed-lag, sequential EnKS,
there is no reason to perform MDA as the assimilation oc-
curs in a single pass over each observation with the filter
step as in the ETKF. Sequential MDA, with DAWs shifting in
time, was first derived with the IEnKS by Bocquet and Sakov
(2014). In order to sample the appropriate density, the IEnKS
MDA estimation is broken over two stages. First, in the bal-
ancing stage, the IEnKS fully assimilates all partially assimi-
lated observations, targeting the joint posterior statistics. Sec-
ond, the window of the partially assimilated observations is
shifted in time with the MDA stage. The SIEnKS is simi-
larly broken over these two stages, using the same weights
as the IEnKS above. However, there is an important differ-
ence in the way MDA is formulated for the SIEnKS versus
the IEnKS. For the SIEnKS, each observation in the DAW is
assimilated with the sequential 3D filter cost function instead
of the global 4D analysis in the IEnKS. The sequential filter
analysis constrains the posterior’s interpolation estimate to
the observations in the balancing stage, as observations are
assimilated sequentially in the SIEnKS, whereas the poste-
rior estimate is performed by interpolating with a free fore-
cast from the marginal posterior estimate in the IEnKS. Our
novel SIEnKS MDA scheme is derived as follows.

Recall our algorithmically stationary DAW, {t1, · · ·, tL},
and suppose, at the moment, that there is a shift of S = 1
and an arbitrary lag L. We take the notation that the covari-
ance matrices for the likelihood functions are inflated to be
as follows:

p
(
yβ |x

)
:= n

(
y|H (x) ,β−1R

)
, (77)
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where the observation weights are assumed 0< β ≤ 1. We
index the weight for observation yk at the present time tL as
βk|L. For consistency with the perfect linear Gaussian model,
we require that

L∑
i=1

βi|L = 1. (78)

This implies that, as we assimilate an observation vector for
L total times, shifting the algorithmically stationary DAW,
the sum of the weights used to assimilate the observation
equals one.

We denote

αk|L :=

L∑
i=k

βi|L (79)

as the fraction of the observation yk that has been assimi-
lated after the analysis step at the time tL. Note that, under
the Gaussian likelihood assumption, and assuming the inde-
pendence of the fractional observations, this implies that

L∏
i=k

p
(
yβi|L |x

)
= p

(
yαk|L |x

)
. (80)

Let β l:k|L and αl:k|L denote the length (l− k+ 1) vectors
as follows:

β l:k|L =
(
βl|L · · · βk|L

)
, (81a)

αl:k|L =
(
αl|L · · · αk|L

)
. (81b)

We then define the sequences,

y
β l:k|L
l:k :=

{
y
βl|L
l ,y

βl−1|L
l−1 , · · ·,y

βk|L
k

}
, (82a)

y
αl:k|L
l:k :=

{
y
αl:L
l ,y

αl−1|L
l−1 , · · ·,y

αk|l
k

}
, (82b)

as the observations yl:k in the current DAW {t1, · · ·, tL}, with
Eq. (82a), the corresponding MDA weights for this DAW,
and, with Eq. (82b), the total portion of each observation as-
similated in the MDA conditional density for this DAW after
the analysis step. Similar definitions apply with the indices
l : k|L− 1 but are relative to the previous DAW.

For the current DAW, the balancing stage is designed to
sample the joint posterior density,

p
(
xL:1|yL:1

)
, (83)

where the current cycle is initialized with a sample of the
MDA conditional density,

p
(
x0|y

αL−1:0|L−1
L−1:0

)
. (84)

That is, from the previous cycle, we have a marginal estimate
for x0, given the sequence of observations yL−1:0, where the
portion of observation yk that has been assimilated already

is given by αk|L−1. Notice that α0|L−1 = 1 so that y0 has al-
ready been fully assimilated. To fully assimilate y1, we note
that 1−α1|L−1 = β1|L, and therefore,

p
(
x1:0|y

αL−1:2|L−1
L−1:2 ,y1:0

)
∝p

(
y
β1|L
1 |x1

)
p(x1|x0)×

p
(
x0|y

αL−1:0|L−1
L−1:0

)
. (85)

The above corresponds to a single simulation/analysis step
in an EnKS cycle, where the observation y

β1|L
1 is assimilated,

and a retrospective reanalysis is applied to the ensemble at
t0.

More generally, to fully assimilate observation yk , we as-
similate the remaining portion left unassimilated from the
last DAW and given as 1−αk|L−1. We define an inductive
step describing the density for xk:0, which has fully assimi-
lated yk:0, though it has yet to assimilate the remaining por-
tions of observations yL−1:k+1, as follows:

p(xk:0|y
αL−1:k+1|L−1
L−1:k+1 ,yk:0)∝ p

(
y

1−αk|L−1
k |xk

)
×

p(xk|xk−1)p
(
xk−1:0|y

αL−1:k|L−1
L−1:k ,yk−1:0

)
. (86)

For k = 2, · · ·,L−2, this describes a subsequent simulation/-
analysis step of an EnKS cycle but where the observation
y

1−αk|L−1
k is assimilated and a retrospective analysis is ap-

plied to the ensemble at times t0, · · ·, tk−1. A subsequent
EnKS analysis gives the following:

p(xL−1:0|yL−1:0)∝ p
(
y

1−αL−1|L−1
L−1 |xL−1

)
×

p(xL−1|xL−2)p
(
xL−2:0|y

αL−1|L−1
L−1 ,yL−2:0

)
, (87)

i.e., this samples the joint posterior for the last DAW. A final
EnKS analysis is used to assimilate yL, for which no portion
was already assimilated in the previous DAW, as follows:

p(xL:1|yL:1)∝p(yL|xL)×

p(xL|xL−1)p(xL−1:0|yL−1:0). (88)

We thus define an initial ensemble, distributed approxi-
mately as follows:

Ebal
0 ∼ p

(
x0|y

αL−1:0|L−1
L−1:0

)
. (89)

In the balancing stage, the observation error covariance
weights are defined by the following:

ηk|L := 1−αk|L−1, (90)

where ηL|L = 1. When βk|L = 1
L

for all k, we obtain the bal-
ancing weights as ηk|L = k

L
for all k = 1, · · ·,L. An EnKS

cycle initialized as in Eq. (89), using the balancing weights
in Eq. (90), will approximately, sequentially, and recursively
sample

Ebal
k:0 ∼ p

(
xk:0|y

αL−1:k+1|L−1
L−1:k+1 ,yk:0

)
(91)
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from the inductive relationship in Eq. (86), where the final
analysis gives Ebal

L:0 ≡ Esmth
L:0|L from Eq. (88).

To subsequently shift the DAW and initialize the
next cycle, we target the density p

(
x1|y

αL:1|L
L:1

)
. Given

p
(
x0|y

αL−1:0|L−1
L−1:0

)
, the target density is sampled by assimi-

lating each observation y
βk|L
k , so that the portion of each ob-

servation assimilated becomes y
αL:1|L
L:1 . Notice that, for k =

1, · · ·,L− 2,

p(xk:0|y
αL−1:k+1|L−1
L−1:k+1 ,y

αk:0|L
k:0 )∝ p

(
y
βk|L
k |xk

)
×

p(xk|xk−1)p
(
xk−1:0|y

αL−1:k|L−1
L−1:k ,y

αk−1:0|L
k−1:0

)
. (92)

The above recursion corresponds to an EnKS step in which
the observation y

βk|L
k is assimilated and a retrospective anal-

ysis is applied to ensembles at times t0, · · ·, tk−1. Subsequent
EnKS analyses using the MDA weights then give the follow-
ing:

p(xL−1:0|y
αL−1:0|L
L−1:0 )∝ p

(
y
βL−1|L
k |xL−1

)
×

p(xL−1|xL−2)p
(
xL−2:0|y

αL−1|L−1
L−1 ,y

αL−2:0|L
L−2:0

)
, (93)

p(xL:0|y
αL:0|L
L:0 )∝ p

(
y
βL|L
L |xL

)
×

p(xL|xL−1)p
(
xL−1:0|y

αL−1:0|L
L−1:0

)
. (94)

We therefore perform a second EnKS cycle using the MDA
observation error covariance weights βk|L to sample the tar-
get density. Given that η1|L = β1|L, the first analysis of the
balancing stage in Eq. (85) is identical to the first analysis in
the MDA stage, corresponding to k = 1 in Eq. (92). There-
fore, this first EnKS analysis step can be reused between the
two stages.

Define an initial ensemble for the MDA stage, reusing the
first analysis in the balancing stage, as follows:

Emda
1 ≡ Ebal

1 ∼ p
(
x1|y

αL−1:2|L−1
L−1:2 ,y1:0

)
. (95)

An EnKS cycle initialized as in Eq. (95), using the MDA
weights βk , approximately, sequentially, and recursively
samples

Emda
k:1 ∼ p

(
xk:1|y

αL−1:k+1|L−1
L−1:k+1 ,y

αk:0|L
k:0

)
(96)

from the relationship in Eq. (92). The final analysis sam-
ples the density p

(
xL:1|y

αL:0|L
L:0

)
∝ p

(
xL:1|y

αL:1|L
L:1

)
, as in

Eq. (94), which is used to initialize the next cycle. To make
the scheme more efficient, we note that we need only sam-
ple the marginal p

(
x1|y

αL:1|L
L:1

)
to reinitialize the next cycle

of the algorithm. This means that the smoother loop of the
EnKS in the second stage needs to only store and sequen-
tially condition the ensemble Emda

1 with the retrospective fil-
ter analyses in this stage. Combining the two stages together

into a single cycle that produces forecast, filter, and smoother
statistics over the DAW {t1, · · ·, tL}, as well as the ensemble
initialization for the next cycle, requires 2L ensemble sim-
ulations. Due to the convoluted nature of the indexing over
multiple DAWs above, a schematic of the two stages of the
SIEnKS MDA cycle is presented in Fig. 5.

The MDA algorithm is generalized to shift windows of
S > 1 with the number of ensemble forecasts remaining in-
variant at 2L when using blocks of uniform MDA weights in
the DAW. Assume that L= SQ for some positive integer Q,
so that we partition yL:1 into Q total blocks of observations
each of length S. In this case, the perfect linear Gaussian
model consistency constraint is revised as follows:

βk|L = β̃i|L for i :=
[
k

S

]
, with

Q∑
j=1

β̃j |L = 1, (97)

where the above brackets represent rounding up to the near-
est integer. This ensures, again, that the weights correspond-
ing to the Q total times to which yk is assimilated sum to
one. With this weighting scheme, the equivalence between
the balancing and MDA stages’ first EnKS filter analysis ex-
tends to the first S total EnKS filter analyses, and therefore,
Emda
S ≡ Ebal

S initializes the MDA stage. Memory usage is fur-
ther reduced by only performing the retrospective condition-
ing in the balancing stage on the states Ebal

S:0. This samples the
density p(xS:0|yL:0) in the final cycle before the estimates
for these states are discarded from all subsequent DAWs.
MDA variants of the SIEnKS and the (Lin-)IEnKS are pre-
sented in Algorithms A12 and A13.

The primary difference between the SIEnKS and IEnKS
MDA schemes lies in the 3D filter balancing analysis ver-
sus the global 4D balancing analysis. The IEnKS MDA
scheme is not always robust in its 4D balancing estimation
because the MDA conditional prior estimate that initializes
the scheme may lie far away from the solution for the bal-
anced, joint posterior. As a consequence, the optimization
may require many iterations of the balancing stage. On the
other hand, the sequential SIEnKS MDA approach uses the
partially unassimilated observations in the DAW directly as a
boundary condition to the interpolation of the joint posterior
estimate over the DAW with the sequential EnKS filter cycle.
For long DAWs, this means that the SIEnKS controls error
growth in the ensemble simulation that accumulates over the
long free forecast in the 4D analysis of the IEnKS.

Note how the cost of assimilation scales differently be-
tween the SIEnKS and the IEnKS when performing MDA.
Both the IEnKS and the SIEnKS use the same weights ηk|L
and βk|L for their balancing and MDA stages. However, each
stage of the IEnKS separately performs an iterative optimiza-
tion of the 4D cost function. While each iteration therein
requires only a single square root inverse calculation of the
cost function Hessian, the iterative solution requires at least
2L total ensemble simulations in order to optimize and in-
terpolate the estimates over the DAW. An efficient version

Geosci. Model Dev., 15, 7641–7681, 2022 https://doi.org/10.5194/gmd-15-7641-2022



C. Grudzien and M. Bocquet: A fast single-iteration EnKS 7657

Figure 5. A schematic of the two stages of the SIEnKS MDA cycle. The DAW of the SIEnKS moves forward in time, from top to bottom,
where the EnKS stage using MDA weights pushes the MDA conditional density, on the far left, forward in time. The middle layer represents
the indexing of the stationary DAW, while the top layer represents a DAW one cycle back in time, and the bottom layer represents a DAW
one cycle forward in time. The balancing density is sampled sequentially and recursively with an EnKS stage, using the balancing weights
and moving from left to right in each cycle. For the current DAW, the middle balancing density has fully assimilated observations yk:0 and
has partially assimilated observations y

αL−1:k+1|L−1
L:k+1 . The EnKS stage with balancing weights completes when sampling the joint posterior,

and the EnKS stage with MDA weights begins again.

of the scheme can be performed as such by using the same
free ensemble simulation initialized, as in Eq. (89), in order
to assimilate each of the observation sequences y

ηL:1|L
L:1 and

y
βL:1|L
L:1 . However, the IEnKS additionally requires S total en-

semble simulations in order to shift the DAW thereafter. This
differs from the SIEnKS, which requires fixed 2L ensem-
ble simulations over the DAW. However, the computational
barrier to the SIEnKS MDA scheme lies in the fact that it
requires 2L−S square root inverse calculations, correspond-
ing to each unique filter cost function solution over the two
stages; in the case that MDA is combined with, e.g., the en-
semble transform in the MLEF, this further grows to the sum
of the number of iterations

∑2L−S
j=1 ij , where ij iterations are

used in the j th optimization of a filter cost function. How-
ever, when the cost of an ensemble simulation is sufficiently
greater than the cost of the square root inverse in the ensem-
ble dimension, the SIEnKS MDA scheme can substantially
reduce the leading-order computational cost of the ensemble
variational smoothing with MDA, especially when S > 1.

4.4 Asynchronous data assimilation

In real-time prediction, fixed-lag smoothers with shifts in
S > 1 are computationally more efficient in terms of reduc-
ing the number of smoother cycles necessary to traverse a
time series of observations with sequential DAWs – versus
a shift of one, the number of cycles necessary is reduced by
the factor of S. A barrier to using the SIEnKS with S > 1 lies
in the fact that the sequential filter analysis of the EnKS does
not in and of itself provide a means to asynchronously as-

similate observations. However, the SIEnKS differs from the
EnKS in numerically simulating lagged states in the DAW.
When one interpolates the posterior estimate with the dy-
namical model over lagged states, one can easily revise the
algorithm to assimilate any newly available data correspond-
ing to a time within the past simulation window, though the
weights in MDA need to be adjusted accordingly. There are
many ways in which one may even design methods of ex-
cluding observations and reintroducing them in a later DAW
with a shift S > 1. In the current work, the SIEnKS assimi-
lates all observations synchronously, even with S > 1. A sys-
tematic investigation of algorithms that would optimize this
asynchronous assimilation in single-iteration smoothers goes
beyond the scope of the current work. However, this key dif-
ference between the EnKS and the SIEnKS will be consid-
ered later.

5 Numerical benchmarks

5.1 Algorithm cost analysis

Fix the ensemble size Ne in the following, and let us sup-
pose that the cost of the nonlinear ensemble simulation is
fixed in1t , equal to CM floating-point operations (flops). In
order to compute the ensemble transform in any of the meth-
ods, we assume that the inversion of the approximate Hessian
4̃J̃ , and its square root, is performed with an SVD-based
approach with the cost of the order of O

(
N3

e
)

flops. This
assures stability and efficiency in the sense that the compu-
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tation of all of T= 4̃−
1
2

J̃ , T−1
= 4̃

1
2
J̃ and 4̃−1

J̃ combined is
dominated by the cost of the SVD of the symmetric, which
isNe×Ne matrix 4̃J̃ . If a method is iterative, we denote the
number of iterations used in the scheme with ij , where the
sub-index j distinguishes distinct iterative optimizations.

A summary of how each of the S/I/EnKS scale in their nu-
merical cost is presented in Tables 1 and 2. This analysis is
easily derived based on the pseudo-code in Appendix A and
with the discussions in Sect. 4. Table 1 presents schemes that
are used in the SDA configuration, while Table 2 presents
schemes that are used in the MDA configurations. Note that,
while adaptive inflation in the finite size formalism can be
used heuristically to estimate a power of the joint posterior,
this has not been found to be fully compatible with MDA
(Bocquet and Sakov, 2014), and this combination of tech-
niques is not considered here.

For realistic geophysical models, note that the maximal
ensemble size Ne is typically of the order of O

(
102), while

the state dimension Nx can be of the order of O
(
109) (Car-

rassi et al., 2018); therefore, the cost of all algorithms is re-
duced to terms of CM�N3

e at leading-order in target appli-
cations. It is easy to see then that the EnKS/MLES has a cost
that is of the order of the regular ETKF/MLEF filter cycle,
representing the least expensive of the estimation schemes.
Consider now, in row one of Table 1, that the i1 in the IEnKS
represents the number of iterations utilized to minimize the
4D cost function. If we set i1 = 1, then this represents the
cost of the Lin-IEnKS. Particularly, we see that, for S = 1
and a linear filter cost function, the Lin-IEnKS has the same
cost as the SIEnKS. However, even in the case of a linear
filter cost function, when S > 1, then the SIEnKS is more
expensive than the Lin-IEnKS. Setting i1 in Table 1 to termi-
nate with a maximum possible value the cost of the IEnKS
is bounded at the leading order; yet, we demonstrate shortly
how the number of iterations tends to be small in stable filter
regimes.

Consider the case when the filter cost function is nonlinear,
as when adaptive inflation is used (as defined in Sect. 4.2),
or when there is a nonlinear observation operator. Row two
of Table 1 shows how the cost of these estimators is differ-
entiated when nonlinearity is introduced – particularly, the
cost of the MLES and the SIEnKS requires one SVD calcu-
lation for each iteration used to process each new observa-
tion. This renders the SIEnKS notably more expensive than
the Lin-IEnKS, which uses a single Hessian SVD calculation
to process all observations globally. However, for target ap-
plications, such as synoptic-scale meteorology, the additional
expense of iteratively optimizing filter cost functions with the
SIEnKS versus the single iteration of the Lin-IEnKS in the
4D cost function is insignificant.

Table 2 describes the cost of the SIEnKS and the IEnKS
using MDA when there is a linear observation operator and
when there is a nonlinear observation operator. Recall that,
at leading-order CM, the cost of the SIEnKS is invariant in

S. This again comes with the caveat that observations are as-
sumed to be assimilated synchronously in this work, while
the IEnKS assimilates observations asynchronously by de-
fault. Nonetheless, the equivalence between the first S-filter
cycles in the balancing stage and the MDA stage in the
SIEnKS allows the scheme to fix the leading-order cost at
the expense of two passes over the DAW with the ensemble
simulation.

5.2 Data assimilation benchmark configurations

To demonstrate the performance advantages and limitations
of the SIEnKS, we produce statistics of its forecast/fil-
ter/smoother root mean square error (RMSE) versus the
EnKS/Lin-IEnKS/IEnKS in a variety of DA benchmark con-
figurations. Synthetic data are generated in a twin experiment
setting, with a simulated truth twin generating the observa-
tion process. Define the truth twin realization at time tk as
xt
k; we define the ensemble RMSE as follows:

RMSE
(

Eik
)
:=

√√√√√ Nx∑
j=1

(
x̂ij,k − x

t
j,k

)2

Nx
, (98)

where i refers to an ensemble label i ∈

{fore,filt,smth,bal,mda}, j refers to the state dimen-
sion index j ∈ {1, · · ·,Nx}, and k refers to time tk as
usual.

A common diagnostic for the accuracy of the linear Gaus-
sian approximation in the DA cycle is verifying that the en-
semble RMSE has approximately the same order as the en-
semble spread (Whitaker and Loughe, 1998), which is known
as the spread–skill relationship; overdispersion and underdis-
persion of the ensemble both indicate the inadequacy of the
approximation. Define the ensemble spread as follows:

spread
(

Eik
)
:=

√√√√√ 1
Ne− 1

Ne∑
j=1

(
Xi,jk

)>(
Xi,jk

)
Nx

, (99)

where i again refers to an ensemble matrix label, j in this
case refers to the ensemble matrix column index, and k again
refers to time. The spread is then given by the square root
of the mean square deviation of the ensemble from its mean.
Performance of these estimators will be assessed in terms of
having low RMSE scores with the spread close to the value
of the RMSE. Estimators are said to be divergent when either
the filter or smoother RMSE is greater than the standard de-
viation of the observation errors, indicating that initializing a
forecast with noisy observations is preferable to the posterior
estimate.
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Table 1. Order of the SDA cycle flops for lag=L, shift=S, tuned inflation (TI), or adaptive inflation (AI)/nonlinear observation operator (NO).

EnKS/MLES SIEnKS IEnKS

TI SCM+ SN3
e (L+ S)CM+ SN3

e (i1L+ S)CM+ i1N3
e

AI/NO SCM+
∑L
j=L−S+1ilN

3
e (L+ S)CM+

∑L
j=L−S+1ijN

3
e (i1L+ S)CM+ i1N3

e

Table 2. Order of the MDA cycle flops for lag= L=Q×S, shift=
S, tuned inflation, linear observation operator (LO), or nonlinear
observation operator (NO).

SIEnKS IEnKS

LO 2LCM+ (2L− S)N3
e

[
L(i1+ i2)+ S

]
CM+ (i1+ i2)N3

e
NO 2LCM+

∑2L−S
j=1 ijN

3
e

[
L(i1+ i2)+ S

]
CM+ (i1+ i2)N3

e

The perfect hidden Markov model in this study is de-
fined by the single-layer form of the Lorenz 96 equations
(Lorenz, 1996). The state dimension is fixed at Nx = 40,
with the components of the vector x given by the variables
xj with periodic boundary conditions, x0 = x40, x−1 = x39,
and x41 = x1. The time derivatives dx

dt := f (x), also known
as the model tendencies, are given for each state component
j ∈ {1, · · ·,40} by the following:

fj (x)=−xj−2xj−1+ xj−1xj+1− xj +F. (100)

Each state variable heuristically represents the atmospheric
temperature at one of the 40 longitudinal sectors discretizing
a latitudinal circle of the Earth. The Lorenz 96 equations are
not a physics-based model, but they mimic the fundamen-
tal features of geophysical fluid dynamics, including con-
servative convection, external forcing, and linear dissipation
of energy (Lorenz and Emanuel, 1998). The term F is the
forcing parameter that injects energy into the model, and the
quadratic terms correspond to energy-preserving convection,
while the linear term −xj corresponds to dissipation. With
F ≥ 8, the system exhibits chaotic, dissipative dynamics; we
fix F = 8 in the following simulations, with the correspond-
ing number of unstable and neutral Lyapunov exponents be-
ing equal to N0 = 14.

For a fixed1t , the dynamical model Mk is defined by the
flow map generated by the dynamical system in Eq. (100).
Both the truth twin simulation, generating the observation
process, and ensemble simulation, used to sample the ap-
propriate conditional density, are performed with a stan-
dard four-stage Runge–Kutta scheme with the step size h=
0.01. This high-precision simulation is used for generating a
ground truth for these methods, validating the Julia package
DataAssimilationBenchmarks.jl (Grudzien et al., 2021) and
testing its scalability; however, in general, h= 0.05 should
be of sufficient accuracy and is recommended for future use.
The nonlinearity of the forecast error evolution is controlled
by the length of the forecast window, 1t . A forecast length

1t = 0.05 corresponds to a 6 h atmospheric forecast, while
for 1t > 0.05, the level of nonlinearity in the ensemble sim-
ulation can be considered to be greater than that which is
typical of synoptic-scale meteorology.

Localization, hybridization, and other standard forms of
ensemble-based gain augmentation are not considered in this
work for the sake of simplicity. Therefore, in order to control
the growth of forecast errors under weakly nonlinear evolu-
tion, the rank of the ensemble-based gain must be equal to
or greater than the number of unstable and neutral Lyapunov
exponentsN0 = 14, corresponding toNe ≥ 15 (see Grudzien
et al., 2018, and references therein). In the following exper-
iments, we range the ensemble size as Ne ∈ {15+ 2i}13

i=0,
from the minimal rank needed without gain augmentation to
a full-rank ensemble-based gain. When the number of ex-
perimental parameters expands, we restrict to the case where
Ne = 21 for an ensemble-based gain of actual rank 20, mak-
ing a reduced-rank approximation of the covariance in anal-
ogy to DA in geophysical models.

Observations are full dimensional, such that Ny =Nx =
40, and observation errors are distributed according to the
Gaussian density n

(
z|0,INy

)
, i.e., with mean zero, uncorre-

lated across state indices and with homogeneous variances
equal to one. When the observation map is linear, it is de-
fined as Hk := INx ; when the observation map is taken to be
nonlinear, define the following:

H(x) :=
x

2
◦

{
1+

( x
10

)γ−1
}
, (101)

where ◦ above refers to the Schur product. This observation
operator is drawn from Sect. 6.7.2.2 of Asch et al. (2016),
where the parameter γ controls the nonlinearity of the map.
In particular, for γ = 1, this corresponds to the linear obser-
vation operator Hk , while γ > 1 increases the nonlinearity of
the map. When we vary the nonlinearity of the observation
operator, we take γ ∈ {i}11

i=1 corresponding to 10 different
nonlinear settings and the linear setting for reference.

When tuned inflation is used to regularize the smoothers,
as in Algorithm A4, we take a discretization range of λ ∈
{1.0+ 0.01i}10

i=0, corresponding to the usual Kalman update
with λ= 1.0 and to up to 10 % inflation of the empirical vari-
ances with λ= 1.1. Using tuned inflation, estimator perfor-
mance is selected for the minimum average forecast RMSE
over the experiment for all choices of λ, unless this is ex-
plicitly stated otherwise. When adaptive inflation is used, no
additional tuned inflation is utilized. Simulations using the
finite size formalism will be denoted with -N, following the

https://doi.org/10.5194/gmd-15-7641-2022 Geosci. Model Dev., 15, 7641–7681, 2022



7660 C. Grudzien and M. Bocquet: A fast single-iteration EnKS

convention of the EnKF-N. Multiple data assimilation will
always be performed with uniform weights as βk|L := 1

L
for

all estimators.
For the IEnKS, we limit the maximum number of itera-

tions per stage at ij = 10 for j = 1,2. Therefore the IEnKS
can take a maximum of i1+ i2 = 20 iterations in the MDA
configuration to complete a cycle. Iteratively optimizing the
filter cost function in the MLES(-N)/SIEnKS(-N), the max-
imum number of iterations is capped at ij = 40 per analy-
sis. The tolerance for the stopping condition in the filter cost
functions is set to 10−4, while the tolerance for the 4D esti-
mates is set to 10−3. However, the scores of the algorithms
are, to a large extent, insensitive to these particular hyperpa-
rameters.

In order to capture the asymptotically stationary statistics
of the filter/forecast/smoother processes, we take a long time-
average of the RMSE and spread over the time indices k.
The long experiment average ensures that, for an ergodic dy-
namical system, we average over the spatial variation in the
attractor, and we account for variations in the observation
noise realizations that may affect the estimator performance.
So that the truth twin simulates observations on the attrac-
tor, it is simulated for an initial spinup of 5× 103 analysis
times before observations are given. Let the time be given as
t0 after this initial spinup. Observations are generated iden-
tically for all estimators using the same Gaussian error real-
izations at a given time to perturb the observation map of the
truth twin. At time t0, the ensemble is initialized identically
for all estimators (depending on the ensemble size) with the
same iid sample drawn from the multivariate Gaussian with
mean at the truth twin xt

0 and covariance equal to the identity
INx . All estimation schemes are subsequently run over ob-
servation times indexed as {tk}2.5×104

k=1 . As the initial warmup
of the estimators’ statistics from this cold start tends to dif-
fer from the asymptotically stationary statistics, we discard
the forecast/filter/smoother RMSE and spread corresponding
to the observations times {tk}5×103

k=1 , taking the time average
of these statistics for the remaining 2× 104 analysis time in-
dices. Particularly, this configuration is sufficient to represent
estimator divergence which may have a delayed onset.

Forecast statistics are computed for each estimator when-
ever the ensemble simulates a time index tk for the first time,
before yk has been assimilated into the estimate. Filter statis-
tics are computed in the first analysis at which the obser-
vation yk is assimilated into the simulation. For the (Lin-
)IEnKS, with S > 1, this filter estimate includes the infor-
mation from all observations yL:L−S+2 when making a filter
estimate for the state at tL−S+1. Smoother statistics are com-
puted for the time indices t0, t1, · · ·, tS−1 in each cycle, corre-
sponding to the final analysis for these states before they are
discarded from subsequent DAWs. Empty white blocks in
heat plots correspond to Inf (non-finite) values in the simula-
tion data. Missing data occur due to numerical overflow when
attempting to invert a close-to-singular cost function Hessian

4̃J̃ , which is a consequence of the collapse of the ensemble
spread. When an estimator suffers this catastrophic filter di-
vergence, the experiment output is replaced with Inf values
to indicate the failure. Other benchmarks for the EnKS/Lin-
IEnKS/IEnKS in the Lorenz 96 model above can be found
in, e.g., Bocquet and Sakov (2014), Asch et al. (2016), and
Raanes et al. (2018), which are corroborated here with simi-
lar but slightly different configurations.

5.3 Weakly nonlinear forecast error dynamics – linear
observations

We fix 1t = 0.05 in this section, set S = 1, and use the lin-
ear observation operator in order to demonstrate the base-
line performance of the estimators in a simple setting. On the
other hand, we vary the lag length, the ensemble size, and
the use of tuned/adaptive inflation or MDA. The lag in this
section is varied on a discretization of L ∈ {1+ 3i}30

i=0. As a
first reference simulation, consider the simple case where all
schemes use tuned covariance inflation, so that the SIEnKS
and the Lin-IEnKS here are formally equivalent. Likewise,
with S = 1, there is no distinction between asynchronous or
synchronous DA. Figure 6 makes a heat plot of the forecast/-
filter/smoother RMSE and spread as the lag lengthL is varied
along with the ensemble size Ne.

It is easy to see the difference in the performance between
the EnKS and the iterative S/Lin-/IEnKS schemes. Particu-
larly, the forecast and filter RMSE does not change with re-
spect to the lag length in the EnKS, as these statistics are
generated independently of the lag with a standard ETKF fil-
ter cycle. However, the smoother performance of the EnKS
does improve with longer lags, without sacrificing stability
over a long lag as in the iterative schemes. In particular, all
of the iterative schemes use the dynamical model to inter-
polate the posterior estimate over the DAW. For sufficiently
large L, this becomes unstable due to the small simulation
errors that are amplified by the chaotic dynamics. The scale
of the color map is capped at 0.30, as a more accurate fore-
cast/filter performance can be attained in this setting with the
ETKF alone, as demonstrated by the EnKS.

On the other hand, the iterative estimate of the posterior, as
in the S/Lin-/IEnKS in this weakly nonlinear setting, shows
a dramatic improvement in the predictive and analysis accu-
racy for a tuned lag length. Unlike the standard ETKF obser-
vation/analysis/forecast cycle, these iterative smoothers are
able to control the error growth in the neutral Lyapunov sub-
space corresponding to the N0 = 14th Lyapunov exponent.
With the ensemble size Ne = 15 corresponding to a rank 14
ensemble-based gain, the iterative smoothers maintain sta-
ble prediction and posterior estimates over a wide range of
lags while the EnKS diverges for all lag settings. We no-
tice that the stability regions of the S/Lin-/IEnKS are oth-
erwise largely the same in this simple benchmark configu-
ration, though the IEnKS has a slightly longer stability over
long lags with low sample sizes.
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Figure 6. The lag length L is shown on the vertical axis, and the ensemble size Ne is shown on the horizontal axis. SDA, tuned inflation,
shift S = 1, linear observations, and 1t = 0.05 are also indicated.

Figure 7. Cross section of Fig. 6 at the ensemble size Ne = 21.

In order to illustrate the difference in accuracy between the
iterative schemes and the non-iterative EnKS, Fig. 7 plots a
cross section of Fig. 6 for Ne = 21. The iterative schemes
have almost identical performance until approximately a
lag of L≈ 37, at which point all schemes become increas-
ingly unstable. The differences shown between the iterative
schemes here are insignificant and may vary between differ-
ent implementations of these algorithms or pseudo-random

seeds. We note that all estimators are also slightly overdis-
persive due to selecting a tuned inflation value based on the
minimum forecast RMSE rather than balancing the RMSE
and spread simultaneously. Nonetheless, we clearly demon-
strate how all iterative estimators reduce the prediction and
analysis error over the noniterative EnKS approach. Tuning
the lag L, the forecast error for the iterative schemes is actu-
ally lower than the filter error in the EnKS.
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Figure 8. The lag length L is shown on the vertical axis, and the ensemble size Ne is shown on the horizontal axis. SDA, adaptive inflation,
shift S = 1, linear observations, and 1t = 0.05 are also indicated.

Figure 9. Cross section of Fig. 8 at the ensemble size Ne = 21.

Consider the case where the filter cost function is nonlin-
ear due to the adaptive inflation scheme. Figure 8 makes the
same heat plot as in Fig. 6 but where the finite size formalism
is used instead of tuned inflation. All schemes tend to have
slightly weaker performance in this setting, except for the
IEnKS-N in the low-ensemble-size regime. The design of the
adaptive inflation scheme is to account for sample error due
to the low ensemble size and nonlinearity in the forecast error

dynamics, which is typical of mid-range forecasts. The effi-
cacy of the design is illustrated, as the scheme is most effec-
tive when the low ensemble size and nonlinear forecast error
dynamics conditions are present. Note that the Lin-IEnKS-
N uses a single iteration of the extended 4D cost function,
optimizing both the weights for the initial condition and the
hyperparameter simultaneously. On the other hand, while the
SIEnKS-N makes a single iteration of the ensemble simula-
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tion over the DAW, it iteratively optimizes the adaptive in-
flation hyperparameter in the filter cost function. This allows
the SIEnKS-N to make substantial improvements over the
Lin-IEnKS-N in terms of the stability region while remain-
ing at the same leading-order cost.

Figure 9 plots a cross section of Fig. 8 at Ne = 21 in
order to further demonstrate the improved accuracy of the
forecast/filter/smoother statistics of the SIEnKS-N versus the
Lin-IEnKS-N. For a tuned lag L, the Lin-IEnKS-N fails to
achieve distinctly better forecast and filter accuracy than the
EnKS-N. While the smoother RMSE for the Lin-IEnKS-
N does make an improvement over the EnKS-N, this im-
provement is not comparable to the smoother accuracy of
the SIEnKS-N, which has the same leading-order cost. The
performance of the SIEnKS-N is almost indistinguishable
from the 4D IEnKS-N up to a lag of L≈ 25. At this point,
the stability of the SIEnKS-N begins to suffer, while, on the
other hand, the IEnKS-N is able to improve smoother RMSE
for slightly longer lags. Nonetheless, both the SIEnKS-N
and the IEnKS-N become increasingly underdispersive for
lags L≥ 25, demonstrating the systematic underestimation
of the estimator’s uncertainty that leads to divergence for suf-
ficiently large L.

We now demonstrate how MDA relaxes the nonlinearity
of the MAP estimation and the interpolation of the posterior
estimate over the DAW. Recall that MDA is handled differ-
ently in the SIEnKS from the 4D schemes because the 4D
approach interpolates the DAW with the balancing estimate
from a free forecast, while the SIEnKS interpolates the pos-
terior estimate via a sequence of filter analyses steps using
the balancing weights. Recall that, for target applications,
the SIEnKS is the least expensive MDA estimator, requiring
only 2L ensemble simulations in this configuration, while the
(Lin-)IEnKS uses at least 2L+1. Figure 10 presents the same
experiment configuration as in Figs. 6 and 8 but where MDA
is used with tuned inflation. The EnKS does not use MDA,
but the results from Fig. 6 are presented here for reference.

It is easy to see that MDA improves all of the iterative
smoothing schemes in Fig. 10, with greatly expanded stabil-
ity regions from Fig. 6. Moreover, a key new pattern emerges
that differentiates the traditional 4D MDA approach and the
new MDA scheme in the SIEnKS. In particular, while the
stability regions for the SIEnKS/(Lin-)IEnKS are similar for
their smoother statistics in this configuration, the forecast/-
filter statistics are strongly differentiated. Unlike the free
forecast solution used to interpolate the posterior estimate
over the DAW in the 4D approach, the filter step within the
SIEnKS MDA controls the simulation errors that accumulate
when L is large.

In order to examine the effect more precisely, consider the
cross section of Fig. 10 for Ne = 21 presented in Fig. 11.
Notice that all iterative MDA estimators have almost indis-
tinguishable performance until lag L≈ 31. From this point,
although the smoother accuracy increases with longer lags
for the (Lin-)IEnKS, this comes at a sacrifice in the forecast/-

filter accuracy. Particularly, for lags L≥ 31, the forecast/fil-
ter accuracy of the (Lin-)IEnKS begins to degrade; at a lag
of L≈ 61, the IEnKS performs worse than the EnKS, while
the Lin-IEnKS has diverged. This is in stark contrast to the
SIEnKS because not only does the forecast/filter accuracy re-
main stable for lags L≥ 40, but each of these also improve
along with the smoother accuracy until a lagL≈ 61. Further-
more, the spread of the SIEnKS indicates that the SIEnKS
MDA and perfect linear Gaussian approximation is well sat-
isfied, with the ensemble dispersion very close to the RMSE
within the stability region.

The SIEnKS thus highlights a performance tradeoff of the
4D MDA schemes that it does not suffer from itself. In par-
ticular, suppose that the lag L in Fig. 10 is selected in order
to optimize each estimator’s accuracy, in terms of RMSE,
for each fixed ensemble size Ne. One can optimize the lag
L using the forecast RMSE or the smoother RMSE as the
criterion. However, Fig. 11 indicates that Lmay be quite dif-
ferent for the forecast accuracy versus the smoother accuracy
in the 4D schemes. Figures 12 and 13 demonstrate this trade-
off precisely, where the former plots the RMSE and spread,
with lag and inflation simultaneously optimized for forecast
accuracy, and the latter is optimized for smoother accuracy.

Tuning for optimum forecast RMSE, as in Fig. 12, the
performance of the SIEnKS/(Lin-)IEnKS for any fixed Ne
is indistinguishable with respect to this metric. On the other
hand, the SIEnKS strongly outperforms the Lin-IEnKS and
even exhibits a slightly better overall stability and accuracy
than the IEnKS across the range of ensemble sizes. The dif-
ference in performance is more pronounced when tuning for
the minimal smoother RMSE in Fig. 13. Again, the three esti-
mators are indistinguishable in their smoother estimates, but
the SIEnKS forms high-precision smoother estimates with-
out sacrificing its predictive accuracy while interpolating the
solution over long lags.

Using MDA or adaptive inflation in DA cycles with
weakly nonlinear forecast error dynamics, we demonstrate
how the SIEnKS greatly outperforms the Lin-IEnKS with
the same, or lower, leading-order cost. The SIEnKS MDA
scheme also outperforms the IEnKS MDA scheme with less
cost, but the 4D IEnKS-N is able to extract additional accu-
racy over the SIEnKS-N at the cost of L additional ensemble
simulations per iteration. Therefore, it is worth considering
the statistics on the number of iterations that the IEnKS uses
in each of the above-studied configurations. Figure 14 shows
a heat plot for the mean and the standard deviation of the
number of iterations used per cycle for each of the IEnKS
with SDA, IEnKS-N, and IEnKS with MDA to optimize the
4D cost function. Notice that, in the MDA configuration, the
mean and the standard deviation is computed over the two
stages of the IEnKS, accounting for both the balancing and
MDA 4D cost functions.

Although the number of possible iterations is bounded be-
low by one in the case of SDA and two in the case of MDA,
the frequency distribution for the total iterations is not espe-
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Figure 10. The lag length L is shown on the vertical axis, and the ensemble size Ne is shown on the horizontal axis. MDA, tuned inflation,
shift S = 1, linear observations, and 1t = 0.05 are indicated. The EnKS SDA results are presented here for reference.

Figure 11. Cross section of Fig. 10 at the ensemble size Ne = 21.

cially skewed within the stability region of the IEnKS. This is
evidenced by the small standard deviation, less than or equal
to one, that defines the stability region for the scheme. Par-
ticularly, the IEnKS typically stabilizes around (i) three itera-
tions in the SDA, with tuned inflation configuration, (ii) three
to four iterations in the SDA, with adaptive inflation configu-
ration, and (iii) six to eight iterations in the MDA, with tuned
inflation configuration. Therefore, the SIEnKS is shown to

make a reduction ranging between (i) 2L, (ii) 2L to 3L, or
(iii) 4L to 6L ensemble simulations of the estimator’s cycle,
on average, versus the IEnKS. While this is unremarkable
for the SDA, a tuned inflation configuration where the Lin-
IEnKS performs similarly, this demonstrates a strong perfor-
mance advantage of the SIEnKS in its target application, i.e.,
in settings with weakly nonlinear forecast error dynamics and
other sources of nonlinearity dominating the DA cycle. This
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Figure 12. MDA configuration. RMSE and spread versus the ensemble size Ne. Lag and inflation are optimized for a minimum forecast
RMSE in Fig. 10.

Figure 13. MDA configuration. RMSE and spread versus the ensemble size Ne. Lag and inflation are optimized for a minimum forecast
RMSE in Fig. 10.

an especially profound reduction for the MDA configuration,
where the SIEnKS MDA scheme proves to be both the least
expensive and the most stable/accurate estimator by far.

5.4 Weakly nonlinear forecast error dynamics –
nonlinear observations

A primary motivating application for the SIEnKS is the sce-
nario where the forecast error dynamics is weakly nonlinear
but where the observation operator is weakly to strongly non-

linear. There are infinite possible ways for how nonlinearity
in the observation operator can be expressed, and the results
are expected to strongly depend on the particular operator. In
the following, we consider the operator in Eq. (101) for the
ability to tune the strength of this effect with the parameter
γ . In order to avoid conflating the effect of the nonlinear-
ity in the hyperparameter optimization and the nonlinearity
in the observation operator, we suppress adaptive inflation in
this section. In this case, SDA and MDA schemes are consid-
ered to compare how MDA can be used to temper the effects
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Figure 14. Iterations per cycle versus lag L on the vertical axis and ensemble size Ne on the horizontal axis. The mean (top panel) and
standard deviation (bottom panel) of the iterations used per cycle from simulations, generating Figs. 6, 8, and 10, are presented.

of local minima in the MAP estimation versus a nonlinear
observation operator. We again choose 1t = 0.05 to main-
tain weakly nonlinear forecast error dynamics. We restrict to
Ne = 21, as we expand the experimental parameters to in-
clude γ . The lag is varied as L ∈ {1+ 3i}27

i=0.
Figure 15 demonstrates the effect of varying the nonlin-

earity in the observation operator, where strong differences
once again emerge between the retrospective analysis of the
MLES and the iterative schemes. The scale of the color map
is raised to a maximum of 0.5, as a better performance can
be achieved with the MLEF alone, as demonstrated by the
MLES. In the MLES, the forecast and analysis error in-
creases almost uniformly in γ , but a very different picture
emerges for the iterative smoothers. While the stability re-
gions of the iterative schemes tend to shrink for larger γ ,
the accuracy of the estimators changes non-monotonically.
Moreover, iteratively optimizing the filter cost function in the
SIEnKS or the 4D cost function in the IEnKS does not in and
of itself guarantee a better performance than the Lin-IEnKS,
due to the increasing presence of local minima. Particularly
for the SIEnKS and the IEnKS with highly nonlinear ob-
servations, this optimization can also become deleterious to
the estimator performance, with evidence of instability and
catastrophic divergence in these regimes.

In Fig. 16, we repeat the experimental configuration of
Fig. 15, with the exception of using the MDA configuration.
As seen in Fig. 10, MDA greatly extends the forecast/filter
accuracy of the SIEnKS over the 4D schemes. Multiple data
assimilation in this context additionally weakens the effect

of the assimilation update step, smoothing the cost function
contours and expanding the stability regions of all estimators.

Figure 17 presents tuned results from Fig. 16, where the
lag and inflation are simultaneously optimized for the mini-
mal forecast RMSE. In this context, we clearly see how the
effect of varying γ is non-monotonic on the estimator ac-
curacy for the iterative schemes. However, important differ-
ences also emerge in this configuration between the SIEnKS
and the (Lin-)IEnKS. While the forecast and filter accuracy
of these schemes remains indistinguishable for γ ≤ 7, the
smoother RMSE of the SIEnKS is almost uniformly lower
than these other schemes for all γ . Interestingly, the degrada-
tion of the performance of the IEnKS for highly nonlinear ob-
servations, γ ≥ 8, does not extend to either of the Lin-IEnKS
or the SIEnKS in the MDA configuration. Whereas the iter-
ative optimization of the 4D cost function becomes suscepti-
ble to the effects of the local minima with large γ , the Lin-
IEnKS remains stable for the full window of the γ presented
here. Moreover, the SIEnKS demonstrates significantly im-
proved smoother accuracy over the Lin-IEnKS while remain-
ing at a lower leading-order cost. This suggests that the se-
quential MDA scheme of the SIEnKS is better equipped to
handle highly nonlinear observation operators than the 4D
formalism, which appears to suffer from a greater number of
local minima.

Geosci. Model Dev., 15, 7641–7681, 2022 https://doi.org/10.5194/gmd-15-7641-2022



C. Grudzien and M. Bocquet: A fast single-iteration EnKS 7667

Figure 15. Lag length L on the vertical axis and nonlinearity parameter γ on the horizontal axis. SDA, tuned inflation, shift S = 1, Ne = 21,
and 1t = 0.05 are indicated.

Figure 16. Lag lengthL is shown on the vertical axis, and the nonlinearity parameter γ is shown on the horizontal axis. MDA, tuned inflation,
shift S = 1, Ne = 21, and 1t = 0.05 are indicated. The MLES SDA results are presented here for reference.

5.5 Weakly nonlinear forecast error dynamics – lag
versus shift

Even for a linear observation operator and tuned inflation,
a shift S > 1 distinguishes the performance of each of the

studied estimators. In this section, we fix 1t = 0.05, corre-
sponding to weakly nonlinear forecast error dynamics, and
we vary L,S ∈ {2,4,8,16,32,48,64,80,96} to demonstrate
these differences. For the iterative schemes, we only consider
combinations of L divisible by S for compatibility with the
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Figure 17. MDA configuration. RMSE and spread versus γ . Lag and inflation are optimized for a minimum forecast RMSE.

MDA schemes. The EnKS is defined for arbitrary S < L, and
all such configurations are presented for reference.

Recall the qualification that the EnKS and SIEnKS are
designed to assimilate observations sequentially and syn-
chronously in this work, whereas the (Lin-)IEnKS assim-
ilates observations asynchronously by default. When S =

1, there is no distinction between asynchronous and syn-
chronous assimilation, but in this section this distinction is
borne in mind. Likewise, it is recalled that, for the (Lin-
)IEnKS with a shift S > 1, filter statistics are computed,
including the information from all observations yL:L−S+1
when making a filter estimate for states at times tS+1, · · ·, tL.
This arises from the asynchronous design of the IEnKS,
whereas filter statistics are computed sequentially without fu-
ture information in the SIEnKS.

Figure 18 presents the heat plot of RMSE and spread for
each estimator in the SDA configuration. We note that the
EnKS for a fixed L has a performance that is largely in-
variant with respect to changes in S, except for the special
case where S = L. In this case, the non-overlapping DAWs
impose that posterior estimates are constructed with fewer
observations conditioning the final estimate than in overlap-
ping DAWs. Otherwise, the stability regions of the iterative
schemes are largely the same, with the SIEnKS only achiev-
ing a slight improvement over the Lin-IEnKS and the IEnKS
only slightly improving on the SIEnKS.

The SDA configuration is contrasted with Fig. 19, where
we again see the apparent strengths of the SIEnKS MDA
scheme. When MDA is introduced, all iterative schemes in-
crease their respective stability regions to include longer lags
and larger shifts in the DAW simultaneously. However, the
SIEnKS has the largest stability region of all iterative estima-
tors, extending to shifts at least as large as the other schemes

for every lag setting. Likewise, the earlier distinction be-
tween the forecast and filter statistics of the SIEnKS and the
4D schemes is readily apparent. Not only does the stability
region of the SIEnKS improve over the other schemes, but it
is also generally more accurate in its predictive statistics at
the end of long lag windows.

In order to obtain a finer picture of the effect of vary-
ing the shift S, we tune the lag and inflation simultane-
ously for each estimator for their minimal forecast RMSE
when given a fixed shift; we plot the results of this tuning
in Fig. 20. Given that all iterative estimators uniformly di-
verge for a shift S ≥ 32, we only plot results for shifts in
the range {2i}4i=0. Several important features stand out in this
plot. First, note that, while optimizing the lag, the perfor-
mance of the SIEnKS is almost invariant in the shift, similar
to the performance of the EnKS. This is because the sequen-
tial filter analysis of the SIEnKS constrains the growth of the
filter and forecast errors as the DAW shifts. Indeed, the pre-
diction of states at times tL−S+1, · · ·, tL arises from a filter
ensemble at the previous time point. In the MDA scheme,
the balancing weights for the observations of these newly in-
troduced states in the DAW are, furthermore, all equal to one
and equivalent to a standard ETKF filter analysis.

Second, note that the filter estimates of the (Lin-)IEnKS
actually improve with larger shifts; however, this is an artifact
of computing the filter statistics over all times tL−S+1, · · ·, tL
and using the observations yL:L−S+1 simultaneously. This
means that the filter estimates for all times except tL actually
contain future information. This is contrasted with the se-
quential analyses of the EnKS and the SIEnKS, which only
produce filter statistics with observations from past and cur-
rent times.
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Figure 18. Lag length L on the vertical axis and shift S on the horizontal axis. SDA, tuned inflation, linear observations, ensemble size
Ne = 21, and 1t = 0.05 are indicated.

Figure 19. Lag length L on the vertical axis and shift S on the horizontal axis. MDA, tuned inflation, linear observations, ensemble size
Ne = 21, and 1t = 0.05 are indicated. The EnKS SDA results are presented here for reference.

Third, note that the Lin-IEnKS, while maintaining a sim-
ilar prediction and filtering error to the IEnKS, is less sta-
ble and performs almost uniformly less accurately than the
IEnKS in its smoothing estimates. The SIEnKS, moreover,

tends to exhibit a slight improvement in stability and accu-
racy over the IEnKS therein.

Finally, it is immediately apparent how S > 1 strongly in-
creases the prediction error for the 4D estimators. The longer
free forecasts for S > 1, used to shift the DAW, accumulate
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Figure 20. MDA configuration. RMSE and spread versus shift S. Lag L optimized for a minimum forecast RMSE in Fig. 19.

errors such that, for S ≥ 16, the Lin-IEnKS actually expe-
riences filter divergence. The difference in the estimators’
performances is once again a consequence of how observa-
tions are assimilated synchronously as in the EnKS/SIEnKS
or asynchronously by default in the (Lin-)IEnKS.

Bearing all the above qualifications in mind, we analyze
the performance of the estimators while varying the shift S.
First, for all experimental settings, the leading-order cost of
the SIEnKS MDA scheme is fixed at 2L ensemble simu-
lations, whereas for the other schemes the minimal cost is
at 2L+ S ensemble simulations. For configurations where
S > 1, the SIEnKS thus makes a dramatic cost reduction ver-
sus the other schemes in this aspect alone, requiring fewer en-
semble simulations per cycle. We consider that the leading-
order cost for the Lin-IEnKS is similar to the SIEnKS for
S = 1, requiring only one more ensemble simulation per cy-
cle. However, the SIEnKS with a shift S = 16 maintains a
prediction and smoother error that is comparable to the Lin-
/IEnKS for a shift of S = 1. This implies that the SIEnKS can
maintain a performance similar to the S = 1 IEnKS MDA
scheme, while using 1/16 of the total cycles needed by the
IEnKS to pass over the same observations in real time. If
we assume that the observations can be assimilated syn-
chronously, then the above SIEnKS MDA scheme is thus
able to run in its EnKS cycle over a long time series of ob-
servations while needing infrequent reinitialization with its
smoothed estimates. For a real-time forecast cycle, where the
computational cost/prediction accuracy tradeoff is the most
important consideration, this once again demonstrates how
the SIEnKS can balance this tradeoff, performing as well
as, and often better than, 4D estimators with a substantially
lower leading-order cost. Not only is each cycle less expen-
sive in the SIEnKS than in the (Lin-)IEnKS, but the SIEnKS

reduces the number of required cycles by an order of magni-
tude.

5.6 Strongly nonlinear forecast error dynamics – lag
versus 1t

In all other numerical benchmarks, we focus on the scenario
that the SIEnKS is designed for, i.e., DA cycles in which
the forecast error evolution is weakly nonlinear. In this sec-
tion, we demonstrate the limits of the SIEnKS when the
forecast error dynamics dominate the nonlinearity of the DA
cycle. We vary 1t ∈ {0.05× i}10

i=1, while the ensemble size
Ne = 21 and the shift S = 1 are fixed. The lag is varied as
L ∈ {1+3i}17

i=0. We neglect the nonlinear observation opera-
tors in this section, though we include the finite size adaptive
inflation formalism, which is itself designed to ameliorate the
increasing nonlinearity in the forecast error dynamics. Single
data assimilation and MDA configurations are considered for
the iterative schemes as usual.

Figure 21 demonstrates the effect of the increasing non-
linearity of the forecast error evolution with tuned inflation.
Due to the extreme nonlinearity for large 1t , we raise the
heat map scale for the RMSE and spread to 1.0. Several fea-
tures become apparent with the increasing forecast nonlin-
earity. First, the EnKS, which has a performance dependent
on the standard ETKF cycle, is fully divergent for 1t ≥ 0.2.
This is in contrast with all iterative schemes which main-
tain adequate performance for 1t ≤ 0.25. We note that the
performance of the SIEnKS and the Lin-IEnKS, in this first
scenario, is nearly identical; this corresponds to the fact that
they are formally equivalent in this setting. However, appro-
priately, it is the 4D IEnKS that maintains the most stable
and accurate performance over the range of forecast lengths.
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Indeed, this demonstrates the precise benefit of the iterative
solution to 4D cost function for moderately nonlinear, non-
Gaussian DA.

In Fig. 22, we repeat the same experiments as in Fig. 21
but using the finite size adaptive inflation, rather than tuned
inflation, for each estimator. Once again, the efficacy of the
finite size formalism in ameliorating the nonlinearity of the
forecast error dynamics is demonstrated. In particular, all
schemes except the SIEnKS see an overall improvement
in their stability region and often in their overall accuracy.
The EnKS-N actually strongly outperforms the tuned infla-
tion EnKS, extending an adequate filter performance as far
as 1t ≤ 0.35. Likewise, the IEnKS-N has a strongly en-
hanced stability region, though it increasingly suffers from
catastrophic filter divergence outside of this zone. Notably,
whereas the SIEnKS-N outperformed the Lin-IEnKS-N for
1t = 0.05, the Lin-IEnKS-N generally yields a better per-
formance for moderately to strongly nonlinear forecast er-
ror dynamics. Indeed, the finite size formalism appears to
become incompatible with the design of the SIEnKS for
strongly nonlinear forecast error dynamics, as suggested by
the widespread ensemble collapse and catastrophic diver-
gence.

As a final experimental configuration, we consider how
MDA affects the increasing nonlinearity of the forecast er-
ror dynamics. Figure 23 demonstrates the performance of
these estimators in the MDA configuration with tuned in-
flation, where the SDA results of the EnKS are pictured for
reference. In particular, we see the usual increase in the es-
timators’ stability regions over the SDA configuration. How-
ever, the improvement in the SIEnKS over the Lin-IEnKS is
marginal to nonexistent for moderately to strongly nonlin-
ear forecast error dynamics. The 4D IEnKS, furthermore, is
again the estimator with the largest stability region and great-
est accuracy over a wide range of 1t .

The results in this section indicate that, while the SIEnKS
is very successful in weakly nonlinear forecast error dynam-
ics, the approximations used in this estimator strongly de-
pend on the source of nonlinearity in the DA cycle. Partic-
ularly, when the nonlinearity of the forecast error dynamics
dominates the DA cycle, the approximations of the SIEnKS
break down. It is thus favorable to consider the Lin-IEnKS, or
to set a low threshold for the iterations in the IEnKS, instead
of applying the SIEnKS in this regime. Notably, as the finite
size inflation formalism is designed for a scenario different
to that of the SIEnKS, one may instead consider designing
adaptive covariance inflation in such a way that it exploits
the design principles of the SIEnKS. Such a study goes be-
yond the scope of this work and will be considered later.

6 Conclusions

In this work, we achieve three primary objectives. First, we
provide a review of sequential, ensemble variational Kalman

filters and smoothers with perfect model assumptions within
the Bayesian MAP formalism of the IEnKS. Second, we
rigorously derive our single-iteration formalism as a novel
approximation of the Bayesian MAP estimation, explaining
how this relates to other well-known smoothing schemes and
how its design is differentiated in a variety of contexts. Third,
using the numerical framework of DataAssimilationBench-
marks.jl (Grudzien et al., 2021), we extensively demon-
strate how the SIEnKS has a unique advantage in balancing
the computational cost/prediction accuracy tradeoff in short-
range forecast applications. Pursuant to this, we provide a
cost analysis and pseudo-code for all of the schemes studied
in this work, in addition to the open-source implementations
available in the supporting Julia package. Together, this work
provides a practical reference for a variety of topics at the
state of the art in ensemble variational Kalman smoothing.

The rationale of the SIEnKS is, once again, to efficiently
perform a Bayesian MAP estimation in real-time, short-
range forecast applications where the forecast error dynamics
is weakly nonlinear. Our central result is the novel SIEnKS
MDA scheme, which not only improves the forecast accuracy
and analysis stability in this regime but also simultaneously
reduces the leading-order cost versus the traditional 4D MDA
approach. This MDA scheme is demonstrated to produce sig-
nificant performance advantages in the simple setting where
there is a linear observation operator and especially when the
shift S can be taken greater than one. Not only is each cy-
cle of the SIEnKS MDA scheme significantly less expensive
than the other estimators for S > 1, but the estimator perfor-
mance while varying S tends to be invariant. This crucial as-
pect also means that one can, in principle, reduce the number
of cycles actually needed by the estimator to produce fore-
casts in real time. Our scheme also appears better equipped
than the 4D MDA estimation to handle highly nonlinear ob-
servation operators, as it maintains greater accuracy and is
more robust to the effects of local minima. Separately, we
find that, in our target regime, the single-iteration formalism
is cost-effective for optimizing hyperparameters of the esti-
mation scheme, as with the SIEnKS-N.

The above successes of the SIEnKS come with the fol-
lowing three important qualifications: (i) we have focused
on synchronous DA, assuming that we can sequentially as-
similate observations before producing a prediction step,
(ii) we have not studied localization or hybridization, which
are widely used in ensemble-based estimators to overcome
the curse of dimensionality for realistic geophysical models,
and (iii) we have relied upon the perfect model assumption,
whereas realistic forecast settings include significant mod-
eling errors. These restrictions come by necessity, to limit
the scope of an already lengthy study. However, we note
that the SIEnKS is capable of asynchronous DA, as already
discussed in Sect. 4.4. Likewise, it is possible that some of
the issues faced by the IEnKS in integrating localization/hy-
bridization (Bocquet, 2016) may actually be ameliorated by
the design principles of the SIEnKS. Domain localization, as
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Figure 21. Lag length L on the vertical axis and 1t on the horizontal axis. SDA, tuned inflation, and ensemble size Ne = 21 are indicated.

Figure 22. Lag length L on the vertical axis and1t on the horizontal axis. SDA, adaptive inflation, and ensemble sizeNe = 21 are indicated.

in the LETKF (Hunt et al., 2007; Sakov and Bertino, 2011), is
likely to have a satisfactory extension to the SIEnKS, where
this may be applied directly in the filter step as usual. As-
suming that the ensemble forecast dynamics is not highly
nonlinear, the spatial correlations defining the observation
domain truncation for the initial ensemble at t0 may, fur-
thermore, be well approximated by the domains from the fil-

ter step but mapped by a linear, reverse-time evolution over
the DAW via an explicit or implicit adjoint model. Exper-
iments suggest that a tuned radius for a smoother domain
localization can be implemented successfully in an EnKS
analysis (Nerger et al., 2014). However, there are also rich
opportunities to iteratively optimize a localization hyperpa-
rameter as with, e.g., the α trick (Lorenc, 2003) within the

Geosci. Model Dev., 15, 7641–7681, 2022 https://doi.org/10.5194/gmd-15-7641-2022



C. Grudzien and M. Bocquet: A fast single-iteration EnKS 7673

Figure 23. Lag length L on the vertical axis and 1t on the horizontal axis. MDA, tuned inflation, and ensemble size Ne = 21 are indicated.

SIEnKS framework. Similarly, it is possible that an extension
of the single-iteration formalism could provide a novel al-
ternative to other iterative ensemble smoothers designed for
model error, such as the IEnKS-Q (Sakov et al., 2018; Fil-
lion et al., 2020), EnKS expectation maximization schemes
(Pulido et al., 2018), or the family of OSA smoothers (Ait-
El-Fquih and Hoteit, 2022).

For the reasons above, this initial study provides a num-
ber of directions in which our single-iteration formalism can
be extended. Localization and hybridization are both prime
targets to translate the benefits of the SIEnKS to an oper-
ational short-range forecasting setting. Likewise, an asyn-
chronous DA design is an important operational topic for

this estimator. Noting that the finite size adaptive inflation
formalism is designed to perform in a different regime than
the SIEnKS and is not fully compatible with MDA schemes,
developing an adaptive inflation and/or model error estima-
tion based on the design principles of the SIEnKS is an im-
portant direction for a future study. Having currently demon-
strated the initial success of this single-iteration formalism,
each of these above directions can be considered in a devoted
work. We hope that the framework provided in this paper will
guide these future studies and will provide a robust basis of
comparison for further development of ensemble variational
Kalman filters and smoothers.
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Appendix A: Algorithm pseudo-code

Algorithm A1 Ensemble transform (ET).

Require: Ensemble matrix E ∈ RNx×Ne , observation map H, ob-
servation error covariance R ∈ RNy×Ny , and observation vec-
tor y

1: Y=H (E)
2: ŷ = Y1/Ne

3: S= R−
1
2
(

Y− ŷ1>
)

4: δ̂ = R−
1
2
(
y− ŷ

)
5: ∇J̃ =−S>δ̂
6: 4̃J̃ = (Ne− 1)INe +S>S

7: w =−4̃−1
J̃ ∇J̃

8: T= 4̃
−

1
2

J̃
9: return T,w

Algorithm A2 Random mean-preserving orthogonal matrix
(RO).

Require: Ensemble size Ne; let QR represent the QR algorithm.
1: Let Q ∈ R(Ne−1)×(Ne−1), with entries drawn iid from N (0,1)

2: Q,R= QR(Q)

3: U=
(

1 0
0 Q

)
4: Let {ai}

Ne
i=1 be an arbitrary orthogonal basis of RNe up to the

requirement that a1 = 1/
√
Ne; let A= [ai ]

Ne
i=1

5: return U= AUA>

Algorithm A3 Ensemble update (EU).

Require: Ensemble matrix E ∈ RNx×Ne , transform T, weights w,
and mean-preserving orthogonal matrix U.

1: x̂ = E1/Ne
2: X= E− x̂1>

3: return E= x̂1>+X
(
w1>+

√
Ne− 1TU

)

Algorithm A4 Covariance inflation (CI).

Require: Ensemble matrix E ∈ RNx×Ne and inflation λ.
1: x̂ = E1/Ne
2: X= E− x̂1>
3: return E= x̂1>+ λX

Algorithm A5 ETKF.

Require: Observation y1, filter ensemble Efilt
0 ∈ R

Nx×Ne , and in-
flation λ.

Require: Let ET, RO, EU, and CI represent Algorithms A1, A2,
A3, and A4, respectively.

1: Efore
1 =M1

(
Efilt

0

)
2: T,w = ET

(
Efore

1 ,H1,R1,y1

)
3: U= RO(Ne)

4: Efilt
1 = EU

(
Efore

1 ,T,w,U
)

5: Efilt
1 = CI

(
Efilt

1 ,λ
)

Require: Store Efilt
0 := Efilt

1 for the next cycle

Algorithm A6 EnKS.

Require: Lag= L, shift= S, observations yL:L−S+1, smoother
ensemble states Esmth

L−S:0, ensemble size Ne, and inflation λ.
Require: Let ET, RO, EU, and CI represent Algorithms A1, A2,

A3, and A4, respectively.
1: Efilt

L−S
:= Esmth

L−S
2: for k ∈ {L− S+ 1, · · ·,L} do
3: Efore

k
=Mk(Efilt

k−1)

4: T,w = ET
(

Efore
k

,Hk,Rk,yk
)

5: U= RO(Ne)

6: Efilt
k
= EU

(
Efore
k

,T,w,U
)

7: for j ∈ {0, · · ·,k− 1} do
8: Esmth

j
= EU

(
Esmth
j

,T,w,U
)

9: end for
10: Efilt

k
= CI

(
Efilt
k
,λ
)

11: Esmth
k
:= Efilt

k
12: end for
Require: Store Esmth

L−S:0 := Esmth
L:S

for the next cycle
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Algorithm A7 Gauss–Newton IEnKS in the SDA transform version.

Require: Lag= L, shift= S, and observations yL:L−S+1.
Require: Esmth

0 ∈ RNe×Ne

Require: Let RO, EU, and CI represent algorithms A2, A3, and A4, respectively.
Require: Parameters tol, jmax, inflation λ.
1: T := INe

2: E0 := Esmth
0

3: j := 0,w := 0
4: loop
5: for k ∈ {1, · · ·,L} do
6: Ek =Mk(Ek−1)
7: if k ∈ {L− S+ 1, · · ·,L} then
8: Yk =Hk(Ek)
9: ŷk = Yk1/Ne

10: Sk = R
−

1
2

k

(
Yk − ŷk1>

)
T−1

11: δ̂k = R
−

1
2

k

(
yk − ŷk

)
12: end if
13: end for
14: ∇J̃ = (Ne− 1)w−

∑L
k=L−S+1S>

k
δ̂k

15: 4̃J̃ = (Ne− 1)INe +
∑L
k=L−S+1S>

k
Sk

16: 1w = 4̃
−1
J̃ ∇J̃

17: w := w−1w

18: j := j + 1
19: if ‖1w ‖< tol or j = jmax then
20: break loop
21: else
22: T= 4̃

−
1
2

J̃
23: E0 = EU

(
Esmth

0 ,T,w,INe

)
24: end if
25: end loop

26: T= 4̃
−

1
2

J̃
27: U= RO(N)
28: E0 := EU

(
Esmth

0 ,T,w,U
)

29: for k = 1, · · ·,L+ S do
30: Ek =Mk(Ek−1)
31: end for
32: Esmth

L−S:0 := EL−S:0
33: Efilt

L:L−S+1 := EL:L−S+1

34: Efore
L+S:L+1 := EL+S:L+1

35: Esmth
S
= CI

(
Esmth
S

,λ
)

Require: Esmth
0 := Esmth

S
for the next cycle.
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Algorithm A8 SIEnKS in the SDA version.

Require: Lag= L, shift= S, observations yL:L−S+1, ensemble
states Esmth

0 and Esmth
L−S

, and inflation λ.
Require: Let ET, RO, EU, and CI represent Algorithms A1, A2,

A3, and A4, respectively.
1: Efilt

L−S
:= Esmth

L−S
2: for k ∈ {L− S+ 1, · · ·,L} do
3: Efore

k
=Mk(Efilt

k−1)

4: T,w = ET
(

Efore
k

,Hk,Rk,yk
)

5: Uk = RO(N)
6: Efilt

k
= EU

(
Efore
k

,T,w,Uk
)

7: Esmth
0 = EU

(
Esmth

0 ,T,w,Uk
)

8: end for
9: Esmth

0 := CI
(

Esmth
0 ,λ

)
10: for k = 1, · · ·,L do
11: Esmth

k
=Msmth

k
(Ek−1)

12: end for
Require: Esmth

0 := Esmth
S

, Esmth
L−S
:= Esmth

L
for the next cycle.

Algorithm A9 Maximum likelihood ensemble transform
(MLET).

Require: Ensemble matrix E ∈ RNx×Ne , observation map H, ob-
servation error covariance R ∈ RNy×Ny , and observation vec-
tor y.

Require: Parameters tol,jmax
1: T := INe
2: j := 0,w := 0
3: E0 := E
4: loop
5: Y=H (E)
6: ŷ = Y1/Ne

7: S= R−
1
2
(

Y− ŷ1>
)

T−1

8: δ̂ = R−
1
2
(
y− ŷ

)
9: ∇J̃ = (Ne− 1)w−S>δ̂

10: 4̃J̃ = (Ne− 1)INe +S>S

11: 1w = 4̃
−1
J̃ ∇J̃

12: w := w−1w

13: if ‖1w ‖< tol or j = jmax then
14: break loop
15: else
16: T= 4̃

−
1
2

J̃
17: E= EU

(
E0,T,w,INe

)
18: end if
19: end loop

20: T= 4̃
−

1
2

J̃
21: return T,w

Algorithm A10 Finite size ensemble transform (FSET).

Require: Ensemble matrix E ∈ RNx×Ne , observation map H, ob-
servation error covariance R ∈ RNy×Ny , and observation vec-
tor y.

Require: Parameters tol,jmax
1: T := INe
2: j := 0,w := 0
3: E0 := E
4: εNe := 1+ 1/Ne, Neff :=Ne + 1
5: loop
6: Y=H (E)
7: ŷ = Y1/Ne

8: S= R−
1
2
(

Y− ŷ1>
)

T−1

9: δ̂ = R−
1
2
(
y− ŷ

)
10: ζ = 1/

(
εNe +w

>w
)

11: ∇J̃ = ζ (Neff)w−S>δ̂
12: 4̃J̃ = (Ne− 1)INe +S>S

13: 1w = 4̃
−1
J̃ ∇J̃

14: w := w−1w

15: j := j + 1
16: if ‖1w ‖< tol or j = jmax then
17: break loop
18: else
19: T= 4̃

−
1
2

J̃
20: E= EU

(
E0,T,w,INe

)
21: end if
22: end loop
23: ζ = 1/

(
εN +w

>w
)

24: 4̃J̃ =Neff

(
ζ IN − 2ζ 2ww>

)
+S>S

25: T= 4̃
−

1
2

J̃
26: return T,w

Algorithm A11 Gauss–Newton IEnKS-N in the SDA trans-
form version.
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Algorithm A12 SIEnKS in the MDA version.

Require: Lag= L, shift= S, observations yL:1, MDA conditional ensemble Emda
0 , ensemble size Ne, and inflation λ.

Require: Let ET, RO, EU, and CI represent Algorithms A1, A2, A3 and A4, respectively.
Require: Let {βk}Lk=1 and {ηk}Lk=1 be the multiple data assimilation and balancing weights, respectively.
1: Ebal

0 := Emda
0

2: for k = 1, · · ·,L do
3: U= RO(Ne)
4: Ebal

k
=Mk(Ebal

k−1)
5: if k ∈ {L− S+ 1, · · ·,L} then
6: Efore

k
:= Ebal

k
7: end if
8: T,w = ET

(
Ebal
k
,Hk,Rk/ηk,yk

)
9: Ebal

k
= EU

(
Ebal
j
,T,w,U

)
10: if k ∈ {L− S+ 1, · · ·L} then
11: Efilt

k
:= Ebal

k
12: end if
13: for j = 0, · · ·,k− 1 do
14: Ebal

j
= EU

(
Ebal
j
,T,w,U

)
15: end for
16: if k=S then
17: Emda

0 = Ebal
0

18: Emda
S
= Ebal

k
19: end if
20: end for
21: Esmth

0:L−S := Ebal
0:L−S

22: for k = S+ 1, · · ·,L do
23: U= RO(Ne)
24: Emda

k
=Mk(Emda

k−1)

25: T,w = ET
(

Emda
k

,Hk,Rk/βk,yk
)

26: Emda
k
= EU

(
Emda
k

,T,w,U
)

27: Emda
0 = EU

(
Emda

0 ,T,w,U
)

28: end for
29: Emda

0 = CI
(

Emda
0 ,λ

)
30: for k = 1, · · ·,S do
31: Emda

k
=Mk(Emda

k−1)
32: end for
Require: Store Emda

0 = Emda
S

for the next cycle
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Algorithm A13 Gauss–Newton IEnKS in the MDA transform version.

Require: Lag= L, shift= S, observations yL:1, conditional MDA ensemble Emda
0 , and ensemble size Ne.

Require: Let RO, EU, and CI represent Algorithms A2, A3, and A4, respectively.
Require: Let {βk}Lk=1 and {ηk}Lk=1 be the multiple data assimilation and balancing weights, respectively.
Require: Parameters tol, jmax, inflation λ.
1: T= INe
2: j = 0,w = 0
3: for stage= 1,2 do
4: E0 = Emda

0
5: if stage= 1 then
6: θk = ηk
7: else
8: θk = βk
9: end if

10: loop
11: for k ∈ {1, · · ·,L} do
12: Ek =Mk(Ek−1)
13: ŷk =Hk(Ek)1/Ne
14: Yk =Hk(Ek)

15: Sk =
√
θkR
−

1
2

k

(
Yk − ŷk1>

)
T−1

16: δ̂k =
√
θkR
−

1
2

k

(
yk − ŷk

)
17: end for
18: ∇J̃ = (Ne− 1)w−

∑L
k=L−S+1S>

k
δ̂k

19: 4̃J̃ = (Ne− 1)INe +
∑L
k=L−S+1S>

k
Sk

20: 1w = 4̃
−1
J̃ ∇J̃

21: w := w−1w

22: j := j + 1
23: if ‖1w ‖< tol or j = jmax then
24: break loop
25: else
26: T= 4̃

−
1
2

J̃
27: E0 = EU

(
Emda

0 ,T,w,INe

)
28: end if
29: end loop

30: T= 4̃
−

1
2

J̃
31: U= RO(Ne)

32: E0 := EU
(

Emda
0 ,T,w,U

)
33: if stage= 1 then
34: for k = 1, · · ·,L+ S do
35: Ek =Mk(Ek−1)
36: end for
37: Esmth

L−S:0 := EL−S:0
38: Efilt

L:L−S+1 := EL:L−S+1

39: Efore
L+1:L+S := EL+S:L+1

40: end if
41: end for
42: for k = 1, · · ·,S do
43: Ek =Mk(Ek−1)
44: end for
45: Esmth

S
= CI

(
Esmth
S

,λ
)

Require: Esmth
0 := Esmth

S
for the next cycle.
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